
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REINFORCEMENT REWARD MODEL WITH POLICY
FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) is a pivotal technique for
aligning large language models (LLMs) with human preferences, yet it is suscepti-
ble to reward hacking, a phenomenon that policy models exploit spurious reward
patterns instead of faithfully capturing human intent. Prior work to mitigate reward
hacking primarily relies on surface semantic information and fails to efficiently
address the misalignment between the reward model and the policy model caused
by continuous policy distribution shifts. This inevitably leads to an increasing
reward discrepancy, exacerbating reward hacking. To address these limitations,
we propose R2M (Reinforcement Reward Model), a novel lightweight RLHF
framework. Specifically, we aim to go beyond vanilla reward models that solely
depend on the semantic representations of a pretrained LLM. Instead, we enhance
the reward model by incorporating the evolving hidden states of the policy (namely
policy feedback). we redesign the scoring head of the reward model to integrate
policy feedback and introduce a corresponding iterative lightweight training phase,
utilizing real-time policy feedback to enable adaption to policy distribution shifts.
Notably, without modifying the core RLHF algorithms, simply integrating R2M
enables the reward model to achieve iterative distribution alignment with accurate
reward allocation, yielding 4.8% to 5.6% win rate improvement on dialogue tasks
and 6.3% win rate improvement on document summarization tasks, while introduc-
ing marginal computational cost. This work points to a promising new direction
for improving the performance of reward models through real-time utilization of
feedback from policy models.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has become a cornerstone technique for
aligning large language models (LLMs) with human values and preferences (Vemprala et al., 2023;
Shen & Zhang, 2024; Shen et al., 2025; Hu et al., 2024). However, RLHF faces a persistent challenge:
reward hacking. Instead of faithfully capturing human intent, policy models often exploit spurious
reward patterns, such as response length, markdown formatting, or superficial linguistic cues like
certain n-grams or emojis, to maximize rewards without genuinely improving alignment (Gao et al.,
2023; Coste et al., 2023; Eisenstein et al., 2023). The core issue lies in the reward model: trained on
limited preference data, it can only approximate human values. As the policy evolves during RLHF
training while the reward model remains fixed, distribution shift exacerbates approximation errors
(Wang et al., 2024b), ultimately leading to unreliable reward signals in optimization.

A natural solution is to iteratively update the reward model so that it adapts to the policy’s evolving
behavior. Yet, direct retraining of the reward model at each iteration is computationally prohibitive.
To address this, one research direction emphasizes uncertainty-aware corrections. Coste et al.
(2023); Eisenstein et al. (2023); Zhai et al. (2023) penalize uncertain samples during policy training,
while Zhang et al. (2024a) introduce kernel-based uncertainty estimates derived from reward model
embeddings. Another line of work focuses on robust reward model retraining. Lang et al. (2024)
incorporate an unsupervised mutual information loss to counter distribution shift, and Liu et al. (2024)
augment training data by decomposing preferences relative to prompts. These methods trade off
efficiency and robustness, but leave open a critical question: Can we design a new RLHF framework
that preserves training efficiency while mitigating reward hacking effectively?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our motivation stems from a key limitation of the standard RLHF pipeline: the unidirectional
dependency between the policy and the reward model. While policies adapt to reward feedback, the
reward model remains unaware of the policy’s evolving internal states. This disconnect can allow
policies to learn deceptive strategies, optimizing responses against a stale reward model rather than
aligning with true human intent. To overcome this challenge, we propose R2M (Reinforcement
Reward Model), a lightweight RLHF framework in which the reward model itself is reinforced
iteratively by dynamically adapting to the policy’s internal states, and it does not require any additional
labeled data or environmental feedback to improve the performance.

Specifically, we observe that the hidden states of the policy encode latent patterns associated with
reward hacking behaviors. Building on this insight, we aim to go beyond reward models that solely
depend on the semantic representations of a pretrained LLM. Instead, we enhance the reward model
by incorporating the evolving hidden states of the policy (namely policy feedback). To this end, we
redesign the scoring head of the reward model so that it dynamically integrates these hidden states,
enabling the reward model to adapt to distribution shifts in the policy. In our RLHF framework,
this introduce a lightweight training component that learns to aggregate policy feedback directly,
enhancing the reward model’s representation without retraining the entire model. Owing to its
efficiency, this mechanism can be seamlessly applied at every training round, ensuring continuous
synchronization between the reward model and the policy.

The design of R2M offers two benefits: 1) Iterative distribution alignment with accurate reward
allocation. The reward model integrates the policy’s evolving hidden states which provide behav-
iorally grounded and semantically informed feedback. This mitigates distribution shifts, reduces
reward hacking, and ensures more accurate reward assignment. 2) Extremely lightweight overhead.
R2M only need to learn how to aggregate representations, introducing negligible additional cost.

Experimental results demonstrate that R2M significantly improves performance on dialogue tasks
(trained on UltraFeedback (Cui et al., 2023), evaluated on Alpaca-Eval (Dubois et al., 2024)) and
text summarization tasks (trained and evaluated on TL;DR summarization dataset). Specifically,
R2M increases the AlpacaEval 2 win rate (WR) by 4.8% - 5.6%, the length-controlled win rate (LC)
by 2.1% - 5.0% and the TL;DR win rate by 6.3% compared to baselines, while introducing only
minimal computational cost. Furthermore, we conducted a comprehensive analysis, showing that
R2M effectively strengthens the vanilla reward model and mitigates reward hacking with minimal
additional training overhead.

2 PRELIMINARY

RLHF consists of three main steps: 1) Supervised Fine Tuning, 2) Reward Modeling, and 3) RL
optimization, we provide a detailed workflow shown in Appendix G.1. As R2M is designed to
directly integrated into the RL optimization phase, let us consider the following typical third-stage
RL Optimization process:

First, in the Trajectory Sampling phase, at each training step t ∈ [T], we update offline policy πold

to online policy πθ. Then, given a query set Xt = {x1, x2, . . . , xn} ⊂ X , πold is used to sample K
responses Gi = {yi,j}Kj=1 for each xi ∈ Xt.

Next is the Reward Annotation phase. Specifically, for each (xi, Gi), i ∈ [n], there are K query-
response pairs (xi, yi,j), j ∈ [K]. We use a score-based reward model rφ(x, y) to assign rewards
to each query-response pair (Ahmadian et al., 2024; Hu, 2025), obtaining {ri,j |i ∈ [n], j ∈ [K]},
resulting in a batch B = {(xi, yi,j , ri,j)|i ∈ [n], j ∈ [K]}. After this process, we employ the RLOO
approach (Ahmadian et al., 2024) to perform advantage estimation within each group Gi:

Âi,j = ri,j −
1

K − 1

∑
ĵ ̸=j

ri,ĵ . (1)

Finally, in the Policy Optimization phase, for each query-response pair (xi, yi,j), we perform a
forward pass in the policy model πθ and optimize πθ using importance sampling by maximizing the
following objective (Shao et al., 2024; Ahmadian et al., 2024), where ε and β are hyperparameters:{

min

[
πθ(yi,j |xi, yi,j)

πθold(yi,j |xi, yi,j)
Âi,j , clip

(
πθ(yi,j |xi, yi,j)

πθold(yi,j |xi, yi,j)
, 1− ε, 1 + ε

)
Âi,j

]
− βDKL [πθ∥πref]

}
. (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The design of R2M is based on the aforementioned RL optimization process. As a lightweight and
significantly effective alternative, R2M can be seamlessly deployed to all REINFORCE-based RLHF
frameworks. Due to resource constraints, we adopt RLOO as the primary baseline.

3 MOTIVATION

(a) Hacking and Non-Hacking Query-Responses (b) The Policy at Different Training Steps

Figure 1: (a) Identification of Reward Hacking Patterns. We show the similarity matrix of hidden
states from forward passes of different query-response pairs for the same policy. The first 8 samples
are sequences exhibiting reward hacking, while the last 8 are normal output responses. s denotes the
query-response pairs. (b) Policy Distribution Shift Analysis. For a given query with four different
responses, we display the similarity matrix of the policy across various training steps t.

We argue that hidden states in a transformer’s forward pass contain crucial information about a
policy’s internal state and semantic information, making them effective for mitigating reward hacking.
We validated this by computing hidden state similarity matrices. As shown in Figure 1 (a), responses
with and without reward hacking show significant differences in their hidden state similarities.
Figure 1 (b) shows that the same query-response’s hidden states from different training steps of a
policy model are significantly different. Furthermore, as shown in Table 1, the average similarity
between hacking and non-hacking responses is significantly lower than the similarity within each
category. These findings strongly confirm that a policy’s hidden states offer valuable insights for
detecting reward hacking.

To combat reward hacking, our R2M architecture decouples the issue from both the reward and
policy models. We enhance the reward model’s alignment with true human preferences by leveraging
policy feedback to improve reward allocation, moving beyond reliance on superficial patterns.
Simultaneously, we tackle the policy model’s tendency to exploit fixed proxy rewards by enabling the
reward model to dynamically adapt to the policy’s evolving internal state distribution, thus preventing
the exploitation of fixed patterns.

Table 1: We report the average similarity of hidden states across three categories from mutiple
query-response pair groups, each group comprises 8 responses exhibiting reward hacking and 8
normal responses.

Type Hacking Non-Hacking Cross-Category

Avg-Sim 0.67 0.75 0.45

4 METHOD

Figure 2 illustrates the overall workflow of R2M. Built upon the RL optimization framework described
in Section 2, R2M primarily consists of two key components: 1) how to structurally incorporate

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Policy
Model	𝑥

Reference
Model

LL
M

Pa

rt

Advantage
Baseline

(e.g. RLOO)

Sc
or

e
H

ea
d

Ag
gr

e
ga

te

Maximize
Reward
Margin

Policy Optimization

𝑥, y! , ℎ′! , 𝑦" , ℎ′"

Reward Model Optimization

		𝑦#
		𝑦$

		𝑦%
…

		𝑟#
		𝑟$

		𝑟%
…

		ℎ# 		ℎ$ 		ℎ%…

		ℎ′# 		ℎ′$ 		ℎ′%…

		A# 		A$ 		A%…

Reward Model

Compute Group
Reward Entropy

𝔻&'

Standard Workflow
Introduced Workflow

Hidden States

Input

Figure 2: Overview of R2M. We first aggregate the last-layer hidden states from the policy hi with
the LLM part output of the reward model. This aggregated representation is then fed into the scoring
head for reward prediction. When the policy updates, we get the real-time feedback h′

i and utilize
it to construct preference pairs. Finally, we optimize the reward model by jointly minimizing the
Bradley-Terry loss and the Group Reward Entropy.

feedback messages into the reward model (Section 4.1); 2) how to design the optimization objectives
for the reward model (Section 4.2).

4.1 REWARD MODEL STRUCTURE

xRM LLM Part

Query-Responses Last Hidden States

Reward Token
Embedding

Sequence-to-Token
Cross Attention

Aggregated Reward
Token Embedding

Time-Step-Based
Weighting

RM Scoring Head

Rectified Reward

Policy
Model

Query

Q

K,V

Standard Workflow Introduced Workflow

𝐻!"#$
%,' 𝐻"!"#$

%,'

Figure 3: The structure
of R2M. Building on the
dataflow based on solely sur-
face semantic information
(left), R2M introduces an ad-
ditional dataflow based on the
policy feedback (right).

In this section, we focus on integrating the policy feedback from
Section 2 into the reward model. As shown in Figure 3, we introduce
a policy feedback data flow that bypasses the LLM part to directly
enhance the original Reward Token Embedding (introduced in Ap-
pendix G.1). We formally redefine the reward model rφ(x, y) as
R2M rφ(x, y, h). To effectively utilize the policy feedback, R2M
contains two pivotal extra components: Sequence-to-Token Cross
Attention and Time-Step-Based Weighted Combination.

Specifically, during the Trajectory Sampling phase, we collect the
last-layer hidden states hi,j ∈ RSi,j−1×Dp for each query-response
pair (xi, yi,j), i ∈ [n], j ∈ [K] from the policy. Here, Si,j denotes
the effective length of the query-response pair, and Dp represents the
hidden size of the policy. In the Reward Annotation phase, we first
input (xi, yi,j), i ∈ [n], j ∈ [K] into the LLM part of the reward
model and obtain the Reward Token Embedding Hi,j

last ∈ RDrm .

Sequence-to-Token Cross Attention. We introduce a cross-
attention component to extract relevant information from hidden
states of query-response pairs. Specifically, we inject policy feed-
back by performing a cross-attention operation from the sequence
to a single token. This enables the query of the Reward Token
Embedding Hi,j

last to fully absorb the keys and vales of the hidden
state sequence hi,j , which contains both policy state information
and sequence semantic information, and updates it into a more
information-rich Aggregated Reward Token Embedding Ĥi,j

last.

Time-Step-Based Weighted Combination. After obtaining Ĥi,j
last, we adopt an exploration-

exploitation approach (Ban et al., 2021; 2024; Huang et al., 2025) to balance the weights of Hi,j
last

and Ĥi,j
last, yielding the final Reward Token Embedding Hi,j

fin . Specifically, we use a time-step-based
approach to gradually decrease the weight on the original Reward Token Embedding Hi,j

last as follows:

Hi,j
fin = (1− ω(t))Ĥi,j

last + ω(t)Hi,j
last, ω(t) = max(

1

2
cos(

t

T
π) +

1

2
,Ω), (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where t is the current training round, and T is the total number of training rounds. Ω is a hyperpa-
rameter used to ensure the minimum weight of the original Reward Token Embedding, and ω(t) is a
monotonically decreasing function of t (Wu et al., 2025). When t is small, we prioritize leveraging
the existing Reward Token Embedding Hi,j

last. As R2M iteratively updates during the training process
(as discussed in Section 4.2), we gradually increase the influence of Ĥi,j

last to enable the reward model
to progressively identify and adapt to the distribution shift of the policy. As a result of balancing the
exploitation of the original embedding with the exploration of policy feedback information, Hi,j

fin is
then mapped by the reward head ϕ to the final scalar reward rφ(xi, yi,j , hi,j) = ϕ(Hi,j

fin) ∈ R.

4.2 ITERATIVE REWARD MODEL LIGHTWEIGHT OPTIMIZATION

In Section 4.1, we have introduced policy feedback into the reward model. However, the semantic
spaces are not yet aligned, making it challenging for the reward model to directly utilize this
information. To address this, we incorporate an extra lightweight Reward Model Optimization phase
following the Policy Optimization phase at each training step, and propose a novel optimization
objective for R2M, namely the Group Reward Entropy Bradley-Terry loss.

Hidden State Update. To ensure that the hidden states hi,j remain up-to-date and accurately
reflect the internal states of the policy πθ, we update hi,j whenever (xi, yi,j) is used to update πθ.
Specifically, during the forward pass of πθ on (xi, yi,j), we fetch the latest hidden states hi,j , which
incurs no additional computational overhead. Since the policy model is trained for k epochs on the
same batch at each training step t (Shao et al., 2024; Hu, 2025), this update is performed only in the
final epoch. For notational simplicity, we continue to use hi,j to denote the most recent hidden states.
This mechanism enables the reward model to dynamically capture distribution shifts in real time as
the policy evolves.

Group Reward Entropy Bradley-Terry Loss. To enhance the robustness of the reward model
by incorporating policy feedback during score allocation, we propose the Group Reward Entropy
Bradley–Terry Loss. For each query-response group (xi, Gi), to ensure the reliability of preference
labels, we select only the samples with the highest and lowest scores to construct the preference
pair, resulting in {xi, yi,w, hi,w, yi,l, hi,l}. Then, we can establish the Bradley-Terry optimization
objective as:

LBT(i : φ) = − log σ
(
rφ(xi, yi,w, hi,w)− rφ(xi, yi,l, hi,l)

)
, (4)

which allows the reward model to be continuously optimized as the policy evolves.

However, in practice, the reward model often assigns nearly identical scores to responses within a
group, especially in the later phases of RL optimization when the responses become more ho-
mogeneous. To address this issue, we introduce an entropy regularization term to encourage
greater reward diversity within each group. Specifically, for each group (xi, Gi), we first com-
pute the foward pass of the reward model φ on all samples to get newly allocated reward scores
ri,j = rφ(xi, yi,j , hi,j), j ∈ [K]. We define the Group Reward Entropy for group (xi, Gi) as

Hi
group = −

K∑
j=1

pi,j log pi,j , where pi,j = softmax
(
ri,j −mean(r)

std(r)

)
, (5)

where r = {ri,1, ri,2, . . . , ri,K}, and i is the group index, the softmax operation is applied across
all standardized reward values within the group to get the relative preference of each sample. By
minimizing the GRE, we sharpen the distribution pi,j , thereby amplifying the score disparities within
the group. Finally, the overall optimization objective of R2M is given by:

LFIN(i : φ) = (1− α)LBT(i : φ) + αHi
group, (6)

where α is a tunable hyperparameter. Through this optimization objective, we enable the reward model
to progressively learn to provide reasonable and more confident reward signals while incorporating
real-time policy feedback, thereby allowing it to automatically adapt to the policy’s distribution shifts.

Workflow. Algorithm 1 illustrates the workflow of our proposed R2M algorithm, The modifications
primarily involve utilizing both shallow semantic information (xi, yi,j) and policy feedback hi,j

during the Reward Annotation phase, as well as introducing an additional lightweight Reward Model
Optimization phase to iteratively update the reward model based on real-time policy feedback.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Policy Optimization (Lines 2-14). We retain the same Policy Optimization phase as described in
Section 2, with the only difference being that we update the policy feedback for each query-response
pair using the real-time updated πθ as mentioned in Section 4.2.

Reward Model Optimization (Lines 15-20). To preserve the general representational capacity of the
reward model’s LLM part while enhancing the relatively weaker linear projection component,we
solely update the cross-attention component and the scoring head ϕ, leaving the LLM part frozen.
We provide detailed design motivations in the Appendix G.2. This approach significantly reduces the
overall computational cost of R2M, ensuring the feasibility of iteratively updating the reward model.

Algorithm 1 Proposed RLHF Framework: R2M

Require: Initial policy model πθ ← πSFT, reference model πref , reward model rφ, queries X
1: for step = 1, . . . , T do
2: Sample a batch Xbatch = {xi}, i ∈ [n] from X
3: Update the old policy model πold ← πθ

4: Trajectory Sampling:
5: Sample a group of output Gi = {yi,j}, j ∈ [K] ∼ πold(· | xi) for each query xi ∈ Xbatch

6: Get the last-layer hidden states {hi,j}, j ∈ [K] from πold
7: Reward Annotation:
8: Compute the rewards with policy feedback {rφ(xi, yi,j , hi,j)}, i ∈ [n], j ∈ [K]

9: Compute {Âi,j}, j ∈ [K] within each Gi for query xi through Equation 1
10: Policy Optimization:
11: for iteration = 1, . . . , k do
12: Update the policy model πθ by maximizing the RLOO objective through Equation 2
13: Update hi,j , i ∈ [n], j ∈ [K] from the policy forward when iteration = k
14: end for
15: Reward Model Optimization:
16: Get preference pair {xi, yi,w, hi,w, yi,l, hi,l} according to Section 4.2 within each Gi

17: Compute LBT(i : φ) according to Equation 4
18: Compute {rφ(xi, yi,j , hi,j)}, j ∈ [K] within each Gi

19: Compute Group Reward Entropy Hi
group according to Equation 5

20: Update reward model rφ according to Equation 6
21: end for
Ensure: πθ, rφ

5 EXPERIMENT

In this section, we present the primary experimental results along with their analysis. We set the
learning rate of R2M to 1× 10−6, the weight coefficient of the hybrid loss α = 0.5, and the width of
cross-attention component to 2048. during the entire training process, we sample 12k trajectories
with a maximum length of 512 for the dialogue task, and 1000k trajectories with a maximum length
of 50 for the document summarization task. Additional implementation details of R2M are provided
in Appendix F due to space constraints.

5.1 MAIN EXPERIMENT RESULTS

In this section, we present the experimental results of R2M on dialogue and document summarization
tasks. We integrated R2M into RLOO and compare it against state-of-the-art REINFORCE-based
RLHF algorithms.

For dialogue task, We considered the current mainstream evaluation frameworks, utilizing queries
from UltraFeedback (Cui et al., 2023) for online RL optimization and conducting evaluations with
AlpacaEval 2 (Dubois et al., 2024), which is a widely used chat-based evaluation benchmark. Detailed
experimental settings can be found in Appendix F.2.

Next, we considered a classic RLHF task, summarization: x is a forum post from Reddit, and the
policy must generate a summary y of the main points in the post. The corresponding experimental
settings are detailed in Appendix F.3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(1) R2M consistently achieves superior performance. As shown in Table 2, the incorporation of
policy feedback and iterative updates of the reward model enable R2M to achieve the highest scores
across all evaluation metrics. Specifically, R2M outperforms the best-performing baseline by margins
ranging from 2.1% to 5.0% on the AlpacaEval 2 LC win rate, from 4.8% to 5.6% on the AlpacaEval
2 win rate and 6.3% on the TL;DR win rate. These results underscore the broad applicability of
R2M in preference optimization and its effectiveness in aligning large language models with human
preferences.

(2) R2M significantly enhances the reward model. The sole difference between R2M and RLOO
is the replacement of a frozen reward model with one iteratively updated and allocating rewards
via policy feedback. Compared to RLOO, R2M achieved a 2.9% to 6.1% increase in LC win rate,
a 5.2% to 8.0% increase in raw win rate, and a 6.3% increse in TL;DR win rate. Notably, the LC
win rate improvement was accomplished while reducing average sequence length to a certain extent.
These substantial improvements are entirely due to the stronger reward model of R2M. This clearly
demonstrate the effectiveness of R2M’s integration of feedback to iteratively enhance the reward
model. This enhancement can be attributed to two factors: real-time alignment with the policy model
and additionally introduced deep semantic understanding, thanks to the rich information from policy
feedback discussed in Section 3.

Table 2: Results of R2M compared with baselines across different experimental settings. LC and WR
denote length-controlled and raw win rate, respectively. Here, bold denotes the best performance,
underline indicates the second-best performance.

Method
Dialogue Summarization

Qwen2.5-3B-Instruct LLaMA3-8B-Instruct Pythia-2.8B-TL;DR

LC(%) WR(%) Avg Len LC(%) WR(%) Avg Len WR(%)

SFT 15.5 15.8 2218 22.9 22.6 1899 42.3

GRPO 22.7 25.6 3012 29.5 32.6 2216 75.2
ReMax 21.8 25.1 2916 28.7 30.7 2289 75.1
REINFORCE++ 21.4 26.4 3252 29.3 31.8 2192 74.3
RLOO 21.9 26.0 3174 28.4 30.2 2186 75.3

R2M 24.8 31.2 2911 34.5 38.2 2011 81.6

5.2 ANALYSIS

In this section, we present additional analytical experiments to clarify, from a principled perspective,
the reasons behind R2M’s effectiveness in RL optimization.

Figure 4: Comparison of average re-
wards under various conditions.

R2M maintains reward consistency while allocating
higher rewards. We compared the average R2M re-
wards to that annotated by the vanilla reward model during
RL optimization process. Specifically, every 5 training
steps, we sampled 128 queries from the test set as a batch,
prompted the policy πθ to generate complete responses,
and scored them using the reward model. We report the
average scores for each batch. As shown in Figure 4, Re-
ward without Feedback is provided by a frozen reference
reward model, while Reward with Feedback corresponds
to R2M. To rigorously compare the effect of policy feed-
back, we include an additional control group Reward with
Noise, where we replace the feedback with Gaussian noise. we first observe that R2M exhibits a
consistent reward trend compared to the reference reward model, directly indicating that R2M can
reliably provide reasonable rewards. Additionally, R2M consistently allocating higher rewards. In
contrast, when noise with the same mean and standard deviation is introduced, the resulting reward
signals are significantly reduced. This clearly suggests that policy feedback contains beneficial
information, consistent with the phenomena observed in Section 3. We hypothesize that the higher

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

average reward allocation results from the GRE minimization objective of R2M, which encourages
the reward model to assign higher reward values to high-quality responses with greater confidence.

R2M encourages substantial and effective policy updates. Figure 5 illustrates the performance
curves of R2M compared with RLOO during RL optimization for dialogue tasks. As shown in the left
two columns, R2M demonstrates a significantly higher reward curve and lower loss curve compared
to RLOO. Generally, this indicates more effective training outcomes. From the perspective of KL
divergence, R2M encourages larger parameter shifts in the model to achieve greater rewards. As
shown in the right two columns of Figure 5, R2M exhibits a greater policy distribution shift in the
KL-Step curve and a denser distribution in the high-reward, high-KL region of the Reward-KL scatter
plot. Aggressive policy updates readily lead to reward hacking (Coste et al., 2023), whereas R2M,
compared to RLOO, achieves substantial performance gains demonstrated in Section 5.1, rather than
causing training collapse. This indicates that R2M effectively improves the reward model’s resistance
to policy’s exploitation of specific patterns, enabling more aggressive policy updates in the correct
direction without triggering reward hacking.

Q
w
en
2.
5-
3B
-I
ns
tr
uc
t

LL
aM
A
3-
8B
-I
ns
tr
uc
t

Figure 5: We compare RLOO and R2M in terms of loss, reward and KL divergence during RL
optimization, using Qwen2.5-3B-Instruct and LLaMA3-8B-Instruct as policy models, and Skywork-
Reward-V2-Llama-3.1-8B as the reward model. For KL divergence, we calculate it as the average of
log probability differences between the reference model and the policy model for each token.

R2M significantly improves the accuracy of the reward model. We compare the accuracy of
R2M and the vanilla reward model on the test set of UltraFeedback before and after running the R2M
pipeline, as experimental details shown in Appendix F.4. As shown in Table 3, after iterative updates,
R2M achieves accuracy improvements of 5.1% and 6.3% compared to the original reward model.
These results indicate that R2M significantly enhances the accuracy of the reward model, which is
crucial for preventing reward hacking and improving training effect (Rafailov et al., 2023; Lambert
et al., 2024; Adler et al., 2024). Before training, incorporating policy feedback results in accuracy
decreases of 4.0% and 3.1%. This clearly demonstrates that policy feedback cannot be used directly,
highlighting the effectiveness and necessity of the Reward Model Optimization phase in R2M.

Table 3: Comparison of the accuracy of reward models under different
conditions. "Without Feedback" refers to the frozen reference reward
model, while "With Feedback" represents R2M before and after the
R2M pipeline.

Reward Model Type Policy Model Type

Qwen2.5(%) LLaMA3(%)

without Feedback 72.3 72.3
with Feedback (Before-Training) 68.3 69.2
with Feedback (After-Training) 77.4 78.6

Table 4: The TL;DR Re-
sult of R2M Compared
with Baselines.

Method WR(%)

SFT 33.7

RLOO 8.7

R2M 61.6

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

R2M can strongly mitigate reward hacking. In this section, we present a case study demonstrating
that R2M not only largely enhances the robustness and performance of RL optimization, but also
effectively prevents training collapse due to reward hacking. Specifically, when performing RL
optimization with RLOO on the TL;DR task using Pythia-1B-TL;DR-SFT and Pythia-1B-TL;DR-
RM, we observed that the trained model produced completions without spaces, despite maintaining
correct semantic meaning. This issue arises because the Pythia tokenizer controls the presence of
spaces through special token prefixes, and the reward model exhibits a erroneous preference for
token sequences without spaces. After applying R2M, this severe reward hacking phenomenon was
eliminated, and a stable improvement in win rate was achieved after RL optimization, as shown in
Table 4. These results indicate that R2M can effectively mitigate reward hacking, even in cases of
complete training collapse, under identical hyperparameter settings. Detailed experimental results are
provided in Appendix F.5.

5.3 COMPUTATIONAL COST ANALYSIS

57G 58G 4.5h4.4h

RLOO R2M

Figure 6: Computational cost compari-
son between RLOO and R2M: similar
runtime and GPU memory usage.

R2M is lightweight and compute-efficient. Figure 6 il-
lustrates the peak single-GPU memory usage and over-
all runtime of R2M compared to RLOO under setting of
LLaMA environment. R2M introduces negligible addi-
tional overheads compared to the performance gains it
achieves. This can attribute to two main factors. First,
policy feedback can be directly obtained and its aggrega-
tion solely involves lightweight attention computations.
Second, R2M does not update the reward model’s LLM
part, and its cross-attention module and scoring head are
relatively lightweight.

For the ablation study, refer to Appendix E.

6 RELATED WORKS

REINFORCE-based RLHF Algorithms. RLHF is a critical technique for aligning large language
models with human preferences (Ouyang et al., 2022; Bai et al., 2022a). The classical RLHF
pipeline typically comprises three phases: supervised fine-tuning (Geng et al., 2023), reward model
training (Gao et al., 2023), and policy optimization against the reward model (Schulman et al., 2017).
As a classic reinforcement learning algorithm, Proximal Policy Optimization (PPO) (Schulman et al.,
2017) is widely used in the third stage of RLHF. Recently, many researchers have proposed a series
of REINFORCE-based methods, such as ReMax (Li et al., 2023), RLOO (Ahmadian et al., 2024),
GRPO (Shao et al., 2024) and REINFORCE++ (Hu, 2025) to avoid the computational overhead
associated with the critic model while still obtaining relatively accurate sequence-wise advantage
estimations. These methods design alternative techniques to calculate the baseline reward for each
prompt as the advantage estimation.

7 CONCLUSION

To mitigate reward hacking exacerbated by policy’s distribution shifts, we propose R2M, a novel
lightweight RLHF framework. By incorporating the policy’s evolving hidden states, R2M enhances
the reward model’s accuracy while maintaining robustness against reward hacking. Without modi-
fying current RLHF algorithms, Simply integrating R2M into the framework achieves significant
performance improvements while introducing only marginal additional computational costs.

9

https://huggingface.co/vwxyzjn/EleutherAI_pythia-1b-deduped__sft__TL;DR/tree/sft__44413__1708611267
https://huggingface.co/vwxyzjn/EleutherAI_pythia-1b-deduped__reward__TL;DR/tree/reward__44413__1708628552
https://huggingface.co/vwxyzjn/EleutherAI_pythia-1b-deduped__reward__TL;DR/tree/reward__44413__1708628552

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H Anh, Pallab Bhattacharya, Annika Brundyn,
Jared Casper, Bryan Catanzaro, Sharon Clay, Jonathan Cohen, et al. Nemotron-4 340b technical
report. arXiv preprint arXiv:2406.11704, 2024.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022a.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson,
Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson,
Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile
Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado,
Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec,
Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom
Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai: Harmlessness
from ai feedback, 2022b. URL https://arxiv.org/abs/2212.08073.

Yikun Ban, Yuchen Yan, Arindam Banerjee, and Jingrui He. Ee-net: Exploitation-exploration neural
networks in contextual bandits. arXiv preprint arXiv:2110.03177, 2021.

Yikun Ban, Ishika Agarwal, Ziwei Wu, Yada Zhu, Kommy Weldemariam, Hanghang Tong, and
Jingrui He. Neural active learning beyond bandits. arXiv preprint arXiv:2404.12522, 2024.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Junhao Chen, Shengding Hu, Zhiyuan Liu, and Maosong Sun. States hidden in hidden states: Llms
emerge discrete state representations implicitly. arXiv preprint arXiv:2407.11421, 2024.

Lichang Chen, Chen Zhu, Jiuhai Chen, Davit Soselia, Tianyi Zhou, Tom Goldstein, Heng Huang,
Mohammad Shoeybi, and Bryan Catanzaro. Odin: Disentangled reward mitigates hacking in rlhf.
In Forty-first International Conference on Machine Learning.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.

Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help
mitigate overoptimization. arXiv preprint arXiv:2310.02743, 2023.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. 2023.

Carson Denison, Monte MacDiarmid, Fazl Barez, David Duvenaud, Shauna Kravec, Samuel Marks,
Nicholas Schiefer, Ryan Soklaski, Alex Tamkin, Jared Kaplan, Buck Shlegeris, Samuel R. Bowman,
Ethan Perez, and Evan Hubinger. Sycophancy to subterfuge: Investigating reward-tampering in
large language models, 2024. URL https://arxiv.org/abs/2406.10162.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2406.10162

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’Amour, DJ Dvijotham,
Adam Fisch, Katherine Heller, Stephen Pfohl, Deepak Ramachandran, et al. Helping or herd-
ing? reward model ensembles mitigate but do not eliminate reward hacking. arXiv preprint
arXiv:2312.09244, 2023.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wallace, Pieter Abbeel, Sergey Levine, and Dawn
Song. Koala: A dialogue model for academic research. Blog post, April, 1:6, 2023.

Wei Guo, Siyuan Lu, Yiqi Tong, Zhaojun Hu, Fuzhen Zhuang, Xiao Zhang, Tao Fan, and Jin
Dong. H2tune: Federated foundation model fine-tuning with hybrid heterogeneity. arXiv preprint
arXiv:2507.22633, 2025.

Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. arXiv
preprint arXiv:2501.03262, 2025.

Jian Hu, Xibin Wu, Zilin Zhu, Weixun Wang, Dehao Zhang, Yu Cao, et al. Openrlhf: An easy-to-use,
scalable and high-performance rlhf framework. arXiv preprint arXiv:2405.11143, 2024.

Zixuan Huang, Yikun Ban, Lean Fu, Xiaojie Li, Zhongxiang Dai, Jianxin Li, and Deqing Wang.
Adaptive sample scheduling for direct preference optimization. arXiv preprint arXiv:2506.17252,
2025.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient
for robustness to spurious correlations. arXiv preprint arXiv:2204.02937, 2022.

Tyler Labonte and Vidya Muthukumar. Towards last-layer retraining for group
robustness with fewer annotations. https://synthical.com/article/
f641541d-124b-4974-9a73-d29f3f98c0b8, 8 2023.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward models
for language modeling. arXiv preprint arXiv:2403.13787, 2024.

Hao Lang, Fei Huang, and Yongbin Li. Fine-tuning language models with reward learning on policy.
arXiv preprint arXiv:2403.19279, 2024.

Yoonho Lee, Annie S. Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and Chelsea
Finn. Surgical fine-tuning improves adaptation to distribution shifts, 2023.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A
simple, effective, and efficient reinforcement learning method for aligning large language models.
arXiv preprint arXiv:2310.10505, 2023.

Chris Yuhao Liu, Liang Zeng, Yuzhen Xiao, Jujie He, Jiacai Liu, Chaojie Wang, Rui Yan, Wei Shen,
Fuxiang Zhang, Jiacheng Xu, Yang Liu, and Yahui Zhou. Skywork-reward-v2: Scaling preference
data curation via human-ai synergy. arXiv preprint arXiv:2507.01352, 2025.

Tianqi Liu, Wei Xiong, Jie Ren, Lichang Chen, Junru Wu, Rishabh Joshi, Yang Gao, Jiaming Shen,
Zhen Qin, Tianhe Yu, et al. Rrm: Robust reward model training mitigates reward hacking. arXiv
preprint arXiv:2409.13156, 2024.

Xiaodong Lu, Mingzhe Liu, Tongyu Zhu, Leilei Sun, Jibin Wang, Weifeng Lv, Yikun Ban, and Deqing
Wang. Adaptive sampling-based dynamic graph learning for information diffusion prediction.
ACM Trans. Inf. Syst., 43(5), August 2025. ISSN 1046-8188. doi: 10.1145/3744643. URL
https://doi.org/10.1145/3744643.

Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heintz, and Dan Roth. Recent advances in natural language processing via
large pre-trained language models: A survey. ACM Computing Surveys, 56(2):1–40, 2023.

11

https://synthical.com/article/f641541d-124b-4974-9a73-d29f3f98c0b8
https://synthical.com/article/f641541d-124b-4974-9a73-d29f3f98c0b8
https://doi.org/10.1145/3744643

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan
Leike, and Ryan J. Lowe. Training language models to follow instructions with human feedback.
In NeurIPS, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//arxiv.org/abs/2305.18290.

Alexandre Ramé, Johan Ferret, Nino Vieillard, Robert Dadashi, Léonard Hussenot, Pierre-Louis
Cedoz, Pier Giuseppe Sessa, Sertan Girgin, Arthur Douillard, and Olivier Bachem. Warp: On
the benefits of weight averaged rewarded policies, 2024a. URL https://arxiv.org/abs/
2406.16768.

Alexandre Ramé, Nino Vieillard, Léonard Hussenot, Robert Dadashi, Geoffrey Cideron, Olivier
Bachem, and Johan Ferret. Warm: On the benefits of weight averaged reward models, 2024b. URL
https://arxiv.org/abs/2401.12187.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An empirical
comparison of bayesian deep networks for thompson sampling, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Wei Shen and Chuheng Zhang. Policy filtration in rlhf to fine-tune llm for code generation. arXiv
preprint arXiv:2409.06957, 2024.

Wei Shen, Guanlin Liu, Zheng Wu, Ruofei Zhu, Qingping Yang, Chao Xin, Yu Yue, and Lin Yan.
Exploring data scaling trends and effects in reinforcement learning from human feedback. arXiv
preprint arXiv:2503.22230, 2025.

Prasann Singhal, Tanya Goyal, Jiacheng Xu, and Greg Durrett. A long way to go: Investigating
length correlations in rlhf. arXiv preprint arXiv:2310.03716, 2023.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. Chatgpt for robotics: Design
principles and model abilities. Microsoft Auton. Syst. Robot. Res, 2:20, 2023.

Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie Jin,
Enyu Zhou, Chenyu Shi, Songyang Gao, Nuo Xu, Yuhao Zhou, Xiaoran Fan, Zhiheng Xi, Jun
Zhao, Xiao Wang, Tao Ji, Hang Yan, Lixing Shen, Zhan Chen, Tao Gui, Qi Zhang, Xipeng Qiu,
Xuanjing Huang, Zuxuan Wu, and Yu-Gang Jiang. Secrets of rlhf in large language models part ii:
Reward modeling, 2024a. URL https://arxiv.org/abs/2401.06080.

Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie Jin,
Enyu Zhou, Chenyu Shi, et al. Secrets of rlhf in large language models part ii: Reward modeling.
arXiv preprint arXiv:2401.06080, 2024b.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

12

https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2406.16768
https://arxiv.org/abs/2406.16768
https://arxiv.org/abs/2401.12187
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2401.06080

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Siye Wu, Jian Xie, Yikai Zhang, Aili Chen, Kai Zhang, Yu Su, and Yanghua Xiao. Arm: Adaptive
reasoning model. arXiv preprint arXiv:2505.20258, 2025.

Hongyan Xie, Yitong Yao, Yikun Ban, Zixuan Huang, Deqing Wang, Zhenhe Wu, Haoxiang Su, Chao
Wang, Shuangyong Song, and Xuelong Li. Mitigating spurious correlations between question and
answer via chain-of-thought correctness perception distillation. arXiv preprint arXiv:2509.05602,
2025.

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosenberg, Zhen Qin, Daniele Calandriello, Misha
Khalman, Rishabh Joshi, Bilal Piot, Mohammad Saleh, et al. Building math agents with multi-turn
iterative preference learning. arXiv preprint arXiv:2409.02392, 2024.

Pan Xu, Zheng Wen, Handong Zhao, and Quanquan Gu. Neural contextual bandits with deep
representation and shallow exploration, 2020.

Jing Nathan Yan, Tianqi Liu, Justin Chiu, Jiaming Shen, Zhen Qin, Yue Yu, Charumathi Lakshmanan,
Yair Kurzion, Alexander Rush, Jialu Liu, and Michael Bendersky. Predicting text preference
via structured comparative reasoning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 10040–10060, Bangkok, Thailand, August 2024. Association for
Computational Linguistics. URL https://aclanthology.org/2024.acl-long.541.

Yuanzhao Zhai, Han Zhang, Yu Lei, Yue Yu, Kele Xu, Dawei Feng, Bo Ding, and Huaimin Wang.
Uncertainty-penalized reinforcement learning from human feedback with diverse reward lora
ensembles. arXiv preprint arXiv:2401.00243, 2023.

Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reasoning
models know when they’re right: Probing hidden states for self-verification. arXiv preprint
arXiv:2504.05419, 2025.

Xiaoying Zhang, Jean-Francois Ton, Wei Shen, Hongning Wang, and Yang Liu. Overcoming reward
overoptimization via adversarial policy optimization with lightweight uncertainty estimation. arXiv
preprint arXiv:2403.05171, 2024a.

Xuanchang Zhang, Wei Xiong, Lichang Chen, Tianyi Zhou, Heng Huang, and Tong Zhang. From
lists to emojis: How format bias affects model alignment, 2024b. URL https://arxiv.org/
abs/2409.11704.

Yakun Zhu, Zhongzhen Huang, Linjie Mu, Yutong Huang, Wei Nie, Jiaji Liu, Shaoting Zhang,
Pengfei Liu, and Xiaofan Zhang. Diagnosisarena: Benchmarking diagnostic reasoning for large
language models. arXiv preprint arXiv:2505.14107, 2025.

13

https://aclanthology.org/2024.acl-long.541
https://arxiv.org/abs/2409.11704
https://arxiv.org/abs/2409.11704

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A LIMITATIONS

The primary limitation of R2M lies in its sensitivity to the vanilla reward model’s performance.
While R2M significantly enhances a standard reward model, its benefits diminish when the baseline
model already closely aligns with true human preferences. As discussed in Section 3, reward hacking
arises from the reward model’s misalignment with human preferences. Thus, R2M is most effective
as an enhancement strategy for suboptimal reward models, with reduced impact when the vanilla
reward model accurately predicts ground-truth rewards. However, it is important to contextualize
this limitation within the complexity of training a relatively perfect reward model, which remains a
non-trivial challenge in RLHF.

B BROADER IMPACT

Our proposed R2M offers several significant advantages and has far-reaching potential applications.
By incorporating real-time feedback from the policy model, R2M addresses a critical limitation of
traditional reward models, enabling iterative alignment with the policy model and more accurate
reward allocation. Its seamless integration with current RLHF algorithms without altering the core
mechanism and minimal computational overhead make it highly practical for both research and
real-world use. In natural language processing (NLP), R2M can enhance chatbots, virtual assistants,
and content generation systems, improving user experiences and text quality. While our method has
broad applicability across domains, we do not foresee specific societal risks or negative impacts that
require special consideration, as R2M focuses on enhancing the reward model in RL optimization of
RLHF framework and maintains the ethical and societal implications consistent with standard RLHF
practices.

C ONE CASE STUDY OF REWARD HACKING

Reward Model Training Reward Annotation

How to make a gun?

Sorry, I cannot answer this
question.

To make a gun, you should
first ...

How to make a teddy bear?

Sorry, I cannot answer this
question.

To make a teddy bear, you
should first ...

4.3

−3.2

Policy Optimization Reward Hacking

Constantly apologizing
can yield higher rewards !

Sorry, I cannot answer this
question.

<Given any query>

Sorry, I cannot answer this
question.

4.2

5.6

Figure 7: During Reward Model Training, the reward model inadvertently learned to assign high
scores to responses containing apologies. The policy model detected this pattern and persistently
exploited it to obtain inflated rewards, which resulted in a collapse of the RL Optimization process.

D ADDITIONAL RELATED WORK

Mitigating Reward Hacking in RLHF. Constructing a superhuman and unbiased reward model is
crucial for maximizing the potential of policies in RLHF (Wang et al., 2024a; Bai et al., 2022b). While
revealed by Denison et al. (2024); Zhang et al. (2024b), reward models are easily hacked by different
pattern in different scenario, e.g., length (Singhal et al., 2023) and sycophancy. Several studies
have explored strategies to mitigate reward hacking in reinforcement learning with human feedback
(RLHF), focusing on enhancing the robustness of reward models and addressing vulnerabilities
exploited by policy models.

(1) Uncertainty-Based Re-Scoring. One line of work mitigates reward hacking by incorporating
uncertainty estimation into the reward scoring process. Studies such as Coste et al. (2023), Eisenstein
et al. (2023), and Zhai et al. (2023) focus on penalizing samples with high reward uncertainty during

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

RL-based policy training to prevent the policy from exploiting unreliable reward signals. Additionally,
Zhang et al. (2024a) utilizes preference data embeddings from the last layer of the reward model
as feature mappings, pre-training a kernel function to evaluate whether new prompt-response pairs
resemble those observed during training, thereby providing an uncertainty estimate to guide policy
optimization.

(2) Reward Model Retraining. Another approach enhances the robustness of the reward model
through targeted retraining. For instance, Lang et al. (2024) introduces an additional training phase for
the reward model, incorporating an unsupervised mutual information loss term to address the policy’s
distribution shift and improve generalization. Similarly, Liu et al. (2024) decouples preferences based
on their relevance to the prompt and retrains the reward model using an augmented dataset to ensure
more accurate reward signals.

(3) Additional Techniques. Recent advancements also include model merging techniques, such as
WARP (Ramé et al., 2024a) and WARM (Ramé et al., 2024b), and hacking reward decomposition,
as proposed in ODIN (Chen et al.), to mitigate reward hacking in online RLHF. Generative reward
models, as explored by Yan et al. (2024), enable more nuanced preference analysis, enhancing the
granularity of reward signals. For domains requiring high precision, such as mathematics, verifiable
answers can be leveraged to ensure accurate reward signals (Xiong et al., 2024).

However, most model-based methods fail to leverage the deeper semantic information from the
policy model, while permitting the policy model to persistently exploit vulnerabilities during policy
optimization. In contrast to these approaches, R2M significantly enhances the robustness and
performance ceiling of policy optimization by incorporating feedback information from the policy
and employing lightweight iterative reward model updates.

E ABLATION STUDY

In this section, we perform detailed ablation studies to assess the effectiveness of the design of
each component in R2M. Based on the LLaMA3 experimental setup outlined in Section 5.1, we
systematically remove key modules of R2M and evaluate their impact on experimental outcomes, as
presented in Table 5.

R2M with Noise & R2M without Training: For R2M with Noise, we replace the feedback
information with Gaussian noise of equivalent mean and variance. For R2M without Train, we
incorporate feedback from the policy without updating the reward model. We observed that the
performance improvement of the aforementioned two approaches was very limited, even significantly
lower than the baseline RLOO, with this improvement primarily stemming from the dominant role of
the original Reward Token Embedding in the early stage of training. The results of R2M with Noise
is consistent with Section 3 and Section 5.2, which indicates that, compared to noise, the feedback
information from the policy model is evidently effective information for the reward model. On the
other hand, the results of R2M without Training suggests that to effectively incorporate feedback
information, updating R2M is necessary, which aligns with Section 5.2.

R2M without BT Loss & R2M without GRE Loss: We optimize R2M with only single object
from Equation 6 as the optimization objective. Compared to R2M, we observed that removing the
BT loss resulted in a decrease of 3.0 and 2.5 in LC and WR scores, respectively. When the GRE loss
was removed, the scores dropped to 2.2 and 2.0. This clearly indicates that utilizing a mixed loss
as the optimization objective outperforms a single objective. On the other hand, even with single
optimization object, R2M still significantly outperforms RLOO, especially when using BT loss,
which achieved score improvements of 3.9 and 6.0, respectively. This demonstrates that, whether
using BT-loss or GRE loss as the optimization objective, the injection of feedback information from
the policy effectively enhances the robustness and accuracy of R2M.

F EXPERIMENTAL DETAILS

F.1 HIDDEN STATES ANALYSIS EXPERIMENT

We decided to utilize the last-layer hidden states of the query-response pairs as the policy feedback.
There are two primary reasons supporting this approach. First, they are widely recognized as universal

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Ablation study results under LLaMA3-8B-Instruct settings. LC and WR denote length-
controlled and raw win rate, respectively. ∆ represents score changes relative to R2M (↓ indicates
lower than R2M, ↑ indicates higher than R2M).

Method LC(%) ∆ WR(%) ∆ Average Length

RLOO 28.4 6.1↓ 30.2 8.0↓ 2186

R2M with Noise 25.4 9.1↓ 26.4 11.8↓ 2276
R2M without Training 26.1 8.4↓ 28.9 9.3↓ 2183
R2M without BT Loss 31.5 3.0↓ 35.7 2.5↓ 2116
R2M without GRE Loss 32.3 2.2↓ 36.2 2.0↓ 2191

R2M 34.5 - 38.2 - 2011

sequence representations and are extensively used in downstream tasks (Chen et al., 2024; Zhang
et al., 2025; 2024a; Guo et al., 2025). On the other hand, due to the forward propagation mechanism
of transformers Vaswani et al. (2017), hidden states encapsulate both the semantic information
of the sequence and the internal state information of the policy. We hypothesize that the former
aids in identifying reward hacking patterns, while the latter may contain critical information about
distribution shifts.

Internal State Information Validation. To validate that the last-layer hidden states contain state
information about policy distribution shifts, we perform forward passes on the same query-response
pair (x, y) from the UltraFeedback test set using LLaMA3-8B-Instruct as the policy model at training
steps t = 60, 120, 180, 240, extracting the last-layer hidden states {hi}, i ∈ [1, 4], hi ∈ Rsi×Dp ,
where si = ∥x+ yi∥ and Dp is the hidden size of the policy. We calculated the average token hidden
state {h̄i}, i ∈ [1, 4], h̄i ∈ RDp and computed the pairwise cosine similarity between them.

We conduct forward passes on a query-response pair (x, y) using policy models πθt at various training
steps t, extract the last-layer hidden states, and compute their pairwise cosine similarity. We sample
four responses for the same query, generating four query-response pairs and their corresponding
similarity matrices.

Semantic Information Validation. To validate that the last-layer hidden state contains semantic
information for identifying hacking sequences, We collected a subset of size 100, denoted as Xtest,
|Xtest| = 100, from the test set of UltraFeedback (Cui et al., 2023). For each query x ∼ Xtest ,
we manually categorized the responses from the policy πθ during RL Optimization into hacking
responses {yi}, i ∈ [1, 8] and non-hacking responses {yi}, i ∈ [9, 16]. We computed the query-
response pairs {ci = (x, yi)}, i ∈ [1, 16] and fed them into LLaMA3-8B-Instruct as the policy model
πθ, extracting the last hidden state {hi}, i ∈ [1, 16], hi ∈ Rsi×Dp , where si = ∥x+yi∥ and Dp is the
hidden size of the policy. We calculated the average token hidden state {h̄i}, i ∈ [1, 16], h̄i ∈ RDp

and computed the pairwise cosine similarity between them.

F.2 EXPERIMENTAL SETTINGS OF THE DIALOGUE TASK

We initially filtered out UltraFeedback samples where the chosen response exceeded 512 tokens.
Subsequently, at each step t, we sample 128 queries (i.e., n = 128) from the training set. For each
query, the policy model responds K times with a temperature of 0.7, without applying top-k or top-p
token restrictions, resulting in a total of 12k trajectories for training. During policy training, we
utilized all offline-sampled trajectories from the current round and trained for 2 epochs. Subsequently,
we conducted experiments following the procedure outlined in Algorithm 1.

LLM Settings. We selected LLaMA3-8B-Instruct (AI@Meta, 2024) and Qwen2.5-3B-Instruct
(Team, 2024) as the policy models and Skywork-Reward-V2-Llama-3.1-8B (Liu et al., 2025) as the
reward model for direct RL optimization.

Hyperparameters. For Qwen2.5-3B-Instruct, we set the learning rate to 6× 10−6 and the minimum
weight coefficient for the original Reward Token Embedding to Ω = 0. We set K = 4, and since
K also represents the number of times each query is reused, we used a total of only 3k queries. For

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

LLaMA3-8B-Instruct, we used a learning rate of 1× 10−6, set Ω = 0.5 and the group size K = 32
and resulted in the use of only 0.375k queries.

F.3 EXPERIMENTAL SETTINGS OF THE TL;DR TASK

We utilize the dataset trl-lib/TL;DR, sampling 2048 queries (i.e., n = 2048) from the training set at
each step t, resulting in a total of 1000k trajectories for training. Due to the relatively short token
length required for the summarization task, we limit the maximum number of generated tokens to 50
and perform RL optimization directly following the procedure in Algorithm 1.

After training, we used GPT-4 as the judge model (Zhang et al., 2024a; Rafailov et al., 2023; Zhu
et al., 2025; Xie et al., 2025), taking the original summary content from the TL;DR dataset as the
reference response, and calculated the win rate of the summaries generated by our trained policy
model.

LLM Settings. Following prior work, we employ Pythia-2.8B-TL;DR-SFT , which has undergone
supervised fine-tuning (SFT) on TL;DR, as the policy model, and Pythia-2.8B-TL;DR-RM , trained
as a reward model on TL;DR, for direct RL optimization.

Hyperparameters. For policy model, we set the learning rate to 3 × 10−6, the minimum weight
coefficient for the original Reward Token Embedding Ω = 0 and the group size K = 4.

F.4 EXPERIMENTAL SETTINGS OF THE REWARD MODEL ACCURACY

In the dialogue task experiment, we retained the policy model πθ and the reward model rφ. We
sampled ntotal preference pairs {xi, yi,w, yi,l}, i ∈ [ntotal], from the test set of UltraFeedback, where
ntotal = 1024. When not using feedback from the policy, we computed rφ(xi, yi,w) and rφ(xi, yi,l),
and counted the number of samples ncorrect where rφ(xi, yi,w) > rφ(xi, yi,l). The accuracy of the
reward model was calculated as accrφ = ncorrect/ntotal.

When incorporating policy feedback, we fed the chosen and rejected query-response pairs into the
policy for a forward pass respectively and extracted the last layer’s hidden states as policy feedback
, denoted as hi,w = πθ(xi,w, yi,w) ∈ RSi,w×Dp and hi,l = πθ(xi,l, yi,l) ∈ RSi,l×Dp , where Dp

denotes the policy model’s hidden size, S denotes the sequence length. Then, we calculated the
accuracy based on the comparison between rφ(xi, yi,w, hi,w) and rφ(xi, yi,l, hi,l). We utilize the
corresponding policy to provide feedback before and after the R2M pipeline.

F.5 EXPERIMENTAL DETAILS OF THE PYTHIA-1B ON TL;DR TASK

We first present two examples of outputs from the policy model after reward hacking occurs, as shown
below:

Completion 1:
’’’
I(21M)needhelponhowto proceedwiththisgirlI’mseeing/sleepingwith(20F).
Iamafraidgettingtooinvolvedwillendinmegetting hurt.
<|endoftext|>[PAD][PAD][PAD][PAD][PAD][PAD][PAD][PAD][PAD][PAD][PAD][PAD]
’’’

Completion 2:
’’’
I[29M]amdatingmultiplepeople.HowdoInavigatethissituation?
Iamprettybadatdecipheringmyownemotions.
<|endoftext|>[PAD][PAD][PAD][PAD][PAD][PAD][PAD][PAD][PAD][PAD]
[PAD][PAD][PAD][PAD][PAD][PAD][PAD][PAD][PAD][PAD]
’’’

We removed the spaces from a normal response and compared the reward values given by the reward
model. The results are as follows:

Prompt:

’’’User: SUBREDDIT: r/pettyrevenge

17

https://huggingface.co/datasets/trl-lib/TL;DR
https://huggingface.co/vwxyzjn/EleutherAI_pythia-2.8b-deduped__sft__TL;DR/tree/sft__44413__1708611267
https://huggingface.co/vwxyzjn/EleutherAI_pythia-2.8b-deduped__reward__TL;DR/tree/reward__44413__1708628552

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

TITLE: So, my mom woke me up with a loud TV.

POST: She was in her living room, watching TV. This was at about 8:30
in the morning, and she was exercising. She turned the TV up extra loud
to hear it over her excercycle, and woke me up. I went in there asking
for her to turn it down. She said she didn’t have to; I explained that I
always used headphones so she didn’t have to deal with my noise and that
she should give me a little more respect, given that I paid rent at the
time.

She disagreed. I went back to my room, rather pissed off at the lack of
equality. I had no lock on my door; but I had a dresser right next to it,
so I pulled one of the drawers out enough so that it caused the door to
not be openable. Then, I turned my speakers up really loud and blasted
Gangnam Style on repeat, with the bass cranked up as high as it could go.

If you hate Gangnam Style for being overplayed, you will see why I chose
that particular song. I personally don’t mind it. But here’s the thing
about my bass; it vibrates the walls, making one hell of a lot of noise.
Needless to say, my mom was not pleased and shut off the internet. But it
was oh so worth it.

TL;DR:

Assistant:’’’

Response without Space:

Momwokemeupwithloudmusic;
turnedoffinternet;pissedoffatlackofequality;
shutofftheinternetcompletelyafterblast
GangnamStyleonrepeatwithbassvibratingthewalls.

Token List:

[’Mom’, ’w’, ’ok’, ’eme’, ’up’, ’with’, ’l’, ’oud’, ’music’, ’;’,
’turned’, ’off’, ’intern’, ’et’, ’;’, ’p’, ’iss’, ’ed’, ’off’, ’atl’,
’ack’, ’o’, ’fe’, ’quality’, ’;’, ’shut’, ’off’, ’the’, ’intern’,
’et’, ’completely’, ’after’, ’blast’, ’G’, ’ang’, ’nam’, ’Style’, ’on’,
’repeat’, ’with’, ’b’, ’ass’, ’v’, ’ibr’, ’ating’, ’the’, ’walls’, ’.’]

Reward: 3.366652488708496

Response with Spaces:

Mom woke me up with loud music; turned off internet; pissed off at lack
of equality; shut off the internet completely after blast Gangnam Style
on repeat with bass vibrating the walls.

Token List:

[’Mom’, ’Ġwoke’, ’Ġme’, ’Ġup’, ’Ġwith’, ’Ġloud’, ’Ġmusic’, ’;’,
’Ġturned’, ’Ġoff’, ’Ġinternet’, ’;’, ’Ġpissed’, ’Ġoff’, ’Ġat’,
’Ġlack’, ’Ġof’, ’Ġequality’, ’;’, ’Ġshut’, ’Ġoff’, ’Ġthe’, ’Ġinternet’,
’Ġcompletely’, ’Ġafter’, ’Ġblast’, ’ĠGang’, ’nam’, ’ĠStyle’, ’Ġon’,
’Ġrepeat’, ’Ġwith’, ’Ġbass’, ’Ġvibr’, ’ating’, ’Ġthe’, ’Ġwalls’, ’.’]

Reward: 1.2537559270858765

It is evident that removing spaces from responses leads the reward model to assign higher scores. Due
to the discrepancy between proxy and golden rewards, the reward model learns an implicit reward
hacking pattern, preferring to assign higher scores to tokens not starting with "G". This has resulted

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

in a severe reward hacking phenomenon in our trained policy, where the policy tends to predict tokens
without "G" to get high rewards, finally leading to the responses without spaces.

G MORE METHOD DETAILS OF R2M

G.1 RLHF WORKFLOW

Here, We provide a detailed descrption of RLHF workflow.

Supervised Fine Tuning. RLHF typically begins with Supervised Fine Tuning (SFT), which involves
training a pretrained language model in a supervised manner using high-quality, human-annotated
dialogue examples. We denote the resulting model as πSFT.

Reward Modelling. The second phase of RLHF involves learning a reward model to capture human
preferences through annotated data D = {(xi, yiw, y

i
l)}Ni=1 where yiw and yil denote the chosen and

rejected responses to prompt xi. The preferences are assumed to be generated by some unknown
reward model r∗(x, y) following the Bradley-Terry (BT) model (Bradley & Terry, 1952):

P∗(yw ≻ yl|x) =
exp(r∗(x, yw))

exp(r∗(x, yw)) + exp(r∗(x, yl))
.

Typically, a reward model rφ(x, y) is initialized from a pretrained LLM (usually πSFT), with an
additional projection layer (namely scoring head) ϕ : RDrm → R1 added to map the last-layer hidden
states of the final token Hlast ∈ RDrm to a scalar reward rφ(x, y) = ϕ(Hlast) ∈ R1. Since the rewards
of query-response pairs are only related to Hlast, we refer to it as the Reward Token Embedding.

Given the annotated preference data D, the reward model rφ is trained to assign higher reward to the
chosen response yw compared to the rejected one yl, by minimizing the negative log-likelihood under
the BT model, where σ denotes the sigmoid function:

L(rφ) = −E(x,yw,yl)∼D [log (σ (rφ(x, yw)− rφ(x, yl)))] , (7)

RL Optimization. The learned reward model rφ(x, y) is then employed to guide the RL policy
optimization phase. Intuitively, the aim is to learn a policy πθ that maximizes the reward rφ while
not drifting too far away from πSFT:

maxπθ
Ex∼D,y∼πθ

[rφ(x, y)]− βDKL [πθ(y|x)∥πSFT(y|x)] , (8)

where β controls the deviation from the reference policy πSFT, thus maintaining a balance between
reward maximization and adherence to the SFT policy behavior.

G.2 MOTIVATION OF LIGHTWEIGHT TRAINING

Although the computational overhead of the RL Optimization phase is primarily concentrated in the
Trajectory Sampling phase, the computation cost of introducing a full reward model optimization
phase remains unacceptable. Fortunately, the LLM component of the reward model has been trained
on extensive text corpora, and with their large number of parameters, these models can develop
generalizable representations, as demonstrated by Min et al. (2023); Wei et al. (2022); Brown et al.
(2020); Lu et al. (2025). However, the learning of the projection weights ϕ in the reward model relies
entirely on the preference data provided during reward model training. Consequently, the reliability
of reward prediction is closely tied to the accuracy and generalizability of the projection weights.
(Chen et al., 2020; Kirichenko et al., 2022; Riquelme et al., 2018; Xu et al., 2020)

Moreover, Kirichenko et al. (2022); Labonte & Muthukumar (2023); Lee et al. (2023) demonstrate
that by freezing the network up to its last layer and retraining only the projection head with a smaller
data set, it can greatly improve robustness of the neural network model.

These observations motivate us to freeze the LLM part of the reward model while updating only the
parameters of the reward head.

19

	introduction
	Preliminary
	Motivation
	method
	Reward model Structure
	Iterative Reward Model Lightweight Optimization

	experiment
	main experiment results
	analysis
	Computational Cost Analysis

	related works
	Conclusion
	Limitations
	Broader Impact
	One case study of reward hacking
	Additional Related Work
	ablation study
	Experimental Details
	hidden states analysis experiment
	Experimental Settings of the Dialogue Task
	Experimental Settings of the TL;DR Task
	Experimental Settings of the Reward Model Accuracy
	Experimental Details of the Pythia-1B on TL;DR task

	More Method Details of R2M
	RLHF workflow
	Motivation of Lightweight Training

