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Abstract

In many real-world settings, such as medicine and
finance causal effect is a valuable metric for de-
cision making. For many predictive tasks, causal
mechanisms provide robust estimators while exist-
ing ML-driven predictors might be vulnerable to
spurious correlations. In such settings, when data
is decentralized and privacy must be preserved,
federated learning plays an important role. How-
ever, causal inference in a federated learning setup
is a largely unexplored research area. In this pa-
per, we learn a proxy of the underlying structural
causal model (SCM) with deep generative mod-
els from decentralized observational data sources
possibly containing high-dimensional variables.
Based on client preference or high dimensionality
of variables, we modularize the SCM mechanisms
and find the minimal subset appropriate for feder-
ated learning while having rest of the mechanisms
trained on individual client’s local data. When all
connected together, the proxy SCM, named as the
federated deep causal generative model (FeDCM ),
offers estimation of any identifiable causal effect.
We perform extensive experiments to illustrate the
utility and performance of our approach.

1 INTRODUCTION

There is growing appeal for causal inference in machine
learning as causality can improve robustness, fairness, ex-
plainability, and data efficiency in machine learning sys-
tems [10, 49, 53, 29] . Predictive models f : X → Y
are susceptible to spurious correlations due to unobserved
confounding among variables and may produce biased and
unfair predictions. Also, due to the dependence on domain-
specific conditional distributions P1(y|x) (suppose domain
1), their predictions are not invariant and experience low test

performance in a new domain (domain 2). Estimation of
causal effects P (y|do(x)) or sampling of the corresponding
interventional distribution alleviate these issues by removing
any such confounding bias between X and Y [42, 19].

Many causal inference algorithms only work [15, 24] when
the positivity (also known as overlap) assumption is satis-
fied, i.e., every joint combination of the variables values
has positive probability. When we have small number of
samples, it is unlikely that we will see all possible combina-
tions in the data. As a result, some conditional distributions
might be undefined (ex: P(recovery|age=90, sex=male, dis-
easeHistory=none)) Also, when we have low sample size,
estimations of some conditional distributions might not be
correct (sample mean ̸= population mean). If we plug in
such biased conditional distributions in our causal effect
estimators, the estimates will not be correct. Thus, the al-
gorithms perform poor in low sample size settings. This
problem is more prevalent when high-dimensional covari-
ates such as images are present in the system. Some existing
algorithms deal with such issues by learning from multiple
datasets [45, 3, 9]. Even though combining multiple obser-
vational datasets resolve the data scarcity problem, in most
real-world scenarios, such data are collected by different
authorities (e.g., hospitals) and kept confidential at different
locations. This creates a significant challenge.

Data scarcity is also a major problem in data analysis
and current machine learning. Federated learning (FL) is
an effective approach to train powerful ML models with-
out different clients/parties having to share sensitive data.
Client c trains the global model fθ on its local datasets
Dc = {xi, yi}nc

i=1 and share the model weights with the
server so that when aggregated from multiple clients, fθ
learns to sample from the original distribution P (y|x). Note
that FL shares a global model weights across local clients
whereas the existing causal inference algorithms require
explicit probability tables for effect estimation. Even if we
plan to share probability tables instead of model weights,
such data statistics are infeasible to be computed for high-
dimensional variables. For example, hospitals might share
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probability distribution of getting pneumonia (n) given pa-
tient age (a), i.e, P (n|a = 1). Such approach would not
work if we aim to use X-ray images (x) for better prediction,
i.e, P (n|a, x). This invalidates the use of existing causal
inference algorithms in federated learning setup.

A recent promising idea for estimating causal effect in the
presence of high-dimensional variables (such as images) is
to utilize neural networks [16, 35, 38, 22]. However, it is
non-trivial to apply these approaches in the federated learn-
ing setup. Few works [11, 51, 52, 34, 47] have proposed
to estimate specific treatment effects when data is decen-
tralized across clients. These methods address only specific
causal queries and are not suitable for arbitrary causal struc-
tures. Besides, for a new query, they have to redesign the
training process to learn the conditional distributions and
initiate the costly federated training from scratch.

In this paper, we assume that variables influencing each
other in a system can be specified by causal mechanisms
and modeled as a structural causal model (SCM). Mimick-
ing the SCM of the environment allows us to measure the
causal effect of any variable on others without being affected
by spurious correlations, as long as the effect is structurally
identifiable. Notably, learning all SCM mechanisms, rather
than estimating a specific causal effect, better utilizes client
connections during the federated communication phase. As
a first step toward learning SCMs from decentralized data,
we focus on existing approaches [18, 30, 50, 57, 36] that use
deep generative models to learn the structural causal model
from training data. A set of neural networks, called deep
causal generative models (DCMs), are typically arranged
according to the causal structure and trained on observa-
tional data. After convergence, they match the observational
distribution and can be used to sample from identifiable
interventional distributions or estimate causal effects.

New challenges appear when we aim to train a DCM in a
federated fashion, as it requires training |V | number of gen-
erative mechanisms of all V variables in the causal graph,
i.e., {fVi}Vi∈V to match the joint distribution. A trivial
implementation of a federated learning algorithm such as
FedAVG [25] would be to consider |V | global models which
we share across clients and aggregate in the server. Such
communication overhead is a major concern and infeasible
for clients such as edge devices with limited compute and
memory. A fundamental question is by how much we can
reduce this complexity of distribution matching. Bayesian
networks provide a way to modularly represent the joint
distribution. Causal Bayesian Networks1 enjoy the same
compact representation (see Definition A.1). In the pres-
ence of latent variables, a term we call “modularity" allows
the factorization of joint distribution into some products
called c-factors. However, it is not clear how compactly

1A BN considers dependencies among a set of observed vari-
ables while a CBN considers causal dependencies among them.

we can represent the joint distribution and how much of it
we can achieve in a federated learning setup. We do not
want to transfer all causal mechanisms as global models
between the server and the clients. Rather, we consider a
set of models, Suser that clients prefer to share or based
on high-dimensional variables that require federated learn-
ing. Our method FeDCM either accepts such a set or offers
the minimal set of mechanisms SFL containing Suser for
federated training. We execute FL for the set of models,
SFL and utilize only local client data to learn the remaining
mechanisms in the SCM.

To generalize this process, we solve two challenges: C1:
How can we determine the minimal set of models SFL that
need to be trained collaboratively as FL global models based
on Suser : a client-proposed set or any high-dimensional
variable set. C2: During and after FL training, how to uti-
lize the global models SFL to train the SCM mechanisms
{fVi
}Vi∈V consistently to match the joint distribution P (v).

Our proposed algorithm solves C1 by achieving what we
call maximal modularity for training a causal model: we can
learn mechanisms in each c-component (maximal subsets of
nodes that are connected by unobserved confounding) inde-
pendently. As part of solving C2, we note that, distributions
corresponding to c-components (i.e., c-factors) are identifi-
able interventional distributions. Thus, instead of making
Suser, we make a proxy set of models M participate in
FL and later use them to train SFL. Therefore, we train all
SCM mechanisms on local observational data and simulta-
neously train SFL on the interventional data generated by
the proxy global models M. After convergence, the DCM
trained according to this approach represents the underlying
true causal model. We can fix a specific value for a vari-
able X = x and perform ancestral sampling to generate
interventional samples from P (Z, Y |do(x)) or estimate the
causal effect. To the best of our knowledge, FeDCM is the
first approach to efficiently learn a neural SCM to answer
any identifiable causal effect in a federated learning setup.
Precisely, our contributions are as follows:

• We propose a novel approach to learn a proxy structural
causal model from multiple decentralized data sources
containing both high and low-dimensional variables.

• We introduce the concept of maximal modularity that
allows us to find the minimal set of SCM mechanisms
for global training containing any client-preferred set
of models and keep the communication cost low.

• We provide extensive empirical analysis on synthetic
data showing the utility of our approach for learning a
SCM in federated learning setup.

2 RELATED WORKS

In presence of data scarcity and privacy concerns, many
existing works utilize deep learning based approach to deal



with data heterogeneity, distribution shift [14, 2, 7, 56, 21,
43, 54] and spurious correlations [41, 48, 23]. Even though,
these approaches are effective in their targeted problem
instances, they might not generalize to any scenarios as
they do not consider the causal relationships. There exists
many causal inference-based approaches that learn causal
structures or distributions from multiple datasets. Huang
et al. [13] learns the causal graph from multiple data sets
with non-identical variable sets. Tikka et al. [45] perform
causal effect identification from multiple incomplete data
sources while dealing with confounding and selection bias.
Gresele et al. [9] utilize information from multiple datasets
with overlapping variable set to obtain counterfactual infer-
ence. Bareinboim and Pearl [3] propose causal knowledge
transportability by incorporating data from multiple causal
domains. These methods assume access to all datasets and
fail to adapt when data is decentralized.

Recently researchers have proposed different causal infer-
ence methods in the federated learning setup [4, 46, 33,
26, 17]. Ng and Zhang [28] estimates the Bayesian network
structure from data that is partitioned across different parties
with continuous optimization using the alternating direction
method of multipliers. Ye et al. [55] propose federated learn-
ing of generalized linear causal networks from distributed
datasets by simulating an annealing process and searching
over the space of topological sorts. Gao et al. [8] employ
federated learning to learn the underlying causal structure
and the causal mechanisms from local heterogeneous data
generated from additive noise models. Li et al. [20] propose
an algorithm for structure and orientation learning utilizing
summary statistics from distributed heterogeneous data.

Han et al. [11] utilizes semi-parametric density ratio weight-
ing approach to provide treatment effect estimation where
multiple clients contain heterogeneous covariate distribu-
tions. Xiong et al. [52] infer the average treatment effects
by computing summary statistics locally using propensity
scores and aggregating those across sites to obtain asymp-
totically normal point and variance estimators. Finally, Qiao
et al. [34] estimate causal effect with data aggregated from
multiple self-interested parties while rewarding them based
on their unique statistical properties relating to a modified
variant of the Shapley value. Vo et al. [47] divides the objec-
tive function into multiple components to estimate causal
effects with federated training. These above works focus
on estimation of specific queries and are not suitable for
high-dimensional data in general.

3 PROBLEM DESCRIPTION

Definition 3.1 (Structural causal model (SCM) [31]). An
SCMM is a 5-tupleM = (V,N ,U ,F , P (.)), where each
observed variable Vi ∈ V is realized as an evaluation of the
function f∗

i ∈ F which looks at a subset of the remaining
observed variables Pai ⊂ V , an unobserved exogenous

noise variable Ei ∈ N , and an unobserved confounding
(latent) variable Ui ∈ U . This refers to the semi-Markovian
causal model. P (.) is a product joint distribution over all
unobserved variables N ∪ U .

Definition 3.2 (Acyclic Directed Mixed Graph (ADMG)).
Each SCM induces a directed graph called the causal graph,
or acyclic directed mixed graph (ADMG) with V as the
vertex set. The directed edges are determined by which
variables directly affect which other variable by appearing
explicitly in that variable’s function. Thus the causal graph
is G = (V,E) where Vi → Vj iff Vi ∈ Paj . The set Paj is
called the parent set of Vj . We assume this directed graph
is acyclic (DAG). Under the semi-Markovian assumption,
each unobserved confounder can appear in the equation of
exactly two observed variables. We represent the existence
of an unobserved confounder [U = UX = UY ] ∈ U be-
tween X,Y in the SCM with a bidirected edge X ↔ Y
to the causal graph. These graphs are no longer DAGs al-
though still acyclic. Vi is called an ancestor for Vj if there
is a directed path from Vi to Vj . Then Vj is said to be a
descendant of Vi. The set of ancestors of Vi in graph G is
shown by AnG(Vi). C-components: Given an ADMG G,
a maximal subset of nodes where any two nodes are con-
nected by bidirected paths is called a c-component C(G).
For any S ∈ C(G), P (S|do(V \S)) is called a c-factor. We
assume that we have access to the ADMG through some
causal structure learning algorithm and expert knowledge.

Definition 3.3 (Causal effect and do-intervention). A do-
intervention do(vi) replaces the functional equation of Vi

with Vi = vi without affecting other equations. The dis-
tribution induced on the observed variables after such an
intervention is called an interventional distribution, shown
by P (V|do(vi)). P (V|do(∅)) = P (V) is called the obser-
vational distribution.

Definition 3.4 (Deep causal generative models (DCM) [18,
50, 36]). A neural net architecture G is called a deep causal
generative model (DCM) for an ADMG G = (V, E) if
it is composed of a collection of neural nets, one fi (or
interchangeably fVi

) for each Vi ∈ V such that i) each
fi accepts a sufficiently high-dimensional noise vector Ni,
ii) the output of fj is input to fi iff Vj ∈ PaG(Vi), iii)
Ni = Nj iff Vi ↔ Vj . A DCM is trained to learn a proxy
of the true SCM.

DCM generators are represented as G = {f1, ..., fn} pa-
rameterized by Θ = {θ1, ..., θ|V|} where n = |V|. Similar
to the original data distribution, P (V), we define Pθ(V) to
be the distribution induced by the θ parameterized DCM.
Noise vectors Ni replace both the exogenous noises and the
unobserved confounders in the true SCM. They are of suffi-
ciently high dimension to induce the observed distribution.
We say that a DCM is representative enough for an SCM if
the neural networks have sufficiently many parameters to in-
duce the observed distribution induced by the SCM. For the



neural architectures of variables in the same c-component,
we can consider conditional GANs [27], as they are effective
in matching the joint distribution by feeding the same prior
noise Ni = Nj (as confounders) into multiple generators.
Let v = [v1, v2, ..., vn] st Vi ∈ V . D(v) is real samples and
D(v̂) ∼ Pθ(v) is DCM generated fake samples:

v̂i = fi(p̂a(Vi), uVi
); fi ∈ {fV : V ∈ V}, uVi

∼ N(0, I)

The critic and generator (WGAN) loss functions are:

LD = Ev∼P [D(v)]− Ev∼Pθ
[D(v)]

LG = W (P, P θ) = −Eu∼P (u)[D(v̂)]
(1)

The gradient updates are in such case are:

f
(t+1)
V = f

(t)
V − η

∂LG

∂fV
; {fV : V ∈ V} (2)

With Defintion3.4, we have the following, similar to [50]:

Theorem 3.5. [18, 50, 36] Consider any SCM M =
(G,N ,U ,F , P (.)). A DCM G = {f1, ..., fn} for G en-
tails the same identifiable interventional distributions as the
SCMM if it entails the same observational distribution.

Thus, even with high-dimensional variables, given a causal
graph, in principle, any identifiable interventional query can
be sampled from, with a DCM that fits the joint distribution.

Definition 3.6 (Interventional sampling with DCM). Given
the generators in a DCM, to perform a hard intervention
do(X = x) and produce samples accordingly, we manually
set the values for the intervened variables as X = x instead
of using their neural network. Then, we feed forward those
values into its children’s mechanisms and execute ancestral
sampling [5] to generate the rest of the variables.

Modular-DCM [36]: Modular-DCM use the c-factorization
to modularize the DCM learning. Even though they point out
the fact that each c-factor is an interventional distribution,
they suggest learning a proxy distribution of each c-factor
involving more variables than the c-component. For compli-
cated graphs, the suggested proxy distribution might include
all variables in the causal graph. This becomes wasteful
especially in our considered federated learning setup. Here,
we show that c-component based modularity is sufficient to
learn the DCM and match the joint distribution P (v) which
has remained unexplored to date.

Federated Learning (FL): We consider a federated learn-
ing setting where C clients participate at each round of a
training process coordinated at a central server. Training
data is independent and identically distributed (iid) and is
decentralized across multiple clients such that each client
dataset Dc is sampled from a joint distribution P (.). For
a case of two variables, each sample in Dc is denoted as
(x, y) ∈ sup(X)×sup(Y ) with sup(X), sup(Y ) being the

support of input X and output Y . Clients collaboratively
train a mechanism: F (w, x) : sup(X)→ sup(Y ) to learn
the conditional distribution P (y|x). The global optimization
problem is designed as the FedAVG algorithm [25]:

min
w

L(w) =

C∑
c=1

Lc(θ) =

C∑
c=1

E(x,y)∼Dc
l(F (w, x), y)

In the classic FedAvg [25] algorithm, the server samples a
subset of C clients and broadcast the mechanism parameters
wt to those clients during round t. After performing local
gradient updates, these clients return optimized mechanism
wt

c to the server. The server aggregates the local model to
obtain a global model. In this paper, we consider a more
general case where each client can share multiple models.

Problem setup: We assume that data sets for all clients are
generated from the same underlying SCM. Dataset {Dc}Cc=1

is collected from client c’s environment with joint distribu-
tion P (v) which is assumed to be generated from an un-
known SCMM. Our tasks are: i) to learn a DCM M̂ proxy
to the true SCMM without exchanging any client data such
that the observationa distribution P (v) is matched, and ii)
to estimate causal effects between any pair X,Y ∈ V or
sample from the corresponding interventional distribution
P (y|do(x)). Formally, in any client c ∈ C, our goal is to
find a DCM M̂ s.t. argminM̂ d(P (v), Pθ(v̂)). Since we
do not want any spurious correlation in our prediction, our
goal is always to obtain the interventional distributions (ex:
P (y|do(x)) for arbitrary X,Y ∈ V , and not the conditional
distributions (ex: P (y|x)).

Assumptions: i) The observational dataset contains iid
samples and distributed across multiple clients that col-
lectively can represent the correct joint distribution P (v)
ii) we have access to the ADMG. iii) the causal model is
semi-Markovian. iv) Each generator fi,∀i in the DCM can
correctly learn the target distribution. (App A.3 for details).

4 METHODOLOGY

Suppose that due to privacy concerns or financial incentives,
clients do not want to share any data and wish to share as few
model weights as possible. Given a set of models proposed
for federated training by the client Suser, FeDCM evaluates
if it is possible to learn an SCM by only participating into
the FL process with this set and use local data for training
the remaining mechanisms. If their intended mechanisms
are not sufficient to learn the whole SCM, FeDCM rejects it
and offers the minimal super set of Suser that are required
to be learned collaboratively. For this purpose, we estab-
lish a maximal modularity concept considering the causal
relations among the variables in the causal graph, more
specifically the c-components.

Challenges of training a DCM in FL: Given the causal
graph G(V), we have {fi}|V|

i=1 mechanisms in the causal
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Figure 1: I : X-ray image, Y : pneumonia prediction, X:
symptoms, A: age. All clients maintain the same graph.

model. To learn {fi};∀i we are required to learn the true
joint distribution P (v) by training local models on client
data and sharing necessary model weights. To be precise,
consider the task of approximating the structural causal mod-
els in different setups shown in Fig. 1a- 1d. Fig. 1a shows
the most common FL setup in which the goal is to predict
pneumonia Y from X-ray images (I). In Fig. 1b, we have
access to patient symptoms X (w/ X → I) and patient age
A. Older patients have a higher risk of developing different
symptoms (A → X) and are more likely to be diagnosed
for pneumonia (A → Y ). In most hospital scenarios, the
goal is to obtain pneumonia prediction (Y ) in the form of
causal effect estimation. Data are decentralized and suppose
that clients proposed to share only the model weights of the
mechanism Suser = {fY }. Below, we show a few exam-
ples and then build a formal characterization of the set of
mechanisms that need to be trained globally.

Trivial Solution: The trivial solution would be to always
reject the client-proposed set and train the whole DCM:
{fi}Vi∈V globally in a FL setup. That would ensure that
P (v) is matched. To obtain that, we need to minimize the
following loss function (similar to Equation 1):

min
θ

L(θ) =

C∑
c=1

Lc(θ) =

C∑
c=1

∑
v∈V

E[pa(v),v]∼Dc
l(v̂, v)

v̂i = fθi(pa(Vi), uVi);uVi ∼ N(0, I)

However, this will be computationally expensive and unnec-
essary. We aim to find the smallest set of mechanisms SFL

such that fI ∈ SFL and we need to train them with global
information to match P (v).

Fig. 1a: Since, P (y|do(i)) = P (y|i) for this graph, feder-
ated learning of only fy(i);∀i ∈ I is sufficient. Thus, we
accept the client-proposed set and define SFL = {fy}. We
train the model fθ ∈ SFL on local data Dc before sending
it to the server so that, when aggregated from all clients, we
get a global model for P (y|x). In Fig. 1b, we can accept
the client-proposed set and perform FL to learn the mecha-
nism fY (A, I) collaboratively and remaining mechanisms
fX , fA, fI locally. Thus, SFL = {fy}.

In both Fig. 1c and 1d, patient age A is unobserved and
represented as a bi-directed edge X ↔ Y . This forms the
c-component {X,Y }. Note that in this graph X ̸⊥⊥ Y |I
due to the unobserved confounder A. As suggested in the
client-proposed set, if we train only fY independently with
I as input, we have y = fY (i, uY ) which would cre-
ate a wrong independence: X ⊥⊥ Y |I. Here, X and Y

share a joint P (x, y) that must be matched to be consis-
tent with the full joint P (V). Training fY globally and fX
locally would not allow feeding the same noise UA and
matching P (x, y). Rather, we need to train both fX(uA)
and fY (uA, i) together with the same confounding noise
UA ∼ N (0, I). Thus, we reject Suser and offer the minimal
set as SFL = {fx, fy} that must participate in FL. Similarly,
if Suser = {I} in Fig. 1d, we have to reject it and propose
SFL = {I,M} due to the unobserved confounder H .

Definition 4.1 (Maximal Modularity Set). A set of mecha-
nisms constructs an maximal modularity set denoted as SFL,
if any mechanism f ∈ SFL is trained independently with a
loss function L(f) while other mechanisms are trained with
the loss function L(SFL \ {f}), they are not guaranteed to
match the joint distribution P (v).

4.1 MODULAR LEARNING OF DCM

Now, we characterize the maximal modularity set based
on the causal relations among observed and unobserved
variables in the given causal graph. Suppose, we have a
causal graph containing observed variables and unobserved
confounders as their parents (ADMG), that represents a
semi-Markovian model and consisten with the observational
distribution P (v). Tian and Pearl [44] propose a method to
factorize the joint distribution P (v) into c-factors based on
the c-component modules of the given ADMG.

P (v) =
∏

si∈C(G)

P (si|do(pa(si)) (3)

Here, C(G) is the set of all c-components and
P (si|do(pa(si)) is the c-factor corresponding to c-
component Si. Now, we establish a connection with c-
factorization and training deep causal generative models
(Definition 3.4: DCM). Note that in DCM we train the gen-
erative mechanism of all variables: G = {fV : V ∈ V}with
a single loss function L(G) (Equation 2) such that Pθ(v̂)
matches the empirical joint distribution P (v). The factoriza-
tion in Equation 3 suggests that we can modularize the train-
ing process of mechanisms into c-components. If we can en-
force our approximated SCM M̂ represented with the DCM
G to match each of the c-factors, the joint distribution im-
plied by the DCM will also match P (v). More precisely, we
can have |C(G)| different loss functions {LSi({fV ∈Si}) :
Si ∈ C(G)} and use them to independently train mecha-
nisms in each c-component {fV : V ∈ Si}. The gradient
updates are in such case are:

f
(t+1)
V = f

(t)
V −η

∂LSi

∂fV
, for V ∈ Si, and Si ∈ C(G) (4)

The main goal of this paper is to leverage federated learn-
ing to approximate the structural causal model. The above
c-component based modularization allows us to train mech-
anisms in a c-component i.e., {fV : V ∈ Si} together but



independently from other c-components C(G) \ Si. There-
fore, mechanisms in c-component Si can utilize this opportu-
nity to join collaborative federated training without affecting
other mechanisms in the DCM. Thus, based on the client pro-
posed set Suser we can find a partition of the c-components,
i.e, C(G) = Cl(G) ∪ Cg(G) where Cg(G) is the minimal
set of c-components such that Suser ⊆ {fV : V ∈ Cg(G)}.
We can re-write Equation 3 as,

P (v) =
∏

si∈Cl(G)

P (si|do(pa(si))
∏

sj∈Cg(G)

P (sj |do(pa(sj))

If Suser = {fV : V ∈ Cg(G)} then we accept Suser as
global models for FL. Otherwise, we offer SFL = {fV :
V ∈ Cg(G)} as the minimal set for collaborative training
and elect them as global models.

Now that we have selected the minimal subset of c-
components as global models SFL, we update our train-
ing process. We train all mechanisms {fV }V ∈V in the
DCM jointly with a single loss function L({fV }V ∈V) as
usual (Equation 2) to match the observational distribu-
tion. Additionally, for the global mechanisms fV ∈ SFL,
we update their model weights with another loss func-
tion LSi

({fV ∈Si
}) aggregated with the original one. Let

v = [v1, v2, ..., vm] such that Vi ∈ Cg(G). P in
θ (v) is the

fake interventional distribution of DCM and P inr(v) is the
interventional real data distribution.

v̂ ∼ P in
θ (v); v ∼ P inr(v)

v̂ = {fj(p̂a(vj), uVj
};∀fj ∈ {fV : V ∈ Cg(G)}

(5)

The critic and generator loss functions (Lin
D , LSFL

for
matching interventional distributions are as follows:

Lin
D = Ex∼P inr [Din(v)]− Ev̂∼Pθ

[Din(v̂)]

Lin
G = W (P inr, P in

θ ) = −Eu∼P (u)[D(v̂)]
(6)

And the gradient updates for DCM after training on both
observational and interventional data are as follows:

f
(t+1)
V =

{
f
(t)
V − η ∂LG

∂fV
, if V /∈ SFL

f
(t)
V − η

∂(LG+Lin
G )

∂fV
, if V ∈ SFL

(7)

This gives us an effective approach to learn a proxy of
the SCM by training all mechanisms on local data while
training the models in SFL collaboratively with other clients.
The loss function for DCM generators, LG = W (P r, Pθ)
is optimized to match the local training distribution P (v)
and the additional loss function for generators fV ∈ SFL is
Lin
G = W (P inr, P in

θ ) is optimized to match global c-factor
distribution P (si|do(pa(si)) where Si ⊆ Cg(G).

Note that, the c-factor is an interventional distribution and
optimizing for the 2nd loss function Lin

G , would require real
samples from that interventional distribution P inr. However,
we have only observational samples as training data which
we use to optimize for the first loss function. How can

we utilize observational samples to obtain samples from
the c-factor interventional distribution and thus train the
global models with them? In the next section, we provide a
systematic approach as part of our novel FeDCM framework.

4.2 INTERVENTIONAL TRAINING DATA AND
WHERE TO FIND THEM?

Given access to only observational data D ∼ P (v), we aim
to minimize the loss function to train DCM mechanisms in
each c-component Si ∈ Cg(G) utilizing federated learning.
Equation 6 can be written as follow.

Lin
G = W (P inr, P in

θ )

= W (P (Si|do(pa(Si))), Pθ(Si|do(pa(Si))))
(8)

Equation 8 is a comparison between fake and real interven-
tional distributions. To train DCM mechanisms f ∈ SFL

and learn this distributions, we need to compare its gener-
ated fake interventional samples, D̂in against real interven-
tional samples Din. Even though we do not have access
to any real interventional data, we implement the concept
of causal effect identifiability to generate semi-synthetic
interventional data and use them for our training.

Proposition 4.2 ( [44, 40]). If C(G \X) = {S} and S ∈
C(G) then, Px(y) =

∑
s\y

∏
Vi∈S P (vi|v(i−1)

π )

This is a modification of c-factorization. Here, the condition
implies that after removing the intervened variables from
the original graph G, there exists a single c-component in
the modified graph G \X that was also a c-component in
the original graph G. This scenario occurs when there are
no bi-directed edges from X to the c-component S. Then,
we can utilize the above estimand for our causal query. In
our case, for each query P (Si|do(pa(Si)), we consider the
causal graph to be G = Pa(Si) ∪ Si and that satisfies the
condition in Proposition 4.2. Thus, we can obtain:

P (si|do(pa(si)) =
∏

{j|Vj∈Si}

P (vj |v(j−1)
π ) (9)

Intuitively, identifiability gives us a way to express an iden-
tifiable interventional distributions, as a function of observa-
tional probability distributions. However, we can not train
DCM generators with numeric values of probability tables
rather need samples from the corresponding distribution.

Note that Equation 9 is a product of a set of conditional
distributions in the form P (vj |v(j−1)

π ). We follow [37] to
generate samples from each such distribution by training
a conditional model Mj that takes values of all ancestral
dependent variables: D[v

(j−1)
π ] as input and generates vj as

outputs. We train |Si| number of conditional models M =
{M1, ...,M|Si|} with observational data each parameterized
by w = {w1, ..., w|Si|}. Pw(v) is the distribution learned
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Figure 2: Algorithm simulation of FeDCM between two clients. Here Suser = {fx} and SFL = {fx, fy}.

by M. Here, d(., .) can be any loss function to measure
distance between the distribution of two set of samples.

LFL =d(P (S|do(pa(S))), Pw(S|do(pa(S))))

=
∑

i:Vi∈S

d(P (vi|v(i−1)
π ), Pwi(vi|v(i−1)

π )) (10)

After convergence, we connect these |Si| trained models
according to the conditional distributions in Equation 9.

v̂j = Mj(v̂
(j−1)
π , pa(Si)); [Vj , V

j−1
π ] ⊆ Si. (11)

Finally, we feed output of one model as input to other mod-
els, i.e., perform ancestral sampling to generate samples
from the interventional distribution P (si|do(pa(si)).

Recall that, we elected SFL as global models but they re-
quire interventional data for training. Therefore, we elect
M for collaborative training as proxy to SFL as we can
train models in M on observational data using federated
training. Later we can generate interventional data from M
to train the models in SFL. As the proxy models are trained
on observational data D[Pa(Si), Si] only having access to
models MVj ;Vj ∈ Si, Si ⊂ SFL and corresponding model
weights are being shared during FL, privacy is preserved.

4.3 END-TO-END FEDCM FRAMEWORK

Here, we connect all pieces of our framework together. This
is simulated in Fig. 2 for a frontdoor graph w/ Suser = {X}
.

Model initialization: All clients are assumed to agree upon
a common causal graph, G. Each client initiates two sets of
models. The first set (yellow) contains G = {fV }V ∈V to act
as the local DCM (set of connected generators) according
to G. Weights of each model fi in the DCM are initialized
as θi. The local DCM will generate fake observational data,
D̂[V] ∼ Pθ(v̂) (Fig 2: left-top) and fake interventional data,
D̂[V] ∼ Pθ(v|do(x)), X ⊆ V (Fig 2: left-bottom).

We obtain all c-components Si ∈ C(G) from the causal
graph. Based on the c-components in the causal graph,
FeDCM either accepts the client-proposed set of models,
Suser or proposes SFL: the c-component mechanisms of

Cg(G) that contains Suser. Since corresponding c-factors
are interventional distributions, we initiate a second set
of models (orange) as proxy M = {Mj}Vj∈Cg(G) to
generate synthetic interventional data from c-factors, i.e.,
D̃[Pa(Si), Si] ∼ Pw(si|do(pa(si)). Causal identifiability
discussed in Section 4.2 ensures {Mj}Vj∈Cg(G) combinedly
generate interventional data even though trained on only ob-
servational data. Each client performs the same process and
join federated learning only for the second set of models.

Training global conditional models: We perform feder-
ated training for the set of models M = {Mj}Vj∈SFL

to
learn conditional distributions collaboratively and utilize
them to generate samples from the c-factor P (si|do(pa(si)).
First, the model weights wj of each function Mj ∈ M
is updated as w[Vj ] ← w[Vj ] − η∇ℓ after training on lo-
cal observational data. Next, each client sends the model
weights to the server to be aggregated as the global model.
The server receives the model weights from each client
and takes a weighted average of the sent models. For the
weights of each function Mj in M, the server performs
wt+1[Vj ] ←

∑K
k=1

nk

n wk
t+1[Vj ] at round t. Finally, the

server broadcasts the new global models to each clients
and they update their local models accordingly.

Training client local DCM architecture: The first train-
ing dataset D̃in[Pa(Si), Si] is the synthetic (real) interven-
tional data for P (si|do(pa(si)) generated with conditional
models in M and the second training dataset D[V] is the
original observational training data. We train critic 1 to
distinguish between DCM G generated fake D̂[V] vs real
observational data D[V] and critic 2 to distinguish between
fake D̂[Pa(Si), Si] vs synthetic D̃[Pa(Si), Si] interven-
tional data. Now, instead of the loss function for c-factors in
Equation 8, we now have:

L̃in
G = d(Pw(Si|do(pa(Si))), Pθ(Si|do(pa(Si)))) (12)

According to triangle inequality, with the above loss we can
upper bound the original DCM loss function in Equation 8:

d(P (Si|do(pa(Si))), Pθ(S|do(pa(Si))))

≤ d(P (Si|do(pa(Si))), Pw(S|do(pa(Si))))

+ d(Pw(Si|do(pa(Si))), Pθ(Si|do(pa(Si))))

=⇒ Lin
G ≤ LFL + L̃in

G

(13)
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Figure 3: TVD of P (X|Z) w/ 1000 training samples

Theorem 4.3. Let A be any algorithm that, given a par-
tition {S1, S2, . . . , Sk} of the nodes of a causal graph
G, trains a deep causal generative model sequentially on
S1, S2, . . . , Sk in that order to fit P (Si|S1, S2, . . . Si−1),
respectively.

1. If Si are c-components of the graph G, then A is con-
sistent, i.e., it fits the joint distribution correctly for any
execution.

2. Conversely, when Si are not c-components, then there
exists a graph G for which algorithm A may fail for
any order S1, S2, . . . Sk, i.e., there exists a training
execution that is inconsistent and algorithm A will not
fit the joint distribution.

5 EXPERIMENTS

We illustrate performance of FeDCM algorithm on synthetic
and real-world IHDP data with extensive analysis. We pro-
vide additional experiments for non-identifiable causal ef-
fects in Appendix A.5. Our codes are made public.

Setup: We select the front-door causal graph in Figure 4a
for our synthetic experiments. ↔ implies that there is an
unobserved confounder between Z and Y . We evaluate
the performance of our algorithm on mainly two setups.
First, we consider that each client has 1000 training samples
and the training datasets have increasing support size of X ,
i.e., X ∈ {20, 128, 256}. For the second setup, we fix the
support of X as |X| = 20 and evaluate our algorithm when
each client has dataset size |Dc| ∈ {500, 1000, 1500, 2000}.
Z and Y are considered to be binary. Suppose, clients wish
to share only the model fX , i.e., Suser = {fX}. Since X
is a c-component itself, we accept it and perform federated
training for fX while training all fZ , fX , fY on local data.
Baseline (NoFL): We consider a baseline where each client
follows every step of our algorithm exactly but train on only
local data and does not communicate with each other.

Varying support size of X: We illustrate the total variation
distance (TVD) between the true distribution of P (x|z) and
the model approximated distribution for varying support
size but for a fixed number of samples in Fig. 3. The orange,

Z X Y

(a) Query: P (y|do(z)).

Z

T Y

(b) Query: P (y|do(t)).

Figure 4: Causal graphs: synthetic and real (IHDP) datasets

green and red bars represent X having support size equal
256, 128 and 20 respectively. The hatched bars represent
FeDCM , and smooth bars represent the baseline NoFL. For
client 1 that TVD for FeDCM (hatched bar) reduces from
0.22 to 0.19 to 0.08 as the support size of X reduces from
256 to 128 to 20, respectively. This behavior remains consis-
tent for all clients (client 1-5). Note that FeDCM has lower
TVD in (almost) all cases compared to NoFL (smooth bar).
Since we keep the sample size fixed at 1000, when the sup-
port size is larger (ex: |X| = 256), the small number of
samples is not sufficient to accurately learn P (x|z) of a
high-dimensional variable X . Thus, TVD loss is higher for
|X| = 256 compared to |X| = 20. Our results show that
federated training is highly effective when the mechanisms
that participate in FL, i.e., SFL, are high dimensional.

Varying sample size: In figure 5, we show our performance
on each client having sample sizes 500 (blue), 1000 (orange),
1500 (green) and 2000 (red) while keeping |X| = 20 as
fixed. This plot represent how closely FeDCM approximated
the true SCM as the TVD metric indicates the distance be-
tween the true joint distribution P (v) and the distribution
implied by the trained DCM Pθ(v). As the sample size in-
creases to 500,1000, 1500 and 2000, the FeDCM TVD for
client 1 (hatched) decreases to 0.13, 0.118, 0.105 and 0.094,
accordingly. Here, FeDCM has a lower TVD in (almost) all
cases compared to the baseline NoFL (smooth bar) even for
X having low dimension. Figure 5 shows that with small
support size (i.e., 20), when clients have high number of
samples (eg., red, 2000), FL does not significantly improve
the training performance as each client has enough samples
to obtain a good estimator for P (x|z). Thus, both individual
clients (smooth red bars) and FeDCM (hatched red bars) ob-
tain similar performance. However, if we have small number
of samples (eg., blue, 500), clients can not learn the unbiased
estimator for the distribution by themselves in individual
training. Our method exploits the federated learning setup to
obtain a better estimator of P (x|z) compared to individual
clients. Thus when the sample size decreases (small sample
size), even for small support sizes, the performance gap be-
tween federated training (hatched blue bars) and individual
training (smooth blue bars) increases. After matching the
joint distribution with low TVD, prediction for identifiable
causal effect should be close to the ground truth.

5.1 EXPERIMENTAL ANALYSIS ON IHDP

Dataset: We performed an experiment on a real bench-
mark dataset, the Infant Health and Development Program

https://github.com/Musfiqshohan/Fedcm
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(IHDP) dataset [12]. It contains 747 records with a total
of 27 variables of varying data types that increase problem
complexity. It has i) 25 covariates: 6 continuous variables
and 19 discrete variables, ii) 1 treatment variable: discrete,
iii) 1 outcome variable: continuous. To mimic the feder-
ated setup, samples are randomly distributed to the clients.
Even though non-iid distribution is not considered here,
due to the small number of samples in each client, data
heterogeneity will arise. To compare with our baselines,
we aim to estimate the Average Treatment Effect (ATE):
ATE = E[P (Y | do(T = 1))] − E[P (Y | do(T = 0))]
Note that, we assume the causal graph in Figure 4b for the
IHDP dataset. Our main baseline, Vo et al. (2022), assumes
that they do not have access to the original set of covariates.
Rather, they use some proxy (X) of them. They try to obtain
a posterior of the covariates Z from the proxy X , treatment
T , and outcome Y . In contrast, we consider a one-to-one
invertible mapping between covariates and the proxy, i.e.,
Z = X . Hence, we assume full observability of Z and no
unobserved confounders.

Solution Design: We aim to learn a deep causal model con-
sistent with our assumed causal graph: a proxy of the true
SCM. Ideally, we train GZ , GT , GY to match P (Z, T, Y ).
However, for our target ATE (same as the baselines), we
need to estimate P (Y | do(T = 1)) and P (Y | do(T = 0)).
By the backdoor criterion: P (Y | do(T )) =

∑
z P (Y |

z, T )P (z). Two approaches can be used to estimate the
causal effects. i) Approach 1: Federated learning (FL) trains
model MZ to learn P (z) and model MY to learn P (y | z, t).
Then, generate Z ∼ P (Z) using MZ , and sample Y
from MY using P (y | z, t). These Y samples approxi-
mate P (Y | do(T )). ii) Approach 2: FL trains only MY to
learn P (y | z, t). Use Z directly from the training dataset
(Z ∼ P (Z)) and feed into MY to sample Y ∼ P (y | z, t).
In both cases, the generated Y are used to estimate ATE. We
ran our algorithm for 200 federated learning rounds, with
each client trained for 2000 epochs per round. We utilize a
GAN architecture to learn the joint distributions. To verify
our estimation, we need a reference value for ATE. As no
ground truth exists, we used: i) Vo et al. [47]’s implemen-
tation: ground truth ATE ≈ 3.98 ii) Dowhy package [39]

Method vs ATE error (Reference ATE = 3.98)
BART_ag 1.3± 0.05 TARNet_ag 2.5± 0.06

X-Learner_ag 1.2± 0.09 CFR-wass_ag 2.7± 0.05
R-Learner_ag 1.0± 0.07 CFR-mmd_ag 2.5± 0.03
OthoRF_ag 1.3± 0.09 CEVAE_ag 2.1± 0.09

FedCI 0.5± 0.09 CausalRFF 0.5± 0.16
Ours_3clients_w/50samples 0.418± 0.24

Ours_12clients_w/50samples 0.351± 0.22
Ours_3clients_w/200samples 0.271± 0.16

(propensity score matching on full dataset): also yielded
similar value. Thus, we consider 3.98 as our reference ATE.

Baselines Comparison: We follow the same experimental
setup as described by Vo et al. [47], and compare our per-
formance with the results reported in their paper, obtained
by their method and other baselines. We consider the last 20
global rounds of our model training for evaluation. Based
on the reference and predicted ATE, we calculate the mean
and standard deviation of the ATE error for each client and
report the average across all clients. According to Vo et al.
[47], these baselines use 50, 100, and 99 samples for train,
test, and validation sets per client, with number of clients =
3. To illustrate the scale of our experiment, we consider 3
setups: i) 3 clients each with 50 samples, ii) 12 clients each
with 50 samples, iii) 3 clients each with 200 samples.

We have two main observations. Observation 1: In all se-
tups (i, ii, iii), we obtain relatively small mean ATE error
compared to other baselines. Observation 2: Sorting ATE
errors yields: a: 3 clients 50 samples > b: 12 clients 50 sam-
ples > c: 3 clients 200 samples. a > b shows that our method
can benefit from federated learning to reduce ATE error. b >
c shows how sample size impacts error in FL settings. The
observed standard deviation is likely due to GAN training
on small datasets. Moreover, for the model that matches
P (Z) we observe max TVD loss = 0.0768 (discrete covari-
ates). For the model that matches P (Y | Z, T ), we observe
Wasserstein distance = 0.0147 (continuous Y ). These met-
rics indicate reasonable convergence of the models.

6 CONCLUSION

We explore the federated learning to learn a proxy of the
structural causal model from distributed datasets. We intro-
duce maximal modularity and propose a framework where
a set of models trains to learn the SCM from local data
while another set of models participates in the collabora-
tive training to aid global information to the local models.
After convergence, the DCM can estimate any identifiable
causal effects. In our future work, we aim to remove the
assumption on having access to the true causal graph.
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A ADDITIONAL DETAILS

Definition A.1 (Causal Bayesian Network [32]). A Bayesian network considers dependencies among a set of observed
variables while a causal Bayesian network considers causal dependencies among them. When we perform an intervention on
a variable (i.e. set a variable to a fixed value), it affects the variables that have causal relations with it and keeps remaining
variables unaffected. A Bayesian network does not have the concept of intervention as it considers only correlation and
not causal relations. However, suppose the Bayesian network has a consistent structure such that i) after performing an
intervention, no other nodes except the descendants are affected due to the intervention ii) and this is true for all possible
interventions, we can call it a causal Bayesian network.

Since our goal is causal effect estimation, the reviewer is correct to observe that our focus is on causal Bayesian networks in
this paper.

A.1 FEDCM MAIN CONTRIBUTIONS

Our contributions in this paper are two folds: First (algorithmic improvement with maximum modularity): our maximum
modularity result shows that to learn a c-factor distribution, we do not need access to variables outside the c-component
unlike [36] who construct a complicated structure called, H-graph and learn a joint distribution larger than the c-factor in
many scenarios. Training a smaller number of models is particularly helpful in a federated setting to reduce communication
cost.

Secondly (Adaptation in federated learning setting): Although there are some recent works [30, 36, 50, 6] that learn
deep/neural causal models from observational data, all of them assume access to the entire dataset, i.e., they are designed for
centralized settings. We propose the first approach to learn a deep causal model in the federated learning setup.

A.2 DATA TYPES:

Note that in our synthetic experiments, all of our variables are discrete (with finite support size). However, this is a specific
instance of experiment and not a limitation of our approach. Any variable (covariates, mediators, outcome variables), except
the intervened variable can be discrete, continuous or high-dimensional (ex: images) and our method will work when
employed with appropriate generative models. However, when the intervened variable (treatment) is continuous, causal
effect estimation is generally non-regular and requires a more careful handling [1].

A.3 VIOLATION OF ASSUMPTIONS AND FUTURE WORKS

Below we provide some details on our assumptions and what challenges one might face if assumptions are violated or
relaxed.

mailto:<rahman89@purdue.edu>?Subject=FeDCM: Federated Learning of Deep Causal Generative Models


A.3.1 Assumption of having access to the causal graph

The access to ADMG assumption can be relaxed by employing any federated-learning-compatible causal discovery algorithm,
as a pre-processing step. We aim to address the challenges associated with non-iid data in our future works.

A.3.2 What if some clients only observe a subset of variables?

If clients observe variable values located at different parts of the causal graph, it might be challenging to obtain the whole
joint distribution. But as our method offers c-component based modular training, clients do not need to observe the whole
joint. Additionally, we can resort to approaches such as [9] which merges available causal marginal information from given
observations of subsets of variables in a causal graph. This is an interesting direction we aim to explore in our future works.

A.3.3 The impact of model mis-specification on performance

One interesting future direction is to see how the estimation changes when we have the incorrect causal graph. We might
assume incorrectly i) presence of an edge, ii) orientation of an edge, iii) unobserved confounders etc. If iii) happens, i.e., we
assume that we have observed all confounders but there still exists some unobserved confounder, then the causal effect will
be non-identifiable and we can obtain a bound using maximization and minimization in the NCM/DCM algorithm.

For i) and ii) one solution might be to iterate all possible choice of edge presence/orientation to obtain the set of causal
graphs and then train a DCM for those. This will give us a set of possible causal effects. In our future work, we plan to
explore how these possibilities will work in a federated learning setup.

A.4 COMPLEXITY ANALYSIS

Communication complexity: The communication cost for a single client is O(T ∗ |Cmax(G)| ∗m) where T : global rounds,
m : the communication cost for sending all weights of a single neural network and Cmax(G) : the largest c-component in
the graph.

Below we discuss in detail.

Suppose, clients propose a set of mechanisms, Suser for collaborative learning. If corresponding variables of Suser does not
form a whole c-component in the graph, we reject the set and offer a super-set SFL that construct a c-component in the
graph. Note: A c-component is maximal subsets of nodes that are connected by unobserved confounders.

Let SFL correspond to the largest c-component in the graph, Cmax(G). This implies that we have to share model weights
for |Cmax(G)| number of neural networks (NN) to participate in federated training. If m is the communication cost for
sending all weights of a single neural network, our communication cost for a client is= O(|Cmax(G)| ∗m).

If there are total T global rounds, the communication cost for a single client is O(T ∗ |Cmax(G)| ∗m).

Server computational complexity: As the server will aggregate weights of |Cmax(G)| different models, its computation
time complexity is O(|Cmax(G)|).

Client computational complexity: To join the federated learning, each client will have to train |Cmax(G)| number of
NN models. Next, clients will learn the deep causal model with local data and interventional data generated from these
|Cmax(G)| NN models.

Suppose the set of all variables in the SCM is V . As each client learns a deep causal model G that consists of |V| NN models,
it would require O(|V|) time to train them. So, the total complexity of NN model training would be O(|Cmax(G)|+ |V|).

A.5 ADDITIONAL EXPERIMENTS

We have shared our codes at: github.com/musfiqshohan/fedcm

https://github.com/Musfiqshohan/Fedcm
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The unobserved variables {U1, U2} have a support size of 3, while the observed variables {Z,W, I, Y } have a support
size of 2. In this graph, the unobserved confounder U2 makes the causal effect P (Y | do(Z)) non-identifiable. The goal
is to obtain a bound over all possible causal effects such that the true effect lies within it. The challenge is that data is
decentralized and user preferred model that is allowed to train globally is Suser = {I}.

We employ FeDCM to design our solution. Here we have two c-components {Z,W, Y } and {I}. We train a conditional
model M to learn P (I | Z,W ) in a federated manner, as it belongs to a different c-component. Next, we train the deep
causal model: GZ ,GW ,GY ,GI such that:

i) the observational distribution P (z, w, i, y) of local data is matched,

ii) the interventional distribution P (I | do(z)) is matched using samples generated from the globally trained model M ,
and

iii) our target query P (y = 1 | do(z = 1)) is maximized (or minimized).

We use the total variation distance (TVD) to assess how well the distributions are learned. In practice, TVD is never exactly
zero due to approximation errors during model training. Therefore, we construct bounds for the causal effect whenever the
corresponding joint distribution is matched with TVD < 0.15. Below, we provide the bounds for three clients:

TVD < 0.15 Ground Truth P (y = 1 | do(z = 1)) Client 1 Client 2 Client 3
Bound [min, max] Bound [min, max] Bound [min, max]

|X| = 2 0.186 [0.125, 0.2692] [0.0674, 0.2998] [0.0572, 0.2728]

Table 1: Bounds on P (y = 1 | do(z = 1)) estimated by FeDCM for three clients.

B THEORETICAL ANALYSIS

Theorem B.1. Let A be any algorithm that, given a partition {S1, S2, . . . , Sk} of the nodes of a causal graph G, trains a
deep causal generative model sequentially on S1, S2, . . . , Sk in that order to fit P (Si|S1, S2, . . . Si−1), respectively.

1. If Si are c-components of the graph G, then A is consistent, i.e., it fits the joint distribution correctly for any execution.

2. Conversely, when Si are not c-components, then there exists a graph G for which algorithm A may fail for any order
S1, S2, . . . Sk, i.e., there exists a training execution that is inconsistent and algorithm A will not fit the joint distribution.

Proof. Let us define the bi-directed neighbors, bNb(X) as the set of variables such that ∀V ∈ bnb(X) there exists a
bi-directed edge V ↔ X ∈ E.

(1.) Consider a c-component Si ∈ C(G) and Si = {X1, ..., Xj , Xj+1, ..., Xm}. Let variable Xj and Xj+1 have a bi
directed edge between them, i.e, Xj ↔ Xj+1 and the shared common confounder is U . Since they share a common
confounder, Xj ⊥̸⊥ Xj+1. Thus we need to feed a same confounding (Gaussian) noise U ∼ N(0, I) as input to both fXj

and fXj+1 and train them together using the same loss function to match the joint distribution P (xj , xj+1). Now, consider
a bi-directed neighbor of Xj+1: Xj+2 ∈ bnb(Xj+1). As they share another common confounder, Xj+1 ⊥̸⊥ Xj+2. This
implies that we need to feed a same confounding noise as input to both fXj+1

and fXj+2
and train them together to match

the joint distribution P (xj+1, xj+2). However, Xj ↔ Xj+1 demands we train fXj
and fXj+1

together and Xj+1 ↔ Xj+2

demands that we train fXj+1
and fXj+2

together. Thus, to preserve both dependency we have to train all fXj
, fXj+1

and
fXj+2 together. This set gradually expands to the whole c-component Si, i.e, all variables that are connected with bi-directed
edges. Thus if we train mechanisms for all variables in the c-component together, and do the same for all c-components
{S1, S2, ..., Sk}, we can match the joint P (v).



(2) To prove the converse statement, consider a causal graph that consist of a cycle of c-component:

X1 ↔ X2 ↔ ...↔ Xn ↔ X1;

We proved in (1.) that if we have a partition {S1} = {X1, ..., Xn} where S1 is a c-component then algorithm A is consistent,
i.e., it fits the joint distribution correctly.

Now, suppose, we can modularize the training process further based on any partition {S1, S2, ..., Sk} of the c-component
{X1, ..., Xn} where k > 1.

Note that each variable Xi in this c-component cycle contains at least two unobserved confounders as parents. Without loss
of generality, lets assume that Si = {Xi}. If we want to train Si modularly; separated from rest, we have to break atleast
one of the neighbor of Xi in the c-component cycle. This implies that, fXi

receives both UXi−1,Xi
and UXi,Xi+1

as inputs
in the true SCM, but we are training a model to learn a proxy of fXi

while giving it signal from one neighbor. So, there is no
guarantee fXi

will utilize both of the confounders.

No matter which subset Si, we start with for modular training, the neural networks in Xi might ignore one of the unobserved
confounder between Xi−1 ↔ Xi and Xi ↔ Xi+1 and use the other confounder attempting to match its dependence with
all other variables, i.e, P (Si|Sπi−1

) 1. As we are training Si modularly cut off from one of its neighbor, it will try to get
all signals from the confounder associated with remaining neighbor. Further modularization than the c-component level
will prevent Xi to learn proper dependence with both of the neighbors Xi−1 and Xi+1. Thus, for the considered cyclic
c-component graph, whatever modularization is performed and training order is adopted, the joint distribution will not fit.

B.1 ADDITIONAL DISCUSSION

Suppose, mechanisms in Si are not trained together. First let us consider the case when any neighboring pair Xj , Xj+1 ∈ Si

are trained independently, i.e., fXj
is trained independently from fXj+1

. When they are trained together, the generative
mechanisms are as follows:

xj = fj(pa(xj), u,UXj
\ {u}

xj+1 = fj+1(pa(xj+1), u,UXj+1
\ {u}

(14)

Here, U is the shared confounder. UXj \ {u} are remaining confounder that affects Xj and UXj+1 \ {u} are remaining
confounders that affect Xj+1.

When fXj and fXj+1 are trained independently, the generative mechanisms becomes as follows:

xj = fj(pa(xj), u
′,UXj

\ {u′}
xj+1 = fj+1(pa(xj+1), u,UXj+1

\ {u}
(15)

Here, both u′ and u are sampled from the same distribution P (u). As u′ is fed as input during training of fXj which is
separate from fXj+1 , u and u′ varies independently. This breaks the dependency between Xj and Xj+1 as they are not
controlled by the same noise values. Thus Pθ(xj , xj+1) ̸= P (xj , xj+1) and eventually Pθ(v) ̸= P (v).

(2.2) Now consider that mechanisms of X1, ..., Xj , Xj+1, ..., Xm are trained sequentially one by one in this order. X1 is
trained as mentioned before (Equation 14):

x1 = f1(pa(x1), u,UX1 \ {u} (16)

After training f1, we freeze its model weights. As both f1 and f2 share the common confounder U , we sample the same
u ∼ P (u) and feed it to both f1 and f2. As f1 is frozen, it will use the confounding noise for inference while f2 will use it
for training. We can match fake X1, X2 with real X1, X2 samples to update model weights of f2.

x2 = f1(pa(x2), u,UX2
\ {u} (17)

1here, πi−1 is all variables in the topological order before Si



Suppose both {X1, X3} ⊆ bnb(X2) and the shared confounder between X1 and X2 is U while the confounder between
X2, X3 is U ′. Now, as we have already trained f1 but not f3 yet, while training f2, even if we feed both U and U ′ as input
to f2, there is no guarantee that f2 would use U ′ at all. There might be a possibility that f2 might utilize only U to match the
joint distribution Pθ(x1, x2) = P (x1, x2) but not Pθ(x1, x2, x3) = P (x1, x2, x3). If we had f3 as trained, we could freeze
both f1 and f3, feed them U and U ′ as well for inference and match Pθ(x1, x2, x3) with P (x1, x2, x3) to update model
weights of f2. However, to train f3, we would need f2 as pre-trained which creates a cyclic situation. Thus, eventually,
sequentially training fails to match the joint distribution P (v).

C ALGORITHMS

Algorithm 1 Fed-DCM Algorithm

1: Input: Dataset D, Causal graph G, Variables V = {V1, V2, . . . , Vn}, n = |V|
2: Client initialization:
3: for each V ∈ V do
4: Initialize weights of fV (Pa(V ), UV ) as w[V ]
5: [Si,Pa(Si)]← c_component_partition(G)
6: Cg(G) = Find c-component S ∈ {S}i s.t. Suser ∈ S
7: Server executes:
8: Initialize model weights w0[V ]; for all V ∈ SV′ .
9: for each round t = 1, 2, . . . do

10: Ct ← (random set of max(αC, 1) clients)
11: for each client k ∈ Ct in parallel do
12: wk

t+1← CLIENTUPDATE(k,wt)
13: for each variable V ∈ SV′ do
14: wt+1[V ]←

∑K
k=1

nk

n wk
t+1[V ]

15: LocalTraining(w,B, S, Pa(S))): (Models in a cc)
16: for each local epoch i from 1 to E do
17: for each batch b ∈ B do
18: Sample pa(Si) ∼ Uniform(support(Pa(Si)))
19: DR[S] = getRealIntvData(b,G,Si, pa(Si))
20: DF [S] = getFakeIntvData(fVi∈V,Si, pa(Si)))
21: ℓ = dist(DF , DR)
22: for each V ∈ S do
23: w[V ]← w[V ]− η∇ℓ
24: return w

25: ClientUpdate(c, w): (Run on client c)
26: B ← (split Dc into batches of size B)
27: for each S ∈ {Si}i \ {SV′} do
28: w = LocalTraining(w,B, Si, Pa(Si)) in parallel
29: Save {w[V ]}V ∈S locally.
30: w = LocalTraining(w,B, SV′ , Pa(SV′)) in parallel
31: return {w[V ]}V ∈SV′ to server

Algorithm 2 getRealIntvData(D,G,S, pa(S))
1: Input: Dataset D, Causal graph G, C-component S, blanket Pa(S).
2: An = Vπj−1 ∩ (Si ∪ pa(Si)); πG be the ancestral order.
3: for each Vj ∈ S do
4: Train Mj(An) on D such that Mj(An) ∼ P (vj |An)
5: Fix pa(S) in Mj:Vj∈S and ancestral sample to obtain DR[S] ∼ P (S | do(Pa(S)))
6: Return DR[S]



Algorithm 3 getFakeIntvData(GVi∈V,S, pa(S))

1: Input: DCM GVi∈V, C-component S, blanket Pa(S).
2: Fix pa(S) in GVi∈V and ancestral sample to obtain DF [S] ∼ P (S | do(Pa(S)))
3: Return DF [S]

MATHEMATICAL NOTATION

The table below lists and defines the mathematical symbols used throughout this paper:

Symbol Description
I The given/detected variable heterogeneous across clients.
C Set of all clients

C(G) Set of all c-components
Cl(G) Set of c-components trained using only local data
Cg(G) Set of c-components trained using
Si i-th c-component in the graph after factorization
G DCM generators
Suser Client proposed set
SFL Set of mechanism that we select for federated learning.
M Global models
M SCM
f∗ True mechanism of SCM
f Mechanism of DCM
V Set of all causal variables in a structural causal model

∇f(x) Gradient of f(x)
∂ Partial derivative
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