
Under review as submission to TMLR

WaveletGPT: Wavelets Meet Large Language Models

Anonymous authors
Paper under double-blind review

Abstract

Large Language Models (LLMs) have ushered in a new wave of artificial intelligence advance-
ments impacting every scientific field and discipline. They are trained on a simple objective:
to predict the next token given the previous context. We live in a world where most of the
data around us, e.g., text, audio, and music, has a multi-scale structure associated with them.
This paper infuses LLMs with traditional signal processing ideas, namely wavelets, during
pre-training to take advantage of the structure. Without adding any extra parameters
to a GPT-style LLM architecture, we achieve the same pre-training performance almost
twice as fast for LLMs in text, raw audio, and symbolic music by imposing a structure
on intermediate embeddings. When trained for the same number of training steps, we
achieve significant gains in performance, which is comparable to pre-training a much larger
neural architecture. Our architecture allows every next token prediction to have access to
intermediate embeddings at different temporal resolution in every Transformer decoder layer.
This work will hopefully pave the way for incorporating multi-rate signal processing ideas
into traditional large language model pre-training. Further, we showcase pushing model
performance by improving internal structure as opposed to just going after scale. 1

1 Introduction and Related Work

Large Language Models (LLMs) have ushered in a super-renaissance of AI models and are touching every
scientific and engineering discipline. At the heart of this revolution has been the Transformer architecture
Vaswani et al. (2017), which was initially proposed for machine translation in natural language processing.
Transformer architecture became the backbone of GPT (Generative Pretrained Transformer) language models
Brown et (2020) first proposed by Open-AI, which has revolutionised the field. Modern LLMs are still trained
on a straightforward objective: To predict the next token given the previous context, preserving the causality
assumption. The exact recipe has been show to work not only for language but also for robotics Brohan et al.
(2022; 2023), protein sequences Madani et al. (2020), raw audio waveformsVerma & Chafe (2021), acoustic
and music tokens Huang et al. (2018); Verma & Smith (2020); Borsos et al. (2023), videos Yan et al. (2021)
to name a few. This simple recipe of tokenization/creating an embedding and feeding it to transformers also
has given rise to architectures in non-causal setups such as BERTDevlin et al. (2018), Vision Transformers
Dosovitskiy et. al (2020), Audio Transformers Verma & Berger (2021) and Video Transformers Selva et al.
(2023). The recent surge in multi-modal large language models similar to that proposed by Google with its
Gemini family Team et al. (2023) would pave the way for another wave of applications in the future. With
increased performance by scale, some of the models like GPT-3 are Brown et (2020) reaching hundreds of
billions of parameters to that of Google’s Switch Transformer has even reached trillion parameters Fedus et al.
(2022). This has led to recent concerns that AI research is slowly moving out of academics and is getting
confined to industry researchers as per the recent Washington Post article Nix (2024)

The theme for this work is to push the capabilities of the models to get capabilities of a much bigger
architecture or achieve the same performance with faster convergence. Researchers have proposed several
techniques to boost the performance of smaller architectures using larger models. From a few that are listed
now, however our work is different that we propose to improve the performance during pre-training. One of
the most popular ones is knowledge distillation, where a larger model is used to guide a smaller architecture

1* This work was carried out while XXXX was with the XXXX XXXX in the XXXX XXXX XXXX at XXXX XXXX

1

Under review as submission to TMLR

in terms of the number of parameters. Gu et al. (2024) used KL divergence-based criteria to improve the
capabilities of generating text (next token prediction) from the teacher model’s feedback. This still uses
a powerful model to improve its performance rather than improve the smaller architecture trained from
scratch. A line of work also proposed hierarchical transformers via upsampling-downsampling operation
Nawrot et al. (2021) similar to an hour-glass U-Net architecture in computer vision Long et al. (2015). As
compared with the Transformer baseline, given the same amount of computation, it can yield the same results
as Transformers more efficiently. Our work has similarities and stark differences to Clockwork-RNN Koutnik
et al. (2014). First proposed for improving long context modeling in RNNs, it splits the hidden neurons
of an RNN into different modules, and each module, having different parameters, updates their states at
different (clock) rates. Thus, at each time step, only a few modules(weights) are activated and updated during
forward/backward pass. This allows the network to learn dependencies through processing and retaining
long-term information at different rates from the high-speed and low-speed modules. Our architecture only
tinkers with the intermediate embeddings with straightforward tweaks and does not introduce complex
separate learning modules or update weights at different rates. Model pruning Sun et al. (2023), on the other
hand removes weights based upon its saliency in impacting the performance to achieve the same performance
of the large architecture, like LLAMA Touvron et al. (2023) with fewer compute flops, during inference. Again,
the goal is to start with a trained large model at the outset rather than trying to achieve the same pretraining
performance from scratch. We also do not discuss quantization-based algorithms Dettmers et al. (2024), as
they are also focused on improving inference times/flops, or to fine-tune an pre-existing architecture.

The other line of work, similar to our work, is to tinker with the intermediate embeddings. Tamkin et. al
(2020) proposed hand-tuned filters on the Discrete Cosine Transform Ahmed et al. (1974) of the latent space
for different tasks like named entity recognition and topic modeling for non-causal architectures like BERT
Devlin et al. (2018). However, they take a discrete cosine transform over the entire context length and thus
cannot be adapted for applications such as language modeling, which predicts the next token in a given
context. There have been similar papers on applying ideas from signal processing like methods to BERT
like non-causal architectures and we will discuss two of them here FNet and WavSPA that are relevant for
our current paper, both again proposed for BERT like architectures. Both of the papers present variants of
improving attention blocks which is different than our work which is on causal decoder only architectures
such as GPT. FNetLee-Thorp et al. (2022) removes the costly attention mechanism and replaces it with 2-D
FFT block. This operation is however non-causal as it looks into future tokens for computing 2-D FFT for
modifying the current tokens. WavSpA Zhuang et al. (2024) on the other hand, computes the attention block
in the wavelet space. The premise is since wavelet transform is a multi-resolution transform capturing long
term dependencies at multiple timne scales, the input sequences is transformed into wavelet space, attention
mechanism is carried out, and then reconstructed back. However one of the major drawback is the operation
is non-causal, i.e. to compute the wavelet transform one needs to look at the entire sequence length for
capturing variations from coarsest to finest scales (as can be seen in Figure 1 of Zhuang et al. (2024)). Thus
such modifications cannot be adapted to GPT like decoder only architectures. As we will see in our work, we
modify only the intermediate embeddings leaving the rest of the architecture same as is in a causal manner.
Our work is also inspired from neuroscience, which gives evidence that the human brain learns multi-scale
representations for language at multiple time scales Caucheteux et al. (2023) as opposed fixed resolution
representations. As we will see in our work, our paper proposes explicitly to impose multi-scale representation
during pre-training onto every intermediate decoder embeddings.

The contribution of the paper is as follows:

• We propose, to the best of our knowledge, the first instance of incorporating wavelets into large
language models. We propose the addition of multi-scale filters onto each of the intermediate
embeddings of Transformer decoder layers using Haar wavelet. Our architecture allows every next
token prediction to have accesss to multi-scale representations for the intermediate embeddings in
every Transformer decoder layer as opposed to fixed resolution representations.

• We show that with the addition of no extra parameter, we can substantially speed the pretraining of
a transformer-based LLM in the range of 40-60%. This finding is substantial given how ubiquitous
the Transformer Decoder-based architectures are across various modalities. We also show that with

2

Under review as submission to TMLR

Figure 1: We find signals in every intermediate embeddings between decoder blocks of GPT. For each of
these signals of length equal to the context length of GPT, we compute a simple 1-D discrete haar wavelet
transform at different level to approximate the signal at different resolutions to mimick multi-scale structure
that exists in real word for text, raw audio and symbolic music. The figure on right is from Gao & Yan
(2006), which gives a more detailed account of non-stationary signal processing for 1-D signals. We go on the
leftmost route of approximate coefficients allowing us to capture embeddings at different resolutions.

the same number of training steps, the model gives a substantial non-trivial performance boost, akin
to adding several layers or parameters.

• We show that adding a wavelet-based operation gives a performance boost in three different modalities
for the pretraining tasks regarding validation loss. These three modalities are text (text-8), raw audio
(YoutubeMix), and symbolic music (MAESTRO). This shows that our method is generic enough for
structured datasets.

• We also explore that by making these kernels learnable, which adds only a tiny fraction of the
parameters, as compared to the primary model, we get an even further increase in the performance
of our model, which allows the model to learn multi-scale filters on the intermediate embeddings
from scratch.

The flow of the paper is as follows: Section 1 describes the introduction and related work to our proposed
method, followed by the three datasets we used in Section 2. This is followed by a description of our
methodology, wavelets, and how to connect large language model pretraining with introduction to wavelets
in Section 3. For the experimental setup in Section 4, we show the performance of our system for various
modalities, with scale and by making the multi-scale kernels learnable. Section 5 describes our future work,
followed by Acknowledgment.

2 Dataset

We utilize three open-source datasets to showcase the strength of our proposed method. In addition, we
choose them from three different domains: natural language, symbolic music, and raw audio waveform. For
text, we choose text-8 Mikolov et al. (2012). We choose this over other datasets as i)it is a popular and widely
cited character-level language modeling dataset for text and ii) in order to use a simple vocabulary (space +
26 lower case characters) to detach the effects of various tokenizers from our results, at least in one of the
modalities. It has 100M characters with the split used in training, validation, and testing as given by Al-Rfou
et al. (2019). We report the results for two more modalities other than text: raw waveform and symbolic
music. For raw audio, the goal is again to predict the following sample given a context of samples. We use
the YouTube-Mix-8 dataset, which has been used for long-context modeling Goel et al. (2022); Verma (2022).

3

Under review as submission to TMLR

Figure 2: (Bottom left): A tree structure depicting a 3-level filter bank that can take signal and give
us different resolutions of signal. In this case we only focus on the approximate coefficients, by passing it
through an impulse response corresponding to the wavelet of choice and recursively down-sampling it. (Top
left) How to compute the approximate and the detailed coefficients at various levels through a toy example.
We recursively take first order average/differences followed by downsampling till we get ony a single scalar
representative of the entire input signal. (Right) For a 32-length signal, we depict how different level of
approximate coefficients of discrete haar wavelet transform capture the signal from the coarsest to fine details.
The figure on (centre) and (top-left) redrawn from tutorial on wavelet transform from Flores-Mangas (2014).
(right) How our architecture computes embeddings moving at different rate via the wavelet approximation
where for some of the embedding dimension the information moves at the coarsest rate similar to level 5
approximation whereas for other dimensions, it follows finer resolution similar to a level 2 approximation.
Notice how during token prediction all of this multiscale knowledge is present in all decoder layers.

Here, since we use 8-bit signals as we did in prior works, our vocabulary size is 256, with a sampling rate
16KHz. We use a third dataset, MAESTRO Hawthorne et al. (2018), which contains over 1000 MIDI files
of popular classical music pieces. We use Google’s tokenizer Huang et al. (2018), which can convert MIDI
tracks into discrete tokens onto which we train our LLM with a vocabulary size of 388. An important point
to note is the goal in all three modalities is not to chase the state of the art performance, as this paper was
written in an academic setting with very few computational resources available. The goal is to rather shrink
down GPT-like architecture and compare pre-training performance to the shrunk down version with/without
adding multi-scale structure to the embeddings, without adding a single extra learnable parameter.

3 Methodology

This section will describe the approach to incorporating wavelets into Transformer based Large Language
models while retaining the causality assumption. The ideas described here are generic and can be easily
extrapolated to setups without using a Transformer architecture.

3.1 Incorporating Wavelets into Intermediate Embeddings

For any signal, we would compute one of the versions of discrete wavelet transform as we will describe and
incorporate that back into the signal. Let us assume that xl

(i) is the output of the lth decoder layer and
represents the activation along the ith coordinate. This activation signal will have a dimension equal to the
context length of the transformer-based GPT model. In our case, we denote the context length as L. So now,
if in the original GPT architecture, there were N + 1 layers, with the embedding dimension as E, we would

4

Under review as submission to TMLR

get N.E signals of length L from all of the intermediate embeddings between two decoder blocks. E in our
case goes from [0− 128) dimensions.

3.2 Introduction to Wavelets

A wavelet is a signal that typically has zero mean and a non-zero norm. A wavelet transform was first
designed to overcome the shortcomings of a traditional Fourier-based representation. Given any signal x[n],
a discrete wavelet transform is akin to passing the signal through filters with different resolutions as can
be seen in Figure 2. In its simplest form, throughout this paper, we will use Haar wavelet, which is simply
a family of square-shaped functions. The family is obtained from a mother wavelet via scaling and shift
operations. Given a mother wavelet function ψ, we come up with the child wavelets as

ψj,k[n] = 1√
2j
ψ

(
n− k2j

2j

)
where k is the amount of shift, and j is the scaling factor. For the case of the Haar wavelet, this would
amount to the kernel being a simple averaging and difference functions, at different scales that we will exploit
in our work. The advantages of operating a wavelet function in our work are clear from the definition: It
allows us to have multi-scale operations on any signal and gives several perspectives of a signal at different
resolutions as seen in Figure 1.

We now define discrete wavelet transform. Simply, it can pass any signal through a series of filters and
downsampling operations. This operation as seen in Figure 2, should immediately strike resemblence to a
convolutional neural net like Resnet He et. al (2016), which consists of learned convolutional filters analogous
to h[n] and g[n], and downsampling operation like max-pooling. In traditional state of the art convolutional
architecture, we typically go the route of following one branch of the Figure 2, i.e. we take output of filters,
and downsample and do it recursively. We will in this paper will also do something similar. This was also one
of the reasons wavelets were incredibly popular in early 90s and 2000s for image understanding, as one can
see parallels to that of convolutional architectures Huang & Aviyente (2008); Kingsbury & Magarey (1998)

Let us assume that we choose a family of wavelets (Haar wavelet in our case); then it would be akin to passing
the signal through a low-pass and a high-pass filter corresponding to the kernels in that family of wavelet
transforms g[n] and h[n]. In case of Haar wavelet transform, it is simply taking averaging and difference
operation i.e. the impulse response of g[n] and h[n] are [1/2,1/2] and [1/2,-1/2] respectively. Let us look at
the Figure 2 for a more detailed explanation of a discrete wavelet transform.

Let x[n] be any 1-D length signal L. In order to get level 1 coefficients, we pass it through two filters with
impulse response g[n] and h[n] followed by a downsampling operation. Thus the approximation coefficients
yapprox and ydetail are simply the output of an LTI system followed by downsampling (by 2 here) defined as,

yapprox[n] =
∞∑

k=−∞

x[k]g[2n− k]

ydetail[n] =
∞∑

k=−∞

x[k]h[2n− k]

Now, in order to get multi-scale representations of the original signal, the same operation that is described
above for x[n] is carried out recursively now for ya (approx) to get level 2 wavelet coefficients y2

a and y2
d

(detail) and so on. Typically, the collection of signals describing approximate coefficients ya and yd along
with their decomposition namely, ya, yd, y

2
a, y

3
a, y

4
a... are used for further processing for various application.

We note that y2
a, y

3
a, y

4
a will have smaller lengths by a factor of 2, 4, 8, and so on. For Haar wavelet transform,

we can recursively go down the route of approximate coefficients, and average the adjacent two samples. For
retaining the causality assumption as we will see soon, we can simply take the average of the current and the
past sample. We can see that higher order approximate coefficients capture averages at much larger context
length if we keep going the route of only the approximate coefficients as can be seen in Figure 2. We can
go to maximum depth till we are only left with a single value, a scalar, that is representative of the entire

5

Under review as submission to TMLR

signal which is mean over the length of the signal. Haar wavelet transform computes averages and differences
of the signal to get multi-resolution representation of the signal capturing low and high frequencies of the
signal at different resolutions. This can be seen in Figure 2, where the same signal on the right is captured
at the coarsest representation and then finer detail representations using Haar wavelets. We do this on the
intermediate embeddings thereby allowing every next token prediction to have access to such representations.

3.3 Connecting wavelets and LLM embeddings

Often, in many signal processing applications, the first-order detail coefficients and all of the approximate
coefficients are used to understand the contents of the signals at various levels. We also intend to carry out
the same operation but now on signals we get from intermediate Transformer embeddings. However, we
do not take any detailed coefficients and only look into the approximate ones. This was our premise: that
real-world data around us is structured. For text, the structure at different levels ranges from letters, words,
sentences, paragraphs, topic models, etc. In the case of symbolic music, it can be thought of as musical notes
to motifs to pieces and so on. Since we chose Haar wavelet for the rest of this work, this can be approximated
as a simple averaging operation as described in the previous section. If we keep going down the path of the
approximate coefficients, we will eventually have only a single scalar, which is the average of the whole signal
for the case of the Haar wavelet. In order to get the same sequence length from the approximation coefficients
as the original signal, there can be several ways, with up-sampling the signal back to the original length being
one of them. As part of nomenclature, we call the signal that is approximated at a particular level with the
same length as the "approximate signal" at that level to discern it from the approximate coefficients which
are smaller in length. In Figure 2 (R), in order to get the signal approximation at various levels, which is
equal to the original input signal x[n], the wavelet kernel being averaging operation, we take the approximate
coefficients and multiply it with the kernel at that level. ([1,1], [1,1,1,1], and so on). This can be reflected
from the piece-wise constant function as seen in Figure 2. The reconstructed signal xrecon[n], which is one
way of getting the approximate signal is computed from its wavelet coefficients, at a particular level j as cj as,

xj
recon[n] =

∑
k

ck · ψj,k[n]

In order to simplify computing the approximate signal, in a differentiable manner within Transformer
architecture, we opt for a simple variant to the equation described above. In the case of the Haar wavelet,
being a simple averaging operation, we take moving average of the input signal with varying kernel length.
We keep on increasing the kernel’s length for averaging until it becomes that of the context length (when a
single scalar approximates the whole signal). The kernel length decides which level of approximation of signal
we are interested in. Since LLMs operate on causality assumption for any input signal and a given kernel
length, if needed, we get the modified value of the signal at a location by computing the moving average of
the prior samples of the input signal within the kernel length. We zero-pad the signal to the left to account
for the cases and token dimensions when the length of the signal is less than that of the kernel.

The discrete Haar wavelet transform at different levels give multiple versions of the same signals. This might
create more copies of the same signal and mess up the structure and the dimensions of the intermediate
Transformer embeddings. In order to avoid this issue, we create different resolutions for different approximation
to the signals. The resolution at which we look at the signal is now parameterized by the coordinate in the
model dimension, which will be explained in more detail in the next section.

3.4 Wavelet Coefficients by Embedding Dimension Coordinates

One option would be to take each of the signals xl
(i) in each of the co-ordinate of every decoder layer, and

compute each of their approximate signals in Level I, II, III, IV and so on. This would have exploded
the number of signals that we have. For example, for an context length of 512, we would need nine more
copies of with a resolution of 512, 256, 128, 64, 32, 16, 8, 4, 2 describing level I to IX coefficients of
the original signal. This would tremendously increase the complexity of our architecture, in our case
a GPT, and would have required significant architectural changes to incorporate an increase in infor-
mation via multiple additional resolution signals. To mitigate this, we come up with a novel solution as follows:

6

Under review as submission to TMLR

Algorithm 1 Wavelet-GPT
E: Model or Embedding Dimension
L: Context Length
N + 1: Number of Decoder Layers
for layer l = 1, 2, . . . , N do

xl ← Output of Transformer lth Decoder Block //Dimension E x L
xnl ← Modified Transformer Embedding Replacing xl

xnl
(i) ← xl

(i) For Embedding dimension i > E/2

f(i)← 2F where //Finding kernel length a function of embedding coordinate as nearest power of 2
F = int(Lk ∗ (i− E/2)/(E/2− 1)) Lk = ⌊log2(L)⌋+ 1 i < E/2

xnl
(i)(k)← 1

f(i)
∑k

m=k−f(i) xl
(i)(m) i >= E/2 //For Non-learnable fixed Haar wavelet

xnl
(i)(k)←

∑f(i)−1
m=0 h(m) · xl

(i)(k−m) i >= E/2 //For learnable multi-resolution wavelet kernel h
end for

We do not compute all levels of approximate signal for each of the intermediate embedding dimen-
sion signals across tokens. We parameterize the level to be computed for the approximate signal by the index
of the embedding dimension itself. Another important thing is that we want to steer the embeddings only a
little into the inductive biases we impose. Transformers have been wildly successful, without incorporating
any inductive biases. We ideally want the best of both of the worlds where we nudge intermediate GPT
embeddings in only half of the dimensions. For this, we retain half of the intermediate embedding signals
along the coordinate dimension at the exact resolution i.e. with no change. For the embedding coordinates
from 64 to 128 (E/2 to E) when the model dimension is 128, we do not do any processing or manipulations.
For the other half, we do some processing parameterized by their index i. Mathematically, if xl

(i) is an
intermediate embedding after the lth decoder layer along the ith coordinate dimension, then for half of the
coordinate dimensions of the modified new signal xnl

(i) will remain same as that of xl
(i) for i from E/2 to E.

For the second half, we impose our structure with using approximate signal at a particular level.

This is mainly because Transformers are quite expressive, and we want to avoid too much tinkering with
what they learn. For the other half, xnl

(i) is the modified latent space that is obtained from xl
(i) by first

getting the wavelet coefficient level corresponding to that of the coordinate i. We use a simple mapping
function f to take the coordinate dimension i as an argument. In our case, f takes in the argument from i,
ranging from 0 to E/2 (0-64), and returns the kernel size corresponding to the approximation coefficient level
between I and IX. We use a simple linear function that slowly increases the index from I to IX between 0
to E/2. So when i is 0, f(i) maps to level I approximation kernel 2, and when i is E/2 (64 in our case), f(i)
maps to level IX approximation kernel of length 512, (or for generic case, the level that would corresponding
to the coarsest representation i.e. a single scalar). Now, let us find out how we compute the modified new
signal xnl

(i) that replaces the original intermediate Transformer embeddings xl
(i). f(i) denotes the kernel size

for the coordinate i. Now, the modified signal is as follows and explained in Algorithm 1 as :

xnl
(i) = xl

(i) for i > E/2

xnl
(i)(k) = 1

f(i)

k∑
m=k−f(i)

xl
(i)(m).

For the cases where k − f(i) < 0, we zero-pad the signal to make this signal valid for the average to be
computed. In other simple words, for the case of the Haar wavelet, the modified signal is nothing but a
causal moving average filter that computes the average of values of the embedding signal along ith coordinate
with a kernel size as a function f(i). As described in the equation above, this operation is a simple algebraic
operation that does not add any parameters to the architecture. This retains the causality assumption critical
in LLM and prevents any leakage from happening to the future tokens from any of the embedding dimensions.

7

Under review as submission to TMLR

Figure 3: We report results for three modalities namely natural language, symbolic music and raw audio.
We see that we achieve much faster convergence almost twice as fast. When trained for the same number of
epochs, we see that we achieve a substantial improvement in the pre-training performace which is equivalent
to having a much larger architecture. The black vertical line denotes the epoch at which our architecture
achieves the same performance as that of our baseline architecture.

3.5 Imposing Structure: Toy Example

As we can see from the Figure 4, we have shown a toy example to depict how we impose a structure onto
decoder Transformer embeddings. In Figure 4 (left), on top, eight variations along the token dimension are
present, with onset (largest values or sudden bursts) at token index numbers 32, 64, and so on and decreasing
to zero in the next token and then again increasing to the largest value linearly till the next interval. As
motivated in the introduction before, datasets around us have an inherent structure present in them. In
order to capture this structure, we impose a structure onto intermediate Transformer embeddings in every
layer. For the toy example, we can see from Figure 4 (left), no bottom, that we retain the embeddings at
the exact same resolution for half of the embedding dimensions (split by white line). For the other half
of the embedding dimension, across the context length, we slowly increase the kernel length across which
we compute the average in a causal manner. We reach the last embedding dimension, which moves the
slowest and takes the average across the token dimension with the kernel size equal to the context length
(zero-padding the signal if necessary). This creates highways that allow some coordinates of the embeddings
to move at different rates, with coordinates from E/2 to E being at the same rate as what the Transformer
decides and coordinates from 0 to E/2 linearly changing from moving at the same rate to being the slowest.
Allowing the embeddings to move at different speeds in every intermediate decoder layer, from the lowest
possible speed to the original speeds, and to allow attention mechanism to make use of multi-scale features
moving at difference rate at every layer and every token is a very powerful idea as we will see in the next
section.

4 Experiments

In this section, we explain how we incorporated the idea of infusing wavelets into large language model
pre-training. We trained all of the models from scratch, which required substantial computing. However,
the main aim of these experiments is to show how the performance of the models across three modalities
improves with/without doing intermediate modifications on embeddings. Since we do not add any parameters
when we modify intermediate emebddings with wavelet transform, we can compare the two models both in
terms of the performance boost that the new architecture achieves and the convergence speedups.

4.1 Baseline

All models, similar to the GPT-2 architecture, consist of a stack of Transformer decoder layers. Since each
requires pre-training the models from scratch, we choose the following setup. Every modality, namely text,
symbolic music, and raw waveform, has the same architecture topology with a context length of 512. We
choose the number of decoder blocks to be 10, with 128 as the embedding dimension, the feed-forward

8

Under review as submission to TMLR

dimension to be 512, and the number of heads to be 8. We opt for a two-layer MLP inside the Transformer
block instead of a single layer, with both the layers sharing the same number of neurons, i.e., 512, that of the
feed-forward dimension. The final output layer of the Transformer decoder is then followed by a dense layer
of 2048 neurons, followed by a dense layer of the same size as the vocabulary. This vocabulary size varies in
the three modalities. For text8, it is 27, which is the number of characters plus an added extra token for
space. For the raw waveform, we use an 8-bit resolution waveform at 16kHz, which is similar to the reported
in Goel et al. (2022); Verma (2022), thus yielding 256 as a vocab size. For symbolic music, we utilize Google’s
tokenizer Huang et al. (2018) to convert MIDI data to discrete tokens yielding 388 sized vocabulary. The
baseline models in all three of them was simply a stack of Transformer decoder blocks without tinkering any
embeddings. For the proposed architecture we explained in the previous section, retain half of the embedding
co-ordinates without any tweaks. For other half we impose a multi-scale structure parameterized by the
coordinate in the embedding dimension for all of the intermediate layers. We do not add any single parameter
in this setup, and compare the performance with this tweak for all three modalities. We do this because we
want to showcase the powerfulness of our algorithm for a rich variation of modalities for LLM pre-training.
We do not compare against powerful, larger architectures going after scale, as this paper required pre-training
from scratch. Rather, we take shrunk down version of GPT-2 architecture, viable in academia with limited
resources and compare with/without adding wavelets to the architecture in terms of pre-training performance.

4.2 Training Details

All models were trained from scratch in the Tensorflow framework Abadi et al. (2016) for 25 epochs. We
used a mirrored strategy for multi-GPU training. The learning rate schedule was chosen to be 3e-4 to start
with reduced till 1e-5, whenever loss started plateauing. The number of training points available in all three
models was roughly 1M, yielding the total number of tokens to be 1/2 billion. These were randomly cropped
from the dataset of choice. Apart from setting a default dropout rate of 0.1 in MLP and attention layers,
no other regularization was carried out. The performance metric chosen to compare is only the negative
log-liklihood loss, as this method improves the core architecture of the Transformer based GPT, and helps
in the objective that we want to achieve: predict the next token. Since we are operating on intermediate
embeddings, we believe that our work can hopefully generalize to setups where there is structured data
available similar to text, raw audio and symbolic music, where one can go from fine-grained structure to a
coarse structure. We can see from Figure 4 on how for a toy example we can impose a multi-scale structure
that allows attention mechanism to not only learn dependencies across various embeddings but also injects
into these embedding coordinates some information that can capture coarse and fine-grained structure.

4.3 Performance on modalities

In this section, with the added modifications, we compare the performance of our baseline architecture
across three modalities, namely text, symbolic music, and audio waveform with/without the addition of
wavelet-based intermediate operation. We see that we have achieved a substantial increase in performance in
all three modalities when we trained for the same amount of training steps. To give an analogy for natural
language, an increase of 0.04 is akin to going from a 16-layer architecture to a 64-layer model on a text-8
dataset papers-with code (2024). As we can see from the Figure 3, we see that we achieve almost twice as fast
convergence as compared to the original architecture in terms of training steps. This is particularly important
as we can see that the GPT-like architecture can indeed take advantage of the structure that we imposed on
half of the embedding dimensions. This speedup, i.e. the number of epochs/steps taken to achieve the same
performance when the loss starts to plateau is even smaller for raw audio. One of the reasons this can be
attribute to is the fact that audio signal remain quasi-stationary for smaller time-scales i.e. 20ms-30ms for
harmonic sounds. For a sampling rate of 16KHz, a context length of 512 would correspond to 32ms, which
may be one of the reason that some of the coordinates nail down the contents of the context, in a fewer
coordinates onto which we impose structure. The convergence happens much much faster for raw waveform
LLM setup as compared to being almost twice as fast in text-8 and symbolic music. We also compare the
absolute clock run times for our modifications in both learnable and non-learnable setups. We report the time
take to complete one epoch relative to that of our baseline architecture. We see that the time taken to run
the architecture has also similar times as that of the baseline, as the only operation carried out was simple

9

Under review as submission to TMLR

Figure 4: (Left) A toy example where variations of embeddings shown via heat-map are moving along token
dimension and how our processing imposes a multi-rate structure where different embedding dimensions are
moving at different rates while retaining the causality assumption. This allows intermediate latent space to
allow to learn information moving at different rates at every token. Notice how the pattern disperses from
the dimension 64 to 0. (Right) Validation loss of LLM pretraining on text-8 with addition of the structure
with making the kernels learnable. We can see that we achieve the same performance almost twice as fast.
When trained for the same number of epochs, we get performance boost akin to adding additional decoder
layers. We also show how our architecture behaves on text-8 for smaller model dimension of 32 retaining the
convergence speeds as 128-dim model and shallow depth version with 6 layers and 128 model dimension. We
also see for Long Range Arena image benchmark, we get a boost of 10% with addition of no extra parameters.

averaging for the case of Haar wavelet or learning a single filter convolutional kernel with variable context
lengths over various embedding dimensions. This makes our work exciting as for a Transformer GPT like
setup, as it reduces training times by substantial margins. It will be interesting to see if this behaviour holds
for model architectures like LLAMA, training which is far beyond the resources available to the authors.

Table 1: Comparison of the negative-log likelihood (NLL) scores (log base e) for our architecture with three
modalities with/without adding wavelet-based hierarchical structure, and for learnable wavelet transform.

Modality Baseline Proposed Same Performance Epoch SpeedUp Relative GPU Hours
Text 0.93 0.915 14.5 epochs 42% 1.013

Raw Audio 1.84 1.7 3.7 epochs 85% 1.042
Symbolic Music 2.08 2.02 13 epochs 48% 1.059
Text (Learnable) 0.93 0.91 12.9 epochs 46% 1.094

4.4 Effect of Depth And Model Dimension

Here we explore two variants of our architecture – what would happen if we reduce the model dimension from
128 to 32 and reduce the number of layers. We carry out all the experiments for text-8. We can see that
for the variant where we reduce the model dimension to 32 for a 10-layer Transformer decoder architecture
with 8 heads, the model still retains faster convergence as seen in Figure 4 and achieves the performance
without doing the modification (as seen as Baseline) in around 10 epochs. For the second experiment, we
retain the exact architecture as proposed in our experiments reported in Table 1. However now, we only have
6 Transformer Decoder layers, keeping rest of the parameters the same (feed forward dimension four times

10

Under review as submission to TMLR

that of the model dimension, 8 attention heads), to see the effect of depth. We see that the model continues
to hold and again achieves the performance of the model trained for about 25 epochs almost twice as fast.
Both of these experiments, are shown in Figure 4.

4.5 Making multi-scale kernels learnable

As described in the previous section, we can see that with the addition of no parameters onto Transformer
decoder layers, by imposing a multi-scale structure, we can make pre-training significantly faster. In this
experiment, we allow each of the kernels to be learnable. In the previous section, we defined the shape of the
kernel as a Haar wavelet. We looked at the approximate coefficients of intermediate layer activations across all
of the layers, with different resolutions occurring at different embedding dimensions. Now, in this experiment,
we allow each kernel to be learnable. So now, instead of a Haar wavelet operation, we allow each kernel
to be learnable for getting the approximate signal for various resolutions. Before, we were taking average
in order to compute the approximate signal at a particular embedding dimension which is a convolutional
with kernel of length L equal to (1/L, 1/L, 1/L, 1/L...). In this experiment, we make the L length kernel
learnable from scratch, which is another way of computing the approximate signal. This simple operation for
our base models only allows 0.02M (20k) extra parameters to the Transformer decoder architecture. Unlike
the previous setup, which did not add any extra parameter, this further improves our performance from 40%
to 46% faster convergence to achieve similar performance, as seen from the Figure 4. This was carried out
on the text-8 dataset. All results are reported on cross-entropy loss computed to the base e. This further
validates our method and showcases further improvements and strength of our work.

5 Long Range Arena Benchmarks

We adapt our architecture to benchmark long-range arena (LRA) tasks Tay et al. (2021). It consists of
various datasets that allow models to handle long-range prediction over sequence tasks over diverse domains,
pushing the ability of Transformer architecture and other variants. We use three modalities: text, images,
and mathematical expressions to test the model’s ability to understand similarity, structure, and reasoning
over extended contexts. We only use transformer-based architecture as reported recently in Liu et al. (2024).
The other variants are state space architectures and hybrid models. For text, we carry out text classification
on IMDb review dataset Maas et al. (2011) on byte-level data with a context length of 2048 as input. The
goal here is binary classification, which determines whether a movie has a positive or a negative review.
For images, we use classification on CIFAR-10 as part of the image modality of LRA benchmarks. It is
a pixel-level classification of the image that takes in as an input a sequence of pixels with values ranging
from 0-255 with a length of 3072 and the output being one of the ten categories as the output. Finally,
we benchmark on Long ListOps. It tests the capability of the architecture to understand hierarchically
structured data in an extended context setup. As described in the LRA paper Tay et al. (2021), "The dataset
is comprised of sequences with a hierarchical structure and operators MAX, MEAN, MEDIAN and SUM_MOD
that are enclosed by delimiters (brackets). An example (much shorter) sequence is as follows:

INPUT: [MAX 4 3 [MIN 2 3] 1 0 [MEDIAN 1 5 8 9, 2]] OUTPUT: 5

In our task, we use a version of ListOps of sequence lengths of up to 2K to test the ability to reason
hierarchically while handling long contexts. In the above example, the model needs to access all tokens and
model the logical structure of the inputs to make a prediction. The task is a ten-way classification task and
is considerably challenging." We use the setup provided by Khalitov et al. (2022) to extract the data and be
uniform with other benchmarks. We experiment with almost the same architecture for all three modalities
and only change the embedding matrix to account for different tokenizers and output categories. For a
baseline, we use a 6-layer Transformer decoder only architecture, that is, causal, with a model dimension
of 32 and a feed-forward dimension four times that of the embedding dimension. We take the last token of
the sequence as an embedding that is extracted for classification, thus a 32-dimensional vector, which is then
followed by a dense layer of 2048 neurons and a dense layer equal to the number of categories. The input is
passed through an embedding layer that converts discrete tokens into a 32-dimensional vector. The input
vocabulary of text, image, and list-ops is 256, 256, and 16, respectively. The context length is 2048, 3072, and
1999 tokens, respectively. The output categories are 2, 10, and 10, respectively. For our modified architecture,

11

Under review as submission to TMLR

Table 2: Performance of predicting outcomes of list operations in the LRA (Tay et al. (2020b)) as reported
in Liu et al. (2024). Bold indicates the best-performing model and underlines the second best. We use a
baseline architecture for all three benchmarks, as reported in section 5, followed by modifying the intermediate
embeddings with no parameter gain whatsoever by imposing a hierarchical structure. We do not report
non-transformer or hybrid architectures.

Transformer Based Attention Models ListOps Text Image
Transformer (Vaswani et al. (2017)) 36.37 64.27 42.44
Local Attention (Tay et al. (2020b)) 15.82 63.98 41.46
Linear Trans. (Katharopoulos et al. (2020)) 16.13 65.90 42.34
Linformer (Wang et al. (2020)) 35.70 53.94 38.56
Sparse Transformer (Child et al. (2019)) 17.07 63.58 44.24
Performer (Choromanski et al. (2021)) 18.01 65.40 42.77
Sinkhorn Transformer (Tay et al. (2020a)) 33.67 61.20 41.23
Longformer (Beltagy et al. (2020)) 35.63 64.02 40.83
BigBird (Zaheer et al. (2020)) 36.05 64.02 40.83
Luna-256 (Ma et al. (2021)) 37.25 65.78 47.86
Reformer (Kitaev et al. (2020)) 37.27 56.10 38.07
FNET (Lee-Thorp et al. (2022) (Non-Causal)) 37.27 56.10 38.07
WavSPA – AdaWavSpA Transformer - (Non-Causal) (Zhuang et al. (2024)) 55.40 81.60 55.58
Ours (GPT Baseline With Classification Head) 41.65 65.32 49.81
Ours (WaveletGPT With Classification Head) 57.5 66.38 59.81

similar to how we described earlier, we introduce our waveletGPT module between every decoder layer. We
retain half of the embedding dimensions as is. For the other half, we use non-learnable kernels, increasing the
kernel size from 2,4,8 to 512 linearly for dimensions from 16 to 32, retaining the causality assumption. This
introduces highways that hierarchically process the data at every embedding and every Transformer decoder
layer without adding any parameter similar to what we carried out for LLM. As we can see from Table 2, we
achieve non-trivial gains in all three modalities where even small gains are worth reporting. We outperform
non-causal based methods, e.g., Zhuang et al. (2024) significantly with almost 2% on ListOps and 4.5% with
a much smaller architecture, shallower model(ours 32 dimensions, six layers vs. 128 dimensions, eight layers).
Compared to a non-causal architecture FNet, we significantly outperformed all three LRA tasks, with 20%
points on ListOps and Image and 10% on text. One of the biggest jumps is seen in the ListOps task, which
requires modeling a hierarchical, tree-like structure of the math operations, which our model is best suited as
motivated earlier. To the best of our knowledge (Liu et al. (2024)), this achieves the best Performance of
simple attention-based Transformer architecture on Long-Range arena tasks.

6 Conclusion and Future Work

We showcase the powerful incorporation of a core signal processing idea, namely wavelets, into large language
model pre-training. By imposing a multi-scale structure onto every intermediate embeddings, we see that
we can achieve convergence 40-60% faster convergence, as compared to the same baseline architecture, with
the addition of no extra parameter. We achieve a substantial performance boost if we train for the same
number of steps. Our method generalizes across three modalities: raw text, symbolic music, and raw audio,
giving similar performance speed ups. Several exciting directions can be explored in future work, including
incorporating more advanced ideas from wavelets and multi-resolution signal processing onto large language
models. It will be interesting to see how model behaves for different variants of multi-scale structure.

References
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay

Ghemawat, Geoffrey Irving, Michael Isard, et al. {TensorFlow}: A system for {Large-Scale} machine

12

Under review as submission to TMLR

learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp.
265–283, 2016.

Nasir Ahmed, T_ Natarajan, and Kamisetty R Rao. Discrete cosine transform. IEEE transactions on
Computers, 100(1):90–93, 1974.

Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo, and Llion Jones. Character-level language
modeling with deeper self-attention. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 3159–3166, 2019.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
6150–6160, 2020. URL https://www.aclweb.org/anthology/2020.emnlp-main.519/.

Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt Sharifi, Dominik
Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, et al. Audiolm: a language modeling approach
to audio generation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics transformer for
real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski, Tianli
Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action models transfer web
knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

T. Brown et, al. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Charlotte Caucheteux, Alexandre Gramfort, and Jean-Rémi King. Evidence of a predictive coding hierarchy
in the human brain listening to speech. Nature human behaviour, 7(3):430–441, 2023.

Rewon Child, Erich Elsen, David Kim, and Geoffrey Hinton. Sparse transformer. In Proceedings of
the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), 2019. URL https:
//arxiv.org/abs/1904.10509.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos,
Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy Colwell, and Adrian
Weller. Rethinking attention with performers. In Proceedings of the 9th International Conference on
Learning Representations (ICLR), 2021. URL https://openreview.net/forum?id=Ua6zuk0WRH.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

A. Dosovitskiy et. al. Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39, 2022.

Fernando Flores-Mangas. Discrete waveelet transform. The Washington Post, Spring 2014. URL https:
//www.cs.toronto.edu/~mangas/teaching/320/slides/CSC320L11.pdf.

Robert X Gao and Ruqiang Yan. Non-stationary signal processing for bearing health monitoring. International
journal of manufacturing research, 1(1):18–40, 2006.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with state-space
models. In International Conference on Machine Learning, pp. 7616–7633. PMLR, 2022.

13

https://www.aclweb.org/anthology/2020.emnlp-main.519/
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://openreview.net/forum?id=Ua6zuk0WRH
https://www.cs.toronto.edu/~mangas/teaching/320/slides/CSC320L11.pdf
https://www.cs.toronto.edu/~mangas/teaching/320/slides/CSC320L11.pdf

Under review as submission to TMLR

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. MiniLLM: Knowledge distillation of large language
models. In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=5h0qf7IBZZ.

Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang, Sander Dieleman,
Erich Elsen, Jesse Engel, and Douglas Eck. Enabling factorized piano music modeling and generation with
the maestro dataset. arXiv preprint arXiv:1810.12247, 2018.

K. He et. al. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 770, 2016.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne,
Andrew M Dai, Matthew D Hoffman, Monica Dinculescu, and Douglas Eck. Music transformer. arXiv
preprint arXiv:1809.04281, 2018.

Ke Huang and Selin Aviyente. Wavelet feature selection for image classification. IEEE Transactions on Image
Processing, 17(9):1709–1720, 2008.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: Fast
autoregressive transformers with linear attention. In Proceedings of the 37th International Conference on
Machine Learning (ICML), pp. 5156–5165. PMLR, 2020. URL https://arxiv.org/abs/2006.16236.

Ruslan Khalitov, Tong Yu, Lei Cheng, and Zhirong Yang. Sparse factorization of square matrices with
application to neural attention modeling. Neural Networks, 152:160–168, 2022.

Nick Kingsbury and Julian Magarey. Wavelet transforms in image processing, 1998.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In Proceedings of
the 8th International Conference on Learning Representations (ICLR), 2020. URL https://openreview.
net/forum?id=rkgNKkHtvB.

Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. A clockwork rnn. In International
conference on machine learning, pp. 1863–1871. PMLR, 2014.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. FNet: Mixing tokens with Fourier
transforms. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.),
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 4296–4313, Seattle, United States, July 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.319. URL https://aclanthology.
org/2022.naacl-main.319.

Zicheng Liu, Siyuan Li, Li Wang, Zedong Wang, Yunfan Liu, and Stan Z Li. Short-long convolutions help
hardware-efficient linear attention to focus on long sequences. arXiv preprint arXiv:2406.08128, 2024.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440, 2015.

Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou, Jonathan May, Hao Ma, and Luke Zettlemoyer.
Luna: Linear unified nested attention. In Advances in Neural Information Processing Systems 34
(NeurIPS 2021), pp. 1235–1246, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/14319d9cfc6123106878dc20b94fbaf3-Abstract.html.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, pp. 142–150, Portland, Oregon, USA,
June 2011. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
P11-1015.

14

https://openreview.net/forum?id=5h0qf7IBZZ
https://openreview.net/forum?id=5h0qf7IBZZ
https://arxiv.org/abs/2006.16236
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://aclanthology.org/2022.naacl-main.319
https://aclanthology.org/2022.naacl-main.319
https://proceedings.neurips.cc/paper/2021/hash/14319d9cfc6123106878dc20b94fbaf3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/14319d9cfc6123106878dc20b94fbaf3-Abstract.html
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

Under review as submission to TMLR

Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata Anand, Raphael R Eguchi, Po-
Ssu Huang, and Richard Socher. Progen: Language modeling for protein generation. arXiv preprint
arXiv:2004.03497, 2020.

Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-Son Le, Stefan Kombrink, and Jan Cernocky. Subword
language modeling with neural networks. preprint (http://www. fit. vutbr. cz/imikolov/rnnlm/char. pdf), 8
(67), 2012.

Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski, Łukasz Kaiser, Yuhuai Wu, Christian Szegedy, and
Henryk Michalewski. Hierarchical transformers are more efficient language models. arXiv preprint
arXiv:2110.13711, 2021.

Naomi Nix. Silicon valley is pricing academics out of ai research. The Washington
Post, March 2024. URL https://www.washingtonpost.com/technology/2024/03/10/
big-tech-companies-ai-research/.

papers-with code. Language modelling on text8. March 2024. URL https://paperswithcode.com/
sota/language-modelling-on-text8.

Javier Selva, Anders S Johansen, Sergio Escalera, Kamal Nasrollahi, Thomas B Moeslund, and Albert Clapés.
Video transformers: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for large
language models. arXiv preprint arXiv:2306.11695, 2023.

A. Tamkin et. al. Language through a prism: A spectral approach for multiscale language representations.
Advances in Neural Information Processing Systems, 33, 2020.

Yi Tay, Donald Metzler, Xin Zhao, and Shuaiqiang Zheng. Sinkhorn transformer: Generating long-form text
via randomized greedy sorting. In Proceedings of the 37th International Conference on Machine Learning
(ICML), pp. 9408–9419, 2020a. URL http://proceedings.mlr.press/v119/tay20a.html.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient transformers. In
International Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=qVyeW-grC2k.

Zhilin Tay, Mostafa Dehghani, Ashish Vaswani, Noam Shazeer, and Jakob Uszkoreit. Local attention. In
Proceedings of the International Conference on Learning Representations, 2020b.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pp.
5998–6008, 2017.

P. Verma and C. Chafe. A generative model for raw audio using transformer architectures. arXiv preprint
arXiv:2106.16036, 2021.

Prateek Verma. Goodbye wavenet–a language model for raw audio with context of 1/2 million samples. arXiv
preprint arXiv:2206.08297, 2022.

Prateek Verma and Jonathan Berger. Audio transformers: Transformer architectures for large scale audio
understanding. arXiv preprint arXiv:2105.00335, 2021.

15

https://www.washingtonpost.com/technology/2024/03/10/big-tech-companies-ai-research/
https://www.washingtonpost.com/technology/2024/03/10/big-tech-companies-ai-research/
https://paperswithcode.com/sota/language-modelling-on-text8
https://paperswithcode.com/sota/language-modelling-on-text8
http://proceedings.mlr.press/v119/tay20a.html
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k

Under review as submission to TMLR

Prateek Verma and Julius Smith. A framework for contrastive and generative learning of audio representations.
arXiv preprint arXiv:2010.11459, 2020.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear
complexity. arXiv preprint arXiv:2006.04768, 2020.

Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using vq-vae
and transformers. arXiv preprint arXiv:2104.10157, 2021.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird:
Transformers for longer sequences. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 17283–17297, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
c8512d142a2d849725f31a9a7a361ab9-Abstract.html.

Yufan Zhuang, Zihan Wang, Fangbo Tao, and Jingbo Shang. Wavspa: Wavelet space attention for boosting
transformers’ long sequence learning ability. In Proceedings of UniReps: the First Workshop on Unifying
Representations in Neural Models, pp. 27–46. PMLR, 2024.

16

https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html

	Introduction and Related Work
	Dataset
	Methodology
	Incorporating Wavelets into Intermediate Embeddings
	Introduction to Wavelets
	Connecting wavelets and LLM embeddings
	Wavelet Coefficients by Embedding Dimension Coordinates
	Imposing Structure: Toy Example

	Experiments
	Baseline
	Training Details
	Performance on modalities
	Effect of Depth And Model Dimension
	Making multi-scale kernels learnable

	Long Range Arena Benchmarks
	Conclusion and Future Work

