
PRESTO: Preimage-Informed Instruction
Optimization for Prompting Black-Box LLMs

Jaewon Chu1 Seunghun Lee2∗ Hyunwoo J. Kim2†
1Korea University, 2KAIST

allonsy07@korea.ac.kr {llsshh319, hyunwoojkim}@kaist.ac.kr

Abstract

Large language models (LLMs) have achieved remarkable success across diverse
domains, due to their strong instruction-following capabilities. This has led to
increasing interest in optimizing instructions for black-box LLMs, whose inter-
nal parameters are inaccessible but widely used due to their strong performance.
To optimize instructions for black-box LLMs, recent methods employ white-box
LLMs to generate candidate instructions from optimized soft prompts. However,
white-box LLMs often map different soft prompts to the same instruction, leading
to redundant queries. While previous studies regarded this many-to-one mapping
as a structure that hinders optimization efficiency, we reinterpret it as a useful
prior knowledge that can accelerate the optimization. To this end, we introduce
PREimage-informed inSTruction Optimization (PRESTO), a novel framework
that leverages the preimage structure of soft prompts for efficient optimization.
PRESTO consists of three key components: (1) score sharing, which shares the
evaluation score with all soft prompts in a preimage; (2) preimage-based initializa-
tion, which selects initial data points that maximize search space coverage using
preimage information; and (3) score consistency regularization, which enforces
prediction consistency within each preimage. By leveraging preimages, PRESTO
achieves the effect of effectively obtaining 14 times more scored data under the
same query budget, resulting in more efficient optimization. Experimental re-
sults on 33 instruction optimization tasks demonstrate the superior performance of
PRESTO. Code is available at https://github.com/mlvlab/PRESTO.

1 Introduction

Large language models (LLMs) have demonstrated strong performance across a wide range of do-
mains [1–5]. This success is largely attributed to their impressive instruction-following capabilities,
which have led to growing interest in discovering effective instructions to enhance their perfor-
mance [6, 7]. In particular, LLMs provided through APIs (i.e., black-box LLMs), such as GPT-4 [2],
are widely used and show exceptionally strong performance. However, optimizing instructions for
the black-box LLMs is a challenging problem, since their internal parameters are inaccessible. To
tackle this challenge, recent studies have explored various strategies for optimizing instructions for
black-box LLMs, without access to internal model parameters [8–13].

Recently, some studies [14–16] have leveraged open-source LLMs (i.e., white-box LLMs) [1, 17, 18]
to assist instruction optimization for black-box LLMs, demonstrating promising results and attracting
growing interest. Specifically, these methods optimize a soft prompt, which is taken as input
to the white-box LLM. The optimization is performed using black-box optimization algorithms
such as Bayesian Optimization [19, 20] or Neural Bandits [21, 22], guided by a score predictor

∗Work done while at Korea University.
†Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/mlvlab/PRESTO

(a) (b)

Figure 1: Motivating observations illustrating the many-to-one mapping from soft prompts to
instructions in a white-box LLM (LLaMA3.1-8B-Instruct [1]). Figure 1a shows that the white-box
LLM produces approximately 6,500 unique instructions from 10,000 distinct soft prompts. Figure 1b
presents the distribution of preimage sizes, displaying the top 100 largest preimages. The largest
preimage contains more than 1,000 soft prompts, while the 100th largest has around 5. Both figures
report the average experimental results over the instruction induction tasks used in Table 1.

regression model, allowing the white-box LLM to generate effective instructions for black-box LLMs.
However, as shown in Figure 1a, white-box LLMs often generate identical instructions from distinct
soft prompts. It leads to repeatedly querying soft prompts that yield the same outputs during the
optimization process, which ultimately hinders the optimization process by reducing query efficiency.
To avoid redundant queries, previous studies either sample soft prompts that are well-separated in the
soft prompt space [16] or filter soft prompts that generate distinct instructions [15].

While previous studies have treated the generation of identical instructions from different soft
prompts (i.e., many-to-one structure) as a redundancy that hinders optimization, we reinterpret this as
a valuable structure that can facilitate the optimization process. Specifically, the set of soft prompts
that generate the same instruction forms the preimage of that instruction under the white-box LLM.
This preimage imposes a strong inductive bias over the search space: all soft prompts within a
preimage share the same objective function value. Since we follow previous settings [16, 15] that
sample a sufficiently large set of N soft prompts and search for the optimal solution within them,
we do not observe the full preimage, but only a subset of it. We refer to such subsets as preimages
throughout the paper, and provide the size distribution of these preimages in Figure 1b.

Building on this insight, we propose PRESTO, a novel instruction optimization framework that
explicitly leverages the many-to-one structure to facilitate instruction optimization for black-box
LLMs. PRESTO consists of three components. First, we present the score-sharing method, where
once the score is evaluated through the black-box LLM, it is shared with all soft prompts within
a preimage. This effectively enlarges the amount of scored data without additional calls to the
black-box LLM. Second, we introduce preimage-based initialization, where we select the initial
soft prompts regarding the preimage information so that they cover the search space maximally.
Finally, we propose score consistency regularization, which adds a regularization term to encourage
the score predictor to predict identical scores for soft prompts within the same preimage. We evaluate
the instruction optimization performance of PRESTO on 30 instruction induction tasks and three
arithmetic reasoning tasks, and achieve state-of-the-art performance compared to existing baselines.

The main contributions of our work are:

• We reinterpret the many-to-one structure between the soft prompts and instruction, previously
viewed as a challenge, as a rich informative structure that facilitates instruction optimization
for black-box LLMs.

• Leveraging this insight, we introduce PRESTO, a novel framework that consists of score
sharing, preimage-based initialization, and score consistency regularization.

• PRESTO achieves state-of-the-art performance across 30 instruction induction and 3 arith-
metic reasoning tasks.

2

2 Related Works

Instruction Optimization for Black-box LLMs Instruction optimization has been widely explored
as a way to improve the performance of large language models (LLMs) on downstream tasks [23, 24].
In particular, when using black-box LLMs such as GPT-4 [2], where access to model parameters is
restricted, optimization methods rely on model outputs to guide the search for better instructions.
Under this setting, various approaches have been proposed, including evolutionary algorithms [10, 11],
LLM-driven meta-optimization [8, 9], and bandit-style or heuristic search methods [13, 12]. These
works demonstrate that instruction quality can be improved even without access to gradients or
internal representations by querying the black-box model efficiently.

More recently, some methods [14–16] incorporate open-source white-box LLMs [1, 18, 17, 25]
to assist the optimization process. Rather than optimizing instruction texts directly, they optimize
soft prompts, which are continuous embeddings that the white-box model maps into instructions.
InstructZero [14] leveraged Bayesian Optimization [26–28] to search for the optimal soft prompts for
black-box LLM. INSTINCT [16] leveraged NeuralUCB [21] with an LLM-based score predictor,
which was the first to point out the many-to-one schema and approached it indirectly by sampling soft
prompts to be well-separated. And ZOPO [15] proposed a zeroth-order optimization algorithm [29]
for local search, which addresses this redundancy by simply discarding all but one soft prompt that
produces the same instruction. In contrast, we retain all soft prompts by introducing preimages and
facilitate the optimization.

3 Preliminaries

Problem Formulation Instruction optimization aims to find an instruction v that guides a language
model to perform a given task effectively. To be specific, the goal is to find the instruction v that
maximizes the task-specific score function h by guiding a black-box LLM fb to generate the correct
answer y, which is formally given as:

v∗ = argmax
v∈Ω

E(x,y)∈Dval

[
h(fb(v, x), y)

]
, (1)

where Dval = {(xi, yi)}Mi=1 is a validation set, and Ω denotes the search space of instructions,
typically a discrete sequence domain (e.g., natural language prompts or token sequences). However,
directly searching over discrete instruction sequences is challenging, as it constitutes a combinatorial
optimization problem over the space of token configurations. To address this, InstructZero [14]
reformulates the discrete instruction search as a continuous optimization problem by leveraging a
white-box LLM fw. Specifically, it optimizes a soft prompt z ∈ RNz×d, where Nz is the number of
tokens and d is the embedding dimension, to generate the optimal instruction v∗. The soft prompt is
concatenated with the token embeddings of input-output exemplars E = {(xi, yi)}κi=1 and fed into
the white-box LLM fw, which then generates an instruction v = fw(z, E). Formally, the instruction
optimization problem is defined as:

z∗ = argmax
z∈Z

E(x,y)∈Dval

[
h(fb(fw(z, E), x), y)

]
, (2)

where Z is the soft prompt space. In this formulation, we optimize z to find the optimal instruction v∗

that maximizes the expected value of the score function h. Once the optimal soft prompt z∗ is obtained,
the corresponding instruction v∗ is generated by the white-box LLM fw, i.e., v∗ = fw(z

∗, E) and
subsequently evaluated on a held-out test set Dtest. Since the exemplars E are fixed for each task, we
omit them from the notation in the rest of our paper. Following previous works [14–16], we assume
that both the white-box LLM fw and the black-box LLM fb are deterministic.

LLM-based Score Predictor for Instruction Optimization. Our method builds upon IN-
STINCT [16], which employs a frozen white-box LLM as a feature extractor to predict the score of
soft prompt, and uses a NeuralUCB [21] for instruction optimization. Given a soft prompt z, the
white-box LLM produces an embedding g(z), the last token representation of the final transformer
layer. This embedding is then passed to a score predictor m(g(z); θ) (e.g., an MLP), which predicts
the performance of the instruction generated from z, i.e., m(g(z); θ) ≈ E(x,y)∈D[h(fb(fw(z), x), y)].
At each optimization step, the score predictor m(·; θ) is trained on previously evaluated soft prompts
and their corresponding scores, and selects the next query that maximizes the upper confidence bound.
We provide further details of NeuralUCB in the supplement. Since computing g(z) requires a full

3

Figure 2: The overall process of our proposed PRESTO framework. It consists of two main stages:
initialization and optimization. In the initialization stage, our method performs ① preimage-based
score sharing (Section 4.1) and ② preimage-based initialization to improve search space coverage
(Section 4.2). For the optimization stage, we train the score predictor with ③ score consistency
regularization (Section 4.3) and we apply ① preimage-based score sharing to share scores of newly
observed data within the same preimage.

forward pass through the LLM, INSTINCT mitigates this cost by precomputing the embeddings of a
candidate soft prompt set Z = {zi}Ni=1 at the beginning of the optimization, which is sampled using
a quasi-random method. To this end, the instruction optimization task is reduced to searching for
the best solution within the precomputed embedding set, as the white-box LLM is frozen during the
optimization process.

4 Method

In this section, we propose PREimage-informed inSTruction Optimization (PRESTO) which is a
novel instruction optimization framework that leverages the many-to-one mapping between soft
prompts z ∈ Z ⊂ Z and instructions v ∈ Ω (or the preimages of instructions, which is defined in
Section 4.1) as prior knowledge to facilitate more efficient optimization. We first introduce a score
sharing method that shares the score value of one soft prompt with all other soft prompts in the same
preimage, effectively enlarging the scored data without additional evaluations of black-box LLM fb.
Next, we present a preimage-based initialization method designed to maximize coverage of the search
space under score sharing. Finally, we propose a score consistency regularization that leverages
preimage information as prior knowledge to encourage the score predictor to predict identical scores
for soft prompts belonging to the same preimage. We provide the overall framework of our PRESTO
in Figure 2.

4.1 Preimage-Based Score Sharing

During the instruction optimization, we observe that the white-box LLM fw often generates identical
instructions from distinct soft prompts, i.e., fw(z) = fw(z

′), leading to the same score value. This
redundancy leads to unnecessary queries during optimization, hindering the efficiency of instruction

4

optimization. While previous works treated this redundancy as an obstacle to efficient optimization,
we instead leverage this information as prior knowledge about the objective function to facilitate
optimization. To this end, we propose a simple score sharing scheme that associates a large number
of soft prompts with a score value without the additional evaluations of a black-box LLM fb.

Our goal is to share the score of an evaluated soft prompt z with other soft prompts that generate
the same instruction. To enable this score sharing, we first define the preimage of each instruction
which consists of all soft prompts that map to the same instruction under the white-box model
fw. Establishing this preimage structure requires two steps. First, we sample a soft prompt set
Z = {zi}Ni=1 using a quasi-random method [30, 31], which is a widely adopted method to sample
the data points that evenly cover the soft prompt space [14, 16, 15]. Assuming that the soft prompt
set size N is large enough to represent the soft prompt space Z , the original optimization problem
defined in Eq. (2) reduces to searching for the best solution among the set of N data points, denoted
by Z ⊂ Z .

Next, for each soft prompts zj ∈ Z, we generate the set of instructions V = {vi}Mi=1, using the
white-box LLM fw:

V = {vi}Mi=1 = {fw(zj) | j = 1, . . . , N}. (3)

Since the different soft prompts often generate the identical instruction (i.e., many-to-one mapping),
the number of instructions M = |V | is smaller than or equal to N . The construction of Z and V is
performed only once before the optimization process begins.

With the soft prompt set Z and the corresponding instruction set V , we now define the preimage of
each instruction. The preimage of an instruction v is the set of soft prompts in Z that generate v
under the white-box model fw:

f−1
w (v) = {z ∈ Z | fw(z) = v}. (4)

This preimage contains all soft prompts in Z that generate v, and will serve as the basis for score
sharing. Once the preimages f−1

w (v) for all v ∈ V are established, we apply score sharing across soft
prompts that belong to the same preimage during the optimization. Specifically, after querying the
black-box model fb with an instruction v ∈ V , we obtain a score of the instruction. This score is then
shared to all soft prompts in the preimage f−1

w (v). By sharing scores in this manner, we effectively
enlarge the training data for the score predictor m(g(z); θ) without additional calls to the black-box
LLMs. Moreover, score sharing avoids redundant evaluations of soft prompts that lead to the same
instruction and improves optimization efficiency.

4.2 Preimage-Based Initialization for Maximizing Search Space Coverage

Here, we introduce a preimage-based initialization method that selects initial data points based on the
preimage information defined in Section 4.1. At the beginning of the optimization, the score predictor
m(g(z); θ) (Section 3) is trained on the initial dataset, and its predictions are used to select the next
data points to query the black-box LLM fb. In black-box optimization, it is well known that broadly
covering the search space at initialization is crucial for effective optimization [32–35]. Our score
sharing method introduced in Section 4.1 expands the initial dataset without additional queries to the
black-box LLM fb, enabling a more sample-efficient initialization. To further enhance the search
space coverage, we propose a preimage-based initialization method that complements score sharing
by promoting a broader initial data distribution.

To this end, we design a coverage score Scov to guide the selection of an initial preimage set Ginit

that maximally covers the entire set of soft prompt embeddings Gtotal = {g(z) | z ∈ Z}. We
conduct initialization in the embedding space rather than the raw soft prompt space, since the
optimization operates over the soft prompt embeddings. These embeddings are precomputed and
remain fixed throughout the optimization, as described in Section 3. For each instruction vi, we
define its corresponding preimage group in the embedding space as Gi = {g(z) | z ∈ f−1

w (vi)}.

Since finding the optimal combination of Ninit preimages that maximizes the coverage score Scov
is a computationally intractable combinatorial optimization problem, we adopt a greedy algorithm
to iteratively select one preimage at a time. Specifically, the coverage score Scov consists of two
components: the representativeness score Srep and the size score Ssize. The representativeness score
Srep encourages the selection of a preimage group Gi that, when combined with already selected

5

(a) Train with LMSE only. (b) Train with LMSE + γLcons.

Figure 3: Toy example comparing models trained w/o and w/ our consistency loss Lcons in Eq. (8).

preimage groups Ginit, most closely matches the distribution of the candidate set Gtotal, defined as:

Srep(Gi;G
init, Gtotal) = 1− MMD2(Gi ∪Ginit, Gtotal)

maxj MMD2(Gj ∪Ginit, Gtotal)
, (5)

where the MMD2 is the squared Maximum Mean Discrepancy. MMD2 is a widely used metric to
estimate the similarity between two sets, which is defined as:

MMD2(X,Y) = Ex,x′∼X [k(x, x′)] + Ey,y′∼Y [k(y, y
′)]− 2Ex∼X,y∼Y [k(x, y)] (6)

where k(·, ·) is a positive definite kernel. To densely cover the search space, we propose the size
score Ssize, which is defined as relative preimage size: Ssize(Gi) = |Gi|

/
maxj |Gj |. Combining the

two scores, we define the coverage score for the Gi:

Scov(Gi;G
init, Gtotal) = Ssize(Gi) + Srep(Gi;G

init, Gtotal). (7)

Starting from an empty set Ginit, we iteratively select the preimage with the highest coverage score Scov
and add it to Ginit until the number of initial preimages reaches Ninit. This initialization maximizes
the coverage of the candidate set Gtotal. We provide the visualization to demonstrate the effectiveness
of our initialization method in Section 6.3.

4.3 Score consistency regularization for score predictor

Here, we propose a score consistency regularization that encourages the score predictor m(g(z); θ)
to produce the same prediction for all soft prompts in preimages that have not been evaluated by the
black-box function. During the optimization, the score predictor is trained with the scored data to
predict the score of each soft prompt in the candidate set Z and estimate its uncertainty for selecting
the next query to evaluate. Leveraging the score sharing method defined in Section 4.1 informs
the score predictor that data points within the same preimage share identical scores in a supervised
manner. However, since the score predictor lacks information about score consistency within unscored
preimages, it is unable to make consistent predictions for data points in these unscored preimages. It
often hinders the score predictor from predicting the ground truth score and selecting high-scored
data.

To ensure consistent predictions within each unscored preimage, we propose a score consistency
regularization term Lcons, which is defined as:

Lcons = Ev∈VunseenEz,z′∈f−1
w (v) |m(g(z); θ)−m(g(z′); θ)|2 , (8)

where Vunseen ⊂ V denotes the set of instructions that has not been evaluated by the black-box LLM
fb. We note that Lcons is an unsupervised loss. While the consistency regularization includes pairwise
terms per preimage group, each unscored preimage size is not excessively large in practice, so the
computation remains tractable. The final loss for training the score predictor model is given by:

L = LMSE + γLcons, (9)

where LMSE is the mean squared error loss computed over the scored preimages, and γ is a hyperpa-
rameter controlling the strength of the regularization. To avoid premature convergence to incorrect
predictions, we employ a simple linear scheduling strategy as γ(t) = γmax ·min

(
1, t/T

)
, where t

6

Table 1: Performance on instruction induction tasks. Bolded numbers (blue) indicate the best methods
for each task. Scores show the average accuracy with standard error over three runs.

Tasks APE InstructZero INSTINCT EvoPrompt ZOPO OPRO PRESTO
antonyms 80.67 ± 0.72 75.33 ± 3.21 83.33 ± 0.54 82.00 ± 0.47 82.67 ± 1.66 80.33 ± 2.33 83.33 ± 1.19

auto_categorization 26.00 ± 6.13 27.67 ± 2.60 18.67 ± 0.72 29.33 ± 2.18 31.67 ± 3.41 30.33 ± 0.72 31.67 ± 3.41

auto_debugging 8.33 ± 6.80 12.50 ± 5.89 10.00 ± 4.71 16.67 ± 6.80 13.33 ± 7.20 8.33 ± 6.80 20.83 ± 3.40

cause_and_effect 92.00 ± 1.89 74.67 ± 4.75 76.00 ± 9.98 72.00 ± 6.80 93.33 ± 2.88 38.67 ± 4.35 94.67 ± 2.88

common_concept 22.36 ± 2.34 15.53 ± 5.11 20.21 ± 1.19 17.99 ± 6.72 21.86 ± 7.16 20.08 ± 6.70 22.86 ± 3.27

diff 18.33 ± 6.87 53.00 ± 20.37 81.67 ± 13.76 7.00 ± 5.72 88.33 ± 5.93 64.33 ± 23.91 98.00 ± 0.82

informal_to_formal 57.59 ± 2.40 51.53 ± 4.62 48.93 ± 3.46 42.87 ± 2.03 58.93 ± 4.83 50.02 ± 2.63 52.77 ± 5.46

letters_list 99.00 ± 0.82 99.00 ± 0.47 97.67 ± 1.52 73.67 ± 9.69 98.67 ± 1.09 99.00 ± 0.47 99.33 ± 0.54

negation 83.33 ± 1.19 81.67 ± 3.95 76.67 ± 4.77 71.67 ± 1.19 77.33 ± 4.63 73.33 ± 4.23 84.00 ± 2.16

object_counting 37.33 ± 5.50 46.00 ± 5.72 48.67 ± 3.21 28.67 ± 2.23 34.00 ± 4.08 31.00 ± 3.86 45.67 ± 4.38

odd_one_out 51.33 ± 14.43 46.67 ± 5.76 60.00 ± 7.12 68.00 ± 1.89 58.67 ± 7.14 47.33 ± 10.39 70.00 ± 0.94

orthography_starts_with 46.00 ± 8.18 35.00 ± 3.56 54.67 ± 8.20 42.00 ± 15.28 54.67 ± 3.66 22.33 ± 10.18 57.33 ± 6.08

rhymes 69.33 ± 16.41 81.67 ± 10.69 98.67 ± 0.72 93.67 ± 1.96 83.33 ± 6.87 77.00 ± 15.25 85.00 ± 7.41

second_word_letter 72.67 ± 10.88 40.67 ± 5.99 48.00 ± 22.38 33.00 ± 7.93 68.00 ± 17.75 22.00 ± 14.73 77.00 ± 12.57

sentence_similarity 29.00 ± 5.44 17.33 ± 4.75 11.33 ± 5.42 29.00 ± 0.47 4.33 ± 3.54 6.67 ± 5.44 21.67 ± 8.49

sum 24.00 ± 14.61 55.00 ± 23.92 99.33 ± 0.54 66.67 ± 27.22 100.00 ± 0.00 91.33 ± 3.78 94.67 ± 4.35

synonyms 10.00 ± 4.50 22.67 ± 5.62 25.00 ± 8.83 25.33 ± 7.98 24.33 ± 2.76 12.67 ± 0.72 18.33 ± 1.91

taxonomy_animal 43.67 ± 15.96 44.33 ± 17.72 92.00 ± 3.77 34.00 ± 15.08 69.00 ± 24.10 73.67 ± 8.09 99.67 ± 0.27

word_sorting 54.00 ± 15.41 39.67 ± 12.11 27.33 ± 7.37 71.00 ± 4.50 54.00 ± 15.06 36.33 ± 11.49 53.33 ± 8.38

word_unscrambling 28.00 ± 4.78 38.00 ± 3.74 42.33 ± 8.59 23.00 ± 9.57 52.00 ± 7.79 43.00 ± 1.25 48.00 ± 7.59

best-performing tasks 1 0 3 3 4 0 12
Average Rank 4.25 4.80 3.70 4.70 3.05 5.20 1.90

represents the current epoch and T is a warm-up duration. This schedule allows the score predictor
m(g(z); θ) to learn accurate patterns from the scored data and gradually incorporate the score equality
constraint of unscored data.

Figure 3 shows a toy example illustrating the effect of the proposed consistency loss. We use a simple
model with two linear layers. In Figure 3a, the model is trained only with the LMSE on the scored
data, while in Figure 3b, Lcons is additionally applied to unscored data. We assume there are three
unscored preimages, each represented by a different marker shape. Although the model is only given
the information that data points within each preimage share the same score, the Lcons allows it to
make more accurate predictions on the unscored data.

5 Experiments

5.1 Experimental settings

We evaluate our proposed method, PRESTO, on 30 instruction induction tasks [36], a benchmark
widely used to assess instruction optimization performance, and 3 arithmetic reasoning tasks [37–
39]. We compare PRESTO with six competitive instruction optimization baselines: APE [8],
InstructZero [14], INSTINCT [16], EvoPrompt [10], ZOPO [15], and OPRO [9]. We use LLaMA3.1-
8B-Instruct [1] as the white-box LLM fw to generate candidate instructions, and GPT-4.1 as the
black-box model fb. Following previous works [14–16], we set the total query budget to 165,
initialize with 40 soft prompts, and evaluate all methods over three different random seeds. To ensure
a fair comparison, we follow the hyperparameter tuning procedure in [16]. Detailed hyperparameter
configurations and experimental settings are provided in the supplement.

5.2 Instruction induction results

Here we provide the results of our proposed method, PRESTO, compared with six strong baselines
on instruction induction tasks. To enhance readability, we report results on a subset of 20 following
previous works [16, 15]. The full results for all 30 tasks are provided in the appendix. Table 1 shows
that PRESTO achieves the highest accuracy on 12 out of the 20 tasks, which is three times more
than the second-best method, ZOPO. In addition, PRESTO attains the best average rank of 1.90,
outperforming all baselines by a clear margin; the next best, ZOPO, has an average rank of 3.05,
followed by INSTINCT at 3.70. These results highlight the strong performance of PRESTO on
individual tasks and its robustness across a wide range of instruction induction tasks. In the full set of
30 tasks, PRESTO also consistently outperforms other baselines with a large margin in the number of
best-performing tasks and average rank.

7

Table 2: Performance of different CoT prompts on three math reasoning datasets. The best result for
each dataset is in bold, and the second best is underlined.

Method Dataset Best instruction Accuracy
Hand-crafted GSM8K Let’s think step by step 0.9121
InstructZero GSM8K Let’s think step by step to solve the math problem 0.9083
INSTINCT GSM8K Let’s break down and solve the problem 0.9098
ZOPO GSM8K Let’s break it down and find the solution 0.9143
PRESTO (Ours) GSM8K Let’s break it down together 0.9128

Hand-crafted AQUA-RAT Let’s think step by step. 0.7402
InstructZero AQUA-RAT Let’s break it down and find the solution 0.7480
INSTINCT AQUA-RAT Let’s break it down step by step. I am ready to solve

the problem.
0.7480

ZOPO AQUA-RAT Let’s break it down mathematically. 0.7520
PRESTO (Ours) AQUA-RAT Let’s solve it together. 0.7756
Hand-crafted SVAMP Let’s think step by step. 0.9375
InstructZero SVAMP Let’s crack the code! 0.9400
INSTINCT SVAMP Let’s break it down step by step 0.9375
ZOPO SVAMP I see what you’re doing there 0.9400
PRESTO (Ours) SVAMP Let’s use the formula 0.9400

Table 3: Ablation study of PRESTO. We incrementally add score sharing (SS, Sec. 4.1), preimage-
based initialization (Init, Sec. 4.2), and consistency regularization (Reg, Sec. 4.3) to a vanilla baseline.

Model SS Reg Init # Wins Avg. Rank Avg. acc.

Vanilla ✗ ✗ ✗ 0 4.55 51.91
+ SS ✓ ✗ ✗ 3 3.10 59.57
+ SS + Reg ✓ ✓ ✗ 4 2.65 61.77
+ SS + Init ✓ ✗ ✓ 4 2.30 61.82
+ SS + Init + Reg (Ours) ✓ ✓ ✓ 9 2.20 62.91

5.3 Chain-of-Thought Prompting Results

We evaluate the quality of the optimized instructions by measuring their effectiveness as chain-
of-thought (CoT) [40] prompts on three math reasoning benchmarks: GSM8K [37], AQUA-
RAT [38], and SVAMP [39]. We compare our method with three baselines that use soft prompts
(InstructZero [14], INSTINCT [16], and ZOPO [15]), as well as a standard hand-crafted prompt [41].
Table 2 demonstrates that our PRESTO outperforms or matches the best-performing baselines across
all datasets. In particular, it achieves the highest accuracy on AQUA-RAT (0.7756) and ties for the
best result on SVAMP (0.9400), while remaining competitive on GSM8K. These results indicate that
the instructions optimized by our method are also effective when used as CoT prompts.

6 Analysis

6.1 Ablation Study

We perform an ablation study to analyze the contribution of each component in our method over
the 20 instruction induction tasks used in Table 1 over 3 random seeds. Starting from a vanilla
baseline without our techniques, we incrementally add: (1) score sharing method (Section 4.1), (2)
preimage-based initialization (Section 4.2), and (3) score consistency regularization (Section 4.3).
The full model with all components combined corresponds to our proposed method, PRESTO. As
shown in Table 3, each component contributes to performance improvement. In particular, introducing
score sharing significantly boosts accuracy from 51.91 to 59.57 (+7.66) and improves average rank
from 4.55 to 3.10 (-1.45), indicating its strong impact. Our PRESTO achieves the best results overall,
with the highest number of wins and the lowest average rank across tasks.

6.2 Impact of score sharing method

We report the average number of soft prompts with assigned scores after the optimization process,
comparing our method with baselines across all 30 tasks. The reported count includes soft prompts
that were scored either directly through black-box evaluation or indirectly via score sharing. As
shown in Figure 4, our method assigns scores to over 2,300 soft prompts on average, 14× more than

8

Figure 4: Average number of scored soft
prompts after optimization across all tasks.

Figure 5: Performance of score predictor trained
with diverse methods.

Figure 6: Visualization of the initial data distribution under different initialization. We plot the entire
soft prompt embedding candidate set Gtotal using t-SNE, and highlight the selected initial data in red.

previous methods, which yield only 165 scored data points, equal to the query budget in our setting.
The large amount of scored data enables the score predictor to learn the objective function more
effectively, which in turn facilitates more successful optimization. This analysis demonstrates that
our score-sharing method can significantly increase the amount of scored data without requiring
additional black-box queries.

6.3 Visualization of Preimage-Based Initialization

We present a qualitative analysis of how score sharing and preimage-based initialization influence the
distribution of initial soft prompts. Figure 6 visualizes the distribution of initial soft prompts under
four settings: (1) random initialization, (2) random initialization with score sharing (Section 4.1), (3)
preimage-based initialization using Srep only, and (4) Scov = Srep + Ssize (Section 4.2) in "objective
counting" task. To visualize the spatial distribution of soft prompt embeddings, we employ t-SNE.
Compared to random initialization in prior works, score sharing enlarges the size of the initial dataset
without additional black-box queries. Furthermore, selecting initial data using Srep leads to better
coverage of the soft prompt space than naive score sharing. Finally, our proposed preimage-based
initialization method that utilizes Scov achieves the densest and comprehensive coverage of the search
space. It shows that our preimage-based initialization method effectively selects the initial data points
that densely and evenly cover the search space.

6.4 Score Predictor Performance Enhancement

To analyze how score sharing (Section 4.1) and score consistency regularization (Section 4.3)
influence the quality of the score predictor, we evaluate its prediction performance under different
training configurations. Figure 5 reports the root mean squared error (RMSE), where lower values
indicate higher prediction accuracy. We use 100 randomly selected soft prompts as training data and
another 100 as test data for the objective counting task. As shown in Figure 5, applying either score
sharing or score consistency regularization improves the score predictor’s performance, reducing the
RMSE from approximately 0.27 (vanilla) to around 0.23. When both techniques are applied together,
the RMSE further decreases to approximately 0.15, indicating a strong complementary effect. The
results demonstrate that expanding the training set without requiring additional black-box queries

9

through score sharing and incorporating the preimage structure as a prior via score consistency
regularization are both crucial for enhancing the score predictor’s performance.

7 Conclusion

We propose PRESTO, a preimage-informed instruction optimization framework that explicitly lever-
ages this many-to-one structure via preimage. PRESTO consists of three components that leverage the
preimage structure: score sharing to propagate labels within each preimage, preimage-based initial-
ization to improve search space coverage, and consistency regularization to align predictions within
unscored preimages. PRESTO achieves state-of-the-art performance on 33 instruction optimization
tasks, and our comprehensive analysis supports its effectiveness and robustness.

Limitations and broader impacts

Our method introduces preimage-based score sharing to enlarge the number of data, which incurs mild
computational overhead compared to simpler baselines. Moreover, its benefits are more pronounced
when applied to a large candidate set, as score sharing is most effective when many soft prompts map
to the same instruction.

In terms of broader impact, this work aims to make black-box LLM optimization more data-efficient,
which can reduce the cost of experimentation and improve accessibility for researchers with limited
resources. However, as with any optimization technique for LLMs, there is a risk that improved
performance could be applied in ways that reinforce biases or generate harmful content. Careful
deployment and alignment with responsible AI principles are necessary.

Acknowledgement

This research was supported by the ASTRA Project through the National Research Foundation (NRF)
funded by the Ministry of Science and ICT (No. RS-2024-00439619).

References
[1] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,

Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv, 2024.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv, 2023.

[3] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[4] Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez,
Ting Fang Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine,
2023.

[5] Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad
Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large
language models. arXiv preprint arXiv:2307.06435, 2023.

[6] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730–27744, 2022.

[7] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM computing surveys, 2023.

[8] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. In ICLR, 2022.

10

[9] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In ICLR, 2024.

[10] Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang
Bian, and Yujiu Yang. Connecting large language models with evolutionary algorithms yields
powerful prompt optimizers. In ICLR, 2024.

[11] Chrisantha Fernando, Dylan Sunil Banarse, Henryk Michalewski, Simon Osindero, and Tim
Rocktäschel. Promptbreeder: Self-referential self-improvement via prompt evolution. In
International Conference on Machine Learning, 2024.

[12] Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic
prompt optimization with" gradient descent" and beam search. In EMNLP, 2023.

[13] Chengshuai Shi, Kun Yang, Zihan Chen, Jundong Li, Jing Yang, and Cong Shen. Ef-
ficient prompt optimization through the lens of best arm identification. arXiv preprint
arXiv:2402.09723, 2024.

[14] Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. Instructzero:
Efficient instruction optimization for black-box large language models. In ICML, 2024.

[15] Wenyang Hu, Yao Shu, Zongmin Yu, Zhaoxuan Wu, Xiaoqiang Lin, Zhongxiang Dai, See-
Kiong Ng, and Bryan Kian Hsiang Low. Localized zeroth-order prompt optimization. NeurIPS,
2024.

[16] Xiaoqiang Lin, Zhaoxuan Wu, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick
Jaillet, and Bryan Kian Hsiang Low. Use your instinct: Instruction optimization for llms using
neural bandits coupled with transformers. In ICML, 2024.

[17] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[18] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[19] Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

[20] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking
the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 2015.

[21] Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based
exploration. In ICML, 2020.

[22] Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural thompson sampling.
arXiv preprint arXiv:2010.00827, 2020.

[23] Krista Opsahl-Ong, Michael Ryan, Josh Purtell, David Broman, Christopher Potts, Matei
Zaharia, and Omar Khattab. Optimizing instructions and demonstrations for multi-stage
language model programs. In EMNLP, 2024.

[24] Xiaoqiang Lin, Zhongxiang Dai, Arun Verma, See-Kiong Ng, Patrick Jaillet, and Bryan
Kian Hsiang Low. Prompt optimization with human feedback. arXiv preprint arXiv:2405.17346,
2024.

[25] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. arXiv, 2023.

[26] Seunghun Lee, Jaewon Chu, Sihyeon Kim, Juyeon Ko, and Hyunwoo J Kim. Advancing
bayesian optimization via learning correlated latent space. Advances in Neural Information
Processing Systems, 2023.

11

[27] Jaewon Chu, Jinyoung Park, Seunghun Lee, and Hyunwoo J Kim. Inversion-based latent
bayesian optimization. In The Thirty-eighth Annual Conference on Neural Information Process-
ing Systems, 2024.

[28] Seunghun Lee, Jinyoung Park, Jaewon Chu, Minseo Yoon, and Hyunwoo J Kim. Latent
bayesian optimization via autoregressive normalizing flows. In The Thirteenth International
Conference on Learning Representations, 2025.

[29] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM workshop on artificial intelligence and security, pages 15–26,
2017.

[30] William J Morokoff and Russel E Caflisch. Quasi-random sequences and their discrepancies.
SIAM Journal on Scientific Computing, 15(6):1251–1279, 1994.

[31] Marissa Renardy, Louis R Joslyn, Jess A Millar, and Denise E Kirschner. To sobol or not
to sobol? the effects of sampling schemes in systems biology applications. Mathematical
biosciences, 337:108593, 2021.

[32] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of
expensive black-box functions. Journal of Global optimization, 13:455–492, 1998.

[33] David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek.
Scalable global optimization via local bayesian optimization. Advances in neural information
processing systems, 32, 2019.

[34] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable expected hypervolume
improvement for parallel multi-objective bayesian optimization. Advances in Neural Information
Processing Systems, 33:9851–9864, 2020.

[35] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Parallel bayesian optimization
of multiple noisy objectives with expected hypervolume improvement. Advances in Neural
Information Processing Systems, 34:2187–2200, 2021.

[36] Or Honovich, Uri Shaham, Samuel R Bowman, and Omer Levy. Instruction induction: From
few examples to natural language task descriptions. In 61st Annual Meeting of the Association
for Computational Linguistics, ACL 2023, pages 1935–1952, 2023.

[37] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[38] Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by ratio-
nale generation: Learning to solve and explain algebraic word problems. arXiv preprint
arXiv:1705.04146, 2017.

[39] Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple
math word problems? arXiv preprint arXiv:2103.07191, 2021.

[40] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[41] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

12

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main claims (Section 1, 4).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses limitations after Section 7.

13

Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not present formal theoretical proofs, focusing instead on
algorithmic design and empirical validation.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 5.1 provides full experimental settings, and additional details are
available in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.

14

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper states that detailed configurations and implementation details are
provided in Section 5.1 and the supplement, and the authors intend to release code and data
after acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper describes test splits, model usage, total budget, search space
construction, and optimization strategies.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The tables report averages with standard errors over three random seeds, and
all comparisons to baselines include this variance (see Tables 1).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The supplementary materials include detailed specifications, including hard-
ware type.
Guidelines:

• The answer NA means that the paper does not include experiments.

16

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The work conforms to NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses broader impacts after Section 7.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The method does not release any high-risk models or datasets.

17

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper appropriately cites existing models and datasets with references
including model names and publications.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new dataset, model, or tool is released. The method is built on existing
assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

18

paperswithcode.com/datasets

Answer: [NA]
Justification: The research does not involve any human subjects or crowdsourcing experi-
ments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subject research is conducted, hence IRB approval is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The method leverages both white-box and black-box LLMs as part of its core
optimization framework.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Preliminaries
	Method
	Preimage-Based Score Sharing
	Preimage-Based Initialization for Maximizing Search Space Coverage
	Score consistency regularization for score predictor

	Experiments
	Experimental settings
	Instruction induction results
	Chain-of-Thought Prompting Results

	Analysis
	Ablation Study
	Impact of score sharing method
	Visualization of Preimage-Based Initialization
	Score Predictor Performance Enhancement

	Conclusion

