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ABSTRACT

Medical imaging presents significant challenges due to acoustic shadows, motion
blur, and indistinct boundaries. Addressing these issues is crucial for improving di-
agnostic accuracy. Many conventional vision models require extensive fine-tuning
on task-specific data and often lose generalizability to natural-image domains. We
propose DCRM-ViT, a domain-conditioned residual modulation framework for Vi-
sion Transformers that preserves general-vision capability while adapting to diverse
domains. DCRM-ViT keeps the backbone frozen and augments each block with a
lightweight Residual Modulation Block (RMB) whose parameters are synthesized
per sample by a Domain Router (DR.) and Parameter Synthesizer Network (PSN).
The router outputs soft domain weights from input features, whereas the synthesizer
maps these weights to low-rank residuals that modulate selected projections and,
optionally, add a domain-aware bias to attention. Crucially, we learn routing and
modulation via a bi-level optimization scheme: a short inner loop adapts RMB
parameters to task supervision, while an outer loop updates DR., PSN, and RMB
initializations/step sizes so the synthesized residuals generalize across medical and
natural domains. Across fine-grained classification (Food101, SUN397, Stanford
Cars) and medical segmentation (ultrasound, CT, MRI), DCRM-ViT improves
over strong baselines while using modest trainable compute. The ablation stud-
ies confirmed the benefits of our architectural enhancements, showing improved
performance and adaptability. The results demonstrate DCRM-ViT’s potential to
offer high diagnostic performance with reduced computational overhead of using
4.7 GFLOPs and 0.3 training min/epoch. Our code will be publicly available upon
acceptance.

1 INTRODUCTION

Modern vision systems increasingly need a single model that can operate across different regimes
like: (i) general natural imagery, which supports broad visual competence, quality control, and
upstream data services; and (ii) medical, where decisions are high–stakes and inputs are affected by
challenges like speckle, shadows, and device variability. As illustrated in Figure 1, fetal scans are
characterized by low signal-to-noise ratios, significant speckle noise, acoustic shadows that obscure
anatomical detail, and frequent variations in fetal pose and scale. Such domain-specific complexities
require fine-grained visual understanding and robustness to modality-specific artifacts, capabilities
that general vision models typically lack. The practical objective is to gain robustness in the medical
domain without eroding performance on natural images (Guan & Liu, 2021).

Conventional methods partially address this objective, as full fine-tuning can improve accuracy in the
domain, but often narrows competence and increases training cost (Davila et al., 2024). Unsupervised
domain adaptation presumes access to target data and relies on alignment objectives that may be
brittle across scanners, sites, or protocols (Zhou et al., 2025). The adaptation in test time alters
either parameters or statistics during inference (Xiao & Snoek, 2024), thereby complicating the
validation process. Taken together, these limitations motivate a training strategy that improves
medical robustness while explicitly preserving general–image capability, and that keeps inference
simple and predictable.
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A key observation is that the variation between medical and natural images is continuous and not
purely categorical (Konz & Mazurowski, 2024). This continuity suggests replacing heavy and static
domain-wise adjustments with minimal, input-conditioned corrections that act only where beneficial
and only by the amount required. Let fθ0 be a pre-trained Vision Transformer (ViT) with frozen
parameters θ0. Given a labeled training data {(xi, yi)}Ni=1 obtained from a mixture D =

⋃K
k=1Dk

of domains. The goal is to learn an input-conditioned residual modulation mechanism that, for any
test input x, produces small, low-rank corrections applied to a subset of encoder projections, with no
gradient-based updates for inference.

In this paper, we target a solution that: (i) maintains a single deployable model for both medical
and natural images, (ii) preserves fixed, fast inference with no test–time updates, (iii) respects tight
memory/latency constraints, and (iv) remains stable across different modalities. For this purpose,
we introduce a method named Domain-Conditioned Residual Modulation for Vision Transformers
(DCRM-ViT): a frozen ViT having four minimal components that operate only where needed and
only as much as needed: (i) a Domain Router (DR.) that takes input features and emits soft domain
weights (Table 8 of Appendix), (ii) a tiny Parameter Synthesizer Network (PSN) that maps those
weights to per-sample, low-rank parameters, (iii) Residual Modulation Blocks (RMB) placed at
selected projections (value and MLP streams) inside the frozen ViT, and (iv) a Domain-Aware Bias
(DAB) that perturbs attention logits with negligible overhead.

(a) Motion-induced
blur

(b) Varying fetal pose
and scale

(c) Blurred indistinct
anatomy boundaries

(d) Speckle noise and
low SNR

(e) Acoustic shadow-
ing from the skull

Figure 1: Examples of key challenges in fetal ultrasound imaging.

We retain a frozen, pretrained encoder and attach small, input-conditioned residual modulators that
make minimal corrections to a subset of projections. This preserves fast, update-free inference while
providing the flexibility needed to handle ultrasound artifacts. The DR. module enables DCRM-ViT
to perform domain-aware feature adaptation on a per-sample basis. It comprises four components:
a Gating Channel Unit (GCU), a Domain-Aware Layer (DALer) unit, a domain classifier, and a
Parameter Synthesizer Network (PSN). Furthermore, RMB modules are inserted into each transformer
block and specialize in learning domain-specific representations that reshape self-attention and
feedforward activations to become sensitive to domain-specific artifacts such as noise, acoustic
shadows, and low-contrast edges, without modifying the pre-trained backbone weights.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ours  Second Best (percentage points)

Caltech-101  (vs LoRA)

CIFAR-10  (vs CLIP)

Stanford Cars  (vs Tip-Adapter)

Fetal Planes  (vs BioMedCLIP)

Food101  (vs Tip-Adapter)

Fpus23  (vs DINOv2)

Natural Images  (vs CLIP)

SUN397  (vs Tip-Adapter)

+3.3 pp

+3.3 pp

+2.9 pp

+1.9 pp

+1.5 pp

+1.4 pp

+0.9 pp

+0.2 pp
Delta vs. Second Best by Dataset (sorted)

Figure 2: Percentage-point improvement of Ours over the second-best
baseline, sorted by gain.

Now, improving one do-
main can silently harm the
other. In addition, we frame
our model training under a
bi-level optimization strat-
egy. In the inner loop,
we fine-tune the parameters
DR. with gradient steps to
learn visual representations
of the data for each task,
while in the outer loop, we
update the parameters of the
RMB module (along with
DR. initializations and in-
ner loop learning rate) using
domain characteristic exam-
ples, teaching the PSN unit
to produce domain-aware parameters that work across images from the medical and natural domains.
This nested optimization cleanly separates domain-level meta-parameters from task-level representa-
tion learning. To our knowledge, this is the first unified framework for medical (ultrasound + CT +
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MRI) analysis that explicitly disentangles domain adaptation and task specialization through sepa-
rate, jointly optimized modules for domain-aware parameterization and task-specific representation
learning.

Contributions: (1) We introduce the DCRM-ViT framework, the first end-to-end transformer archi-
tecture that unifies per-sample, domain-aware feature adaptation for both medical and natural image
inputs within a single backbone. (2) We develop a domain-aware DR. module that dynamically
adjusts the parameters of the RMB module based on the image domain, optimizing the model’s
performance for general or medical imagery. (3) Our extensive experimental study on the medical do-
main, including ultrasound + CT + MRI, alongside natural imagery, reveals that DCRM-ViT
provides notable gains over CLIP, MAE, and DINOv2 in both zero-shot and cross-domain appli-
cability, as can also be seen in Figure 2. In addition, we also present comprehensive results on
segmentation benchmarks, showing consistent ultrasound, CT, and MRI gains with bounded impact
on natural-image performance.

2 RELATED WORK

Foundational Models in Medical Imaging. Recent advancements in medical imaging include
MedCLIP (Wang et al., 2022) and BiomedCLIP (Zhang et al., 2023a), which improve tasks such
as zero-shot prediction and image-text retrieval. These models demonstrate significant diagnostic
improvements through training on large datasets, highlighting the efficacy of vision-language pro-
cessing in medical applications. Similarly, conversational AI models such as LLaVA-Med (Li et al.,
2024) and XrayGPT (Thawkar et al., 2023) enhance interactions between medical professionals and
AI systems, facilitating dialogues for querying, explaining, and instructing medical images. These
techniques integrate AI into clinical workflows, improving decision-making and patient care by
providing immediate, relevant information.

Low-Rank Adaptation in Deep Learning. Parameter-efficient fine-tuning (Fu et al., 2023) uses
small, trainable modules that can be inserted into pre-trained network architectures. They offer
an efficient way to adjust models across different domains without extensive retraining. These
modules enable fine-tuning on specific tasks while preserving the original network’s weights, thus
maintaining broad generalization capabilities (Houlsby et al., 2019). Such architectures have been
widely explored in computer vision and NLP to achieve parameter-efficient fine-tuning. In computer
vision, adapters (Gao et al., 2024; Sung et al., 2022) have proven to be effective in handling visual
domains with minimal parameter updates, demonstrating their utility when data is scarce or tasks are
highly specific (Rebuffi et al., 2017). In NLP, (Houlsby et al., 2019) introduced adapter modules that
enable task-specific adaptation of large language models with minimal parameter updates. Building
on this, (Hu et al., 2022) proposed Low-Rank Adaptation (LoRA), which uses low-rank matrices to
efficiently fine-tune large-scale Transformer models with far fewer trainable parameters. In computer
vision, (Jia et al., 2022) proposed Visual Prompt Tuning (VPT), which adapts pre-trained vision
models to downstream tasks using learnable prompts instead of full fine-tuning. AdapterFusion (AF)
(Pfeiffer et al., 2020) assigns a distinct module to each task, enabling task-specific specialization.
In contrast, we adopt a shared module architecture across natural and medical domains, reducing
parameters and enhancing generalization. Unlike AF, which suits multi-task settings with distinct,
known tasks, our approach targets a shared classification problem where unified representations are
both practical and beneficial. Meta-adaptive control using DR. enables input-aware modulation
without relying on task-specific modules.

Meta-Learning for Dynamic Adaptation. Meta-adaptation refers to the ability of a model to
dynamically adjust its internal components or parameters based on the input context, such as domain,
task, or data characteristics. It is inspired by meta-learning (“learning to learn”), but instead of
training separate modules for each domain or task, a controller (often a lightweight neural network)
generates or selects module parameters on the fly depending on the input. Model-Agnostic Meta-
Learning (MAML) exemplifies this by preparing models to adjust quickly using a few examples
(Finn et al., 2017), which is vital for scenarios such as medical diagnostics where data may be
scarce. A comprehensive review (Hospedales et al., 2021) underscores the broad applications of
meta-learning, from classification to complex autonomous decisions, pointing to future dynamic
adaptation techniques. A recent study (Song et al., 2023) introduces a meta-adaptive approach that
dynamically adjusts parameters to enhance the performance of vision-language models in a few-shot
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learning scenarios. They perform gated multi-head attention over support images to fine-tune CLIP’s
(Radford et al., 2021) text embeddings for few-shot vision–language tasks. Despite these advances,
the use of such techniques in medical imaging, particularly ultrasound analysis, remains largely
underexplored. Our work builds on these foundations by proposing a unified framework named
DCRM-ViT, combining domain-aware and task-specific modules tailored to the unique challenges of
medical imaging, such as acoustic shadows, motion blur, and indistinct boundaries.

3 METHODOLOGY

In this section, we describe the design of DCRM-ViT by detailing its core modules and our two-stage
training objective. We begin with an architectural overview, then dive into the structure of each
component, and finally present the optimization strategy. DCRM-ViT augments a standard Vision
Transformer backbone by initially embedding DR. and then an RMB module into every transformer
block as shown in Figure 3, which enables per-sample, domain-aware feature adaptation for both
medical and natural-image inputs.

Figure 3: DCRM-ViT processes images through a backbone to generate image embeddings, which
are then adapted by a DR. module. This module uses outputs from a domain classifier to dynamically
create DR. parameters via the PSN unit. These parameters direct transformations within RMB
modules, preparing the data for a transformer block with domain-aware attention. The features are
refined further through TALer and transformer blocks before reaching the classification head that
determines the image class.

Residual Modulation Blocks: The RMB module in the DCRM-ViT model modifies the transformer
architecture to enhance feature processing for medical imaging tasks. Adjusting the dimensions of
input features enables precise data manipulation, focusing on extracting subtle diagnostic details
crucial for medical imaging. This technical enhancement optimizes the model’s ability to accurately
identify fine-grained anatomical structures and tissue boundaries, as shown in Figure 5 of the appendix.
Each RMB module contains two main components: the Task-Aligned Layer (TALer) unit and the
transformer block. Each RMB module’s input is fed to the TALer layer and the transformer block. The
output of the transformer block serves as the input for the subsequent block. The detailed descriptions
of each component are given below:

TALer unit. In each RMB module, the TALer unit is integrated with the transformer block of the
model to enable efficient domain-specific fine-tuning. These layers are designed to modify the
feature representations with minimal computational overhead, as shown in Table 5, preserving the
original model’s broad generalization capabilities. Each TALer unit consists of a low-rank encoder,
a non-linear activation function (ReLU), and a low-rank decoder. We also integrated the rescale
variable that helps capture the visual features at different scales, as the medical object can vary in
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size (lesion vs. fetal anatomical structures). Mathematically, for an input feature vector h ∈ Rd, the
transformation h′ applied by a TALer unit is shown in Equation 1:

h′ = r · σ(WDS · h+ bDS)⊙ (WUS · σ(WDS · h+ bDS) + bUS) (1)

where r is the rescaling factor, WDS ∈ Rd′×d is the weight matrix of the low-rank encoder,
WUS ∈ Rd×d′

is the weight matrix of the low-rank decoder, bDS ∈ Rd′
and bUS ∈ Rd are the bias

terms, and σ represents the ReLU activation function. The dimensionality d is the original feature
dimension, while d′ is the reduced dimension within the TALer layer. As the input image progresses
through the TALer unit, the low-rank encoder first reduces the dimensionality of the input features,
making subsequent computations more efficient. Finally, the low-rank decoder restores the features’
original dimensionality, ensuring that the modified representations are compatible with subsequent
layers in the attention mechanism model.

Transformer Block. The attention mechanism in DCRM-ViT is based on the self-attention mech-
anism used in Transformers (Dosovitskiy et al., 2020). In the DCRM-ViT model, the transformer
blocks are designed to process complex image features efficiently, utilizing a modified self-attention
mechanism that integrates specialized TALer units. These TALer units adjust the projection layers
for queries (Q) and values (V) to enhance the model performance and computational efficiency.
The transformation vectors can be described mathematically as Q = W̃qγ = Wqγ + h′

qγ and
V = W̃vγ = Wvγ + h′

vγ.

Here, Wq and Wv are the original, frozen projection layers for queries and values, respectively. h′
q and

h′
v are trainable parameters introduced by TALer units, allowing the model to learn domain-specific

feature representations, while γ is the input vector. Here, the key projection remains unchanged to
preserve the integrity of the attention mechanism, which is written as K = Wkγ. This consistency
ensures that attention scores reflect genuine relationships within the data without alteration by the
TALer units. Furthermore, we also introduce a domain-aware attention mechanism using domain-
aware biases (DAB) within the transformer blocks to capture domain-specific contextual relationships.
The self-attention computation is modified to include domain-specific attention biases as presented in
Equation 2:

Attention(Q,K,V) = softmax
(
QKT

√
dk

+Bd

)
V (2)

where Bd corresponds to Bd = pmedicalBmedical + pnaturalBnatural, and is a domain-specific bias matrix,
dk is the dimensionality of the keys, Bmedical and Bnatural are learned bias matrices for the medical
and natural domains, respectively. This modification allows attention mechanism to focus differently
based on domain probabilities, improving the model’s ability to capture nuanced domain-specific
patterns.

Domain Router Module: The DR. module dynamically adjusts the TALer units’ parameters based
on the input image’s domain. This design is inspired by prior work (Malik et al., 2023; Bansal et al.,
2022), which employed meta-learning techniques to modulate standard architectures for domain
adaptation. DR. comprises Domain-Aware Layer (DALer) unit, which contains two types of layers
named domain-aware contraction and expansion layer, respectively, along with a non-linear activation.
However, we also incorporate a parallel gate channel, consisting of 1×1 convolutional layers to
obtain valuable features and concatenate later, as shown in the DR. module box of Figure 3. The
gate channel applies 1x1 convolutional layers to the initial image embeddings. These layers are adept
at transforming the feature space without altering the depth of the embeddings, allowing for precise
manipulation of the spatial features.

This transformation is crucial for extracting refined, domain-specific features from the embeddings,
which are essential for subsequent processing steps. The output of this convolution is mathematically
represented as g = Conv1×1(x; θg), where θg are the trainable parameters of the convolutional
layer, which forms a set of gate-processed features. Following feature extraction, the gate-processed
features (g) are concatenated with the original embeddings. This enriched set of features combines
the original data with newly emphasized domain-specific attributes, creating a composite input that
feeds into the RMB modules. This RMB module is driven by the need for a versatile model capable of
handling various imaging modalities and conditions. It adjusts the parameters of the TALer units,
ensuring optimal model performance whether processing ‘medical’ or ‘natural’ images. In general, it
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comprises a domain classifier D, which determines the domain of the input image x. The domain
classifier D uses a softmax layer to output a probability distribution over the possible domains (e.g.,
medical, natural) and can be written as D(x) = [pmedical, pnatural], where pmedical and pnatural represent
the probabilities that the input image x belongs to the medical or natural domain, respectively.

Enhanced DR. module with Dynamic Parameter Generation. To further elevate the adaptability
of the DCRM-ViT model across diverse domains, we introduce a novel dynamic adapter parameter
generation mechanism within the DR. module. Instead of relying on fixed parameters determined
by hard domain classification, we employ a Parameter Synthesizer Network (PSN) unit inspired by
(Ha et al., 2016) that generates RMB parameters conditioned on the input image features and domain
probabilities. Here, the PSN unit is a fully connected neural network that outputs the weight and
bias values for the TALer units. The size of this network’s output layer corresponds to the total
number of parameters in these units. This approach allows continuous adaptation to the input domain
characteristics.

Specifically, the PSN unit P takes the initial image embeddings x and the domain probabilities D(x)
as input, outputting the parameters for the TALer units as θA = P (x, D(x); θP ) where θP denotes
the parameters of the PSN unit, and D(x) = [pmedical, pnatural] are the domain probabilities obtained
from the domain classifier. This conditioning allows the PSN unit to generate parameters influenced
by the degree to which the input image belongs to each domain, providing smooth interpolation
between domain-specific parameters.

Image Encoder: The input image is first divided into non-overlapping patches of size p× p. These
patches are then linearly embedded into vectors and augmented with positional embeddings to retain
spatial information. Given an image x ∈ RH×W×C with height H , width W , and channels C, the
image is divided into Np = HW

p2 patches. Each patch pi ∈ Rp×p×C is projected to a vector ei ∈ RD

using a linear layer, where D is the embedding dimension. The set of patch embeddings is given
by E = {e0, e1, . . . , eNp−1}, where e0 is a learnable class token added to aggregate global image
information. The embeddings and positional embeddings are fed into DR. and a series of RMB
modules, generating new token representations that encode the image features.

Training Strategy. The enhanced DR. module effectively optimizes the PSN unit and primary model.
We employ a joint training approach where the domain classifier, PSN unit, and the main modules
are trained simultaneously. The overall loss function is a combination of the target classification loss,
domain classification loss, and the regularization term and is shown as Ltotal = Lcls +βLdomain +Lreg,
where Lcls is the standard cross-entropy loss for the classification task, Ldomain is the loss for the
domain classifier (e.g., cross-entropy loss between predicted and true domain labels), and β is a
weighting factor that balances the importance of domain classification in the overall training process.

Learning Objective. Bi-level optimization is a strategy where two levels of optimization tasks
are solved concurrently. Inspired by the work in (Finn et al., 2017), our model adaptively uses an
MAML-based framework to fine-tune parameters across different tasks. The upper level (outer loop)
optimizes the meta-learning parameters for domain distinction (medical or natural domain), while the
lower level (inner loop) focuses on task-specific (e.g., fetal head, abdomen classification or lesion
segmentation) model parameters. This optimization is critical for DCRM-ViT because it cleanly
disentangles the learning of domain-level meta-parameters (the DR. weights ω and initial RMB states
ϕ) from the task-specific fine-tuning of RMB . Without this nested scheme, the PSN unit would
receive conflicting gradient signals—simultaneously trying to serve all tasks and domains—leading
to suboptimal domain inference and slower adaptation. Thus, the bi-level formulation provides
a principled way to meta-learn the best initialization and parameter-generation strategy, enabling
DCRM-ViT to dynamically synthesize per-sample calibration kernels that recover ultrasound artifacts
and preserve general-vision features. Building on this foundation, we introduce an enhanced training
strategy integrating dynamic RMB parameter generation, soft parameter sharing, and a domain-aware
attention mechanism. Here, the objective for each individual task T is shown in Equation 3:

ϕT ← argmin
ϕ
LT (θ, ϕ, ω;DT ) (3)

where LT represents the loss for task T , and DT denotes the dataset for task T . The parameters ω are
not fine-tuned for individual task T but instead optimized for the target task, i.e., domain classification
here. Thus, ω is optimized to improve RMB fine-tuning, as shown in objective function Equation 4:

min
ω

ET [LT (θ, ϕT , ω;DT )] (4)
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A few steps of gradient descent are used to solve this nested minimization. This optimization problem
was inspired by the approach used in (Bansal et al., 2022), which also involves an episodic framework
where each episode optimizes different objectives. The initial objective uses domain characteristic
data Ddom

T , whereas the other objective uses task-specific data Dtask
T . Here, Ddom

T is used for outer
loop optimization, and Dtask

T is used for inner loop optimization.

Inner Loop Optimization (Task-Specific Adaptation). In the inner loop, for each task T , we
fine-tune the RMB parameters ϕ using multiple steps of gradient-descent based on the Dtask

T dataset.
The update rule is: ϕ′

T ← ϕ − α∇ϕLT (θ, ϕ, ω;Dtask
T ). Here, α is the learning rate for the inner

loop, θ denotes the pre-trained transformer parameters (kept frozen), ω represents the parameters
of the DR. module, and LT is the task-specific loss function. With the introduction of the PSN
unit P for dynamic parameter generation, the RMB parameters ϕ are now functions of ω and the
domain probabilities D(x): ϕ = P (ω,D(x)). This means that the RMB parameters are dynamically
generated based on the DR. parameters and the estimated domain probabilities, allowing the model
to adapt more effectively to task-specific features.

Outer Loop Optimization (Meta-Learning). In the outer loop, we optimize the DR. mod-
ule parameters (ω ← ω − β∇ωET

[
LT (θ, ϕ

′
T , ω;Ddom

T )
]
), the initial RMB parameters (ϕ ←

ϕ− β∇ϕET

[
LT (θ, ϕ

′
T , ω;Ddom

T )
]
), and the learning rate (α← α− β∇αET

[
LT (θ, ϕ

′
T , ω;Ddom

T )
]
)

using the Ddom
T dataset. The initial RMB parameters help avoid random initialization. Here, β is the

learning rate for the outer loop, ensuring that the DR. parameters, RMB initialization, and fine-tuning
learning rates are all optimized for effective generalization across diverse tasks. This dual loop
approach ensures that both ϕ and ω are iteratively refined, optimizing the model’s adaptability and
effectiveness in applying learned knowledge to new and varied tasks. Using this bi-level optimization
approach, the DCRM-ViT model can effectively learn to adapt to new tasks with minimal data,
leveraging the dynamic adjustment capabilities of the DR. module to optimize performance across
different domains. The pseudo algorithm is also given in A.9.
Table 1: Combined fine-tuning performance across fetal (Fpus23, Fetal Planes), natural imagery
(CIFAR-10, Caltech101, Natural Images), and fine-grained datasets (Food101, SUN397, S-Cars).

Model Medical Standard Datasets Fine-Grained Datasets

Fpus23 Fetal Planes CIFAR-10 Caltech101 Natural Images Food101 SUN397 S-Cars

Acc. (%) F1 Acc. (%) F1 Acc. (%) F1 Acc. (%) F1 Acc. (%) F1 Acc. (%) F1 Acc. (%) F1 Acc. (%) F1

MAE 57.7± 1.5 0.58± 0.04 81.5± 0.7 0.82± 0.03 86.5± 0.6 0.87± 0.02 81.4± 1.2 0.82± 0.03 78.2± 1.1 0.79± 0.04 94.7± 0.2 0.95± 0.01 80.3± 0.4 0.80± 0.01 90.4± 0.3 0.90± 0.01

DINOv2 59.3± 1.2 0.60± 0.03 87.8± 0.5 0.85± 0.02 87.9± 0.5 0.88± 0.01 83.1± 1.0 0.83± 0.01 80.5± 1.0 0.81± 0.03 95.1± 0.3 0.95± 0.01 80.6± 0.4 0.81± 0.01 90.8± 0.3 0.91± 0.01

CLIP 61.6± 1.0 0.62± 0.02 42.2± 2.0 0.45± 0.06 88.4± 0.4 0.88± 0.01 84.1± 0.9 0.84± 0.02 81.9± 0.9 0.82± 0.02 93.1± 0.4 0.93± 0.01 78.4± 0.6 0.78± 0.02 88.7± 0.5 0.89± 0.01

Tip-Adapter 60.3± 1.3 0.61± 0.03 85.5± 0.6 0.86± 0.01 87.0± 0.7 0.87± 0.04 82.5± 1.1 0.83± 0.02 79.5± 1.2 0.80± 0.03 94.2± 0.3 0.94± 0.01 79.3± 0.5 0.79± 0.01 89.9± 0.4 0.90± 0.01

AdaptFormer 62.1± 0.9 0.63± 0.01 88.0± 0.5 0.88± 0.02 87.8± 0.6 0.88± 0.01 83.9± 0.8 0.84± 0.02 81.0± 1.0 0.82± 0.02 93.6± 0.4 0.94± 0.01 78.8± 0.6 0.79± 0.02 89.4± 0.5 0.89± 0.01

LoRA 63.0± 0.8 0.65± 0.02 88.3± 0.4 0.90± 0.01 88.1± 0.5 0.88± 0.01 84.0± 0.7 0.84± 0.02 82.0± 0.8 0.82± 0.02 94.5± 0.3 0.95± 0.01 79.8± 0.4 0.80± 0.01 90.1± 0.3 0.90± 0.01

DCRM-ViT 63.4± 0.7 0.69± 0.02 89.3± 0.3 0.90± 0.01 89.2± 0.4 0.89± 0.01 85.8± 0.6 0.85± 0.02 82.5± 0.5 0.83± 0.02 95.7± 0.2 0.96± 0.01 81.3± 0.3 0.81± 0.01 91.5± 0.2 0.92± 0.01

Zero-Shot Transformation: To enable zero-shot classification capabilities in models such as MAE
(He et al., 2022), DINOv2 (Oquab et al., 2023), DCRM-ViT, and others, which are typically not
designed for direct zero-shot learning like CLIP (Radford et al., 2021), a refined transformation
approach is employed based on the work of (Moayeri et al., 2023). This transformation is done
to evaluate the performance of these models against CLIP, MedCLIP Wang et al. (2022), UniMed-
CIP (Khattak et al., 2024), or similar models in a zero-shot manner as well. This strategy involves
aligning the vision-based feature representations of these models with the integrated text-image
embedding space used by CLIP through a learned transformation matrix W and a bias vector b,
facilitating semantic alignment that enables zero-shot learning. More details are in A.2

Table 2: Zero-shot performance on medical (fetal) datasets

Dataset Metric MAE DINOv2 CLIP MedCLIP UniMedCLIP BioMedCLIP Tip-Adapter AdaptFormer LoRA DCRM-ViT

Fpus23 Acc. (%) 17.1 ± 1.85 28.9 ± 1.34 17.9 ± 1.90 22.1 ± 2.10 26.5 ± 1.20 23.4 ± 1.95 18.5 ± 1.80 19.3 ± 1.70 20.2 ± 1.50 30.3 ± 2.50
F1 0.19 ± 0.04 0.29 ± 0.05 0.18 ± 0.03 0.20 ± 0.045 0.27 ± 0.05 0.26 ± 0.04 0.19 ± 0.035 0.20 ± 0.03 0.21 ± 0.025 0.31 ± 0.06

Fetal Planes Acc. (%) 28.2 ± 1.20 29.4 ± 1.50 27.4 ± 1.25 29.9 ± 1.40 30.4 ± 0.80 30.9 ± 1.35 27.8 ± 1.15 28.4 ± 1.10 29.3 ± 1.05 32.8 ± 2.00
F1 0.31 ± 0.03 0.27 ± 0.04 0.30 ± 0.025 0.25 ± 0.035 0.30 ± 0.03 0.29 ± 0.03 0.28 ± 0.025 0.29 ± 0.02 0.30 ± 0.015 0.33 ± 0.05

4 RESULTS

Fine-tuning Results: We explored the fine-tuning capabilities of MAE (He et al., 2022), DINOv2
(Oquab et al., 2023), MedCLIP Wang et al. (2022), BioMedClip (Zhang et al., 2023b), UniMed-
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CIP (Khattak et al., 2024), and CLIP (Radford et al., 2021), as well as the low-rank methods like
Tip-Adapter (Zhang et al., 2021), AdaptFormer (Chen et al., 2022), LoRA (Hu et al., 2021), and
our DCRM-ViT model across both specialized medical and varied natural imagery datasets. As
shown in Table 1, DCRM-ViT outperformed its counterparts, notably excelling on the fetal datasets
Fpus23 (Prabakaran et al., 2023) and Fetal Planes Burgos-Artizzu et al. (2020), achieving accuracies
of 63.4% and 89.3%, respectively. When extended to natural imagery datasets, DCRM-ViT again
demonstrated superior performance, achieving the highest accuracy and F1 scores among the models
tested, as seen in Table 1.

Table 3: Zero-shot performance on natural-imagery datasets

Dataset Metric MAE DINOv2 CLIP MedCLIP UniMedCLIP BioMedCLIP Tip-Adapter AdaptFormer LoRA DCRM-ViT

Standard Datasets

CIFAR-10
Acc. (%) 65.0 ± 0.40 68.5 ± 0.45 71.9 ± 0.30 66.7 ± 0.50 65.5 ± 0.45 67.0 ± 0.48 70.2 ± 0.35 69.8 ± 0.40 71.5 ± 0.30 75.2 ± 0.50
F1 0.65 ± 0.015 0.68 ± 0.02 0.73 ± 0.01 0.67 ± 0.015 0.71 ± 0.02 0.68 ± 0.02 0.70 ± 0.015 0.70 ± 0.015 0.72 ± 0.01 0.74 ± 0.02

Caltech-101
Acc. (%) 62.0 ± 0.35 65.8 ± 0.40 68.92 ± 0.50 65.0 ± 0.45 64.3 ± 0.42 65.5 ± 0.42 67.9 ± 0.30 68.0 ± 0.35 69.2 ± 0.25 72.5 ± 0.45
F1 0.62 ± 0.02 0.66 ± 0.025 0.72 ± 0.02 0.65 ± 0.02 0.71 ± 0.02 0.66 ± 0.025 0.68 ± 0.02 0.68 ± 0.02 0.69 ± 0.015 0.69 ± 0.025

Natural Images
Acc. (%) 60.5 ± 0.50 64.0 ± 0.55 71.0 ± 0.60 63.8 ± 0.55 61.8 ± 0.55 64.0 ± 0.50 65.1 ± 0.45 66.3 ± 0.40 67.5 ± 0.35 71.9 ± 0.60
F1 0.60 ± 0.025 0.64 ± 0.03 0.71 ± 0.02 0.63 ± 0.025 0.69 ± 0.03 0.64 ± 0.03 0.65 ± 0.025 0.66 ± 0.02 0.67 ± 0.02 0.71 ± 0.03

Fine-Grained Datasets

Food101
Acc. (%) 82.3 ± 0.8 85.1 ± 0.6 88.2 ± 0.7 83.0 ± 0.6 82.6 ± 0.6 83.8 ± 0.6 89.4 ± 0.5 88.1 ± 0.6 88.6 ± 0.5 90.9 ± 0.4
F1 0.82 ± 0.020 0.85 ± 0.020 0.88 ± 0.020 0.83 ± 0.020 0.83 ± 0.020 0.84 ± 0.020 0.89 ± 0.015 0.88 ± 0.020 0.89 ± 0.015 0.91 ± 0.015

SUN397
Acc. (%) 55.7 ± 0.9 57.8 ± 0.7 62.3 ± 0.8 56.2 ± 0.7 55.9 ± 0.7 56.8 ± 0.7 63.1 ± 0.7 62.2 ± 0.6 62.0 ± 0.6 63.3 ± 0.5
F1 0.56 ± 0.030 0.58 ± 0.025 0.62 ± 0.030 0.56 ± 0.025 0.56 ± 0.025 0.57 ± 0.025 0.63 ± 0.025 0.62 ± 0.020 0.62 ± 0.020 0.63 ± 0.020

Stanford Cars
Acc. (%) 64.2 ± 0.7 67.8 ± 0.5 69.4 ± 0.6 65.0 ± 0.6 64.5 ± 0.6 65.7 ± 0.6 71.1 ± 0.5 70.3 ± 0.6 70.0 ± 0.5 74.0 ± 0.4
F1 0.64 ± 0.020 0.68 ± 0.020 0.69 ± 0.020 0.65 ± 0.020 0.65 ± 0.020 0.66 ± 0.020 0.71 ± 0.015 0.70 ± 0.020 0.70 ± 0.015 0.74 ± 0.015

Zero-shot Classification Results: Our evaluation of zero-shot classification focused on models’
performance across fetal and natural imagery datasets without specific training on those datasets. The
models used knowledge transferred from related tasks. DCRM-ViT achieved the highest accuracies
in the fetal category, as can be seen in Table 2, which shows its robustness in medical imaging. In
natural imagery, DCRM-ViT performed exceptionally, achieving best performance as can be seen
in Table 3. Other specialized models like MedCLIP (Wang et al., 2022) and BioMedCLIP (Zhang
et al., 2023b), optimized for medical imaging, showed improvements in fetal datasets but did not
surpass DCRM-ViT in both fetal and natural images. However, these models performed below
the baseline CLIP in natural imagery datasets, indicating their focus on medical applications with
adequate generalization capabilities.

Table 4: Cross-domain transfer after fine-tuning.

Model Tuned on Fetal → Tested on Natural Tuned on Natural → Tested on Fetal
CIFAR-10 Caltech101 Natural Img. Fpus23 Fetal Planes

MAE 56.4 ± 1.2/0.55 ± 0.05 58.0 ± 1.3/0.57 ± 0.02 54.2 ± 1.4/0.53 ± 0.05 51.0 ± 1.5/0.55 ± 0.04 62.7 ± 1.1/0.61 ± 0.02

DINOv2 58.1 ± 1.0/0.57 ± 0.03 60.5 ± 1.1/0.59 ± 0.04 56.7 ± 1.2/0.55 ± 0.04 53.6 ± 1.3/0.51 ± 0.05 64.9 ± 0.9/0.63 ± 0.03

CLIP 60.2 ± 0.9/0.59 ± 0.02 62.3 ± 1.0/0.61 ± 0.01 58.9 ± 1.1/0.57 ± 0.03 55.9 ± 1.2/0.55 ± 0.04 67.1 ± 0.8/0.66 ± 0.02

DCRM-ViT 63.7 ± 0.8/0.62 ± 0.01 65.8 ± 0.9/0.64 ± 0.02 61.5 ± 0.9/0.60 ± 0.01 58.4 ± 1.0/0.57 ± 0.03 70.2 ± 0.7/0.69 ± 0.01

Computational Overhead Table 5 compares total and trainable parameters alongside training
throughput and approximate time per epoch under a fixed, fair protocol (ViT-B/16 at 224 × 224,
FP16, batch=128, single A100-40GB means over warmed runs).

Table 5: Parameter count, train throughput (images/s), and approximate training time per epoch.
Model Total Params (M) Trainable Params (M) Train Throughput (img/s) Training time/epoch (min)

MAE 86.0 86.0 220 0.9
DINOv2 87.0 87.0 210 1.0
CLIP 123.0 123.0 205 3.0
AdaptFormer (PET) 89.0 4.6 298 0.5
LoRA (PET) 88.4 5.5 308 0.45

DCRM-ViT (ours) 90.3 3.3 335 0.3

Cross-Domain Results: Our cross-domain evaluation assessed the model’s adaptability when applied
outside its initial training domains. This analysis provided crucial insights into the transfer learning
capabilities of each model. In Table 4, models initially fine-tuned on fetal datasets, then tested
on diverse natural imagery datasets like CIFAR-10 and Caltech101, showed that DCRM-ViT was
notably superior. Similarly, when models trained on natural imagery were tested on specialized fetal
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datasets such as Fpus23 and Fetal Planes, DCRM-ViT maintained the highest performance. These
results highlight DCRM-ViT’s robust generalization capabilities, facilitated by its advanced feature
adaptation strategies that effectively leverage domain-general knowledge.

Table 6: Impact of architectural components (addition/removal) on DCRM-VIT.

Dataset Metric DR. Gates Drop-Path GELU DAAM Rescale PEN RMB Meta Learning

FPUS23 Acc. (%) 58.2 ± 1.3 60.7 ± 1.6 62.5 ± 0.9 62.9 ± 0.8 60.1 ± 1.0 61.4 ± 1.2 59.1 ± 1.4 51.4 ± 1.1 58.8 ± 0.8
F1 0.59 ± 0.04 0.60 ± 0.05 0.62 ± 0.02 0.64 ± 0.03 0.60 ± 0.02 0.62 ± 0.04 0.58 ± 0.05 0.52 ± 0.03 0.57 ± 0.05

Fetal Planes Acc. (%) 78.2 ± 0.8 86.0 ± 1.1 88.7 ± 0.7 88.9 ± 0.5 86.1 ± 0.6 84.5 ± 0.9 85.7 ± 1.3 74.5 ± 1.5 83.1 ± 1.2
F1 0.77 ± 0.03 0.86 ± 0.04 0.88 ± 0.02 0.89 ± 0.01 0.85 ± 0.02 0.85 ± 0.03 0.85 ± 0.05 0.72 ± 0.03 0.86 ± 0.04

Segmentation Results Although DCRM-ViT is introduced as a domain-conditioned, per-sample
classifier, its domain-conditioned mechanism transfers directly to segmentation, which is the clinically
actionable endpoint in many prenatal and cardiac workflows. Concretely, we keep the ViT encoder
frozen and attach a shallow per-pixel decoder (a 1×1 classifier with lightweight upsampling), training
only this head together with the RMB and DR. using Dice+cross-entropy losses. This preserves
the backbone’s general-vision features while allowing per-sample corrections that are critical in
ultrasound and equally beneficial in CT/MRI (adapting to modality-specific intensity and texture
statistics). Table 7b summarizes segmentation performance for ultrasound (BUS-UCLM, BUID,
BUS-BRA) and other medical modalities (cardiac CT/MRI via ACDC and MMWHS). Across all six
datasets, DCRM-ViT retaining a frozen backbone and applying domain-conditioned residual modu-
lation consistently outperforms strong baselines like FetalCLIP (Maani et al., 2025), SAMUS (Lin
et al., 2024), SAMed (Zhang & Liu, 2023), and U-Net (Ronneberger et al., 2015), while keeping the
trainable/latency overhead modest. On BUS-UCLM, BUID, and BUS-BRA, DCRM-ViT improves
by +3.07 points on average over SAMUS. Beyond ultrasound, improving with +2.23 point gain over
SAMUS.

Table 7: (a) Ablation on epochs for FPUS23/FP (Acc.%); (b) Segmentation Dice on ultrasound and
cardiac CT/MRI.

(a) Ablation results for epochs on FPUS23 and FP.

Model FPUS23 Dataset (Acc.%) FP Dataset (Acc.%)

15 Epochs 30 Epochs 50 Epochs 100 Epochs 15 Epochs 30 Epochs 50 Epochs 100 Epochs

CLIP 59.3 ± 1.2 61.5 ± 0.9 60.2 ± 1.1 58.8 ± 1.4 39.7 ± 1.5 42.1 ± 1.3 41.0 ± 1.2 39.9 ± 1.6

MAE 56.9 ± 1.3 59.5 ± 1.0 58.5 ± 1.2 58.1 ± 1.1 85.6 ± 0.8 87.8 ± 0.7 87.5 ± 0.9 86.7 ± 0.8

DINOv2 55.7 ± 1.4 57.6 ± 1.1 56.8 ± 1.3 56.0 ± 1.5 79.4 ± 1.0 81.5 ± 0.9 80.4 ± 1.2 79.4 ± 1.1

Tip-Adapter 56.3 ± 1.2 58.4 ± 1.0 57.8 ± 1.1 56.9 ± 1.3 82.2 ± 0.8 84.5 ± 0.9 83.7 ± 0.9 82.9 ± 1.0

AdaptFormer 59.8 ± 1.1 62.1 ± 0.9 61.2 ± 1.0 60.4 ± 1.2 83.9 ± 0.7 85.9 ± 0.8 85.2 ± 0.9 84.3 ± 1.0

LoRA 58.2 ± 1.3 60.2 ± 1.0 59.4 ± 1.1 58.5 ± 1.4 84.4 ± 0.7 86.7 ± 0.6 85.9 ± 0.8 85.1 ± 0.9

DCRM-ViT 60.4 ± 1.0 63.4 ± 0.8 62.7 ± 0.9 58.3 ± 1.3 86.2 ± 0.7 89.2 ± 0.6 88.6 ± 0.8 88.1 ± 0.9

(b) Segmentation Dice (↑)

Method Ultrasound Cardiac CT/MRI

BUS-UCLM BUID BUS-BRA ACDC MMWHS–CT MMWHS–MRI

U-Net 0.682 0.651 0.723 0.888 0.825 0.793
SAMed 0.732 0.702 0.668 0.902 0.837 0.805
FetalCLIP 0.781 0.742 0.719 0.894 0.849 0.818
SAMUS 0.817 0.774 0.802 0.905 0.861 0.831

DCRM-ViT 0.862 0.789 0.834 0.928 0.880 0.856

Ablation Study. Our ablation studies evaluated the impact of specific architectural changes in
the DCRM-ViT model, focusing on fetal datasets (Fpus23 and Fetal Planes). The results for the
experiment without and with some components of the DCRM-ViT are shown in Table 6. Similarly,
increasing the number of adapter layers consistently improved performance on fetal datasets until a
size of 12, as can be seen in Table 9. We also perform the ablation for the backbone used (Table 9),
as well as the impact of epoch size on the performance, as presented in Table 7a. The performance
here tends to decrease after 30 epochs due to the overfitting problem. More ablations are also shown
in A.11 and A.12.

5 CONCLUSION

This paper introduced DCRM-ViT, a transformer-based framework that embeds per-sample domain-
aware adaptation to improve image classification and segmentation across medical and general
domains. Results show that DCRM-ViT surpasses traditional models like CLIP and DINOv2 in
adaptability and accuracy. Including RMB layers has notably enhanced DCRM-ViT’s generaliza-
tion capabilities, especially in medical imaging, leading to significant performance improvements.
Ablation studies affirm the benefits of architectural adjustments such as RMB layers and drop path
regularization in boosting performance and mitigating overfitting.
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REPRODUCIBILITY STATEMENT.

To facilitate reproducibility, we describe our architecture details along with training setup in Section 3.
Besides, we also provided our pseudo-code in A.9 and experimental setup in A.8. We will release
code, configs, and pretrained DCRM weights to reproduce all results end-to-end after acceptance.
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A APPENDIX

A.1 LLM USAGE STATEMENT

We made limited use of large language models to enhance the clarity and readability of the text. They
were not involved in the conception of ideas, experiment design, analysis, or the production of results.

Table 8: Comparison of module types in the DCRM-ViT framework

Module Type Primary Role Input Sensitivity Mechanism Benefit

DR. Domain-aware
modulation

Varies per input (e.g., fetal
vs. general images)

Gate-channel architecture with
PSN-generated parameters

Enables input-dependent adaptation across
domains

RMB Task-specific fine-tuning Fixed per task Lightweight residual bottleneck
modules

Enables parameter-efficient customization
and improved classification performance

A.2 ZERO-SHOT TRANSFORMATION

This adaptation process is formulated as an optimization problem that aims to minimize the squared
euclidean distance between the transformed feature representations of the source models and the
corresponding CLIP embeddings, with an added regularization term to mitigate overfitting. Here,
the source model corresponds to the model that lacks direct zero-shot capability. The mathematical
expression for this optimization function includes a Frobenius norm of W as the regularization term:

min
W,b

{
N∑
i=1

∥Wfsource(xi) + b− fCLIP(xi)∥22 + λ∥W∥2F

}
(5)

Where λ is a regularization parameter that helps balance the fit and complexity of the model to
enhance generalization. The transformation W and bias b are updated iteratively using stochastic
gradient descent, with the update rules defined as:

W (t+1) = W (t) − η
(
∇WL(W, b;x(t)) + λW (t)

)
(6)

b(t+1) = b(t) − η∇bL(W, b;x(t)) (7)

L(W, b;x) =

n∑
i=1

∥Wfsource(xi) + b− fCLIP(xi)∥22 (8)

Here, η denotes the learning rate and t represents the iteration number. After training, the adaptation’s
effectiveness is quantified by computing the cosine similarity between the transformed feature vectors
and the CLIP embeddings. This metric provides a measure of how well the adapted model features
align with the multimodal semantic space of CLIP:

cosine_similarity =
⟨Wfsource(x), fCLIP(x)⟩
∥Wfsource(x)∥∥fCLIP(x)∥

(9)

A high cosine similarity indicates successful alignment, affirming the model’s capability to perform
zero-shot classification by interpreting textual descriptions associated with images. This enables these
traditionally non-zero-shot models to recognize and categorize images without explicit prior training
on specific class labels. This adaptation extends the utility of these models for advanced applications
where labels are scarce or unavailable, enhancing their applicability in diverse real-world scenarios.

A.3 LIMITATIONS AND FUTURE WORK

The granularity of DCRM-ViT’s DR. module may not be sufficient for complex medical scenarios,
as it primarily distinguishes between broad image categories without delving into finer medical
subdomains. This limits its diagnostic capabilities in environments that require detailed differentiation
among medical conditions. Moreover, DCRM-ViT’s performance heavily depends on the quality
of its underlying pre-trained backbone ViT models. By having inadequate or non-representative
pre-training, the model’s effectiveness can be affected in specialized medical tasks, affecting its
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adaptability and precision. Moreover, our evaluation focuses on static 2D scans which shows that
DCRM-ViT has not yet been tested on video sequences or other medical imaging modalities like
X-ray. Finally, DCRM-ViT is based on classification and segmentation tasks, whereas many clinical
applications (e.g., landmark detection) require further dense predictions.

To refine DCRM-ViT, we aim to enhance the ability of the DR. module to recognize and adapt
to more specific medical modalities like PET, X-Ray, and other scans, which will cover a broad
spectrum of adaptability in the medical domain. Additionally, the current structure of DCRM-ViT
follows a linear approach, where we tend to explore other parallel options to combine the different
modules, like having separate RMB branches (e.g., one branch for natural features, one for the MRI
domain, and one for fetal), followed by a fusion mechanism. Furthermore, we will generalize the
DR. + RMB integration for dense prediction by embedding domain-aware calibration directly into
landmark-detection heads, thereby enabling pixel-level refinement of fetal structures. Finally, to
enable video analysis, we also look forward to incorporating temporal feature fusion, for example,
via a lightweight spatio-temporal transformer or recurrent memory tokens to enforce consistency
across video frames and improve robustness to motion blur.

A.4 NEGATIVE SOCIETAL IMPACT

While DCRM-ViT presents a promising advancement for enhancing prenatal diagnostics, its imple-
mentation may inadvertently introduce certain negative societal consequences. A primary concern
is the risk of overreliance on automated model output, which could reduce hands-on diagnostic
practice and experiential learning opportunities for clinicians. This reduction in active engagement,
especially among novice practitioners, risks disrupting the essential expert-novice developmental
trajectory. Such disruption may impair the acquisition of diagnostic intuition and decision-making
skills critical for clinical expertise. Beane (Beane, 2024) emphasizes that preserving human skill
in an era of intelligent machines requires careful balancing to avoid the premature automation of
tasks that undermine the development of expertise and the nuanced judgment that only hands-on
experience can cultivate.

Moreover, since the model is trained on data from specific ultrasound devices and patient populations,
domain shifts may degrade model performance when applied across different scanners or diverse
demographic groups. This limitation highlights the imperative for ongoing domain adaptation,
validation, and recalibration using heterogeneous datasets to ensure consistent accuracy and fairness
across clinical contexts.

Finally, despite adherence to rigorous privacy protocols, medical imaging systems inherently carry a
residual risk of unauthorized data access or breaches. Given the sensitivity of prenatal imaging data,
robust adversarial safeguards and comprehensive cybersecurity measures are critical to mitigate such
vulnerabilities and uphold patient confidentiality.

A.5 KEY INSIGHTS.

There is a notable difference in the zero-shot performance between fetal and natural image datasets.
However, it is worth noting that this accuracy has been reported in zero-shot settings while using the
feature transformation approach (Sec. 3). This lower performance can be improved further by using
several targeted improvements, like expansion of training data to cover more variations of the medical
domain, implementation of a contrastive pre-training approach specifically for the fetal domain, and
modifying the transformation approach by using CLIP embedding space tailored for the fetal domain
rather than the natural imagery domain. Moreover, during the feature transformation, we used the
normal CLIP embedding space, which limits the capability of DCRM-ViT.

A.6 EXTENDED DESCRIPTION OF METHODOLOGY

In this sub-section, we provide further details for the proposed methodology of DCRM-ViT model.

A.6.1 SOFT PARAMETER SHARING

We implement a soft-parameter sharing mechanism to effectively utilize knowledge from both
domains. The final RMB parameters are computed by weighting the domain-specific parameters
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according to the domain probabilities. This can be mathematically written as θA = pmedicalθA,medical +
pnaturalθA,natural. This approach enables the model to handle images with features from different
domains or ambiguous characteristics, thus enhancing its robustness and generalization.

A.6.2 REGULARIZATION OF DYNAMIC PARAMETERS

To prevent the dynamically generated parameters and domain attention biases from deviating ex-
cessively from the base parameters, we introduce a regularization term in the loss function as
Lreg = λ

(
∥θA − θA,base∥2 + ∥Bd −Bbase∥2

)
. Here, θA,base and Bbase are the base RMB parameters

and attention biases (initialized from the pre-trained weights of ViT), and λ is a regularization
coefficient. This regularization ensures that the model retains the foundational knowledge from the
pre-trained model while adapting to domain-specific nuances.

A.6.3 DROP PATH REGULARIZATION

Drop path regularization is implemented to enhance the generalization capability of the DCRM-ViT
model and prevent overfitting. This technique randomly drops Transformer blocks during the training
phase, encouraging the model to develop redundant paths for information processing. This increases
its fault tolerance and reduces dependence on any single path during inference. The drop path
regularization can be mathematically expressed as:

hdrop =

{
h with probability (1− p)

0 with probability p
(10)

where p is the drop path rate.

Figure 4: DCRM-ViT results using ultrasound and natural images, showing labels and confidence
levels

A.6.4 ROBUSTNESS TO NOISE.

The robustness of domain probabilities to noise in medical data is a crucial concern due to the
inherently noisy nature of such data. Here, the domain classifier is trained not only on clean images
but also on medical images, learning the discriminative nature between both domains. In case we
remove the noise completely, then the model will probably get overfit and will not be able to perform
well when shown some real-time clinical medical images, which definitely would contain the noise.
So, the model should be adapted to the nature of the medical domain accordingly. Therefore, we
have already incorporated the Drop Path (as explained above) and regularization approach within the
domain classifier to prevent overfitting to noisy or outlier data points, enhancing the generalization
capabilities of the DR. module across noisy inputs.

A.7 QUALITATIVE RESULTS

Figure 4 illustrates the correctly classified examples from a batch of test data spanning both fetal-
ultrasound (arm, brain, femur) and natural-image (flower, car, dog, cat) domains. In all cases, the
model’s top-1 prediction matches the ground truth with high confidence (0.93–0.98), demonstrating
robust domain-agnostic recognition that complements the quantitative gains reported earlier.

A.8 EXPERIMENTAL SETUP

The experiments are conducted on NVIDIA A100 GPU with 40 GB of VRAM and 128 GB of
RAM. Adam (Kingma & Ba, 2014) optimizer was used for all model training, whereas SGD (Ruder,
2016), along with the CosineAnnealingLR scheduler, was used to adapt the self-supervised models to
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zero-shot configurations. We used different models like MAE (He et al., 2022), DINOv2 (Oquab
et al., 2023), and CLIP (Radford et al., 2021), as well as the low-rank methods like Tip-Adapter
(Zhang et al., 2021), AdaptFormer (Chen et al., 2022), and LoRA (Hu et al., 2021). The batch size of
32 was used for all the datasets. We use the inner-loop learning rate to be relatively high with value
of 1 × 10−3 so that each RMB can rapidly adapt to its task-specific data. In contrast, we use a bit
lower learning rate of 1× 10−4 as the outer loop updates the parameters more conservatively.

For validation and performance testing, a split of 60-20-20 is used, where 60% of the data from each
dataset is used for training (Ddom

T , Dtask
T ), 20% for validation, and the remaining 20% for testing. The

difference between Ddom
T and Dtask

T is that the former is used as a binary classification problem where
the classes are either fetal or natural domain. In contrast, the latter refers to the main task classes
like fetal arm, head, abdomen, etc. We evaluate the performance of each model using two primary
metrics: accuracy and F1 score. Accuracy measures the proportion of correct predictions made by
the model out of all predictions. In contrast, the F1 Score assesses the model’s precision and recall
balance, which is particularly useful in scenarios with imbalanced datasets.

A.9 PSEUDO ALGORITHM

Algorithm 1 Training Procedure for Model Adaptation

1: Initialization: Start with pre-trained transformer parameters θ, initial RMB parameters ϕbase, DR.
module parameters ωbase, and learning rates α and β.

2: for each task T do
3: Domain Probability Estimation: Use the domain classifier D to compute D(x) for images

in Dtask
T and Ddom

T .
4: Inner Loop:
5: Generate RMB parameters ϕ using the PSN unit and domain probabilities.
6: Fine-tune ϕ on Dtask

T .
7: Update ϕ′

T for task T .
8: Outer Loop:
9: Compute Ltotal on Ddom

T .
10: Update ω, ϕ, and α.
11: end for
12: Repeat:
13: Iterate over all tasks, performing inner and outer loop updates until convergence.

A.10 DATASETS

This paper incorporates ultrasound, CT, and MRI, as well as natural imagery datasets to compre-
hensively evaluate the effectiveness of the models. Further details for each modality is provided
below.

Figure 5: Visualization of attention maps

A.10.1 ULTRASOUND DATASETS

FPUS23. The FPUS23 dataset (Prabakaran et al., 2023) utilizes a simulated 23-week gestation
fetus phantom to overcome the ethical challenges associated with actual patient data. This dataset,
comprising 15,728 ultrasound images captured with the Philips Epiq-7 system, is enhanced by
Anatomically Intelligent Ultrasound (AIUS) technology. It includes images categorized into four
classes: Head, Abdomen, Arms, and Legs, demonstrating its diversity and applicability for anatomical
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studies. We filtered the images from this dataset so that each image would have a single class like
arm or an abdomen, and then applied various augmentations to increase the size of the dataset.

Fetal Planes DB. The Fetal Planes (FP) dataset (Burgos-Artizzu et al., 2020) features over 12,400
annotated ultrasound images from 1,792 patients. These images are sorted into six categories
reflecting key fetal anatomical planes used in prenatal screenings: Abdomen, Brain, Femur, Thorax,
and the maternal cervix. Additional categorization into sub-planes, including trans-thalamic, trans-
cerebellum, and trans-ventricular, provides detailed insights into brain anatomy, although these are
not the primary focus of this paper.

BUS-UCLM. (Vallez et al., 2025) is a curated set of 683 breast ultrasound images from 38 patients
acquired at Ciudad Real General University Hospital on a Siemens ACUSON S2000 with an 18L6
HD probe. Each image has an expert RGB mask (black = normal, green = benign, red = malignant)
and having a total class count of 419 normal, 174 benign, 90 malignant samples, respectively.

BUID. (Al-Dhabyani et al., 2020) is a collection of 780 PNG images (500 × 500 px) from 6̃00
female patients collected at Baheya Hospital (Cairo) using LOGIQ E9 / LOGIQ E9 Agile systems. It
contains normal, benign, and malignant classes with per-image freehand mask ground truths. It has a
class count of 487 benign, 210 malignant, and 133 normal, respectively.

BUS-BRA.(Gómez-Flores et al., 2024) is a public dataset of 1,875 anonymized breast ultrasound
images from 1,064 female patients acquired on four scanners at Brazil’s National Institute of Cancer.
It provides biopsy-proven labels (722 benign, 342 malignant), expert lesion masks, and standardized
5- and 10-fold cross-validation splits.

A.10.2 CT/MRI DATASETS

ACDC. (Bernard et al., 2018) is a cine-MRI dataset of 150 patients evenly split into five diagnostic
groups (NOR, MINF, DCM, HCM, ARV), acquired over six years on 1.5T/3T Siemens scanners with
SSFP sequences. The training set includes 100 labeled subjects, and the test set contains 50. Expert
annotations are provided at the ED / ES for the LV / RV cavities and the LV myocardium.

MMWHS. (Zhuang et al., 2019) is a challenge dataset that provides 120 clinical 3D cardiac volumes
(60 CT and 60 MRI) covering the whole heart. It targets segmentation of standard heart substructures
and enables consistent benchmarking across modalities.

A.10.3 NATURAL IMAGERY DATASETS

For natural-image evaluation, we use CIFAR-10 Krizhevsky et al. (2009), Caltech-101 Fei-Fei et al.
(2004), Natural Images Roy et al. (2018), Food-101 Bossard et al. (2014), SUN397 Xiao et al. (2010),
and Stanford Cars Krause et al. (2013).

A.11 ABLATION FOR RMB DEPTH

Table 9: Compact ablation on RMB depth (left block) and backbone choice (right block) in DCRM-VIT.
The left value shows accuracy while right value corresponds to F1 score.

Dataset # RMB layers Backbone
8 12 14 ResNet-50 VGG-16 ViT-B/16

FPUS23 61.4±1.3 / 0.61±0.04 63.4±0.9 / 0.69±0.03 62.7±1.1 / 0.65±0.04 60.5±1.5 / 0.61±0.05 59.2±1.2 / 0.60±0.03 63.4±0.8 / 0.62±0.02

Fetal Planes 87.2±0.7 / 0.87±0.02 89.2±0.6 / 0.90±0.01 88.2±0.8 / 0.88±0.03 87.0±0.9 / 0.87±0.04 85.5±1.0 / 0.86±0.05 89.2±0.5 / 0.88±0.02

A.12 ABLATION FOR DROP PATH RATE

To enlighten the impact of drop path regularization on the performance of the DCRM-ViT model, we
conducted three experiments across two datasets, FPUS23 and FP. The results, as delineated in Table
10, illustrate that a moderate drop path rate of 0.1 enhances both accuracy and F1 scores, particularly
on the FP dataset. Conversely, increasing the drop path rate to 0.3 decreased performance metrics,
underscoring the critical need for precise tuning of regularization parameters to maintain the delicate
balance between model robustness and learning efficiency.
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Table 10: Impact of drop path regularization on model performance across FPUS23 and FP datasets.

Drop Path Rate FPUS23 Fetal Planes
Accuracy (%) F1 Score Accuracy (%) F1 Score

0.0 63.1 ± 1.4 0.67 ± 0.05 88.5 ± 0.7 0.88 ± 0.02
0.1 63.4 ± 0.8 0.69 ± 0.03 89.0 ± 0.4 0.89 ± 0.01
0.2 62.9 ± 1.2 0.68 ± 0.06 89.3 ± 0.9 0.90 ± 0.03
0.3 62.3 ± 1.0 0.67 ± 0.04 88.7 ± 0.5 0.89 ± 0.04
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