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ABSTRACT

Activation sparsity is an intriguing property of deep neural networks that has been
extensively studied in ReLU-based models, due to its advantages for efficiency,
robustness, and interpretability. However, methods relying on exact zero activations
do not directly apply to modern Large Language Models (LLMs), leading to
fragmented, model-specific strategies for LLM activation sparsity and a gap in
its general understanding. In this work, we introduce a general framework for
evaluating sparsity robustness in contemporary LLMs and conduct a systematic
investigation of this phenomenon in their feedforward (FFN) layers. Our results
uncover universal properties of activation sparsity across diverse model families
and scales. Importantly, we observe that the potential for effective activation
sparsity grows with model size, highlighting its increasing relevance as models
scale. Furthermore, we present the first study of activation sparsity in diffusion-
based LLMs. Overall, our work provides a comprehensive perspective and practical
guidance for harnessing activation sparsity in LLM design and acceleration.

1 INTRODUCTION

An intriguing property of deep learning models is activation sparsity, the tendency of their hidden
states to contain a significant fraction of zero or near-zero values with input-dependent patterns.
This phenomenon has been connected to robustness (Dhillon et al.l 2018} |Li et al., 2023), inter-
pretability (Geva et al., 2021} Zhang et al., 2023} |(Cunningham et al.| 2023} [Bricken et al., [2023};
Gao et al., 2024al), and potential efficiency gains from skipping redundant computations (Liu et al.|
2023 |[Mirzadeh et al.,[2024). Motivated by these benefits, prior work has studied activation sparsity
extensively in ReLU-based networks (Glorot et al., 201 1; |Awasthi et al.,|2024; |Rhu et al.| [2018; [Kurtz
et al.,[2020; |Zhang et al., [2021} |L1 et al., 2023).

However, the landscape of modern deep learning has shifted with the rise of Large Language
Models (LLMs), which predominantly use GLU-based architectures (Shazeer,|2020) with SiLU or
GELU activation functions (Gemma Team, |[2024; [Touvron et al., 2023;|Qwen Team, |2023; |DeepSeek+
AL 2024)). Although the hidden states of these models often contain many near-zero values, methods
developed for ReLU-based networks transfer poorly when applied to them directly. Recent works have
attempted to adapt activation sparsity techniques to LLMs by retrofitting them to use ReLU or similar
activation functions that induce exact zero activations (Zhang et al, |2021; Mirzadeh et al.| 2024;
Song et al., [2024aib), or exploit approximate sparsity in existing architectures (Federici et al.| [2024;
Lee et al.| [2024; |Chua et al., [2024; [Liu et al.,|2025aib). However, retrofitting approaches often require
additional training and risk degrading model quality during such training, while approximate sparsity
approaches lack the principled guarantees of strict sparsity induced by ReLLU, require calibration of
thresholds, and may overfit to the held-out calibration dataset. Moreover, the literature on sparsity-
based acceleration remains fragmented, with different methods targeting various components of the
LLM modules, such as feed-forward network (FFN) input (Federici et al.,|2024; [Liu et al.| 2025ab),
gate (Song et al., [2024a; [Lee et al.| [2024)), or intermediate activations (Liu et al.l 2023} |Akhauri et al.,
2024)). Consequently, the design choices behind LLM activation sparsity methods can seem arbitrary,
and there is currently no comprehensive overview of the phenomenon in modern models, nor unified
guidelines for leveraging it to enhance model efficiency.

Given the rapid advances in LLMs, we argue that a systematic study of activation sparsity in such
models is necessary to understand their internal mechanisms, improve their efficiency, and guide their
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Figure 1: Common strategies for exploiting activation sparsity to skip redundant computations in
GLU-based FFN modules, with the origins of the sparse activation masks denoted with red borders.
Input-based methods skip parts of the matrix multiplications corresponding to the low-magnitude
components in the input vectors across all three linear layers. Gate-based and predictor-based
methods instead omit computations associated with values that are either negligible in the gate
activation vector or predicted to be negligible by an auxiliary predictor module.

architectural design. In this work, we address this gap by analyzing the robustness of contemporary
LLMs to activation sparsity across FFN components, architectures, and model sizes. We provide
a unified view of sparsity patterns and introduce a simple, general framework for assessing model
robustness. To induce sparsity, we propose a straightforward top-p method, applicable to any model
without architectural assumptions or additional training.

As prior work has already demonstrated that with appropriate implementation sparsity in FFNs
activations can translate approximately linearly to computational acceleration (Szatkowski et al.|
2024; Liu et al., 2025a), in our work we focus on characterizing models’ tolerance to sparsity and
uncovering universal patterns across popular LLMs.

Using our proposed framework we find that the critical sparsity tends to increase with model size, and
present empirical comparisons of sparsity tolerance across FFN activations. We further examine the
impact of training strategies on sparsity robustness, highlighting the universal capacity for activation
sparsity in pretrained, instruction-tuned, and reasoning models. Additionally, we analyze activation
sparsity and temporal consistencies in sparsity patterns in masked diffusion LLMs, revealing potential
acceleration opportunities; to our knowledge, this is the first study of such phenomena in this class of
models. Finally, we discuss our findings in the context of prior work and mention its implications
for designing future methods that aim to leverage activation sparsity. Overall, our study uncovers
universal patterns of activation sparsity in modern LLMs and offers practical insights and guidelines
for researchers and practitioners seeking a deeper understanding of this intriguing phenomenon.

2  ACTIVATION SPARSITY IN MODERN TRANSFORMERS

2.1 SPARSE ACTIVATIONS IN DEEP NEURAL NETWORKS

Activation sparsity refers to the tendency of neural network hidden states to contain a substantial
fraction of zero values, following input-dependent patterns. This phenomenon has been widely
observed in ReLU-based architectures, including MLPs (Glorot et al.,[2011; Davis & Arel, 2013) and
CNNs (Rhu et al.|, 2018} [Kurtz et al., |2020). More recently, Zhang et al.|(2021) and Li et al.| (2023)
reported that standard training also induces significant activation sparsity in Transformer feed-forward
networks (FFNs). Activation sparsity has been associated with several desirable properties. In MLPs,
it can enhance learnability and generalization (Awasthi et al., 2024), while in CNNs and ViTs it
has been shown to improve robustness against input corruptions (Ahmad & Scheinkman) 2019; |L1
et al., [2023). Moreover, sparsity has been leveraged for interpretability by disentangling neurons
corresponding to distinct concepts (Geva et al, 2021} |[Elhage et al., 2022} |Cunningham et al.} 2023}
Bricken et al., [2023; |Gao et al., [2024a)).

Modern LLMs typically use SiLU or GELU activations in combination with GLU-based
FFNs (Shazeer, [2020), and do not exhibit strictly zero activations. Nevertheless, effective activation
sparsity still arises in these models even without explicit architectural or regularization constraints,
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and several studies have sought to theoretically explain this phenomenon (Andriushchenko et al.|
2023; [Peng et al., 2023)). Zhang et al.| (2024b) investigated how different activation functions during
LLM pretraining influence emergent sparsity patterns, while |Luo et al.|(2024) derived scaling laws
connecting activation sparsity to the size of pretraining datasets. Additionally, some works have ex-
plored leveraging the approximate sparsity in LLM activations to improve model efficiency (Liu et al.|
2023 Mirzadeh et al., 2024}, which we discuss in more detail in Section@ Despite these efforts,
most studies focus on particular forms of activation sparsity, and a unified, systematic investigation
of the phenomenon in modern LLMs is still lacking.

2.2  ACTIVATION VECTORS IN GATED FEEDFORWARD TRANSFORMER LAYERS

Transformer blocks consist of attention and feedforward (FFN) sub-blocks (Vaswani et al., [2017).
While the original Transformer FFN was composed of two projection layers separated by an ac-
tivation function, modern LLMs typically employ FFNs based on the Gated Linear Unit (GLU)
architecture (Shazeer, [2020), which can be expressed as:

FFN(z) = Wa((Wyuz) © 0(Wgz)),

where z € R" is the input vector, W,, € R"*? is the up-projection matrix, W, € R"*4 is
the gating projection matrix, Wq € R%*" is the down-projection matrix, and ¢ is an activation
function, usually SiLU or GELU. We use h and d to denote the model’s hidden and interme-
diate dimensions, respectively. In the subsequent sections, we refer to the above-mentioned ac-

tivation vectors in the FFN as x - input , u = Wy - up-projection , g = c(Wgx) - gate and

i = (Wyuz) © 0(Wgx) - intermediate vectors. Additionally, we consider the simultaneous sparsi-
fication of input and intermediate activations, and refer to the case where we induce sparsity in both
of these vectors at the same time as all FFN inputs sparsification.

2.3 LLM INFERENCE ACCELERATION WITH ACTIVATION SPARSITY

Modern models exhibit significant activation sparsity, meaning that a large portion of activations are
effectively unused, resulting in wasted computation. This effect is especially pronounced in FFN
layers, which dominate the computational cost of LLMs until extremely long contexts (Casson, |2023)).
Skipping these redundant computations can not only reduce computation, but also lower memory
overhead, decrease the cost of loading weights, and even enable hardware-specific optimizations
such as weight caching (Alizadeh et al.|[2024; Federici et al.,[2024). LLM acceleration methods that
leverage activation sparsity can be grouped into three main categories outlined in Figure[T}

Input-based methods (Federici et al.,[2024; |Liu et al.| [2025a3b)) select a subset of input activations
for each linear layer and skip the operations corresponding to masked out multiplications. Since
input vectors might lack natural sparsity, e.g., from activation functions, these methods calibrate
skip thresholds or use heuristics to identify redundant activations. Gate-based methods (Lee et al.,
2024; Song et al.,|2024a) exploit sparsity based on the gate activation vector. Since this vector is a
result of projection through an activation function, such methods assume that it should contain many
near-zero values, which render portions of the up- and down-projection computations redundant.
However, computing the gate vector accounts for roughly one-third of the FFEN cost, which limits
its overall efficiency. Predictor-based methods (Zhang et al.,|2021; [Liu et al., 2023} |Szatkowski
et al.}2024) usually target the intermediate activations. Computing intermediate activation vectors
directly requires over two-thirds of FFN computation, so these methods typically use a lightweight
predictor (e.g., a small linear network) instead to estimate which neurons (or groups) can be skipped.
This approach can reduce computations in all FFN components, but requires training the predictor,
induces slight inference overhead on the prediction, and introduces potential approximation errors.

Research on activation sparsity typically targets specific types of activations and focus on improving
model efficiency. Prior studies have already demonstrated computational benefits of activation
sparsity for dense FFN computation: with a sufficiently optimized kernel that can exploit sparsity in
the linear computations, both FLOPs and execution latency of the linear modules scale approximately
linearly with activation sparsity (e.g., see Figure 3 in[Liu et al.|(2025a) and Figure 5 in |Szatkowski
et al.| (2024))). Since these computational gains are already well-established, our work instead focuses
on developing a broader understanding of activation sparsity across modules and model architectures.
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(a) Normalized accuracy and activation sparsity of FFN modules in Gemma3 models across the model sizes.
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(b) Normalized accuracy and activation sparsity for different sizes of Gemma3 across the FFN modules.

Figure 2: Average accuracy across downstream tasks with different induced activation sparsity for
base Gemma3 models. We normalize the accuracy by the original performance of the dense models,
and denote the highest (critical) sparsity where at least 99% performance is retained with a marker.

3 DETERMINING ACTIVATIONS TO SPARSIFY IN NON-RELU LLMS

Modern LLM architectures lack components that explicitly produce zero activations, which makes
it difficult to study activation sparsity directly. However, prior work (Chua et al.| 2024} [Liu et al.,
2025a;b)) has shown that some activation vectors v € R™ in such models can be sparsified to a certain
degree without incurring a significant performance loss. To study the general impact of sparsification
on FFN layers, we propose to use a simple top-p sparsification rule, where we obtain a sparsity mask
m,, from the largest-magnitude entries in v whose absolute values sum to at least a fraction p of the
vector’s total L1 norm:

top-p(v) = m, ® v; m, = argmin ||m||o s.t.|[m ©v||1 > p-||v|[ and m € {0,1}".
m

The induced sparsity is then the fraction of zeros in my: Sp(v) = 230, ]l(mgf) = 0). By
evaluating model performance over a range of p values, we can obtain a sparsity-performance trade-
off curve and assess the

. To this end, we introduce
the concept of critical sparsity - the highest sparsity level at which the model retains at least 99% of
the performance. This notion provides us with a practical way to characterize a model’s ability to
tolerate activation sparsity while anchoring the analysis in realistic performance constraints.

Our approach is simple, general, and easy to interpret. Crucially, it can be applied to any FFN module
without requiring auxiliary training or calibration, which enables a fair comparison of models and
modules. See Appendix [A]for further discussion and comparison between top-p and the alternatives.

4 EXPERIMENTS

To study the effects of activation sparsity in LLMs, we evaluate Gemma3 (Gemma Team)
2025), Llama3.1/3.2 (Meta Al [2024), and Qwen2.5 (Qwen Team| [2024) models using
lm-eval-harness (Gao et al.,[2024b) in a zero-shot setting. Unless otherwise specified, we use
pretrained model variants and report the average performance across all the tasks from the task suite
from Mirzadeh et al.|(2024)), which includes: ARC-Easy (Clark et al.,[2018)), ARC Challenge (Clark
et al.| 2018)), PIQA (Bisk et al.,[2020), BoolQ (Clark et al.,2019), HellaSwag (Zellers et al.| 2019)),
WinoGrande (Sakaguchi et al., 2021), Lambada (Paperno et al.| [2016), SciQ (Welbl et al., |2017)
and TriviaQA (Joshi et al.,[2017)) datasets. For clarity, throughout our study, we primarily focus on
Gemma models, as they exhibit the most uniform dimension and depth scaling with model sizes. We
provide the corresponding results for LLaMa and Qwen in the appendices.
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Figure 3: Activation sparsity becomes more pronounced as model size increases. a) Average critical
sparsity of FFN components across models, with least-squares trend lines. Larger models generally
tolerate higher sparsity, suggesting greater potential benefits. b) Effective ranks (Roy & Vetterli
(2007)) of activations on Winogrande, normalized by activation dimension. Larger models show
lower effective dimensions, indicating greater redundancy available for sparsification. c¢) Critical
sparsity under All-Inputs sparsification and the corresponding top-p thresholds at which performance
degrades. Results are averaged across evaluation tasks, with marker size indicating model size.

To measure the relation between sparsity and model performance for a given activation type from
Section [2.2] (input, gate, up-projection, intermediate, or all inputs), we apply the top-p rule uniformly
across all layers over a range of thresholds p. For each threshold, we then measure the average induced
sparsity and the corresponding performance drop, thereby obtaining the empirical relationship.
To explicitly link sparsity with accuracy, we focus primarily on the critical sparsity introduced
in Section [3]- the highest empirical sparsity level at which models retain at least 99% accuracy.

4.1 ACTIVATION SPARSITY ROBUSTNESS IN FFN COMPONENTS

We begin our analysis by investigating the sparsification robustness of different types of activations in
Gemma3 models. Specifically, we assess performance degradation under increasing sparsity induced
by the top-p rule and show the results in Figure 2] Among the FFN components, intermediate
activations demonstrate the highest tolerance to sparsity. However, as discussed in Section
leveraging this sparsity for computational acceleration in practice requires a sparsity predictor, which
limits its practical benefits. Nevertheless, our results confirm that with sufficiently accurate predictors,
exploiting intermediate sparsity remains the most promising strategy for reducing computation.

Interestingly, we observe that simple input-based methods, which use either the FFN input alone
or combined with the down-projection input, achieve sparsity levels comparable to or exceeding
those of the gate-based approach often favored in prior work (Song et al.,[2024a; Lee et al., 2024).
Although the gate activation naturally shrinks activations, its sparsity does not surpass input sparsity;
in practice, raw input and up-projection sparsity behave similarly to gates. This makes input-based
sparsification the most practical predictor-free approach, as it can accelerate all FFN modules without
introducing approximation error. By contrast, gate-based sparsification offers no clear advantage
at the model scales studied here, though it may surpass input-based methods in models larger than
~30B parameters. Overall, we find that the sparsity robustness of all FFN components generally
improves with model size, a trend we explore in more detail in the following section.

4.2 MODEL SIZE AND ACTIVATION SPARSITY

Critical sparsity against model size. To assess the generality of our previous findings across
families and scales, we consider pretrained LLaMA3.1/3.2 and Qwen2.5 models and plot their critical
sparsity in Figure[3a] fitting trends with least squares (see Appendix [B]for the table with the exact
values). The trends outlined in the previous section remain roughly consistent across model sizes:
intermediate activations are generally the most sparse, and the gate sparsity is comparable with
input or up-projection sparsity until the larger model sizes. We attribute the slight deviations in the
trends to the non-uniform depth—width scaling, particularly prominent in the Qwen model family,
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Figure 4: Critical sparsity for Gemma3 models (1B, 4B, 12B, and 27B) across all evaluated modules
and tasks. Marker size represents model scale, and tasks with higher accuracy are positioned toward
the top. While tasks with higher baseline accuracy generally tolerate sparser activations, critical
sparsity varies substantially across tasks, highlighting that activation sparsity is task-dependent.

where dimensions grow disproportionately with parameter count. Overall, activation sparsity tends to
increase with model size, though it cannot be directly determined based on the model size alone.

Effective ranks of the model activations. We further examine activation sparsity through effective
ranks (Roy & Vetterli, [2007) of activations in Gemma and LLaMA models on the Winogrande task.
In this experiment, we do not sparsify activations, and instead compute their effective rank across
layers and report the mean value. In Figure[3b] we show the effective ranks of intermediate, input,
and gate activations.

Effective
ranks consistently decrease with model size, reinforcing the observation that larger models exhibit
greater capacity for activation sparsity. However, interestingly, gate activations exhibit effective ranks
comparable to intermediates, despite their lower empirical sparsification capacity. This suggests that
effective rank alone may be insufficient to fully capture robustness to sparsification.

Relationship between critical sparsity threshold p and model size. Finally, we investigate how
the critical sparsity threshold p varies with model size. In Figure [3c| we plot the relationship between
the critical sparsity and p for all-inputs sparsification. Both the threshold and critical sparsity are
averaged across all evaluation tasks, with marker size indicating model size. While the critical
sparsity for a given model generally varies across tasks, larger models consistently tolerate lower
top-p thresholds and exhibit higher critical sparsity. Therefore, as model size increases, maintaining
performance requires a smaller fraction of the total activation norm and a smaller fraction of the
overall activations. Together with the previously observed scaling of effective rank, these results
have significant implications for efficiency and sparsification, indicating that larger models have an
increasingly pronounced long tail of neurons that do not significantly contribute to their performance.

4.3 DOWNSTREAM TASK IMPACT ON ACTIVATION SPARSITY PATTERNS

Recent works on activation sparsity for LLM acceleration (Liu et al., 2023 |Lee et al., 2024; |[Liu et al.
2025alb) typically assume that sparsity predictors or activation thresholds, tuned on a small dataset,
generalize reliably to downstream tasks. However, activation sparsity patterns are by definition
dynamic and input-dependent, which calls this assumption into question. To study how sparsity
robustness varies across tasks, we analyze the critical sparsity of the FFN modules in four Gemma
variants (1B, 4B, 12B, and 27B parameters, indicated by marker size) in Figure ] We report
performance on separate evaluation tasks, as well as the average across tasks, and order the tasks by
the dense model’s accuracy, with higher-accuracy (“easier”) tasks at the to;ﬂ

While the tasks that exhibit higher accuracy tend to be more robust to sparsification, there is no clear
trend, and a model’s critical sparsity generally varies per task. This suggests that downstream appli-
cations may be differently sensitive to sparsification, challenging the assumption that sparsification
rules calibrated on a held-out dataset will generalize universally.

! Comparable results for LLaMA and Qwen models are shown in Appendix[D}
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Figure 5: Activation sparsity is a prevalent property across different model types. a) Critical sparsity
levels for pretrained and instruction-tuned Gemma3 models. b) Performance of instruction-tuned and
reasoning variants of Qwen3-4B on generative tasks assessing general knowledge, mathematics, and
factual accuracy, with critical sparsity indicated by the markers. c) Activation sparsity in LLaMA-8B
and the diffusion-based LLaDA-8B, with critical sparsity similarly marked.

4.4 MODEL TRAINING AND ROBUSTNESS TO ACTIVATION SPARSITY

As established in the previous section, the model’s activation sparsity depends on its architecture,
size, sparsification method, and downstream task. The relation between the critical sparsity and the
training recipe, however, remains underexplored. To address this, we study activation sparsity in
instruction-tuned and reasoning variants of the models.

Critical sparsity in pretrained and instruction-tuned models. We analyze average critical
sparsity achieved across our task suite for pretrained Gemma3 models with that of instruction-tuned
variants in Figure[5al At larger scales, instruction-tuned models exhibit greater tolerance to activation
sparsity, indicating that the training recipe can substantially influence robustness even when the
underlying architecture is unchanged. The differences between pretrained and instruction-tuned
models are consistent across all tested architectures, with detailed results provided in Appendix [B]

Reasoning with Qwen-4B. We explore activation sparsity in reasoning models, focusing on Qwen3-
4B, a lightweight and cost-efficient model available in both Instruct and Thinking variants that can be
fairly compared. We evaluate the performance of these models on three representative generative
tasks: MMLU-Redux (knowledge) (Gema et al.l|2024), GSM8K (math) (Cobbe et al.,[2021)), and
Truthful QA (factuality) (Lin et al., [2021)). We report normalized accuracy on the tasks as a function
of activation sparsity in Figure[5b] The reasoning model shows slightly greater robustness on GSM8K
and even modest improvements with moderate sparsity on TruthfulQA, suggesting potential benefits
of activation sparsity for the robustness. However, the performance of the reasoning model on
MMLU-Redux degrades more sharply, as higher sparsity tends to lengthen outputs, causing them to
exceed the maximum generation limit imposed by our compute constraints.

Our results demonstrate that activation sparsity consistently emerges across multiple post-trained
models, independent of their training recipe. In light of these findings, activation sparsity appears to
be a particularly promising yet relatively underexplored research avenue for enhancing the robustness
and efficiency of reasoning models, which are becoming increasingly popular in modern applications.

4.5 EXPERT-WISE SPARSITY IN MIXTURE-OF-EXPERT MODELS
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Figure 6:

4.6 ACTIVATION SPARSITY IN DIFFUSION LLMS

Finally, we investigate activation sparsity in the increasingly popular class of diffusion-based LLMs.
While prior work has explored sparsity and caching in image diffusion models (Ma et al.| 2024}
Silveria et al., [2025; Zhang et al.,|2024a; |Li et al.| 2024a), to our knowledge this is the first analysis
of activation sparsity in diffusion-based language models. Masked diffusion LLMs generate full
sequences in parallel by progressively denoising across multiple diffusion steps, with each step
producing distinct intermediate activations. To apply our sparsification scheme to such models, we
compute separate sparsity masks at every model forward pass, and report sparsity averaged across all
forward passes. We use the official implementation of recently introduced LLaDA-8B (Nie et al.,
2025), which adopts the same architecture as autoregressive LLaMA3-8B. This choice enables fair
comparisons without additional interference that would stem from the differences in model design.

Critical sparsity in diffusion LLMs. To compare activation Table 1: Critical sparsity values
sparsity in the autoregressive and diffusion LLMs, we investi- for diffusion-based LLaDA-8B.
gate intermediate activations in LLaMA3.1-8B and LLaDA-8B.

We examine sparsity characteristics across three tasks from our Intermediate ~ All-Inputs

previous experiments: ARC-Challenge, HellaSwag, and PIQA,

General Tasks

which are also analyzed in the LLaDA paper, and show the re-

su1t§ i.n Figure Sim@lar to the auForegressive model, LLaDA %&Lg gzzg g%;i
exhibits substantial activation sparsity and shows even slightly HellaSwag 71.21 67.92
more favorable sparsity—performance trade-offs. To investigate ~WinoGrande 50.75 42.35
the phenomenon in more detail, we measure critical sparsity (aver- PIQA 8325 75.68
aged over diffusion steps for generation or Monte-Carlo likelihood Maths and Science

trials for scoring tasks) on tasks from the LLaDA evaluation suite, GPQA 62.50 4594
with both intermediate- and all-inputs activation sparsification. We _

present the results in Table[I] Average critical sparsity across all Coding

tasks is substantially higher than that observed in autoregressive HumanEval 81.25 77.89
LLaMA models in Figure[3a likely due to the denoising nature

of diffusion-based generation, which can better tolerate noise in- Chinese

troduced by sparsification. Although activation sparsity remains cyvLU 69.01 5725
largely unexplored in diffusion LLMs, our results indicate its con- C-Eval 69.25 50.62
siderable potential to accelerate computation in such models, to Average 68.13 56.79

an even greater extent than in the autoregressive models.
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Figure 7: Jaccard similarity of the sparsity masks induced with critical sparsity in LLaDA-8B on
HumanEval. We sparsify intermediate and both intermediate and FEN input activations, and plot the
metrics for input and intermediate layers separately. a) Mask similarity between consecutive diffusion
steps and between the current and the first step. We average the similarity across all modules of a
given type. b) Consecutive similarity of each model layer, averaged over the whole diffusion process.

Sparse activation patterns across diffusion steps. Finally, we analyze the temporal dynamics
of activation sparsity in LLaDA. Previous work on autoregressive models has highlighted that
sparsity patterns remain relatively stable after the prompt (Dong et al} 2024} [Federici et al] [2024),
which can be leveraged to make the model inference more efficient, for instance by reducing GPU
weight-loading operations. We investigate whether similar efficiency techniques could be applied to
diffusion-based LLMs by analyzing sparsity masks across diffusion steps to assess the presence of
comparable temporal stability.

First, we look at the overall activation sparsity levels in LLaDA-8B across the diffusion steps on
HumanEval dataset. For each diffusion step ¢, we apply the top-p rule introduced in Section [ with
fixed p corresponding to the critical sparsity values obtained earlier, and obtain sparse masks m,, ; for
each diffusion step. We perform this experiment for both intermediate and all-inputs sparsification,
and report the average sparsity level for each diffusion step across the whole dataset in Figure [6b]
While the average activation sparsity slightly decreases throughout the denoising process, every step
remains highly sparse at around 80% critical sparsity on average across all layers. Interestingly, we
observe that both the earliest and the latest layers show the highest critical sparsity, while the middle
layers exhibit slightly less sparsity.

The average activation sparsity remains high throughout the steps of the diffusion process, but that
alone does not capture how stable the underlying activation patterns are. To measure this, we compare
sparsity masks throughout the denoising trajectories and compute the Jaccard similarity between
the sets of neurons active for each step. Specifically, we measure the Jaccard similarity between
consecutive diffusion steps as:

and drift Jaccard similarity between the initial sparsity mask and the mask for the current step ¢:

Jt 0= |mp’t N mp,0|

s

B [myp,e Umy ol

In Figure[7a] we report the consecutive and drift Jaccard similarities computed over input and inter-
mediate activation vectors, averaged across all model layers. While consecutive Jaccard similarity
remains stable, drift similarity rapidly declines across diffusion steps, indicating that sparsity patterns
undergo gradual yet substantial changes as the denoising process progresses. Notably, when spar-
sification is applied only to intermediate activations, the similarity metrics are higher, highlighting
that sparsifying both input and intermediate activations makes the sparsity patterns less stable. In
Figure[7B] we further present the average consecutive similarity of sparse activation sets across all
diffusion steps, analyzed per LLaDA layer. Interestingly, consecutive similarity decreases steadily
until approximately four-fifths of the model depth, after which it slightly increases near the final
layer. Overall, despite the diffusion model maintaining consistently high overall sparsity across the
denoising process, the similarity between consecutive masks remains too low to allow for their reuse
across steps, with potential exception of very early layers which exhibit very high Jaccard similarity.
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To the best of our knowledge, our work is the first to demonstrate
that activation sparsity is a highly prevalent phenomenon in diffusion-based LLMs. Our results suggest
that sparsity could be a promising avenue for accelerating such models, as the critical sparsity levels
in LLaDA significantly exceed the sparsity achieved with autoregressive LLaMA3.1 of the same size.

5 CONCLUSIONS AND DISCUSSION

Despite lacking any architectural bias toward explicitly sparse activations, modern LLMs consistently
exhibit functional sparsity. We argue that functional sparsity is a universal property of LLMs
and advocate for its wider adaptation when designing efficient models.

We find that larger models tend to exhibit higher sparsity, suggesting that frontier models will become
sparser as scaling continues. Therefore, activation sparsity stands out as a promising tool for
accelerating ever-growing LLMs, and it already starts to appear in common model families, such as
the recent Gemma3n release that includes activation sparsity-aware layers (You et al., 2025).

Our results show that input activations match or exceed the sparsity of gates and up-projections.
Computing gates to choose sparsity patterns (Lee et al., [2024)) is wasteful if they are no sparser than
inputs, and newer work (Liu et al.,[2025a; Federici et al.} [ 2024; Liu et al.,|2025b) demonstrates stronger
acceleration with purely input sparsity. Overall, our results suggest that input sparsification is the
most practical training-free approach to leveraging activation sparsity for model acceleration.

The high variance of critical sparsity across evaluation tasks and training recipes calls into question
methods that rely on extra training (Zhang et al.| 2021} Liu et al.| 2023} [Szatkowski et al.| |2024])) or
threshold calibration (Lee et al., 2024} |Liu et al., | 2025a) on auxiliary datasets. Our results suggest
that sparsification methods should be truly data-free, as both functional sparsity levels and
resulting patterns can be prone to overfitting.

Our results should be seen as a lower bound on activation sparsity, as we adopt a simple, broadly
applicable framework. While layer- or module-specific methods may achieve higher sparsity, our
top-p approach already reaches practical levels comparable to existing work. Given this and our earlier
arguments on overfitting, we argue that sparsification method design should favor simplicity.

Our work is also the first to examine functional sparsity in diffusion LLMs. We highlight sparsity
as a promising avenue for improving their efficiency, and expect that activation sparsity could see
increasing adoption in diffusion LLMs as their development advances.

Finally, we argue that evaluations of activation sparsity methods should prioritize performance
preservation, as captured by our notion of critical sparsity. Effective speedups from activation
sparsity are limited to roughly 1.3—-1.5x (Lee et al.,|2024; [Liu et al., |2025azb), while techniques such
as speculative decoding enable lossless speedups of up to 4 x (Li et al.|[2024b; [2025)). Consequently,
activation sparsity should be viewed as complementary to other acceleration methods rather than as
the sole focus of efficiency studies on model acceleration techniques.

We have systematically analyzed activation sparsity in LLMs, demonstrating that functional sparsity
is pervasive and tends to increase with model scale. We hope our work highlights the potential
of activation sparsity for efficiency and provides insights for future model design. Our findings
emphasize the growing significance of activation sparsity, and we expect that, as models continue to
scale, it will become an increasingly important tool for building efficient and high-performing LLMs.
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Reproducibility statement. All experiments in this paper were conducted on NVIDIA
A100 (40GB) GPUs. We used an open-source LLM evaluation framework along with publicly
available datasets and models, introducing only minor code modifications to induce activation spar-
sity. To ensure full reproducibility, we will release all scripts used to run our experiments in an open
repository upon the acceptance of the paper.

Ethics statement. Our work aims to advance the understanding of activation sparsity in large
language models (LLMs). This phenomenon can be leveraged to obtain more efficient, robust, and
interpretable models, thereby democratizing access to LLMs, reducing their cost, and making them
safer. We do not identify any immediate ethical concerns specific to our method; however, as with
any technique that improves the capabilities of LLMs, there is potential for misuse. We therefore
urge that any deployment of resulting models be approached with caution and with consideration of
broader societal impacts.

In line with the ICLR LLM policy, we disclose that LLMs were used only to refine the writing of this
manuscript. All ideas and content originate from the authors.
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Appendix

A  How To INDUCE ACTIVATION SPARSITY IN FFNs?

A.1 ALTERNATIVE SPARSIFICATION RULES

In Section[3] we propose to use the top-p sparsification rule to induce the sparsity in the activation
vectors of the models. We opt for a simple sparsification rule to avoid any data dependency or bias
towards a specific model or FFN module. However, top-p is not the only possible way to perform
sparsification, and many other works opted for alternative methods to extract the sparse subsets of
neurons, such as top-k (Zhang et al.l|2021) or max-p (Szatkowski et al.| 2024).

For vector v € R", top-k finds k largest neurons in the vector and can be formally defined as
a transformation that multiplies v with a subset of k neurons which maximizes the norm of the
sparsified vector:

top-k(v) = my © v; my, = argmax||m © v||1 s.t. ||m|lo = k and m € {0,1}".
m

Similarly, max-p finds the subset of the neurons that satisfy the condition that their absolute values
are at least p - max(v):

max-p(v) = my, ® v; my = argmin ||mllo s.t. [v;|-m; > p-||v]| Vi andm € {0,1}",
m

where ||v||o = max; |v;| denotes the maximum absolute entry of v, and the mask m,, retains exactly
those coordinates 4 for which |v;| > p - ||v||o. Notably, the mask always selects the largest entry in
the activation vector.

We empirically compare the three sparsification strategies in Figure [§] focusing on the spar-
sity—accuracy tradeoff averaged over our evaluation tasks for the smallest model in each family.
Overall, top-p and top-k produce very similar curves, whereas max-p underperforms in certain
settings. Therefore, we adopt top-p for our experiments, as it is more interpretable than top-k and
can more universally transfer across model sizes. In particular, larger models typically yield higher
sparsity, requiring k to be carefully chosen as most values of k£ have no effect until a critical sparsity
is reached. By contrast, with top-p performance degrades more smoothly and predictably, allowing
us to evaluate a fixed set of thresholds that transfer well across models.
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A.2 GENERALIZED top-p OPERATOR
We further investigate generalized top-p rule, denoted as top-p", which is given by:

top-p™(v) = m, ® v; m, = argmin ||m||y s.t. |[m © 9|y > p- |0y andm € {0,1}", (1)

m

where & = |v|L for L > 0. This formulation potentially allows finer control over the sparsification
algorithm, with L > 1 making the sparsification rule with a given p select smaller subsets of large
activations, while L < 1 leading to rule usually selecting more neurons for a given threshold. Notably
for L = 1 the rule is equivalent to the top-p used in the main body of our paper.

We compare top-k, and top-p™ with L = {0.5,1.0,2.0} on Qwen2.5 models, applying sparsification
to all-inputs, intermediate and gate activations, and present the findings in Figure[] There are slight
fluctuations in the sparsity characteristics obtained with the tested rules, but all approaches produce
very similar results. While particular values of p or k might transfer to different sparsity levels, with
sufficiently dense sampling of the theresholds the characteristics for all the rules cover similar sparsity
levels, and there are no meaningful perfomance gains from using one given approach. This further
supports our choice of standard top-p as the default sparsification operator, as its simply easier to
practically apply, while performing as well as the other alternatives.
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Figure 9: Accuracy characteristics under sparsification with variants of generalized top-p and top-k
for Qwen2.5 0.5B, 1.5B, and 3B.
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A.3 SPARSIFICATION RULE TRANSFERABILITY BETWEEN THE MODELS

To further study the transferability and impact of the threshold selection in different models, we
investigate the activation sparsity induced in separate layers of Gemma3 and Qwen2.5 models. We
select a subset of p thresholds, and register the activation sparsity obtained at a given layer alongside
the average of the accuracy under the threshold. We plot the results as heatmaps in Figures[I0]and[T1]

Figure 10: Top-p threshold values and resulting sparsity induced in the gate activation vectors
alongside the accuracy with the given threshold across different layers of Gemma3 and Qwen2.5.

First, we investigate the sparsity of gate activations in the Gemma and Qwen models of corresponding
sizes in Figure [I0] Except for some early layers, the sparisty values obtained across the models
appear similar for a given threshold across the middle layers.

Figure 11: Top-p threshold values and resulting sparsity for Gemma3-27B and Qwen2.5-32B models.

Then, in Figure [I0] we plot the sparsity of all four investigated activation vector types in the largest
models within each model family. Again, except for a few layers, the sparsities obtained for a given p
appear similar between the models.

Both of these results support the universality of our approach and our decision to choose top-p over
top-k, as using top-k would require more manual threshold selection to find the critical sparsity, as
outlined by the variance in the critical sparsity across different model sizes and types in Section 4]
While the resulting sparsity heatmaps show a few high outliers, particularly for Gemma3-27B gates,
we attribute the presence of these to the presence of massive activations 2024), as for
massive outlier values, the magnitude of the vector norms that we use will concentrate around very
few large values and may even cause exact sparsity to appear at p = 1.0 as the nature of the numerical
precision will make the smallest entries in the activation vector appear like zeros since they basically
contribute nothing compared to the massive outlier. We do not investigate this phenomenon further
and leave it for future work. However, we note that it can have important implications for the design
of activation sparsity approaches, particularly those that rely on thresholding, as rules and thresholds
devised for massive activations might be highly unstable upon encountering out-of-distribution data.
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B CRITICAL ACTIVATION SPARSITY OF PRETRAINED AND

INSTRUCTION-TUNED MODELS

Table 2: Critical activation sparsity for pretrained and instruction-tuned models. Sipter, Saii_ins
Sgates Sinput and Sy, p, refer to intermediate, all inputs, gate, input and up-projection sparsification,
respectively, and L, d,,, and d; stand for number of layers, model and intermediate dimensionality.

Pretrained Instruction-Tuned

Model L dm d1 Sinter Sall_in Sgate Sinput Supp Sinter Sall_in Sgate Sinput Sup,,

Gemma3-1B 26 1152 6912 5022 3515 22.83 2853 3296 4998 3589 2323 3214 30.27
Gemma3-4B 34 2560 10240 58.56 4046 2850 3463 39.72 62.82 47778 3599 4229 40.82
Gemma3-12B 48 3840 15360 69.46 5254 42.05 43.03 4203 7877 6145 5545 50.74 54.26
Gemma3-27B 62 5376 21504 74.12 6626 53.03 50.83 42.01 8405 7425 68.15 59.88 56.95
LLaMA3.2-1B 16 2048 8192 44.44 3093 2651 28.09 28.82 45.02 3252 2430 29.65 29.70
LLaMA3.2-3B 28 3072 8192 49.58 3451 2552 3591 37.14 58.07 36.62 2890 3328 4472
LLaMA3.1-8B 32 4096 14336 51.89 3897 28.04 3731 3052 6196 4435 3438 3934 41.76
Qwen2.5-0.5B 24 896 4864 46.54 36.66 17.16 42.01 2920 4392 3320 2460 3280 32.12
Qwen2.5-1.5B 28 1536 8960 5049 4098 2593 40.12 3550 5293 39.14 27.63 3250 32.99
Qwen2.5-3B 36 2048 11008 71.16 5043 39.58 3940 4346 59.80 47.47 3690 44.16 36.32
Qwen2.5-7B 28 3584 18944 6098  51.77 3725 47.89 43.05 5995 51.73 3258 47.01 40.62
Qwen2.5-14B 48 5120 13824 71.66 54.66 48.04 4739 5225 6935 56.89 41.87 50.10 49.04
Qwen2.5-32B 64 5120 27648 65.66 5893 40.20 54.08 5246 68.77 62.83 4054 5517 57.35

In Table[2] we report the exact numerical values of the critical activation sparsity for all models con-
sidered in our experiments, including both pretrained and instruction-tuned variants. For context, we
also include key model architectural parameters such as the number of layers, model dimensionality,
and intermediate dimensionality. While we do not observe clear, direct relationships between these
parameters and the achieved critical sparsity, the general trend of sparsity increasing with model
size remains evident. Notably, the Qwen family exhibits some fluctuations, which may partially be
explained by the non-uniform scaling of its architectural parameters across model sizes.
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Figure 12: Critical sparsity plots for LLaMA and Qwen models, corresponding to the Figure
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C AVERAGE ACCURACY OF PRETRAINED QWEN2.5 AND LLAMA3 MODELS.

(a) Sparsity for different FFN modules at various model sizes.
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Figure 13: Average accuracy across downstream tasks normalized by the original performance with
different induced activation sparsity for base LLaMA3 models, corresponding to the plots in Figure@

(a) Sparsity for different FEN modules at various model sizes.
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Figure 14: Average accuracy across downstream tasks normalized by the original performance with
different induced activation sparsity for base Qwen2.5 models, corresponding to the plots in Figure@
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D PER-TASK SPARSITY FOR LLAMA AND QWEN MODELS
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(a) Critical sparsity for LLaMA3 models (1B, 3B, and 8B).
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(b) Critical sparsity for Qwen2.5 models (0.5B, 1.5B, 3B, 7B, 14B, and 32B).

Figure 15: Critical sparsity of different tasks across all the evaluated modules. The marker size
denotes the model size, and the tasks are ordered by their accuracy (the tasks at the top achieve
the highest accuracy). The sparsity at which the model performance degrades varies considerably
between the tasks. Although the "easier" tasks with higher accuracy tend to be more tolerant to
sparsity, there is no clear correlation, which suggests that activation sparsity patterns tend to be highly
data-dependent.

E EFFECTIVE RANK COMPUTATION

To compute effective ranks of activations in Section[d.2] we follow the formula from
[2007), which we restate here for the sake of the paper’s self-containment. In our experiments, we
apply the following formula to each batch and then report the effective rank as the average across all
the batches.

To compute the effective rank of activation matrix A € R™*?, where n refers to the number of tokens
within a batch, and d is the feature dimensionality of the model, we first compute singular value
decomposition (SVD) of A:

A=UDYV,

where D € R"*4is a diagonal matrix containing the singular values oy > 03 > --- > 0g > 0, and
@ is defined as Q = min(n, d).

We can further define o = (01,02, ...,00)7, and the singular value distribution is then given by:

Pk = Tk for k=1,2,.. 5 Q,
ol

where T denotes transposition and || - ||; is the L1 norm.

The effective rank of A is then defined:

where H (p1, p2, - .., p@) is the Shannon entropy of the singular value distribution.
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F ADDITIONAL RESULTS FOR MOE MODELS

F.1 INTER-TASK VARIANCE IN CRITICAL SPARSITY LEVELS FOR QWEN3-30B-A3B

In this section, we present the results complementary to the ones presented in Section[f.3} Similar to
Figure[6a] we investigate minimum, maximum, and average sparsity in each layer in Qwen3-30B-
A3B across the isolated tasks from our task suite. Interestingly, we find that average sparsity is very
similar across each task, and the only notable variance in the model behaviour can be observed in the
maximum sparsity, which sometimes fluctuates per expert. While our previous results for the dense
models indicated a large variance in critical sparsity per task, these results rather indicate that such
variances average out across large numbers of experts in MoE architectures.
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Figure 16: Critical sparsity across Qwen3-30B-A3B layers measured per-task.
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F.2 RESULTS FOR OLMOE-7B-A1B

To complement our analysis, we repeat Qwen3-30B-A3B experiments with smaller MoE, OLMoE-
7B-A1B (Muennighoff et al] 2023). OLMOoE has 16 MoE layers and uses 8 out of 64 experts for
a given token. In Figures [['7]and [I8] we present the plots corresponding to the Figure [pa from the
main paper and the per-task activation sparsity analysis presented in Figure[I€] Overall, the sparsity
in the 7B-A1B model is smaller than in the 30B-A3B Qwen, and the per-expert variance is smaller,
as also expected. Interestingly, in this model, intermediate sparsity is close to all-inputs, which can
be explained by the lower expansion rate in OLMoE FFN, where the intermediate dimension is just
two times larger than the hidden dimension. Nonetheless, the interesting property of experts showing
small variance in sparsity across the tasks observed for the Qwen model persists in the smaller MoE.
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Figure 17: Critical sparsity across OLMoE-7B-A1B across the layers, with standard deviation shaded
and the minimum and maximum sparsity for each expert marked with dotted lines.
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Figure 18: Critical sparsity across OLMoE-7B-A1B layers measured per-task.
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