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Abstract

Competitive games played by thousands or even millions of players are omnipresent
in the real world, for instance in transportation, communications, or computer net-
works. However, learning in such large-scale multi-agent settings is known to be
challenging due to the so-called “curse of many agents”. In order to tackle large
population independent learning in a general class of such problems, we formulate
and analyze the Stateless Mean-Field Game (SMFG): we show that SMFG is a
relevant and powerful special case of certain mean-field game formulations and
a generalization of other interaction models. Furthermore, we show that SMFG
can model many real-world interactions, and we prove explicit finite sample com-
plexity guarantees with independent learning under different feedback models with
repeated play. Theoretically, we contribute techniques from variational inequality
(VI) literature to analyze independent learning by showing that SMFG is a VI prob-
lem at the infinite agent limit. We formulate learning and exploration algorithms
which converge efficiently to approximate Nash equilibria even with finitely many
agents. Finally, we validate our theoretical results in numerical examples as well
as in the real-world problems of city traffic and network access.

1 Introduction

Multi-agent RL (MARL) has been an active area of research, with a very broad range of successful
applications in games such as Chess, Shogi [42], Go [43], Stratego [32], as well as real-world
applications for instance in robotics [25] and resource management [24]. However, the applications
of MARL to games of much larger scale involving thousands or millions of agents still remains a
theoretical and experimental challenge [45].

Despite this limitation, competitive games with many players are ubiquitous and typically high-stakes.
In many real-world games, extremely large-scale competitive multiagency is the rule rather than the
exception: for instance when commuting every morning between cities using infrastructure shared
with millions of other commuters, when periodically accessing an internet resource by querying
servers used simultaneously by many users, or when sending information over common communica-
tion channels. A strong but common and powerful assumption in such games is that of statelessness.
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For instance, one can assume that the capacity of an intercity highway or an internet server is only
a function of its (and other highways’/servers’) immediate load and not a function of time 1.

With the aim of modeling learning in such games, we propose and analyze the Stateless Mean-Field
Game (SMFG). In our SMFG model, N players (drivers, internet users, . . . ) choose among K actions
(highway to take, server to access, . . . ) yielding an empirical distribution of players over actions (i.e.,
the load of each action) µ ∈ ∆K , where ∆K is the K dimensional probability simplex. The vector
of expected payoffs then of each action is a function F(µ) ∈ [0, 1]K of the load over actions. Note
that F allows complex dependencies of the payoff of an action on the occupancy of itself and all
other actions as well, hence is a powerful and generic model. Furthermore, we assume players are
selfish, i.e., without regard to global welfare each agent has the goal of maximizing their expected
reward. Hence the natural solution concept is a Nash equilibrium where agents do not have incentive
to unilaterally deviate. Finally, in our setting, we are interested in independent learning (IL) using
repeated play, that is, algorithms where each agent learns from their own (noisy) interactions without
observing others or a centralized coordinator. IL, despite being theoretically challenging, is natural
for such games as centralized control can be an unrealistic assumption for large populations.

From a theoretical perspective, our setting is novel but closely related to certain mean-field game
(MFG) formulations in RL literature, and yields non-trivial results for cases where N is large. As we
present later, the assumptions we introduce are related to Lasry-Lions conditions in MFG literature
[34], although not a strict subclass. Furthermore, our formulation is sufficiently general to be relevant
in many real-world problems while admitting finite-time, finite-sample IL guarantees, which is absent
in MFG literature to the best of our knowledge. Before we formalize SMFG and present the main
theoretical contribution, we first motivate its relevance with three examples.

Network resource management. Assume there are K resources (e.g., servers/computational nodes)
available on a computer network shared by a large number of (say, N ≫ K) users. These resources
might have varying capabilities and user load tolerances, as well as cross correlations in performance
due effects of virtualization. At each time step, each user tries to access a resource, and experiences
a delay/cost that increases with the number of users trying to access the same node. The expected
delays of each server might be a highly nonlinear, complicated function of the distribution of users
over servers that can not be directly modeled, as many complex interactions in infrastructure usage
(power, connectivity, CPU/memory resources) typically exist.

Repeated commuting with large populations. Every morning, N commuters from city A to city B
choose among K routes to drive to their target (typically N ≫ K), observing only how long it takes
them to commute. The distribution of choices in the population affects how much time each person
spends traveling. A simplistic model would be increased waiting times as more people choose the
same (or intersecting) routes. However, modern road infrastructure can be very complex [16] due to
non-trivial feedback loops and adaptive systems such as load-dependent traffic lights.

Multi-player multi-armed bandits with soft collisions. Multiplayer MAB have already been
studied in the special case where collisions (i.e., multiple players choosing the same arm) results in
zero returns. In many real world applications, arms used by multiple players yield diminished (but
non-zero) utilities when occupied by multiple players. For instance, in many radio communications
applications (Bluetooth, Wi-Fi), common frequencies are automatically used via time-sharing, yield-
ing a delayed but successful communication when collisions occur. Similarly, when accessing online
resources, servers will be able to serve multiple clients albeit with slower response times.

Overall, in this paper we introduce the SMFG, its Nash equilibrium as the intuitive solution concept,
and discuss its real-world relevance (Section 2). We theoretically analyze the SMFG at the limit
N → ∞ and make connections to variational inequalities in optimization literature (Section 3.1),
leading to the formulation and finite-time analysis of independent learning in full and bandit feedback
cases (Sections 3.2, 3.3). Finally, we experimentally verify our theory in numerical examples and
two real-world use cases in city traffic and access to the Tor network (Section 4).

1.1 Related Work

This work is situated at the intersection of multiple areas of research, we first present each.

1Unless the timescale is years/decades, in which long-term degradation effects will become significant.
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Mean-field games. Mean-field games (MFG), originally proposed independently by Lasry and Lions
[20] and Huang et al. [17], have been an active research area in multi-agent RL literature. MFG is a
useful theoretical tool for analyzing a specific class of MARL problems consisting a large number
of players with symmetric (but competitive) interests by formulating the infinite agent limit. Such
games have been analyzed under various assumptions, reward models and solution concepts, such
as Lasry-Lions games [34, 33], stationary MFG [1, 47, 51, 49], linear quadratic MFG [14, 10], and
MFGs on graphs [48, 12]. However, finite-sample guarantees for mean-field games only exist under
specific assumptions. For Lasry-Lions games, convergence guarantees exist only in continuous time
dynamics with an infinite agent oracle [34] and discrete time iteration complexity guarantees only
have been shown in the case rewards admit a concave potential [11], while IL guarantees with finite
agents in this setting do not exist to the best of our knowledge. For stationary MFGs, many recent
works require strong regularization, smoothness, and access to infinite-agent oracles [1, 47, 51, 24].
IL in stationary MFGs has been studied either under a subjective equilibrium solution concept [50] or
with strong regularization bias and arbitrarily poor sample complexity [49].

Multi-player MAB (MMAB). Our model is related to the MMAB problem. The standard reward
model for MMAB is collisions [2], where agents receive a reward of 0 if more than one pull the same
arm. Results have focused on the so-called no-communications setting, establishing regret guarantees
for the cooperative setting without a centralized coordinator [3, 37, 5]. In our competitive setting, our
primary metric is exploitability or proximity to NE rather than regret as typically employed in the
collaborative setting of MMAB (similar to the NE for MMAB result established in [23]).

Variational inequalities. Variational inequalities (VI) and algorithms, which we use as theoretical
tools, have been an active research in classical [28, 9, 29] and recent [21, 19] optimization literature.
A recent survey for methods for solving VIs can be found in [4].

Other work. A setting that has a similar set of keywords is mean-field bandits [13, 46]. However,
these models do not analyze a competitive (Nash) equilibrium, rather a population steady-state reached
by an infinite population under a prescribed, unknown agent behavior. In these works, optimality or
exploitability is not a concern, hence a direct comparison with our work is not possible (differences
detailed in appendix, Section A). IL has also been investigated in zero-sum games [6, 41, 31] and
potential games [7, 15]. A related literature is population games & evolutionary dynamics [40, 35],
where competitive populations are analyzed with differential equations. While solution concepts
overlap, we are interested in IL with repeated play and not the continuous-time dynamic system.

1.2 Summary of Contributions

From the perspective of MFG literature, we (1) formulate the SMFG, a new class of MFGs in
which learning occurs without central coordination and with restricted (bandit) feedback, and (2)
propose an algorithm that converges to a solution with finite-sample, finite-agent, IL guarantees under
limited feedback models. Compared to MMAB, the fundamental contribution of our model is the
incorporation of a large class of reward interactions beyond collision models and analysis for large
(N ≫ K) populations of players. SMFG can be also seen as an extension of VIs to the setting where
a stochastic operator oracle is absent, and can only be evaluated in aggregate by a population.

From a technical point of view, we further present the following summary of our novelty and roadmap:
1. We formulate the infinite agent mean-field game limit and its solution (the MF-NE) for the SMFG.

We make connections between MF-NE, VIs with regularization, and NE with explicit bounds on
the bias introduced due to studying the N -agent game.

2. We use techniques from optimization and VIs to analyze independent learning with N -agents,
proving finite sample bounds with regularized learning. Our analyses are partially inspired by [36],
however, it significantly diverges from their techniques due to (1) having an arbitrary monotone
operator rather than a convex minimization problem, (2) the lack of access to a noisy gradi-
ent/operator oracle since we are analyzing IL with N -agents rather than stochastic optimization,
and (3) restricted (bandit) feedback. As a technical contribution, our work demonstrates that VI
and operator theory can be used to understand IL.

3. We analyze the learning algorithm under a bandit feedback model and prove finite sample
guarantees. In this case, we propose a probabilistic exploration scheme that enables agents to
obtain low-variance estimates of the payoff operator F in the absence of centralized coordination.

4. We verify our theoretical results with synthetic and real-world experiments, demonstrating the
usefulness of the mean-field formulation in real-world problems.
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2 Problem Formalization and Motivation

Notation. ∆A denotes the probability simplex over a finite setA. For a setA and a map F : Ω→ RA

defined on Ω, for ω ∈ Ω, a ∈ A, we denote the entry of F(ω) ∈ RA corresponding to a as
F(ω, a) ∈ R. For a vector u ∈ RA, u(a) ∈ R denotes its entry corresponding to a ∈ A. 1K ∈ RK

denotes a vector with all entries 1. For N -tuple v ∈ ΩN and v ∈ Ω, (v,v−i) is the N -tuple with the
i-th entry replaced by v. ea ∈ RA is the standard unit vector with coordinate a set to 1.

2.1 Mathematical Formulation

We formalize the stateless mean-field game (SMFG), the main mathematical object of interest of this
work. The SMFG problem with repeated plays consists of the following.

1. Finite set of players N = {1, . . . , N} with |N | = N ∈ N>0,
2. Set of finitely many actions A, with |A| = K ∈ N>0,
3. A payoff function F : ∆A → [0, 1]K , which maps the empirical occupancy measure of the

population over actions to a corresponding payoff in [0, 1] for each action.
SMFG is played across multiple rounds where players are allowed to alter their strategies in between
observations, where at each round t ∈ N≥0,

1. Each player i ∈ N picks an action ait ∈ A,
2. The empirical occupancy measure over actions is set to be µ̂t :=

1
N

∑N
i=1 eai

t

3. Depending on the feedback model, each agent i ∈ N observes:
Full feedback: The (noisy) payoffs for each action rit := F(µ̂t) + ni

t ∈ RK or,
Bandit feedback: The (noisy) payoff for their chosen action rit := rit(a

i
t) ∈ R.

4. Each agent receives the payoff rit.
Intuitively, SMFG models games where the payoff obtained from choosing an action depends on
how the population is statistically distributed over actions, without distinguishing between particular
players. We assume the K-dimensional noise vectors ni

t are i.i.d. for each i, t and entry-wise have
zero mean and variance σ2. Hence each agent observes a noisy version of the payoff of their action
(or the payoff of all actions with full feedback) under the current empirical occupancy over actions.

We assume the game is competitive, that is, each agent aims to maximize their personal expected
payoff without regard to social welfare. We allow agents to play randomized actions (mixed strategies),
where each agent i randomly chooses their actions at time t with respect to their mixed strategy
πππi
t ∈ ∆A. The primary solution concept for such a game will be the Nash equilibrium (NE).

Definition 1 (Expected payoff, exploitability, Nash equilibrium) For an N -tuple of mixed strate-
gies (πππ1, . . . ,πππN ) ∈ ∆N

A , we define the expected payoff V i of an agent i ∈ {1, . . . , N} as

V i(πππ1, . . . ,πππN ) := E

F
 1

N

N∑
j=1

eaj

 (ai)

∣∣∣∣∣∣aj ∼ πππj ,∀j = 1, . . . , N

 .

An N -tuple (πππ1, . . . ,πππN ) ∈ ∆N
A is called a NE if for all i, V i(πππ1, . . . ,πππN ) = maxπππ∈∆A V i(πππ,πππ−i).

For any δ > 0, we call (πππ1, . . . ,πππN ) ∈ ∆A a δ-NE if V i(πππ1, . . . ,πππN ) ≥ maxπππ∈∆A V i(πππ,πππ−i)− δ
for any i. We also define the exploitability of agent i for the tuple as E iexp({πππj}Nj=1) :=

maxπππ′∈∆A V i(πππ′,πππ−i)− V i(πππ1, . . . ,πππN ).

Intuitively, under a mixed strategy profile (πππ1, . . . ,πππN ) that is a Nash equilibrium, no agent has the
incentive to deviate from their mixed strategy as in expectation each agent is playing optimally with
respect to the rest. The task of finding a NE is equivalent to finding policies with low exploitability,
therefore E iexp is a natural error metric. Note that our definition of exploitability can be seen as the
N -player version of the mean-field game exploitability defined in literature [34].

Goal. With the SMFG problem definition and the solution concept introduced, we state our objective:
in both feedback models, we would like to find sample efficient algorithms which learn an approximate
NE (in the sense of low exploitability) independently from repeated plays by N agents when N is
large. To avoid clutter, we rigorously formalize the notion of an algorithm in the different feedback
models in the appendices (Section C). The rest of the work will be dedicated to formulating and
analyzing such algorithms that learn approximate NE.
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2.2 Assumptions on Payoffs and Examples

Finding a NE in general is challenging, possibly computationally intractable. We analyze SMFG
under certain assumptions on F that also correspond closely to real-world problems. Our first
assumption is the Lipschitz continuity of the payoff. In many applications, action payoffs should not
change too much with small variations in population behavior, Definition 2 formalizes this intuition.

Definition 2 (Lipschitz continuous payoffs) The payoff map F : ∆A → [0, 1]K is called Lipschitz
continuous with parameter L > 0 if for any µ,µ′ ∈ ∆A, ∥F(µ)− F(µ′)∥2 ≤ L∥µ− µ′∥2.

The next fundamental assumption, monotonicity, is standard in variational inequality literature [9]
and is somewhat similar in form to Lasry-Lions conditions in mean-field games literature [34, 33],
apart from the dependence on distributions over actions rather than states.

Definition 3 (Monotone/Strongly monotone payoff) The vector map F : ∆A → [0, 1]K is called
monotone if for some λ ≥ 0, for all ∀µ1,µ2 ∈ ∆A, it holds that

(F(µ1)− F(µ2))
⊤
(µ1 − µ2) =

∑
a∈A

(µ1(a)− µ2(a))(F(µ1, a)− F(µ2, a)) ≤ −λ∥µ1 − µ2∥22.

Furthermore, if the above holds with some λ > 0, F is called λ-strongly monotone.

Monotone payoffs, as in the case of Lasry-Lions conditions, can be intuitively thought as modeling
problems where payoff of an action on average decreases as the occupancy increases. However, one
fundamental difference from existing MFG works is that our monotonicity assumption is on action
occupancy, and not on state occupancy as in [34]. While monotonicity is somewhat technical, the
following examples indicate that the assumptions coincide with practically relevant cases (explicit
proofs deferred to the appendix, Section B).

Example 1 (Non-increasing payoffs) Let Fa : [0, 1] → [0, 1] for a ∈ A be Lipschitz continuous
and non-increasing functions, define F(µ) :=

∑
a Fa(µ(a))ea. Then F is monotone and Lipschitz.

If Fa is also strictly decreasing and there exists λ > 0 such that |Fa(x)− Fa(x
′)| ≥ λ|x− x′| for

all x, x′ ∈ [0, 1], a ∈ A, then F is λ-strongly monotone.

While the above example is expected, the monotone assumption can also model a large class of
payoffs with complicated cross-dependencies on the occupations, as the next example shows.

Example 2 Let A = {1, . . . ,K}, and αk > 0, λk,k′ ∈ R constants for all k, k′ ∈ A, k >
k′. The payoff given by F(µ, k) := − exp{αkµ(k)}/

∑
k′ exp{αk′µ(k′)} +

∑
k′<k λk,k′µ(k′) −∑

k′>k λk′,kµ(k
′) for all k ∈ A is Lipschitz and monotone.

As a richer class of examples, for any concave potential function Φ : ∆A → R, the payoff vector
F = ∇Φ is monotone (see Example 5 in the appendix). The class of monotone payoffs is also strictly
richer than payoffs with potential, and the MMAB problem with collisions can be also formulated
as a monotone operator. Hence, one interpretation of our setting is that we allow soft collisions for
action payoffs, as actions yield non-zero payoffs when chosen by multiple players. We discuss these
further in the appendix (Section B). We also show that monotone payoffs are more general than
congestion games [38] and potential games [27].

3 Main Theoretical Results

We present the main theoretical results of this paper, with actual proofs deferred to the appendices.

3.1 Theoretical Tool: The Mean-Field Game Limit N →∞

In this section, we present the main theoretical machinery of our approach that permits efficient
learning: we formulate and introduce the mean-field limit as the limit when the number of players
goes to infinity. For this purpose, we introduce the following MF-NE concept.

Definition 4 (MF-NE) A mean-field Nash equilibrium (MF-NE) πππ∗ ∈ ∆A associated with
payoff operator F is a probability distribution over actions such that

∑
a πππ

∗(a)F(πππ∗, a) =
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maxπππ∈∆A

∑
a πππ(a)F(πππ

∗, a). If it holds that
∑

a πππ
∗(a)F(πππ∗, a) ≥ maxπππ∈∆A

∑
a πππ(a)F(πππ

∗, a)−δ
for some δ > 0, we call πππ∗ a δ-MF-NE.

Intuitively, the mean-field limit simplifies the SMFG problem by assuming each agent follows the
same policy and replacing the notion of N independent agents with a single agent playing against
a continuum of infinitely many identical agents. While it is an abstract concept (strictly speaking,
MF-NE is not a NE of any game), MF-NE is useful due to the following connection with NE.

Proposition 1 (MF-NE and NE) Let F be L-Lipschitz, δ ≥ 0, and πππ∗ be a δ-MF-NE. Then, the
strategy profile (πππ∗, . . . ,πππ∗) ∈ ∆N

A is a O
(
δ + L√

N

)
-NE.

In words, the price paid for using the MF-NE solution concept scales with O(1/√N), which will
become insignificant in games with large N . Furthermore, finding MF-NE is equivalent to solving
the following variational inequality problem corresponding to the operator F and domain ∆A:

Find πππ∗ ∈ ∆A s.t. F(πππ∗)⊤(πππ∗ − πππ) ≥ 0,∀πππ ∈ ∆A. (MF-VI)

This formulation enables using theoretical results from VI literature. For instance, the MF-NE always
exists for continuous F, and is unique for strongly monotone F (see Section E.1).

Finally, regularizing the MF-VI problem will play a crucial role in the IL setting, as it will prevent the
policies of agents from diverging when there is no centralized controller synchronizing the policies
of agents. We formulate the related τ -Tikhonov regularized VI problem:

Find πππ∗ ∈ ∆A s.t. (F− τI)(πππ∗)⊤(πππ∗ − πππ) ≥ 0,∀πππ ∈ ∆A. (MF-RVI)

Note that F− τI is strongly monotone if F is monotone, hence (MF-RVI) admits a unique solution.
The following lemma connects the solution of (MF-RVI) to the NE in terms of exploitability.

Lemma 1 (MF-RVI and Exploitability) Let F be monotone, L-Lipschitz. Let πππ∗
τ ∈ ∆A be the

(unique) MF-NE of the regularized map F− τI. Let πππ1, . . . ,πππN ∈ ∆A be such that ∥πππi −πππ∗
τ∥2 ≤ δ

for all i, then it holds that E iexp({πππj}Nj=1) = O(τ + δ + 1/
√
N) for all i ∈ N .

In the following two sections, we will present IL algorithms in the more concrete finite N -player
setting and the associated guarantees, using the mean-field limit as a theoretical tool.

3.2 Convergence in the Full Feedback Case

We first present an IL algorithm for full feedback. In this setting, while there is no centralized
controller, independent noisy reports of all action payoffs are available to each agent after each round.
Our analysis builds up on Tikhonov regularized projected ascent (TRPA). The TRPA is defined as

Γη,τ (πππ) := Π∆A(πππ + η(F− τI)(πππ)) = Π∆A((1− ητ)πππ + ηF(πππ)), (TRPA)

for a learning rate η > 0 and regularization τ > 0. Intuitively, Γη,τ uses F evaluated at πππ to modify
action probabilities in the direction of the greatest payoff, incorporating an ℓ2 regularizer of τ . The
analysis of TRPA is standard and known to converge for monotone F [9, 28], when (stochastic)
oracle access to F is assumed. Naturally, the main complication in applying the method above will
be the fact that in the IL setting, agents can not evaluate the operator F arbitrarily, but rather can only
observe (a noisy) estimate of F as a function of the empirical population distribution and not of their
policy πππ. Hence in the full feedback setting, we analyze the following update rule:

πππi
0 := Unif(A) = 1

K
1K , πππi

t+1 = Π∆A((1− τηt)πππ
i
t + ηtr

i
t), (TRPA-Full)

for a time varying learning rate ηt, for each agent i = 1, . . . , N . The extraneous ℓ2 regularization
incorporated each agent running TRPA-Full is critical for the analysis and convergence in IL, as it
allows explicit synchronization of policies of agents without communication.

Theorem 1 (Convergence, full feedback) Assume F is Lipschitz, monotone. Assume N agents run
the TRPA-Full update rule for T time steps with learning rates ηt := τ−1

t+1 and regularization τ > 0.

Then it holds for any agent i = 1, . . . , N that E
[
E iexp({πππ

j
T }Nj=1)

]
≤ O( τ

−2
√
T
+ τ−1

√
N
+τ). Furthermore,

if F is λ-strongly monotone, then E
[
E iexp({πππ

j
T }Nj=1)

]
≤ O( τ

−3/2λ−1/2
√
T

+ τ−1/2λ−1/2
√
N

+ τ).
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Proof: (sketch) We show that under TRPA-Full, (i) the deviations of policies ∥πππi
t − πππj

t∥2 can be
bounded, (ii) consequently, the bias in evaluating F in aggregate as a population is bounded, and (iii)
the resulting recursion yields the stated result. See Theorem 3 in the appendix for details. □

We note that in the choice of learning rate ηt above, no intrinsic problem parameter is assumed to
be known. Furthermore, due to (1) the regularization τ and (2) a finite population, a non-vanishing
exploitability of O(τ + τ−1/

√
N) will be induced in terms of the NE (see Lemma 1) in the monotone

case. Since for finite population SMFG, there will be always be a non-vanishing exploitability in
terms of NE due to the mean-field approximation, in practice τ could be chosen to incorporate an
acceptable loss. Alternatively, if the exact value of the number of players N is known by each agent,
one could choose τ optimally, to obtain the following corollary.

Corollary 1 (Optimal τ , full feedback) Assume the conditions of Theorem 1. For monotone F,
choosing regularization parameter τ = 1/ 4√

N yields E
[
E iexp({πππ

j
T }Nj=1)

]
≤ O(

√
N√
T
+ 1

4√
N
) for any i.

For λ-strongly monotone F, choosing τ = 1/ 3√
N yields E

[
E iexp({πππ

j
T }Nj=1)

]
≤ O(λ

−1/2
√
N√

T
+ λ−1/2

3√
N

).

Even though TRPA-Full solves the regularized (hence strongly monotone) problem, compared to the
O(1/T) rate in classical strongly monotone VI [19] or strongly convex optimization [36], our worse
O(1/√T) time dependence is due to independent learning. Intuitively, additional time is required to
ensure the policies of independent learners are sufficiently close when “collectively” evaluating F.
The additional dependence of the time-vanishing term on

√
N is also a result of this fact. Furthermore,

when learning itself is performed by N agents, we note that the bias as a function of N decreases with
O(1/ 4√

N) (or O(1/ 3√
N) for strongly monotone problems), and not with O(1/√N) as Proposition 1

might suggest. We leave the question whether this gap can be improved, as well as whether knowledge
of N is required to obtain the rate in Corollary 1, as future work.

3.3 Convergence in the Bandit Feedback Case

We now move on to the more challenging and realistic bandit feedback case, where agents can only
observe the payoffs of the actions they have chosen. Once again, we analyze the IL setting (or in
bandits terminology, the “no communications” setting) where agents can not interact or coordinate
with each other. One of the main challenges of bandit feedback with IL in our setting is that it is
difficult for each agent to identify itself (i.e., assign itself a unique number between 1, . . . , N ) so
that exploration of action payoffs can be performed in turns. For instance, in MMAB algorithms,
this is typically achieved using variants of the so-called musical chairs algorithm [23], which is not
available in our formulation. Instead, we adopt a probabilistic exploration scheme where each agent
probabilistically decides it is its turn to explore payoffs while the rest of the agents induce the required
empirical population distribution on which F should be evaluated.

Our algorithm, which we call TRPA-Bandit, is straightforward and relies on exploration occurring
over epochs, where policies are updated once inbetween epochs using the estimate of action payoffs
constructed during the exploration phase. While we formally present TRPA-Bandit in the appendix
(Algorithm 1), the procedure informally is as follows for each agent, fixing an exploration parameter
ε ∈ (0, 1):

1. At each epoch h, for Th = ⌈ε−1 log(h+ 1)⌉ time steps, repeat the following:
(a) With probability ε, sample uniformly an action ah,t, observe the payoff rh,t, and keep

the importance sampling estimate r̂h ← Krh,teah,t
.

(b) Otherwise (with probability 1− ε), sample action according to current policy πππh.
2. Update the policy using TRPA, πππh+1 = Π∆A((1 − τηh)πππh + ηhr̂h), with learning rate

ηh := τ−1

h+1 . If agent did not explore this epoch, use r̂h = 0.
Intuitively, the probabilistic sampling scheme allows some agents to build a low-variance estimate
of F, while others simply sample actions with their current policy in order to induce the empirical
population distribution at which F should be evaluated. The result in this setting is as follows.

Theorem 2 (Convergence, bandit feedback) Assume F is Lipschitz, monotone. Assume N agents
run TRPA-Bandit (Algorithm 1) for T time steps with regularization τ > 0 and exploration parameter
ε > 0, and agents return policies {πππi}i after executing Algorithm 1. Then, for any agent i = 1, . . . , N

7



that E
[
E iexp({πππj}Nj=1)

]
≤ Õ( τ

−2ε−1/2
√
T

+ τ−1ε + τ + τ−1
√
N

+ τ−3/2

N ). If F is λ-strongly monotone,

then E
[
E iexp({πππj}Nj=1)

]
≤ Õ( τ

−3/2λ−1/2ε−1/2
√
T

+ τ−
1/2λ−1/2ε+ τ + τ−1/2λ−1/2

√
N

+ τ−1λ−1/2

N ).

Proof: (sketch) In addition to the full feedback case, we show that (i) for each agent the r̂h are
low-variance, low-bias (scaling O(ε)) estimators of F evaluated at the mean policy, and (ii) the bias
due to no exploration occuring can be controlled. See Theorem 4 in the appendix for a full proof. □

Once again, the values of τ and exploration probability ε can be chosen to incorporate a tolerable
exploitability. In the case where the number of participants N in the game is known, the following
corollary indicates the asymptotically optimal choices for the hyperparameters.

Corollary 2 (Optimal ε, τ , bandit feedback) Assume the conditions of Theorem 2 for N agents run-
ning TRPA-Bandit. For monotone F, choosing τ = 1/ 4√

N and ε = 1/
√
N yields E

[
E iexp({πππj}Nj=1)

]
≤

Õ(N
3/4

√
T

+ 1
4√
N
) for any i. For strongly monotone F, choosing τ = 1/ 3√

N and ε = 1/
√
N yields

E
[
E iexp({πππj}Nj=1)

]
≤ Õ(N

3/4λ−1/2
√
T

+ λ−1/2

3√
N

).

The dependence of N of the sample complexity in the bandit case is worse compared to the full
feedback setting as expected: intuitively the agents must take turns to estimate the payoffs of
each action in bandit feedback. Furthermore, while our problem framework is different and a direct
comparison is difficult in terms of bounds, we point out that classical MMAB results such as [23] have
a linear dependence on N , while in our case the dependence on N scales with N

3/4. We emphasize
that the time-dependence is sublinear in terms of N , up to the non-vanishing finite population bias.
As in the full feedback case, the non-vanishing finite population bias in the bandit feedback case
scales with O(1/ 4√

N) or O(1/ 3√
N), rather than O(1/√N) which would match Proposition 1. Note that

the dependence of the bias on N varies in various mean-field game results [39], but asymptotically is
known to converge to zero as N →∞, as our explicit finite-agent bound also demonstrates.

4 Experimental Results

We validate the theoretical results of our work on numerical and two real-world experiments. The
details of the setup are presented in greater detail in the appendix (Section G) and the code is provided
in supplementary materials. Our experiments assume bandit feedback, although in the appendix we
also include results under the full feedback model. We provide an overview of our setup first.

Numerical problems. Firstly, we formulate three numerical problems, which are based on exam-
ples suggested in Sections 2.2, B. We randomly generate monotone payoff operators that are linear
(LINEAR) and a payoff function that admits a KL divergence potential (KL). We also analyze a particu-
lar “beach bar process” (BB), a stateless version of the example presented in [34]. For numerical exam-
ples, we use K = 5, and vary between various population sizes in N = {20, 50, 100, 200, 500, 1000}
to quantify the effect of finite N and compare with theoretical bias bounds. We set the parameters
ε, τ using the theoretical values from Corollary 2.

Traffic flow simulation. Using the UTD19 dataset [22], we evaluate our algorithms on traffic
congestion data on three different routes for accessing the city center of Zurich (UTD). The UTD19
dataset features many closed loop sensors across various urban roads in Zurich, providing granular
measurements of road occupancy and traffic flow. We use these real-world stationary detector
measurements to approximate traveling times as a function of route occupancy with a kernelized
regression model on three routes. We then evaluate our algorithms on estimated traveling times given
empirical road occupancy in our simulations.

Access to the Tor network. We also run experiments on accessing the Tor network, which is a
large decentralized network for secure communications and an active area of research in computer
security [18, 26]. The Tor network consists of many decentralized servers and access to the network
is achieved by communicating with one of many entry guard servers (a full list advertised publicly
[44], some hosted by universities). As the entry guards serve a wide public of users and each user
is free to choose an entry point, the network is an ideal setting to test our algorithms. We simulate
100 independent agents accessing the network by choosing every minute among K = 5 entry servers
from various geographic locations, and use the real-world ping delays as cost with bandit feedback.
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Overall, our experiments in both models and real-world use cases support our theory. Firstly, our ex-
periments verify learning in the sense of decreasing maximum exploitability maxi∈N E iexp({πππj}Nj=1)

and mean distance to MF-NE given by 1
N

∑
i ∥πππ∗ − πππi

t∥2 during IL (Figure1-b,c). As expected from
Corollary 2, the maximum exploitability oscillates but remains bounded (due to the effect of finite
N ). Furthermore, the agents converge to policies closer to the MF-NE as N increases (Figure1-c),
empirically demonstrating that the MF-NE is an accurate description of the limiting behaviour of
SMFG as N →∞. Our experiments also verify the existence of a non-vanishing bias for fixed N
which approaches 0 as N increases (a). Nevertheless, the scale of this bias (or excess exploitability)
in our experiments decreases rapidly, allowing our results to be significant even for hundreds or
thousands of agents.

(a) (b) (c)

Figure 1: Results for numerical problems KL, BB, LINEAR, UTD. (a) Maximum exploitability of N
agents at convergence as a function of N for different problems, (b) The max. exploitability among
N agents during training with linear payoff (LINEAR), for different N , (c) The mean ℓ2 distance of
agent policies during training to the MF-NE in the Zurich traffic flow simulation problem (UTD).

(a) (b) (c)

Figure 2: Results for the Tor network experiment. (a) Average policies (probability distribution) over
5 servers of the 100 agents in the Tor network access experiment, (b) Empirical distribution of agents
over Tor entry servers during training on 5 servers (different colors indicate different entry servers),
(c) Average waiting times for Tor network access during training.

Our experimental results in traffic congestion and server access also support our theoretical claims.
Despite having no a priori assumption of monotonicity (unlike our synthetic examples), our methods
efficiently converge. We note that in the case of the network access experiments, we refrain from
simulating thousands of agents to minimize network impact. This implies that the delays have a high
dependence on external factors as the behavior of other users will be dominant. Nevertheless, our
experiment indicates that our algorithm can produce competitive results in the wild (Figure 2).

5 Discussion and Conclusion

Overall, we proposed the SMFG framework, analyzed a finite-agent, independent learning algorithm
under bandit feedback with finite sample guarantees, demonstrating efficient IL is possible in particu-
lar mean-field games. Our theoretical results prove explicit guarantees for a class of mean-field games
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under IL, corresponding to open questions in MFG literature. While we prove a sequence of upper
bounds for IL, the optimality of these in terms of T,N is not known: we leave the establishment of
lower bounds as future work. Moreover, as future work, recent developments in VI research can be
adapted to improve IL guarantees and relax assumptions (e.g., using generalized monotonicity [19]),
and extensions of our VI approach to IL in Lasry-Lions games with states can be considered.
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A A Detailed Comparison to the Setting in [13]

Since specific keywords seem to correspond to the works on mean-field approximations with bandits,
we provide a greater discussion of our setting and the results by Gummadi et al. [13]. In general,
our settings and models are very different, hence almost none of the results between our work and
Gummadi et al. are transferable to the other. Our problem formulation, analysis, and results are
fundamentally different from their setting due to the following points.

Stationary equilibrium vs Nash equilibrium. The most critical difference between the two works
is the solution concepts. Our setting is competitive, as a natural extension, the solution concept is
that of a Nash equilibrium where each agent has no incentive to change their policy. On the other
hand, the setting of Gummadi et al. need not be competitive or collaborative and this distinction is
not significant for their framework, their goal is to characterize convergence of the population to a
stationary distribution. Their main results show that if a particular policy map σ : Z2n

≥0 → ∆A is
prescribed on agents, the population distribution will converge to a steady state. The equilibrium
concept [13] is not Nash, rather stationarity.

Optimality considerations. As a consequence of analyzing stationarity, the results in [13] do not
analyze or aim to characterize optimality. In their analysis, a fixed map σ : Z2n

≥0 → ∆A is assumed to
be the policy/strategy of a continuum of (i.e., infinitely many) agents, which maps observed loss/win
counts (from Bernoulli distributed arm rewards) to arm probabilities. The stationary distribution
in general obtained from σ in [13] does not have optimality properties, for instance, a fixed agent
will can have arbitrary large exploitability. The main goal of [13] is to prove the convergence of the
population distribution to a steady state behaviour.

Algorithms. As a consequence of the previous points, Gummadi et al. abstract away any algorithmic
considerations to the fixed map σ and the particular algorithms employed by agents do not directly
have significance in terms of their theoretical conclusions. Since we analyze optimality in our setting,
we require a specific algorithm to be employed (TRPA and Algorithm 1).

Independent learning. In our setting, the notion of learning and independent learning become
significant since we are aiming to obtain an approximate NE. Hence, our theoretical results bound
the expected exploitability (Theorems 1, 2) in terms of number of samples. In [13], the main aim is
convergence to steady state rather than learning.

Population regeneration. Finally, to be able to obtain a contractive mapping yielding a population
stationary distribution/steady state, [13] assumes that the population regenerates at a constant rate β,
implying agents are constantly being replaced by oblivious agents that have not observed the game
dynamics. This smooths the dynamics by introducing a forgetting mechanism to game participants.
Our results on the other hand are closer to the traditional bandits/independent learning setting. For
instance, this would correspond to non-vanishing exploitability scaling with O(β) in our system as
agents constantly “forget” what they learned.

Other (minor) model differences. In our setting, we assume general noisy rewards while in [13],
the rewards are Bernoulli random variables with success probability dependent on the population.

B Examples of Monotone Payoffs

We first prove the monotonicity of the example provided in the main body.

Example 3 (Monotone decreasing congestion payoffs) Assume there exists Lipschitz continuous
functions Fa : [0, 1] → [0, 1] such that Fa is non-increasing, and let F(µ) :=

∑
a Fa(µ(a))ea.

Since we have for µ,µ′ ∈ ∆A,

(F(µ)− F(µ′))⊤(µ− µ′) =
∑
a

(Fa(µ(a))− Fa(µ
′(a)))(µ(a)− µ′(a)) ≤ 0,

the payoff map F is monotone. This payoff map corresponds to a congestion model as more agents
using a particular action leads to diminished payoffs.
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Assume further there exists functions Fa : [0, 1]→ [0, 1] and a constant λ′ > 0 such that |Fa(x)−
Fa(x

′)| ≥ λ′|x− x′| for all a, x, x′. Since we have for µ,µ′ ∈ ∆A,

(F(µ)− F(µ′))⊤(µ− µ′) =
∑
a

(Fa(µ(a))− Fa(µ
′(a)))(µ(a)− µ′(a))

≤
∑
a

λ′(µ′(a)− µ(a))(µ(a)− µ′(a))

= −λ′∥µ− µ′∥22,

F is λ-strongly monotone. This map also corresponds to payoffs decreasing with occupancy, but
ruling out flat regions.

As a special case of the example above, the classical multi-player multi-armed bandits setting with
collisions also yields a monotone Lipschitz continuous payoff. We state this in the following example.

Example 4 (Multi-player MAB with Collisions) For the N -player game, for each action a ∈ A,
take the functions F a

col : [0, 1]→ [0, 1] such that

F a
col(x) =


αa, if x ≤ 1

N ,

αaN( 2
N − x), if 1

N ≤ x ≤ 2
N ,

0, if x ≥ 2
N .

where αa ∈ [0, 1] is the expected payoff of the action a when no collision occurs. Take the payoff
map F(µ) :=

∑
a∈A F a

col(µa)ea. The payoff map F is Lipschitz continuous and monotone, and
corresponds to the classical multi-player MAB with collisions.

While the classical MMAB is a special case of SMFG, the analysis methods and solution concepts
are different (for instance, our results in SMFG consider the regime when N →∞), hence classical
algorithms are still preferable in the MMAB case. Instead, we emphasize that the above connection
to MMAB indicates our monotonicity assumption on F can be seen as a model with “soft-collisions”
observed in many real-world applications.

We also re-iterate the payoffs with potential as outlined in the main text as a large class of examples
satisfying monotonicity.

Example 5 (Payoffs with potential) If there exists a potential function Φ : ∆A → R that is concave
such that F = ∇Φ, the payoff operator F is monotone. Furthermore, if the potential Φ is λ-strongly
concave, then F is λ-strongly monotone.

B.1 Monotone Payoffs without Potential Function

The examples in the previous section are special cases of payoffs with a potential function. We
emphasize that the problem class of monotone operators is much large than that of potential payoffs
with the following example that does not admit any potential function.

Example 6 (A monotone payoff operator without a potential) Let S ∈ SD×D
++ be a symmetric

positive definite matrix, b ∈ RD be an arbitrary vector, and X ∈MD×D be a anti-symmetric matrix
such that X = −X⊤. Take the payoff operator

F(µ) = (−S+X)µ+ b.

Then, −S+X is not symmetric in general, therefore there exists no potential Φ such that F = ∇Φ
since the Jacobian satisfies J(F) = −S +X = ∇2Φ and ∇2Φ must be symmetric. Furthermore,
(−S+X) + (−S+X)⊤ = −2S ⪯ 0, so r is monotone.

Note that in the above Example 6, (−S+X) must exclusively have negative entries on its diagonal,
but can have positive/negative non-diagonal entries. Hence, this would model a problem where
action payoffs have non-trivial interactions/correlations with the occupancies. Such problems can be
wide-spread in complicated real-world problems which can not be modeled just by simple collisions.
For instance, due to memory caching effects or power-of-two effects on virtual servers sharing
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hardware such as RAM/CPU it might be the case that in certain regimes increased load on one server
introduces a small benefit to the other. Likewise, systems that adapt to population behavior (e.g., red
light durations that depend on number of cars waiting, queueing systems that incorporate non-trivial
priority rules) might exhibit such behavior: where on average increased load of options leads to worse
payoffs for everyone, but certain positive reinforcement regimes exist.

Finally, we prove that Example 2 in the main body of the paper is indeed monotone.

Example 7 Let A = {1, . . . ,K}, and αk > 0, λk,k′ ∈ R constants for all k, k′ ∈ A, k > k′.
Take the payoff given by F(µ, k) := − exp{αkµ(k)}/

∑
k′ exp{αk′µ(k′)} +

∑
k′<k λk,k′µ(k′) −∑

k′>k λk′,kµ(k
′).

The fact that F is Lipschitz follows from straightforward properties of the softmax function. For
monotonicity, define the two operators F1,F2 : ∆A → [0, 1]A given by

F1(µ, a) = −
exp{αkµ(k)}∑
k′ exp{αk′µ(k′)}

F2(µ, a) =
∑
k′<k

λk,k′µ(k′)−
∑
k′>k

λk′,kµ(k
′).

Firstly, note that F2(µ) = Xµ for the antisymmetric matrix X, hence is monotone by Example 6.
For F1, take the negative log-sum-exp potential function

Φ(µ) = − log

(∑
a∈A

exp{µ(a)}

)
,

which is concave, and note that F1 = ∇Φ, implying that F1 is monotone by Example 5. Finally,
since both F1,F2 are monotone, the operator F = F1 + F2 is also monotone.

B.2 Monotone Payoffs, Potential Games and Congestion Games

A natural comparison of our framework is with congestion games first proposed by [38]. In such
a setting, a monotonically decreasing payoff function (in terms of occupancy) is assigned to each
action. We present the following example to emphasize that monotone operators are more general
than such payoff models.

Example 8 (Monotonicity without congestion) In Example 6, take the three action game A =
{a1, a2, a3} and the operator F(µ) = Aµ+ b, where

A =

(−1 −1 0
1 0 0
0 0 −1

)
,b =

(
0
0
0

)
.

Hence by simple computation,

F

(
µ1

µ2

µ3

)
=

(−µ1 − µ2

µ1

−µ3

)
.

As before, F is monotone, but it is not a congestion game as the payoff of the action a2 increases as
the occupancy of a1 increases.

A related class of games in game theory that admits provable guarantees with independent learning is
potential games [27]. We show that the N -player SMFG is in general not a potential game, hence
independent learning with best response dynamics is not trivial to analyze. We provide a particular
SMFG that is a counter-example (i.e. does not admit a game potential).

Example 9 The SMFG is a potential game if there exists a map P : AN → R such that for all
i ∈ N ,a = (a1, . . . , aN ) ∈ AN , a ∈ A, it holds that

V i(ai,a−i)− V i(a,a−i) = P (ai,a−i)− P (a,a−i), (1)
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where V i(a) denotes the expected reward of player i when each player j ∈ N (deterministically)
plays action aj . Note that V i(a) = F(µa)(a

i) where µa ∈ ∆A is the empirical distribution of
actions over actions induced by action profile a.

We provide an example of a SMFG where no such P exists. Take N = 3,K = 3,A = {a1, a2, a3},
and the monotone reward F is defined as

F

(
µ1

µ2

µ3

)
=

(−µ1 − µ2

µ1

−µ3

)
,

which is monotone. Assume a potential P exists satisfying Equation 1. Then, it follows by simple
computation that:

V 1(a2, a1, a1)− V 1(a3, a1, a1) = P (a2, a1, a1)− P (a3, a1, a1),

V 2(a3, a1, a1)− V 2(a3, a2, a1) = P (a3, a1, a1)− P (a3, a2, a1),

V 1(a3, a2, a1)− V 1(a2, a2, a1) = P (a3, a2, a1)− P (a2, a2, a1),

V 2(a2, a2, a1)− V 2(a2, a1, a1) = P (a1, a2, a1)− P (a1, a1, a1).

Hence, adding the inequalities above, it must hold that

0 =V 1(a2, a1, a1)− V 1(a3, a1, a1) + V 2(a3, a1, a1)− V 2(a3, a2, a1)

V 1(a3, a2, a1)− V 1(a2, a2, a1) + V 2(a2, a2, a1)− V 2(a2, a1, a1)

=F((2/3, 1/3, 0), a2)− F((2/3, 0, 1/3), a3) + F((2/3, 0, 1/3), a1)− F((1/3, 1/3, 1/3), a2)

+ F((1/3, 1/3, 1/3), a3)− F((1/3, 2/3, 0), a2) + F((1/3, 2/3, 0), a2)− F((2/3, 1/3, 0), a1)

=2/3− (−1/3) + (−2/3)− 1/3

+ (−1/3)− 1/3 + 1/3− (−1)
̸=0,

leading to a contradiction. Hence no such potential P exists, and this (monotone) SMFG is not a
potential game.

C Formalizing Learning Algorithms

In this section, we formalize the concept of an independent learning algorithm in the full feedback and
bandit feedback setting. In general, we formalize the notion of an algorithm as a map Ai

t : Hi
t → ∆A

that maps the set of past observations of agent i at time t to action selection probabilities. The
definition of the setHi

t varies in the full feedback and bandit feedback, we define these rigorously.

Definition 5 (Learning algorithm with full feedback) An independent learning algorithm with full
information A = {Ai

t}i,t is a sequence of mappings for each player with

Ai
t : ∆

t−1
A ×At−1 × [0, 1](t−1)×K → ∆A,

Ai
0 ∈ ∆A,

that maps past t− 1 observations from previous rounds to a mixed strategy on actions A at time t for
each agent i.

Naturally, we are interested in algorithms that yield the NE at the limit with high probability or in
expectation.

Definition 6 (Rational learning algorithm with full feedback) Let A be an algorithm with full
feedback as defined in Definition 5. We call A δ-rational if it holds that for all i, the induced mixed
strategies πππi

t under πππi
0 = Ai

0,πππ
i
t = Ai

t(πππ
i
0, . . . ,πππ

i
t−1, a

i
0, . . . , a

i
t−1, r

i
0, . . . , r

i
t−1) satisfy

lim
t→∞

E[E iexp({πππ
j
t}Nj=1)] ≤ δ, for all i ∈ N .

Note that while not specified in the definition above, we will also be interested in the rate of
convergence of the exploitability term for a consistent algorithm. Finally, we also formalize the
bandit setting.
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Definition 7 (Algorithm with bandit beedback) An algorithm with bandit feedback A = {Ai
t}i,t

is a sequence of mappings for each player with

Ai
t : ∆

t−1
A ×At−1 × [0, 1](t−1) → ∆A,

Ai
0 ∈ ∆A,

that maps past t − 1 observations from previous rounds (only including the payoffs of the played
actions) to a probability distribution on actions A.

Definition 8 (Rational algorithm with bandit feedback) Let A be an algorithm with bandit feed-
back as defined in Definition 7. We call A δ-rational if it holds that for all i, the induced (random)
mixed strategies πππi

t under πππi
0 = Ai

0,πππ
i
t = Ai

t(πππ
i
0, . . . ,πππ

i
t−1, a

i
0, . . . , a

i
t−1, r

i
0, . . . , r

i
t−1) satisfy

lim
t→∞

E[E iexp({πππ
j
t}Nj=1)] ≤ δ, for all i ∈ N .

D Basic Inequalities

In our proofs, we will need to repeatedly bound certain recurrences and sums. In this section, we
present useful inequalities to this end.

Lemma 2 (Harmonic partial sum bound) For any integers s, s̄ such that 1 ≤ s̄ < s and p ̸= −1,
it holds that

log s− log s̄+
1

s̄
≤

s∑
n=s̄

1

n
≤ 1

s
+ log s− log s̄,

sp+1

p+ 1
− s̄p+1

(p+ 1)
+ s̄p ≤

s∑
n=s̄

np ≤ sp+1

p+ 1
− s̄p+1

p+ 1
+ sp, if p ≥ 0

sp+1

p+ 1
− s̄p+1

p+ 1
+ sp ≤

s∑
n=s̄

np ≤ sp+1

p+ 1
− s̄p+1

p+ 1
+ s̄p, if p ≤ 0

Proof: Let f1 : R≥0 → R≥0 be a non-decreasing positive function and f2 : R≥0 → R≥0 be a
non-increasing positive function. Then it holds that

s∫
x=s̄

f1(x)dx+ f1(s̄) ≤
s∑

n=s̄

f1(n) ≤
s∫

x=s̄

f1(x)dx+ f1(s),

s∫
x=s̄

f2(x)dx+ f2(s) ≤
s∑

n=s̄

f2(n) ≤
s∫

x=s̄

f2(x)dx+ f2(s̄).

The result follows from a simple integral bound with
∫

1
xdx = log x and

∫
xpdx = xp+1

p+1 . □

We state a certain recurrence inequality that appears several times in our analysis as a lemma, in order
to shorten some proofs.

Lemma 3 (General error recurrence) Let c0 ≥ 0, c1 ≥ 0, γ > 1 be arbitrary constants. Fur-
thermore, let {ut}∞t=0 be a sequence of non-negative numbers such that for all t ≥ 0, it holds
that

ut+1 ≤
c0

t+ 1
+

c1
(t+ 1)2

+

(
1− γ

t+ 1

)
ut.

Then, for all values of t ≥ 0, it holds that:

ut+1 ≤
c0

t+ 1
+

c1
(t+ 1)2

+
u0

(t+ 1)
γ + γ−1c0 +

c1
(t+ 1)(γ − 1)

+
c1

(t+ 1)γ
.
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Proof: We note that inductively, we have

ut+1 ≤
c0

t+ 1
+

c1
(t+ 1)2

+ u0

t∏
s=0

(
1− γ

s+ 1

)
+

t−1∑
s=0

(
c0

s+ 1
+

c1
(s+ 1)2

) t∏
s′=s+1

(
1− γ

s′ + 1

)
.

Using the inequality 1 + x ≤ ex and Lemma 2, we obtain

ut+1 ≤
c0

t+ 1
+

c1
(t+ 1)2

+ u0

t∏
s=0

exp

{
− γ

s+ 1

}
+

t−1∑
s=0

(
c0

s+ 1
+

c1
(s+ 1)2

) t∏
s′=s+1

exp

{
− γ

s′ + 1

}

≤ c0
t+ 1

+
c1

(t+ 1)2
+ u0 exp

{
−

t∑
s=0

γ

s+ 1

}
+

t−1∑
s=0

(
c0

s+ 1
+

c1
(s+ 1)2

)
exp

{
−

t∑
s′=s+1

γ

s′ + 1

}

≤ c0
t+ 1

+
c1

(t+ 1)2
+ u0 exp {−γ log (t+ 1)}+

t−1∑
s=0

(
c0

s+ 1
+

c1
(s+ 1)2

)
exp

{
−γ log

(
t+ 1

s+ 1

)}

≤ c0
t+ 1

+
c1

(t+ 1)2
+

u0

(t+ 1)
γ +

t−1∑
s=0

(
c0

s+ 1
+

c1
(s+ 1)2

)(
s+ 1

t+ 1

)γ

≤ c0
t+ 1

+
c1

(t+ 1)2
+

u0

(t+ 1)
γ + (t+ 1)−γ

t−1∑
s=0

(
c0

s+ 1
+

c1
(s+ 1)2

)
(s+ 1)

γ

≤ c0
t+ 1

+
c1

(t+ 1)2
+

u0

(t+ 1)
γ + (t+ 1)−γ

t−1∑
s=0

(
c0 (s+ 1)

γ−1
+ c1 (s+ 1)

γ−2
)

The last term can be bound with the corresponding integral (see Lemma 2), yielding (since γ−1 > 0):
t−1∑
s=0

(s+ 1)γ−1 ≤ (t+ 1)γ

γ
.

For the term
∑t−1

s=0(s+ 1)γ−2, we analyze to cases. If 1 < γ ≤ 2, we have
t−1∑
s=0

(s+ 1)γ−2 ≤ (t+ 1)γ−1

γ − 1
+ 1

otherwise, if γ ≥ 2, then
t−1∑
s=0

(s+ 1)γ−2 ≤ (t+ 1)γ−1

γ − 1
.

Hence the two inequalities combined yield the stated bound,

ut+1 ≤
c0

t+ 1
+

c1
(t+ 1)2

+
u0

(t+ 1)
γ +

1

(t+ 1)γ

t−1∑
s=0

(
c0(s+ 1)γ−1 + c1(s+ 1)γ−2

)
≤ c0
t+ 1

+
c1

(t+ 1)2
+

u0

(t+ 1)
γ + γ−1c0 +

c1
(t+ 1)(γ − 1)

+
c1

(t+ 1)γ
.

□

E General Results for MF-NE and VIs

E.1 Existence and Uniqueness of MF-NE

The problem of finding a MF-NE is equivalent to finding a distribution over actions πππ∗ ∈ ∆A

∀πππ ∈ ∆A,F(πππ
∗)⊤(πππ∗ − πππ) ≥ 0.

that is, it is the solution of the VI corresponding to F. The existence of solutions to VIs is a
well-studied problem, and we state the main existence and uniqueness theorem.

Proposition 2 (Existence and Uniqueness of MF-NE) Let F : ∆A → [0, 1]K be a continuous
function. Then F has at least one MF-NE πππ∗, and the set of MF-NE is compact. Furthermore, if F is
also λ-strongly monotone for some λ > 0, then the MF-NE is unique.
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Proof: The MF-NE corresponds to solutions of the VI:

∀πππ ∈ ∆A,F(πππ
∗)⊤(πππ∗ − πππ) ≥ 0.

The domain set ∆A is compact and convex, and the assumption that F is continuous yields the
existence of a solution using Corollary 2.2.5 of [9].

For uniqueness in the case of strong monotonicity, see Theorem 2.3.3 of [9]. □

E.2 MF-NE, NE and Exploitability Bounds

The critical theoretical building block of the paper is the relationship between MF-NE, NE and
explicit bounds in terms of the former on exploitability. We restate several results from the main body
and provide the full proofs, as well as proving certain useful intermediary lemmas.

Lemma 4 For any πππ1, . . . ,πππN ∈ ∆A, it holds that

∣∣∣V i(πππ1, . . . ,πππN )− πππi,⊤ E
[
F(µ̂)

∣∣∣ aj∼πππj ,∀j
µ̂:= 1

N

∑N
j=1 eaj

]∣∣∣ ≤ L
√
2

N
.

Proof: We introduce a random variable āi which is independent from other players’ actions {aj}Nj=1

and has distribution πππi. Then, it holds by simple computation that

V i(πππ1, . . . ,πππN ) =E
[
F(µ̂, ai)

]
= E

[
F(µ̂, ai)

]
= E

F
 1

N

N∑
j=1

eaj , ai


=E

F
 1

N

 N∑
j=1,j ̸=i

eaj + eāi

 , ai


+ E

F
 1

N

N∑
j=1

eaj , ai

− F

 1

N

 N∑
j=1,j ̸=i

eaj + eāi

 , ai

 .

For the first term above, we observe that

E

F
 1

N

 N∑
j=1,j ̸=i

eaj + eāi

 , ai

 =E

E
F
 1

N

 N∑
j=1,j ̸=i

eaj + eāi

 , ai

∣∣∣∣∣∣ai


=E

E
e⊤aiF

 1

N

 N∑
j=1,j ̸=i

eaj + eāi

 |aj


=E

e⊤ai E

F
 1

N

 N∑
j=1,j ̸=i

eaj + eāi

∣∣∣∣∣∣ai


=E
[
e⊤ai

]
E

F
 1

N

 N∑
j=1,j ̸=i

eaj + eāi


=πππi,⊤ E[F(µ̂)],
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since {aj}Ni and (āi,a−i) are identically distributed. The second term above can be bounded using∣∣∣∣∣∣F
 1

N

N∑
j=1

eaj , ai

− F

 1

N

 N∑
j=1,j ̸=i

eaj + eāi

 , ai

∣∣∣∣∣∣
=

∣∣∣∣∣∣e⊤aiF

 1

N

N∑
j=1

eaj

− e⊤aiF

 1

N

 N∑
j=1,j ̸=i

eaj + eāi

∣∣∣∣∣∣
≤∥eai∥2

∥∥∥∥∥∥F
 1

N

N∑
j=1

eaj

− F

 1

N

 N∑
j=1,j ̸=i

eaj + eāi

∥∥∥∥∥∥
2

≤L
∥∥∥∥ 1

N
(eai − eāi)

∥∥∥∥
2

≤ L
√
2

N
.

The last inequality follows from the fact that F is L-Lipschitz. Hence the result follows. □

Proposition 1 (MF-NE and NE) Let F be L-Lipschitz, δ ≥ 0, and πππ∗ be a δ-MF-NE. Then, the
strategy profile (πππ∗, . . . ,πππ∗) ∈ ∆N

A is a O
(
δ + L√

N

)
-NE.

Proof: Firstly, define the independent random variables aj ∼ πππj for all j ∈ N for some πππj ∈ ∆A,
and let π̄ππ = 1/N

∑N
j=1 πππj . As before, define the random variable µ̂ := 1/N

∑N
j=1 eaj . It is

straightforward that E
[

1
N

∑N
j=1 eaj

∣∣∣aj ∼ πππj

]
= π̄ππ, furthermore, by independence of the random

vectors eaj , we have

E
[
∥µ̂− πππj∥2

∣∣aj ∼ πππj

]
≤

√√√√√√E


∥∥∥∥∥∥ 1

N

N∑
j=1

eaj − πππj

∥∥∥∥∥∥
2

2

∣∣∣∣∣∣∣aj ∼ πππj


≤

√√√√ 1

N2

N∑
j=1

E
[
∥eaj − πππj∥22

∣∣∣aj ∼ πππj

]
≤ 2√

N
.

Hence, we have that

∥E[F(µ̂)|aj ∼ πππj ]− F(π̄ππ)∥2 ≤ E[∥F(µ̂)− F(π̄ππ)∥2] ≤
2L√
N

.

Now let i ∈ N be arbitrary, and let πππ′ ∈ ∆A be any distribution over actions that satisfies
V i(πππ′,πππ∗,−i) = maxπππ V

i(πππ,πππ∗,−i). We also define the quantities

F1 = E
[
F(µ̂)

∣∣aj ∼ πππ∗,∀j ∈ N
]
,

F2 = E
[
F(µ̂)

∣∣aj ∼ πππj ,∀i ̸= j, ai ∼ πππ′] .
We will bound V i(πππ′,πππ∗,−i) − V i(πππ∗,πππ∗,−i). Firstly, using Lemma 4 and the result above, we
observe that

|V i(πππ′,πππ∗,−i)− πππ′⊤F(πππ∗)| ≤|V i(πππ′,πππ∗,−i)− πππ′⊤F2|+ |πππ′⊤F2 − πππ′⊤F(
N − 1

N
πππ∗ +

1

N
πππ′)|

+ |πππ′⊤F(
N − 1

N
πππ∗ +

1

N
πππ′)− πππ′⊤F(πππ∗)|

≤L
√
2

N
+

2L√
N

+
2L

N
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since F is L-Lipschitz. Likewise, we have

|V i(πππ∗,πππ∗,−i)− πππ∗,⊤F(πππ∗)| ≤ L
√
2

N
+

2L√
N

.

Finally, using the definition of a δ-MF-NE, it holds that

V i(πππ′,πππ∗,−i)− V i(πππ∗,πππ∗,−i) ≤F(πππ∗)⊤(πππ′ − πππ∗)

+ |V i(πππ∗,πππ∗,−i)− πππ∗,⊤F(πππ∗)|+ |V i(πππ′,πππ∗,−i)− πππ′⊤F(πππ∗)|

≤δ + L(2
√
2 + 4)

N
+

4L√
N

.

□

Our goal in the context of the N -player SMFG is to find policies {πππj}Nj=1 with low exploitability
E iexp for all i. We will next establish a sequence of results that explicitly bound E iexp in terms of
various quantities related to the MF-NE. The next lemma shows that for strongly monotone problems,
bounding the distance ∥πππ − πππ∗∥2 to the unique MF-NE πππ∗ can be used to obtain an approximate
MF-NE.

Lemma 5 (Exploitability and ∥πππ − πππ∗∥2) Let F : ∆A → [0, 1]A be L-Lipschitz, λ-strongly mono-
tone. Assume πππ∗ is the (unique) MF-NE corresponding to F, and πππ ∈ ∆A with δ := ∥πππ − πππ∗∥2.
Then, it holds that for all πππ′ ∈ ∆A,

F(πππ)⊤πππ ≥ F(πππ)⊤πππ′ − cδ.

for c := (2L+
√
|A|), that is, πππ is a cδ-MF-NE.

Proof: Let πππ′ ∈ ∆A be arbitrary. Using the definition of the MF-NE πππ∗,

F(πππ∗)⊤πππ∗ ≥F(πππ∗)⊤πππ′.

F(πππ)⊤πππ + (F(πππ∗)⊤πππ∗ − F(πππ)⊤πππ) ≥F(πππ)⊤πππ′ + (F(πππ∗)⊤πππ′ − F(πππ)⊤πππ′)

F(πππ)⊤(πππ − πππ′) ≥ (F(πππ∗)⊤πππ′ − F(πππ)⊤πππ′)− (F(πππ∗)⊤πππ∗ − F(πππ)⊤πππ)︸ ︷︷ ︸
ϵ

.

The quantity ϵ can be bounded by

|ϵ| ≤|(F(πππ∗)− F(πππ))⊤πππ′|+ |F(πππ∗)⊤πππ∗ − F(πππ∗)⊤πππ|+ |F(πππ∗)⊤πππ − F(πππ)⊤πππ|
≤∥πππ′∥2∥F(πππ∗)− F(πππ)∥2 + ∥F(πππ∗)∥2∥πππ∗ − πππ∥2 + ∥πππ∥2∥F(πππ∗)− F(πππ)∥2
≤δ(2L+

√
|A|).

□

Finally, we will need the following result regarding Tikhonov regularized solutions to MF-NE.
Namely, our approach will involve solving a Tikhonov regularized version of the VI problem for
stability, that is, our algorithms will converge to the solutions of the regularized problem MF-RVI.
The following result shows that as expected, the solutions of the MF-RVI are approximate MF-NE.

Lemma 6 (MF-NE and Tikhonov regularization) Let F : ∆A → [0, 1]A be λ ≥ 0 monotone,
L-Lipschitz. Assume further that πππτ,δ ∈ Π is a δ-MF-NE for the (λ+ τ)-strongly monotone operator
F− τI. Then, it holds that πππτ,δ is a δ + 2τ -MF-NE for the operator F.

Proof: The proof simply follow by writing down the MF-NE inequality that ∀πππ ∈ ∆A,

(F− τI)(πππτ,δ)
⊤πππτ,δ ≥ (F− τI)(πππτ,δ)

⊤πππ − δ,

F(πππτ,δ)
⊤πππτ,δ ≥ F(πππτ,δ)

⊤πππ + τπππ⊤
τ,δ(πππτ,δ − πππ)− δ,

and a simple bound on the term |πππ⊤
τ,δ(πππτ,δ − πππ)| ≤ ∥πππτ,δ∥2∥πππτ,δ − πππ∥2 ≤ 2. □

Before moving on to the proof of Lemma 1, we will require an additional technical result regarding
the Lipschitz continuity of E iexp.
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Lemma 7 (E iexp is Lipschitz) For any N , the exploitability function E iexp : ∆N
A → R is Lipschitz

continuous, that is, for any (πππ1, . . . ,πππN ) ∈ ∆N
A ,πππ, π̄ππ ∈ ∆A,

|E iexp(πππ,πππ
−j)− E iexp(π̄ππ,πππ

−j)| ≤ Lj,i∥πππ − π̄ππ∥2,

with the Lipschitz modulus given by

Li,j =

{√
K, if i = j,

4L
√
2K

N , if i ̸= j.

Proof: We first prove the fact that V i is Lipschitz. In the proof, we denote the empirical action
distribution induced by actions {aj}Nj=1 ∈ AN by µ̂({aj}Nj=1) ∈ ∆A.

|V i(πππ,πππ−i)− V i(πππ′,πππ−i)|
≤
∣∣E [F (µ̂({ak}Nk=1), a

i
)∣∣aj ∼ πππj ,∀j ̸= i, ai ∼ πππ

]
− E

[
F
(
µ̂({ak}Nk=1), a

i
)∣∣aj ∼ πππj ,∀j ̸= i, ai ∼ πππ′]∣∣

≤

∣∣∣∣∣∣∣∣
∑
aj∈A
j ̸=i

∏
j ̸=i

πππj(aj)
∑
ai∈A

πππ(ai)F(µ̂({ak}Nk=1), a
i)−

∑
aj∈A
j ̸=i

∏
j ̸=i

πππj(aj)
∑
ai∈A

πππ′(ai)F(µ̂({ak}Nk=1), a
i)

∣∣∣∣∣∣∣∣
≤
∑
aj∈A
j ̸=i

∏
j ̸=i

πππj(aj)

∣∣∣∣∣∑
ai∈A

[
πππ(ai)− πππ′(ai)

]
F(µ̂({ak}Nk=1), a

i)

∣∣∣∣∣
≤
∑
aj∈A
j ̸=i

∏
j ̸=i

πππj(aj) ∥πππ − πππ′∥2
√∑

ai∈A

F(µ̂({ak}Nk=1), a
i)2

≤
∑
aj∈A
j ̸=i

∏
j ̸=i

πππj(aj) ∥πππ − πππ′∥2
√
K

≤∥πππ − πππ′∥2
√
K.

where we use the Cauchy-Schwartz inequality.

Likewise, for any k ̸= i, it holds that

|V i(πππ,πππ−k)− V i(πππ′,πππ−k)|
≤E

[
F
(
µ̂({al}Nl=1), a

i
)∣∣aj ∼ πππj ,∀j ̸= k, ak ∼ πππ

]
− E

[
F
(
µ̂({al}Nl=1), a

i
)∣∣aj ∼ πππj ,∀j ̸= k, ak ∼ πππ′]

≤

∣∣∣∣∣∣∣∣
∑
aj∈A
j ̸=k

∏
j ̸=k

πππj(aj)
∑
ak∈A

πππ(ak)F(µ̂({al}Nl=1), a
i)−

∑
aj∈A
j ̸=k

∏
j ̸=k

πππj(aj)
∑
ak∈A

πππ′(ak)F(µ̂({al}Nl=1), a
i)

∣∣∣∣∣∣∣∣
≤
∑
aj∈A
j ̸=k

∏
j ̸=k

πππj(aj)

∣∣∣∣∣∣
∑
ak∈A

[
πππ(ak)− πππ′(ak)

]
F(µ̂({al}Nl=1), a

i)

∣∣∣∣∣∣
In this case, note that for any a, a′ ∈ A,a ∈ AK , we have |F(µ̂(a,a−k), ai)−F(µ̂(a′,a−k), ai)| ≤
∥F(µ̂(a,a−k)) − F(µ̂(a′,a−k))∥2 ≤ L

√
2/N, hence there exists a constant v−k ∈ R such that
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|F(µ̂(a,a−k), ai)− v−k| ≤ 2L
√
2/N for all a. Then,

|V i(πππ,πππ−k)− V i(πππ′,πππ−k)|

≤
∑
aj∈A
j ̸=k

∏
j ̸=k

πππj(aj)

∣∣∣∣∣∣
∑
ak∈A

[
πππ(ak)− πππ′(ak)

] [
F(µ̂({al}Nl=1), a

i)− v−k

]∣∣∣∣∣∣
≤
∑
aj∈A
j ̸=k

∏
j ̸=k

πππj(aj)∥πππ − πππ′∥2
√∑

ak∈A

[
F(µ̂({al}Nl=1), a

i)− v−k

]2
≤
∑
aj∈A
j ̸=k

∏
j ̸=k

πππj(aj)∥πππ − πππ′∥22L
√
2
√
K/N

≤∥πππ − πππ′∥2
2L
√
2
√
K

N
.

Finally, we establish the Lipschitz continuity of E iexp.

|E iexp(πππ,πππ
−i)− E iexp(πππ

′,πππ−i)|

≤
∣∣∣∣max
πππ∈∆A

V i(πππ,πππ−i)− V i(πππ,πππ−i)− max
πππ∈∆A

V i(πππ,πππ−i) + V i(πππ′,πππ−i)

∣∣∣∣
≤
∣∣V i(πππ′,πππ−i)− V i(πππ,πππ−i)

∣∣
≤
√
K∥πππ − πππ′∥2.

Similarly, for k ̸= i,

|E iexp(πππ,πππ
−k)− E iexp(πππ

′,πππ−k)|

≤
∣∣∣∣max
πππ∈∆A

V i(πππ,πππ,πππ−k,i)− V i(πππ,πππ−k)− max
πππ∈∆A

V i(πππ,πππ′,πππ−k,i) + V i(πππ′,πππ−k)

∣∣∣∣
≤ max

πππ∈∆A

∣∣V i(πππ,πππ,πππ−k,i)− V i(πππ,πππ′,πππ−k,i)
∣∣+ ∣∣V i(πππ,πππ−k)− V i(πππ′,πππ−k)

∣∣
≤4L

√
2K

N
∥πππ − πππ′∥2.

□

Finally, we prove the statement in the main body of the text.

Lemma 1 (MF-RVI and Exploitability) Let F be monotone, L-Lipschitz. Let πππ∗
τ ∈ ∆A be the

(unique) MF-NE of the regularized map F− τI. Let πππ1, . . . ,πππN ∈ ∆A be such that ∥πππi −πππ∗
τ∥2 ≤ δ

for all i, then it holds that E iexp({πππj}Nj=1) = O(τ + δ + 1/
√
N) for all i ∈ N .

Proof: By the Lipschitz continuity of exploitability (Lemma 7), we have

E iexp({πππj}Nj=1) ≤E iexp({πππ∗
τ}Nj=1) +

√
K∥πππi − πππ∗

τ∥2 +
∑
j ̸=i

4L
√
2K

N
∥πππj − πππ∗

τ∥2

≤E iexp({πππ∗
τ}Nj=1) + δ

√
K + 4L

√
2Kδ

The statement follows by using the results of Lemma 5 and Lemma 6. □

E.3 The Projected Ascent Operator

Lemma 8 Assume r is λ-monotone and L-Lipschitz. Then Γη
pg is Lipschitz with constant√

1− 2λη + η2L2.
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Proof: The proof is similar to Theorem 12.1.2 of [9], page 1109.
∥Γpg(µ)− Γpg(µ

′)∥2 ≤∥Π∆K
(µ+ ηr(µ))−Π∆K

(µ′ + ηr(µ′))∥2

≤∥µ+ ηr(µ)− µ′ − ηr(µ′)∥2

≤∥µ− µ′∥2 + η2∥r(µ)− r(µ′)|2 + 2η(r(µ)− r(µ′))⊤(µ− µ′)

≤(1 + η2L2)∥µ− µ′∥2 − 2λη∥µ− µ′∥2

≤(1− 2λη + η2L2)∥µ− µ′∥2

□

Corollary 3 If 0 < η < 2λ
L2 , then Γη

pg is a contraction. The smallest contraction modulus is achieved
for η = λ

L2 , for which Γη
pg is a

√
1− κ2-contraction, where κ := λ

L .

Proof: Placing the values in Lemma 8 yields the statement. □

F Proofs of Main Theoretical Results

In this section, we present the full statements and the proofs of the main convergence theorems, in
the case of expert feedback and bandit feedback.

F.1 Convergence Result for Expert Feedback

Theorem 3 (Convergence - Expert feedback) Assume F is Lipschitz and monotone. Take the algo-
rithm with expert feedback for each player i so that

Ai
0 := Unif(A)

Ai
t+1(. . .) := Π∆K

((1− τηt)πππ
i
t + ηtr

i
t).

with learning rates ηt := τ−1

t+1 . Furthermore, let πππ∗
τ be the solution of the τ -Tikhonov regularized

problem. Then, for any i ∈ N , it holds that

E[E iexp({πππ
j
t}Nj=1)] ≤max{1, 4L

√
2}4τ

−1K
√
1 + σ2 + 4τ−1(L+ τ)

√
K + 12Kτ−2Lσ2

√
t

+max{
√
K, 4L

√
2K}24τ

−1L+ ∥πππi
0 − πππ∗

τ∥22√
t

+
2τ−1Lmax{

√
K, 4L

√
2K}√

N
+ 2τ +

L(2
√
2 + 4)

N
+

4L√
N

.

Furthermore, if F is λ > 0 strongly monotone, it holds that

E[E iexp({πππ
j
t}Nj=1)] ≤max{1, 4L

√
2}3τ

−1K
√
1 + σ2 + τ−1(L+ τ)

√
6K + 5τ−

3/2LKσλ−1/2

√
t

+max{
√
K, 4L

√
2K}9τ

−1/2Lλ−1/2 + ∥πππi
0 − πππ∗

τ∥2√
t

+
2τ−

1/2Lλ−1/2 max{
√
K, 4L

√
2K}√

N
+ 2τ +

L(2
√
2 + 4)

N
+

4L√
N

.

Proof: Define the sigma algebra FT := F({πππi
t}

i=1,...,N
t=0,...,T ). Also define the quantities and random

variables

µ̄t :=
1

N

N∑
i=1

πππi
t,

ηt :=
τ−1

t+ 1
,

eit := ∥πππi
t − µ̄t∥22,

ui
t := E

[
∥πππi

t − πππ∗∥22
]
.
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Our goal naturally is to bound the sequence or error terms ui
t. The strategy is as follows: (1) bound

the expected differences of each agent’s action probabilities eit, showing the deviations of the policies
of the agents go to zero, (2) obtain a non-linear recursion for the expectation of the terms ui

t, (3) solve
the recursion to obtain the convergence rate.

Step 1: Bounding Policy Variations. Firstly, we control the term eit. Note that for any i, j, using the
non-expansiveness of the projection operator, it holds that

∥πππi
t+1 − πππj

t+1∥22 =∥Π((1− τηt)πππ
i
t + ηtr

i
t)−Π((1− τηt)πππ

j
t + ηtr

j
t )∥22

≤∥(1− τηt)πππ
i
t + ηtr

i
t − (1− τηt)πππ

j
t − ηtr

j
t∥22

≤∥(1− τηt)(πππ
i
t − πππj

t ) + ηt(r
i
t − rjt )∥22

=(1− τηt)
2∥πππi

t − πππj
t∥22 + η2t ∥rit − rjt∥22 + 2(1− τηt)ηt(πππ

i
t − πππj

t )
⊤(rit − rjt )

Taking the conditional expectation on both sides, we obtain

E
[
∥πππi

t+1 − πππj
t+1∥22|Ft

]
≤(1− τηt)

2∥πππi
t − πππj

t∥22 + E
[
η2t ∥rit − rjt∥22|Ft

]
+ 2(1− τηt)ηt(πππ

i
t − πππj

t )
⊤ E

[
rit − rjt |Ft

]
=(1− τηt)

2∥πππi
t − πππj

t∥22 + E
[
η2t ∥rit − rjt∥22|Ft

]
=(1− τηt)

2∥πππi
t − πππj

t∥22 + η2t E
[
∥εit − εjt∥22|Ft

]
=(1− τηt)

2∥πππi
t − πππj

t∥22 + η2tKσ2

since we have rit := F(µ̂t) + εit and K = |A|. Then, it holds that

E
[
∥πππi

t+1 − πππj
t+1∥22

]
≤(1− τηt)

2 E
[
∥πππi

t − πππj
t∥22
]
+ η2tKσ2

≤
(
1− 1

t+ 1

)2

E
[
∥πππi

t − πππj
t∥22
]
+

(
τ−1

t+ 1

)2

Kσ2

≤
(
1− 2

t+ 1

)
E
[
∥πππi

t − πππj
t∥22
]
+

1

(t+ 1)2
E
[
∥πππi

t − πππj
t∥22
]
+

τ−2Kσ2

(t+ 1)2

≤
(
1− 2

t+ 1

)
E
[
∥πππi

t − πππj
t∥22
]
+

1

(t+ 1)2
E
[
2∥πππi

t∥22 + 2∥πππj
t∥22
]
+

τ−2Kσ2

(t+ 1)2

≤
(
1− 2

t+ 1

)
E
[
∥πππi

t − πππj
t∥22
]
+

τ−2Kσ2 + 4

(t+ 1)2

To bound the recurrence, we can use Lemma 3 (noting γ = 2, u0 = 0, c0 = 0, c1 = τ−2Kσ2 + 4).

E
[
∥πππi

t+1 − πππj
t+1∥22

]
≤τ−2Kσ2 + 4

(t+ 1)2
+

τ−2Kσ2 + 4

t+ 1
+

τ−2Kσ2 + 4

(t+ 1)2
≤ 3τ−2Kσ2 + 12

(t+ 1)
.

Then, the expected values of eit can be bounded using:

eit =∥πππi
t − µ̄t∥22 =

∥∥∥∥∥∥πππi
t −

1

N

N∑
j=1

πππj
t

∥∥∥∥∥∥
2

2

≤ 1

N

N∑
j=1

∥πππi
t − πππj

t∥22

by an application of Jensen’s inequality. Then we have E
[
eit
]
≤ 3τ−2Kσ2+12

t+1 .

Step 2: Formulating the main recurrence. Next, we analyze for any i, the error term ∥πππi
t − πππ∗∥22.

We denote αt := (1 − τηt). We note that for the regularized solution πππ∗, we have the fixed point
result

Π((1− τηt)πππ
∗ + ηtF(πππ

∗)) = Π(πππ∗ + ηt(F− τI)(πππ∗)) = πππ∗.
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Hence, we can bound the quantity ∥µi
t+1 − πππ∗∥22 by:

∥πππi
t+1 − πππ∗∥22 =∥Π(αtπππ

i
t + ηtr

i
t)−Π(αtπππ

∗ + ηtF(πππ
∗))∥22

≤∥αtπππ
i
t + ηtr

i
t − αtπππ

∗ − ηtF(πππ
∗)∥22

≤∥αtπππ
i
t + ηtF(πππ

i
t)− αtπππ

∗ − ηtF(πππ
∗) + ηt(r

i
t − F(πππi

t))∥22
=η2t ∥rit − F(πππi

t)∥22 + 2ηt(αt(πππ
i
t − πππ∗) + ηt(F(πππ

i
t)− F(πππ∗)))⊤(rit − F(πππi

t))

+ ∥αt(πππ
i
t − πππ∗) + ηt(F(πππ

i
t)− F(πππ∗))∥22

=η2t ∥rit − F(πππi
t)∥22 + 2η2t (F(πππ

i
t)− F(πππ∗)))⊤(rit − F(πππi

t)) + 2ηtαt(πππ
i
t − πππ∗)⊤(rit − F(πππi

t))

+ ∥αt(πππ
i
t − πππ∗) + ηt(F(πππ

i
t)− F(πππ∗))∥22

≤ η2t ∥rit − F(πππi
t)∥22 + 2η2t (F(πππ

i
t)− F(πππ∗))⊤(rit − F(πππi

t))︸ ︷︷ ︸
(a)

+ 2ηtαt(πππ
i
t − πππ∗)⊤(rit − F(πππi

t))︸ ︷︷ ︸
(b)

+ ∥αt(πππ
i
t − πππ∗) + ηt(F(πππ

i
t)− F(πππ∗))∥22︸ ︷︷ ︸

(c)

.

We analyze the three marked terms separately. For term (a), using the independence assumption of
the noise vectors and Young’s inequality, in expectation we obtain

E[(a)] ≤η2t E[∥rit − F(πππi
t)∥22] + η2t E[∥F(πππi

t)− F(πππ∗)∥22] + η2t E[∥rit − F(πππi
t)∥22]

≤2η2t E[∥rit − F(πππi
t)∥22] + η2t E[∥F(πππi

t)− F(πππ∗)∥22]
≤2η2t E[∥rit − F(µ̂t)∥22 + ∥F(µ̂t)− F(πππi

t)∥22] + η2tK

≤2η2t σ2K + 2η2tK = 2η2tK(σ2 + 1)

For the term (c), we obtain

(c) =∥αt(πππ
i
t − πππ∗) + ηt(F(πππ

i
t)− F(πππ∗))∥22

=∥(πππi
t − πππ∗) + ηt(F(πππ

i
t)− τπππi

t − F(πππ∗) + τπππ∗)∥22
≤
(
1− 2(λ+ τ)ηt + (L+ τ)2η2t

)
∥πππi

t − πππ∗∥22
≤ (1− 2(λ+ τ)ηt) ∥πππi

t − πππ∗∥22 + 2(L+ τ)2η2t

where the last inequality holds from the contractivity result in Lemma 8.

For the term (b), first taking the strongly monotone problem λ > 0 , we have that

(b) =2ηtαt(πππ
i
t − πππ∗)⊤(rit − F(πππi

t))

=2ηtαt(πππ
i
t − πππ∗)⊤(rit − F(µ̂t)) + 2ηtαt(πππ

i
t − πππ∗)⊤(F(µ̂t)− F(µ̄t))

+ 2ηtαt(πππ
i
t − πππ∗)⊤(F(µ̄t)− F(πππi

t))

≤2ηtαt

(
λ

4
∥πππi

t − πππ∗∥22 +
1

λ
∥F(µ̂t)− F(µ̄t)∥22

)
+ 2ηtαt

(
λ

4
∥πππi

t − πππ∗∥22 +
1

λ
∥F(µ̄t)− F(πππi

t)∥22
)
+

2ηtαt(πππ
i
t − πππ∗)⊤(rit − F(µ̂t))

≤2ηt
λ

2
∥πππi

t − πππ∗∥22 +
2ηt
λ
∥F(µ̂t)− F(µ̄t)∥22 +

2ηt
λ
∥F(µ̄t)− F(πππi

t)∥22

+ 2ηtαt(πππ
i
t − πππ∗)⊤(rit − F(µ̂t)),

which follows from an application of Young’s inequality. For the last three terms, we have the bounds
in the conditional expectation:

E
[
2ηtαt(πππ

i
t − πππ∗)⊤(rit − F(µ̂t))|Ft

]
= 0
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E[∥F(µ̂t)− F(µ̄t)∥22|Ft] ≤L2 E
[
∥µ̂t − µ̄t∥22|Ft

]
≤L2 E

[
1

N2
∥
∑
i

πππi
t −
∑
i

eai
t
∥22|Ft

]

=
L2

N2

∑
i

E[∥πππi
t − eai

t
∥22|Ft]

≤2L2

N

∥F(µ̄t)− F(πππi
t)∥22 ≤ L2∥µ̄t − πππi

t∥22 = L2eit

Noting that µ̂t is the sum of N independent random variables and has expectation µ̄t.

Hence, putting in the bounds for (a), (b), (c) and taking expectations, we obtain the inequality

E
[
∥πππi

t+1 − πππ∗∥22
]
≤2η2tK(1 + σ2) +

4ηtL
2

λN
+

2ηtL
2

λ
E
[
eit
]

+

(
1− 2(

λ

2
+ τ)ηt

)
E
[
∥πππi

t − πππ∗∥22
]
+ 2(L+ τ)2η2t

or equivalently, the recursion

ui
t+1 ≤

2τ−2K(1 + σ2) + 2τ−2(L+ τ)2

(t+ 1)2
+

4τ−1L2λ−1

N(t+ 1)
+

2τ−1L2λ−1

(t+ 1)
E
[
eit
]
+

(
1− 2τ−1(λ/2 + τ)

t+ 1

)
ui
t.

However, if λ = 0, we bound the term (a) as follows. Take any arbitrary 1 > δ > 0. Then, once
again applying Young’s inequality, we obtain

(a) =2ηtαt(πππ
i
t − πππ∗)⊤(rit − F(πππi

t))

=2ηtαt(πππ
i
t − πππ∗)⊤(rit − F(µ̂t)) + 2ηtαt(πππ

i
t − πππ∗)⊤(F(µ̂t)− F(µ̄t))

+ 2ηtαt(πππ
i
t − πππ∗)⊤(F(µ̄t)− F(πππi

t))

≤2ηtαt

(
τδ

2
∥πππi

t − πππ∗∥22 +
1

2τδ
∥r(µ̂t)− r(µ̄t)∥22

)
+ 2ηtαt

(
τδ

2
∥πππi

t − πππ∗∥22 +
1

2τδ
∥r(µ̄t)− r(πππi

t)∥22
)
+

2ηtαt(πππ
i
t − πππ∗)⊤(rit − F(µ̂t))

≤2ηtτδ∥πππi
t − πππ∗∥22 +

ηt
τδ
∥F(µ̂t)− F(µ̄t)∥22 +

ηt
τδ
∥F(µ̄t)− F(πππi

t)∥22

+ 2ηtαt(πππ
i
t − πππ∗)⊤(rit − F(µ̂t)).

Then, once again repeating the analysis before, we obtain the bound

ui
t+1 ≤

2τ−2K(1 + σ2) + 2τ−2(L+ τ)2

(t+ 1)2
+

4τ−2L2δ−1

N(t+ 1)
+

τ−2L2δ−1

(t+ 1)
E
[
eit
]
+

(
1− 2(1− δ)

t+ 1

)
ui
t.

Step 3: Solving the recurrence. Note that the exploitability in the main statement of the theorem
can be related to ui

t as follows using Lemma 7:

E[E iexp({πππ
j
t}Nj=1)] ≤E iexp({πππ∗}Nj=1) +

√
K E[∥πππi

t − πππ∗∥2] +
4L
√
2K

N

∑
j ̸=i

E[∥πππj
t − πππ∗∥2]

≤E iexp({πππ∗}Nj=1) +
√
K
√
ui
t +

4L
√
2K

N

∑
j ̸=i

√
uj
t

≤E iexp({πππ∗}Nj=1) +
max{

√
K, 4L

√
2K}

N

∑
j

√
uj
t

Hence the bounds on uj
t will yield the result of the theorem by linearity of expectation, along with an

invocation of Proposition 1 and Lemma 6.
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Finally, we solve the recurrences for λ = 0 and λ > 0. For the case λ > 0, placing the shown before
E
[
eit
]
≤ 3τ−2Kσ2+12

t+1 , we obtain

ui
t+1 ≤

2τ−2K(1 + σ2) + 2τ−2(L+ τ)2 + 6τ−3Kσ2λ−1L2 + 24τ−1L2λ−1

(t+ 1)2

+
4τ−1L2λ−1

N(t+ 1)
+

(
1− 2τ−1(λ/2 + τ)

t+ 1

)
ui
t.

An invocation of Lemma 3 proves the main statement of the theorem.

For the monotone case λ = 0, we have the recursion:

ui
t+1 ≤

2τ−2K(1 + σ2) + 2τ−2(L+ τ)2 + 6Kτ−4L2δ−1σ2 + 24τ−2L2δ−1

(t+ 1)2

+
2τ−2L2δ−1

N(t+ 1)
+

(
1− 2(1− δ)

t+ 1

)
ui
t.

Another invocation of Lemma 3 concludes the proof, choosing δ = 1/4. □

F.2 Convergence Result for Bandit Feedback

Algorithm 1 TRPA-Bandit: Independent learning with bandit feedback algorithm for an agent.

Require: Number of actions K, regularization τ > 0, exploration probability ε > 0, number of
epochs H .
πππ0 ← 1

K1
for h = 0, . . . ,H − 1 do

r̂h ← 0
Th ← ⌈ε−1 log(h+ 1)⌉
for t = 1, . . . , Th do ▷ Exploration for Th rounds before policy update,

Sample Bernoulli r.v. u ∼ Ber(ε).
if u = 1 then

Play action ah,t ∼ Unif(A) uniformly at random. ▷ playing uniformly with prob. ε,
Observe payoff rh,t.
r̂h ← Krh,teah,t

.
else if u = 0 then

Play action with current policy ah,t ∼ πππh. ▷ playing the current policy otherwise.
end if

end for
ηh = τ−1

h+1 .
πππh+1 = Π∆K

((1− τηh)πππh + ηhr̂h) ▷ After each epoch, update policy.
end for
Return πππH

Theorem 4 (Convergence - Bandit feedback) Assume F is L-Lipschitz and monotone, and let πππ∗
τ

be the solution of the τ -Tikhonov regularized problem. Assume that for H rounds, each player runs
Algorithm 1 with learning rates and epoch durations

ηh :=
τ−1

(h+ 1)
, Th := ε−1 log(h+ 1),
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producing policies {πππj
h}Nj=1 at each epoch h ∈ 0, . . . ,H − 1. Then for each player i, it holds that

E[E iexp({πππ
j
h}

N
j=1)] ≤

12
√
1 + σ2K

3/2τ−1(1 + τ−1L) + 6τ−1(L+ τ)√
h

max{
√
K, 4L

√
2K}

+
8K

3/4τ−
1/2(1 + σ

1/2) + 15τ−1L(τ−
1/2 + 1) + ∥πππi

0 − πππ∗
τ∥2√

h
max{

√
K, 4L

√
2K}

+
(
23τ−1LN−1/2 + 8τ−1Lε+ 8τ−

3/2LN−1
)
max{

√
K, 4L

√
2K}

+ 2τ +
L(2
√
2 + 4)

N
+

4L√
N

.

Furthermore, if it holds that F is λ-strongly monotone,

E[E iexp({πππ
j
h}

N
j=1)] ≤

7τ−1K
3/2(σ + 1)(1 + τ−

1/2λ−1/2L) + 17τ−1λ−1/2(τ−
1/2 + 1)√

h
max{

√
K, 4L

√
2K}

+
5τ−1(L+ τ) + 5K

3/4τ−
1/2
√
1 + σ + ∥πππi

0 − πππ∗
τ∥2√

h
max{

√
K, 4L

√
2K}

+
(
23τ−

1/2λ−1/2LN−1/2 + 8τ−
1/2λ−1/2Lε+ 6τ−1λ−1/2LN−1

)
max{

√
K, 4L

√
2K}

+ 2τ +
L(2
√
2 + 4)

N
+

4L√
N

.

Proof: Our analysis follows that in the case of expert feedback, the difference being the errors are
analyzed per epoch and randomization in the exploration probabilities. We introduce the following
indicator random variables:

1
i
h,t :=1{player i explores at round t of epoch h}

Ei
h,t :={1i

h,t = 1}
1
i
h :=1{player i explores at least once during epoch h} = max

t=1,...,Th

1
i
h,t

Ei
h :={1i

h = 1} =
Th⋃
t=1

Ei
h,t

aih :=Last explored action in epoch h by agent i,
and a0 if no exploration occurred.

sih :=Timestep when exploration last occurred in epoch h by agent i,
and 0 if no exploration occurred. ∈ {1, . . . , Th}

Note that 1i
h,t are independent random variables for different (i, h, t) triplets, likewise for i ̸= j,

1
i
h,t and 1j

h are pairwise independent. Once again, we define the following sigma algebra Fh :=

F({πππi
h′}i=1,...,N

h=0,...,h), and the random variables:

µ̄h :=
1

N

N∑
i=1

πππi
h,

ηh :=
τ−1

h+ 1

eit := ∥πππi
h − µ̄h∥22,

ui
h := E

[
∥πππi

h − πππ∗∥22
]
.

We again proceed in several steps.

Step 1: The importance sampling estimate. By the definition of the above events and the proba-
bilistic exploration scheme, note that we have

r̂ih = K
(
F(µ̂sih,h

, aih) + ni
t,h(a

i
h)
)
1
i
h.
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Firstly, we note that by law of total expectations and the fact that Ei
h are independent from Fh,

E
[
r̂ih
∣∣Fh

]
=E

[
r̂ih
∣∣Ei

h,Fh

]
P(Ei

h) + E
[
r̂ih

∣∣∣Ei
h,Fh

]
P(Ei

h)

=E
[
r̂ih
∣∣Ei

h,Fh

]
− E

[
r̂ih
∣∣Ei

h,Fh

]
P(Ei

h) + E
[
r̂ih

∣∣∣Ei
h,Fh

]
P(Ei

h)︸ ︷︷ ︸
:=bi

h

=E
[
r̂ih
∣∣Ei

h,Fh

]
+ bi

h

for bi
h quantifying a bias induced due to the probability of no exploration. We have that

∥bi
h∥2 ≤ K

√
K
√

1 + σ2 exp {−εTh}

since E
[
r̂ih

∣∣∣Ei
h,Fh

]
= 0 and exploration probabilities are determined by independent random

Bernoulli variables hence
P(Ei

h) = (1− ε)
Th ≤ exp {−εTh} .

To further characterize the bias, we introduce a coupling argument. Define independent random
variables ājh ∼ επππunif + (1− ε)πππj

h for all j ∈ N and āih,exp ∼ πππunif. By the definition, it holds that
(where µ̂({ājh}j) ∈ ∆A denotes the empirical distribution induced by actions {ājh}j):

∥E
[
r̂ih
∣∣Ei

h,Fh

]
− E

[
F(µ̂({ājh}j))

]
∥2

≤∥E
[
F(µ̂(āih,exp, ā

−i
h ))

]
− E

[
F(µ̂({ājh}j))

]
∥2

≤E
[
∥F(µ̂(āih,exp, ā−i

h ))− F(µ̂({ājh}j))∥2
]

≤2L

N
.

Step 2: Bounding policy variations. Once again, we first bound the variations in policies between
agents.
∥πππi

h+1 − πππj
h+1∥

2
2 =∥Π((1− τηh)πππ

i
h + ηhr̂

i
h)−Π((1− τηh)πππ

j
h + ηhr̂

j
h)∥

2
2

≤∥(1− τηh)πππ
i
h + ηhr̂

i
h − (1− τηh)πππ

j
h + ηhr̂

j
h∥

2
2

≤∥(1− τηh)(πππ
i
h − πππj

h) + ηh(r̂
i
h − r̂jh)∥

2
2

=(1− τηh)
2∥πππi

h − πππj
h∥

2
2 + η2h∥r̂ih − r̂jh∥

2
2 + 2(1− τηh)ηh(πππ

i
h − πππj

h)
⊤(r̂ih − r̂jh).

Unlike the expert feedback proof, the last term does not vanish in expectation.

E
[
∥πππi

h+1 − πππj
h+1∥

2
2|Fh

]
≤(1− τηh)

2∥πππi
h − πππj

h∥
2
2 + E

[
η2h∥r̂ih − r̂jh∥

2
2|Fh

]
+ 2(1− τηh)ηh(πππ

i
h − πππj

h)
⊤ E

[
r̂ih − r̂jh|Fh

]
≤(1− τηh)

2∥πππi
h − πππj

h∥
2
2 + E

[
η2h∥r̂ih − r̂jh∥

2
2|Fh

]
+ 2ηh(πππ

i
h − πππj

h)
⊤
[
E
[
r̂ih
∣∣Ei

h,Fh

]
+ bi

h − E
[
r̂jh

∣∣∣Ej
h,Fh

]
− bj

h

]
≤(1− τηh)

2∥πππi
h − πππj

h∥
2
2 + E

[
η2h∥r̂ih − r̂jh∥

2
2|Fh

]
+ 2ηh(πππ

i
h − πππj

h)
⊤
[
E
[
r̂ih
∣∣Ei

h,Fh

]
− E

[
r̂jh

∣∣∣Ej
h,Fh

]]
+ 8ηh exp {−εTh} ,

where the last line follows from the bound on bi
h in step 1. Furthermore, using Young’s inequality,

we obtain
E
[
∥πππi

h+1 − πππj
h+1∥

2
2|Fh

]
≤(1− τηh)

2∥πππi
h − πππj

h∥
2
2 + E

[
η2h∥r̂ih − r̂jh∥

2
2|Fh

]
+ 8ηh exp {−εTh}

+
τηh
2
|πππi

h − πππj
h∥

2
2 + τ−1

∥∥∥E [r̂ih∣∣Ei
h,Fh

]
− E

[
r̂jh

∣∣∣Ej
h,Fh

]∥∥∥2
2

≤(1− τηh)
2∥πππi

h − πππj
h∥

2
2 + E

[
η2h∥r̂ih − r̂jh∥

2
2|Fh

]
+ 8ηh exp {−εTh}

+
τηh
2
∥πππi

h − πππj
h∥

2
2 +

4τ−1L2

N2
.
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Hence with the choice of Th = ε−1 log(h + 1) and noting that ∥πππi
h − πππj

h∥2 ≤ 2, we obtain the
recurrence

E
[
∥πππi

h+1 − πππj
h+1∥

2
2

]
≤
(
1−

3/2

h+ 1

)
E
[
∥πππi

h − πππj
h∥

2
2

]
+

2τ−2K3(σ2 + 1) + 8τ−1 + 4

(h+ 1)2

+
4τ−1L2

N2
.

Hence, by invoking the recurrence lemma (Lemma 3, with c0 = 4τ−1L2

N2 , c1 = 2τ−2K3(σ2 + 1) +

8τ−1 + 4, γ = 3/2, u0 = 0), we have

E
[
∥πππi

h+1 − πππj
h+1∥

2
2

]
≤8τ−2K3(σ2 + 1) + 32τ−1 + 16

h+ 1
+

8τ−1L2

N2
.

Step 3: Formulating the main recurrence. Next, we formulate a recurrence for the main error term
of interest, ∥πππi

t+1 − πππ∗∥22, As before, we have (noting αh := 1− τηh):

∥πππi
h+1 − πππ∗∥22 =∥Π(αhπππ

i
h + ηhr̂

i
h)−Π(αhπππ

∗ + ηhF(πππ
∗))∥22

≤∥αhπππ
i
h + ηhr̂

i
h − αhπππ

∗ − ηhF(πππ
∗)∥22

≤∥αhπππ
i
h + ηhF(πππ

i
h)− αhπππ

∗ − ηhF(πππ
∗) + ηh(r̂

i
h − F(πππi

h))∥22
=η2h∥r̂ih − F(πππi

h)∥22 + 2ηh(αh(πππ
i
h − πππ∗) + ηh(F(πππ

i
h)− F(πππ∗)))⊤(r̂ih − F(πππi

h))

+ ∥αh(πππ
i
h − πππ∗) + ηh(F(πππ

i
h)− F(πππ∗))∥22

=η2h∥r̂ih − F(πππi
h)∥22 + 2η2h(F(πππ

i
h)− F(πππ∗)))⊤(r̂ih − F(πππi

h)) + 2ηhαh(πππ
i
h − πππ∗)⊤(r̂ih − F(πππi

h))

+ ∥αh(πππ
i
h − πππ∗) + ηh(F(πππ

i
h)− F(πππ∗))∥22

≤ η2h∥r̂ih − F(πππi
h)∥22 + 2η2h(F(πππ

i
h)− F(πππ∗)))⊤(r̂ih − F(πππi

h))︸ ︷︷ ︸
(a)

+ 2ηhαh(πππ
i
h − πππ∗)⊤(r̂ih − F(πππi

h))︸ ︷︷ ︸
(b)

+ ∥αh(πππ
i
h − πππ∗) + ηh(F(πππ

i
h)− F(πππ∗))∥22︸ ︷︷ ︸

(c)

Once again, we will need to bound the three terms above. For the term (a), we bound in expectation
as before:

E [(a)] ≤ 2η2tK
3(σ2 + 1).

Likewise, it still holds for the term (c) that

(c) =∥αh(πππ
i
h − πππ∗) + ηh(F(πππ

i
h)− F(πππ∗))∥22

=∥(πππi
h − πππ∗) + ηh(F(πππ

i
h)− τπππi

h − F(πππ∗) + τπππ∗)∥22
≤
(
1− 2(λ+ τ)ηh + (L+ τ)2η2h

)
∥πππi

h − πππ∗∥22.

However, this time, the exploration parameter ε will cause additional bias in the term (b). Define
r̃ih = E[r̃ih|Ei

h,Fh].

(b) =2ηhαh(πππ
i
h − πππ∗)⊤(r̂ih − F(πππi

h))

=2ηhαh(πππ
i
h − πππ∗)⊤(r̂ih − r̃ih) + 2ηhαh(πππ

i
h − πππ∗)⊤(r̃ih − F(µ̄h))

+ 2ηhαh(πππ
i
h − πππ∗)⊤(F(µ̄h)− F(πππi

h))

≤2ηhαh

(
λ

4
∥πππi

h − πππ∗∥22 +
1

λ
∥r̃ih − F(µ̄h)∥22

)
+ 2ηhαh

(
λ

4
∥πππi

h − πππ∗∥22 +
1

λ
∥F(µ̄h)− F(πππi

h)∥22
)
+

2ηhαh(πππ
i
h − πππ∗)⊤(r̂ih − r̃ih)

≤2ηh
λ

2
∥πππi

h − πππ∗∥22 +
2ηh
λ
∥r̃ih − F(µ̄h)∥22 +

2ηh
λ
∥F(µ̄h)− F(πππi

h)∥22

+ 2ηhαh(πππ
i
h − πππ∗)⊤(r̂ih − r̃ih),
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and similarly, if λ = 0, we have

(b) =2ηhαh(πππ
i
h − πππ∗)⊤(r̂ih − F(πππi

h))

=2ηhαh(πππ
i
h − πππ∗)⊤(r̂ih − r̃ih) + 2ηhαh(πππ

i
h − πππ∗)⊤(r̃ih − F(µ̄h))

+ 2ηhαh(πππ
i
h − πππ∗)⊤(F(µ̄h)− F(πππi

h))

≤2ηhαh

(
τδ

2
∥πππi

h − πππ∗∥22 +
1

2τδ
∥r̃ih − F(µ̄h)∥22

)
+ 2ηhαh

(
τδ

2
∥πππi

h − πππ∗∥22 +
1

2τδ
∥F(µ̄h)− F(πππi

h)∥22
)
+

2ηhαh(πππ
i
h − πππ∗)⊤(r̂ih − r̃ih)

≤2ηhτδ∥πππi
h − πππ∗∥22 +

ηh
τδ
∥r̃ih − F(µ̄h)∥22 +

ηh
τδ
∥F(µ̄h)− F(πππi

h)∥22

+ 2ηhαh(πππ
i
h − πππ∗)⊤(r̂ih − r̃ih).

Denote πππunif := 1
K1K . The remaining error terms we can bound by (using the auxiliary coupling

random actions ājh from Step 1):

|E
[
2ηhαh(πππ

i
h − πππ∗)⊤(r̂ih − r̃ih)|Fh

]
|

≤|E
[
2ηhαh(πππ

i
h − πππ∗)⊤(r̂ih − r̃ih)|Ei

h,Fh

]
P(Ei

h) + E
[
2ηhαh(πππ

i
h − πππ∗)⊤(r̂ih − r̃ih)|Ei

h,Fh

]
P(Ei

h)|

≤ 2τ−1

h+ 1
E
[
∥πππi

h − πππ∗∥2∥r̂ih − r̃ih∥2|Ei
h,Fh

]
P(Ei

h)

≤8K
3/2τ−1

√
1 + σ2

(h+ 1)2
.

E[∥r̃ih − F(µ̄t)∥22|Fh] ≤2E
[
∥r̃ih − F(µ̂(āih,exp, ā

−i
h ))∥22

∣∣Fh

]
+ 2E

[
∥F(µ̂(āih,exp, ā−i

h ))− F(µ̄h)∥22|Fh

]
≤8L2

N
+ 2E

[
∥F(µ̂(āih,exp, ā−i

h ))− F(µ̄h)∥22|Fh

]
≤8L2

N
+ 2L2 E

∥µ̂(āiexp, ā−i)− 1

N

N∑
j=1

πππj
h∥

2
2|Ft


≤8L2

N
+ 4L2 E

∥µ̂(āiexp, ā−i)− 1

N

∑
j ̸=i

(επππunif + (1− ε)πππj
h)−

πππunif

N
∥22|Ft


+ 4L2 E

∥ε 1

N

∑
j ̸=i

(επππj
h − πππunif ) +

πππi
h − πππunif

N
∥22|Ft


≤8L2

N
+

8L2

N
+ 4L2(2ε2 +

4

N
)

=
64L2

N
+ 8L2ε2,

∥F(µ̄h)− F(πππi
h)∥22 ≤ L2∥µ̄h − πππi

h∥22 = L2eih

Step 4: Main result. Once again, for the strongly monotone case λ > 0 we have that

ui
h+1 ≤

2τ−2K3(1 + σ2) + 8τ−2(L+ τ)2 + 8K
3/2τ−1

√
1 + σ2

(h+ 1)2

+
128τ−1λ−1L2N−1 + 16τ−1λ−1L2ε2

h+ 1
+

2τ−1λ−1L2

h+ 1
E
[
eih
]

+

(
1− 2τ−1(λ/2 + τ)

h+ 1

)
ui
h,
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leading to the recurrence

ui
h+1 ≤

2τ−2K3(σ2 + 1)(1 + 8τ−1λ−1L2) + 32τ−2λ−1(2τ−1 + 1) + 8τ−2(L+ τ)2 + 8K
3/2τ−1

√
1 + σ2

(h+ 1)2

+
16τ−1λ−1L2(8N−1 + ε2) + 16τ−2λ−1L2N−2

h+ 1

+

(
1− 2τ−1(λ/2 + τ)

h+ 1

)
ui
h.

In the case of a monotone operator, we have

ui
h+1 ≤

2τ−2K3(σ2 + 1) + 4τ−2(L+ τ)2 + 8K
3/2τ−1

√
1 + σ2

(h+ 1)2

+
64τ−2δ−1L2N−1 + 8τ−2δ−1L2ε2

h+ 1
+

τ−2δ−1L2

(h+ 1)
E
[
eih
]

+

(
1− 2(1− δ)

h+ 1

)
ui
h,

which we can bound by (choosing δ = 1/4):

ui
t+1 ≤

(1 + σ2)K3τ−2(2 + 32τ−2L2) + 4τ−2(L+ τ)2 + 8K
3/2τ−1

√
1 + σ2 + 64τ−2L2(2τ−1 + 1)

(h+ 1)2

+
256τ−2L2N−1 + 32τ−2L2ε2 + 32τ−3L2N−2

h+ 1

+

(
1−

3/2

h+ 1

)
ui
h.

We use Lemma 3 to obtain the statement of the theorem, once again choosing γ = 3/2.

The bound in the statement of the theorem in the main body of the paper follows from the fact that
the lengths of the exploration epochs scale with Th = O(ε−1 log(h+ 1)) = Õ(ε−1). □

Finally, we note that while the dependence on K, the number of actions, is not discussed in the main
body paper, as expected the algorithm for bandit feedback has a worse dependency on the number
of actions. This is as expected due to the fact that (i) the importance sampling estimator increases
variance on payoff estimators by a factor of K, and (2) in other words, a factor ofO(K) is introduced
in order to explore all actions.

G Details of Experiments

Hardware and compute. All experiments were run on single core of an AMD EPYC 7742 CPU,
a single experiment with 1000 independent agents and 100000 iterations takes roughly 1 hour. No
GPU compute was used. All relevant code (withholding location details to preserve anonymity) has
been shared in the supplementary material.

Setup details. For all experiments, we use parameters τ, ϵ as implied by Corollaries 1,2. Projections
to the probability simplex were implemented using the algorithm in [8]. The particular Python
implementation of the TRPA-Full and TRPA-Bandit operators are provided in the supplementary
material.

G.1 Problem Generation Details

We provide further details on how we generate/simulate the SMFG problems.

Linear payoffs. We generate a payoff map

Flin(µ) := (S+X)µ+ b

for some S ∈ SK×K
++ and X anti-symmetric matrix, which makes monotone Flin by Example 6. We

randomly sample S from a Wishart distribution (which has support contained in positive definite
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matrices), generate X by computing U−U⊤

2 for a random matrix U with entries sampled uniformly
from [0, 1] and b having entries uniformly sampled from [0, 1].

Payoffs with KL potential. Next, based on Example 5, we construct the following payoff operator
FKL for some reference distribution µref ∈ ∆A:

ΦKL(µ) := DKL(γµ+ (1− γ)µref||µref)

FKL(µ) := ∇ΦKL(µ)

FKL(µ, a) = γ log

(
γµ(a) + (1− γ)µref(a)

µref(a)

)
+ γ

Note that as ΦKL is convex, FKL is monotone. In our experiments, we use γ = 0.1, and we generate
µref by sampling K uniform random variables in [0, 1] and normalizing.

Beach bar process. Following the example given in [34], we use the action set A = {1, . . . ,K}
for potential locations at the beach and assume a bar is located at xbar := ⌊K2 ⌋. Taking into the
proximity to the bar and the occupancy measure over actions (i.e., the crowdedness of locations at the
beach), the payoff map is given by:

Fbb(µ, a) = 1− |a− xbar|
K

− α log(1 + µ(a)).

Note that by Example 1, the above payoff map is monotone. We use α = 1 for our experiments.

G.2 Learning curves - Full Feedback

We provide the learning curves under full feedback for various choices of the number of agents
N ∈ {20, 100, 1000}. The errors in terms of maximum exploitability and distance to MF-NE are
presented in Figure 3 and Figure 4 respectively.

(a) (b)

(c) (d)

Figure 3: The (smoothed) maximum exploitability maxi∈N ϕi({πππj}Nj=1) among N agents throughout
learning with full feedback for three different N , on the problems (a) linear payoffs, (b) exponentially
decreasing payoffs, (c) payoffs with KL potential and (d) the beach bar payoffs.
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As expected, the games with larger number of players N converge to better approximate NE in the
sense that the final maximum exploitability is smaller at convergence. Furthermore, in most cases the
exploitability converges slightly slower with more agents, also supporting the theoretical finding that
there is a dependence on N . As before, the exploitability curves have oscillations at later stages of
the training, even though they remain upper bounded as foreseen the theoretical results. This does
not contradict our results as long as for larger N , the upper bound on the oscillations us smaller.
The confidence intervals plotted in figures support a high-probability upper bound on the maximum
exploitability as one would expect.

(a) (b)

(c) (d)

Figure 4: The mean ℓ2 distance to MF-NE given by 1
N

∑
i∈N ∥πππi − πππ∗∥2 with N agents throughout

learning with full feedback for three different N , on the problems (a) linear payoffs, (b) exponentially
decreasing payoffs, (c) payoffs with KL potential and (d) the beach bar payoffs.

G.3 Learning curves - Bandit Feedback

We provide the learning curves under bandit feedback for various choices of the number of agents
N ∈ {50, 100, 1000}. The errors in terms of maximum exploitability and distance to MF-NE are
presented in Figure 5 and Figure 6 respectively.

As in the case of full feedback, the curves converge to smaller values as N increases. Furthermore,
one straightforward observation is that the variance at early stages of learning is much higher than in
the full feedback case. This can be due to the added variance of the importance sampling estimator
constructed through exploration epochs. As exploration occurs in shorter duration at early epochs, the
variance between agent policies will be high as well, explaining the initial increase in exploitability
in certain toy experiments in Figure 5.

Furthermore, comparing the observations for bandit feedback (Figure 5) and full feedback cases
(Figure 3), we empirically confirm that learning take more iterations in the bandit case. This is likely
due to the fact that exploration occurs probabilistically, inducing additional variance in the policy
updates that increases with N and incorporates an additional logarithmic term in the theoretical
bounds. However, the number of exploration epochs in the bandit case is comparable to the number
of time steps in the full feedback case.
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(a) (b)

(c) (d)

Figure 5: The (smoothed) maximum exploitability maxi∈N ϕi({πππj}Nj=1) among N agents through-
out learning with bandit feedback for three different N , on the problems (a) linear payoffs, (b)
exponentially decreasing payoffs, (c) payoffs with KL potential and (d) the beach bar payoffs.

Finally, we also emphasize the fact that in earlier stages of training with bandit feedback, the cases
with N = 1000 had much higher exploitability and ℓ2 distance to MF-NE at earlier time steps. This
is due to the fact that policy updates occur with larger intervals in between when N is large, as can
be seen in Algorithm 1. This can be explicitly observed in Figure 6, as the policies of agents are
constant in between policy updates. However, at later stages as the time-dependent term in the bound
on epxloitability in Corollary 2 disappears, we observe that the experiments for larger N converge
to a better policy (i.e., one with lower exploitability) than the cases with smaller N as the theory
suggests.

Finally, comparing Figures 5,6, we see that in certain experiments for some N despite having a
lower exploitability we observe a greater ℓ2 distance to MF-NE. This likely due to fact that the
non-vanishing bias term in exploitability and ℓ2 distance have differing dependence on problem
parameters such as L, λ,K. Therefore, for instance for the KL potential payoffs, we observe a greater
mean ℓ2 distance to MF-NE but a smaller exploitability for N = 1000.

G.4 Experiments on Traffic Congestion

UTD19 and closed-loop sensors. The UTD19 dataset contains measurements by closed-loop sensors
which report the fraction of the time a particular section of the route remains occupied (i.e., a car is
located in between sensors placed on the sides). The data consists of measurements every 5 minutes,
from various sensors across 41 European cities. The dataset contains 2 weeks of data collected by
sensors placed around Zurich, the locations of sensors imposed on the map in Figure 7.

Payoff models. We fit kernelized ridge regression models to model the flow as a function of occupancy
using the UTD19 dataset. We use an RBF kernel and a regularization of α = 1.0 for all models. We
compute a proxy for the travel velocity using the flow and occupancy measurements on each route,
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(a) (b)

(c) (d)

Figure 6: The mean ℓ2 distance to MF-NE given by 1
N

∑
i∈N ∥πππi − πππ∗∥2 with N agents throughout

learning with bandit feedback for three different N , on the problems (a) linear payoffs, (b) exponen-
tially decreasing payoffs, (c) payoffs with KL potential and (d) the beach bar payoffs.

Figure 7: A portion of the sensors placed in the UTD19 dataset [22] within the Zurich center. Map
generated using [30].

and a scaling factor cdist due to varying lengths of each route, leading to the estimated travel time

Ttravel = cdist
flow

occupancy
.

We use −Ttravel as the reward for each agent. The flows collected from the dataset and the corre-
sponding fitted models are presented in Figure 8 and Figure 9.

In Figure 8, we emphasize that as expected, total flow peaks at a value of occupancy in (0, 1),
as congestion effects likely become dominant for high occupancy resulting in lower flow values.
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Figure 8: Data and fitted models of occupancy vs. flow on three different urban roads. The red line
indicates the fitted model predictions.

Figure 9: Data and fitted models of occupancy vs. speed (scaled) on three different urban roads. The
red line indicates the fitted model predictions.

However, as expected, the travel speed (Figure 9) seems to be monotonically decreasing as a function
of occupancy, also as expected. This suggests that up to minor deviations due to the kernelize
regression model, the rewards −Ttravel decrease monotonically as occupancy increases. Hence
Figure 9 provides empirical evidence of a monotone payoff operator.

We emphasize that our model of congestion is greatly simplified and does not take into account
network effects in congestion due to interactions of various connected routes in the city. For instance,
it is likely that correlations exist between the travel speed as a function of congestion of the three
routes in reality. While more realistic simulations could be performed using the UTD19 dataset
resulting in a more realistic evaluation of our methods, more intricate simulations of traffic remain
outside the scope of this paper and we leave the evaluation of TRPA-Bandit in such realistic scenarios
as future work.

G.5 Experiments on Network Access

For the Tor network access experiment, we randomly chose 5 entry guard servers (the complete list
available publicly [44]) in various geographic locations, among the servers that have the longest
recorded uptime. To simulate access to each server, we ping each 5 consecutive times and average
the delays to compute the cost. As expected, due to varying bandwidths/computational power, each
server has different sensitivities to load in terms of delay, as Figure 10 demonstrates for two. For the
two servers plotted here for instance, we note that while on has waiting times somewhat sensitive to
occupancy, the other is much less sensitive to additional agents accessing it, at least when simulating
100 agents. Hence, strong monotonicity is likely to not hold.

We use parameters τ = 0.01, ε = 0.3 for the experiments in this section. The arbitrary choice is
due to the fact that in the presence of external agents in the game that do not use TRPA-Bandit (in
this case, thousands of other users accessing the Tor network), the theoretically optimal parameters
implied by Corollary 2 can not be used. While more realistic simulations that are also closer to the
theory could be run by keeping N larger and simulating a Tor access rather than simple pings, we
refrain from this in order to minimize the footprint of our experiments on the Tor network.
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(a) (b)

Figure 10: Access times (in terms of ping delays) of two Tor entry guard servers in terms of number
of agents accessing simultaneously.
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