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Abstract
Recent developments in Machine Learning ap-
proaches for modelling physical systems have be-
gun to mirror the past development of numerical
methods in the computational sciences. In this sur-
vey we begin by providing an example of this with
the parallels between the development trajectories
of graph neural network acceleration for physical
simulations and particle-based approaches. We
then give an overview of simulation approaches,
which have not yet found their way into state-of-
the-art Machine Learning methods and hold the
potential to make Machine Learning approaches
more accurate and more efficient. We conclude
by presenting an outlook on the potential of these
approaches for making Machine Learning models
for science more efficient.

1. Introduction
Recent years have seen an ever-larger push towards the
application of Machine Learning to problems from the
physical sciences such as Molecular Dynamics (Musaelian
et al., 2022b), coarse-graining (Wang et al., 2022), the
time-evolution of incompressible fluid flows (Wang et al.,
2020), learning governing equations from data (Brunton
et al., 2016; Cranmer et al., 2020), large-scale transformer
models for chemistry (Frey et al., 2022), and the accelera-
tion of numerical simulations with machine learning tech-
niques (Kochkov et al., 2021). All of these algorithms build
on the infrastructure underpinning modern Machine Learn-
ing in combing state-of-the-art approaches with a deep un-
derstanding of the physical problems at hand. This begs the
questions if there exist more insights and tricks hidden in
existing, classical approaches in the physical sciences which
have the potential to maybe not only make the algorithm for
the particular problem class more efficient, but maybe even
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Figure 1. Characterization of the physical scales the example meth-
ods of section 2 operate on. The Graph Network-based approaches
MeshGraphNets, and Graph Network-based Simulators are placed
in relation to their classical counterparts.

Machine Learning in general?

Inspired by recent theoretical advances in the algorithmic
alignment between Graph Neural Networks (GNNs) and
dynamic programming (Xu et al., 2020; Veličković et al.,
2020), we surmise that the extension of this analysis to
classical PDE solvers, and the physical considerations they
incorporate, enables us to learn from the development tra-
jectory in the physical sciences to inform the development
of new algorithms. In this workshop paper we make the
following contributions towards this goal:

• A comparison of the development of graph-based
learned solvers, and the proximity of their develop-
ment ideas to the development of Smoothed Particle
Hydrodynamics starting from Molecular Dynamics in
the physical sciences.

• An analysis of classical numerical solvers, and their
algorithmic features to inform new ideas for new algo-
rithms.

2. MeshGraphNets and its relation to classical
methods

An excellent example of the parallels between the develop-
ment of Machine Learning methods for the sciences and
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the development of classical approaches is the recent devel-
opment of graph-based simulators. When we relate their
inherent assumptions and techniques to the development of
particle-based methods, starting with Molecular Dynamics,
a great many parallels arise. For an impression of the scales
the classical methods operate on, and where graph-based
simulators are placed in relation, please refer to Figure 1.

In this section, we analyze the structure of two of the first ma-
ture learned solvers (GNS (Sanchez-Gonzalez et al., 2020),
MeshGraphNets (Pfaff et al., 2021)) and how these two
approaches align with three of the classical methods (MD,
FPM, SPH). We select these learned algorithms because they
were one of the first of their kind to show promising results
on real world data. Also, GNS is trained directly on SPH
data which further motivates an algorithmic comparison.

2.1. Graph Neural Network-based Approaches to
Simulation

The Graph Network (GN) (Battaglia et al., 2018) is a frame-
work that generalizes graph-based learning and specifically
the Graph Neural Network (GNN) architecture by Scarselli
et al. (2008). However, in this work, we use the terms
GN and GNN interchangeably. Adopting the Graph Net-
work formulation, the main design choices are the choice
of update-function, and aggregation-function. For physics-
informed modeling this gives us the ability to blur the line
between classical methods and graph-based methods by in-
cluding biases similar to CNNs for non-regular grids, as well
as encoding physical laws into our network structure with
the help of spatial equivariance/invariance, local interac-
tions, the superposition principle, and differential equations.
E.g. translational equivariance can easily be incorporated
using relative positions between neighboring nodes, or the
superposition principle can be encoded in graphs by using
the summation aggregation over the representation of forces
as edge features.

Viewing MeshGraphNets (Pfaff et al., 2021) from a physics-
motivated perspective, we argue that MeshGraphNets orig-
inate from Molecular Dynamics. To present this argu-
ment in all its clarity, we have to begin with its predeces-
sor: the Graph Network-based Simulators (GNS) (Sanchez-
Gonzalez et al., 2020).

2.1.1. GRAPH NETWORK-BASED SIMULATORS

The Graph Networks-based Simulator builds on the encoder-
processor-decoder approach, where Graph Networks are
applied iteratively on the encoded space. Proving GNS’
ability to simulate systems with up to 85k particles, their
approach can be summarized as follows.

Let Xt denote the states of a particle system at time t. X
might contain the position, velocity, type of particle, or any

other physical information specific to a material particle. A
set of k + 1 subsequent past states

Xt0:K =
{
Xt0 , Xt1 , . . . , Xtk

}
if given to the network. The core task is to then learn the
differential operator dθ, which approximates the dynamics

dθ : Xtk −→ Y tk , Xtk+1 = Update
{
Xtk , dθ

}
.

Here, Y t is the acceleration, which is used to obtain the next
state Xt+1 via integration using a deterministic ”Update”
routine, e.g. semi-implicit Euler scheme. The differential
operator dθ is learned with the encoder-processor-decoder
approach where the encoder takes in 1 to 10 previous states,
and encodes them into a graph. This graph consists of nodes
- latent representation of the states X - and edges - between
each pair of particles closer than some cut-off radius there
is another latent vector, which initially contains the dis-
tance or displacement information. The processor is then
a multilayer Graph Network of which the exact number of
message-passing Graph Networks is a hyperparameter. The
result on the graph-space is then decoded back to physi-
cal space. The loss is computed as the mean-squared error
between the learned acceleration, and the target acceler-
ation. While the approach showed promising results for
fluid simulations, and fluid-solid interactions, it struggled
on deforming meshes, such as thin shells.

2.1.2. MESHGRAPHNETS

To better represent meshes MeshGraphNets (Pfaff et al.,
2021) supplemented the Graph Network simulation with an
additional set of edges to define a mesh, on which interac-
tions can be learned. Closely related to the superposition
principle in physics, the principle of splitting a complicated
function into the sum of multiple simpler ones, the interac-
tion function is split into the interaction of mesh-type edges
and collision-type edges.

Following the widespread use of remeshing in engineering,
MeshGraphNets have the ability to adaptively remesh to
model a wider spectrum of dynamics. Mesh deformation
without adaptive remeshing would lead to the loss of high
frequency information.

The last major improvement of MeshGraphNets over GNS
is extending the output vector Y with additional components
to also predict further targets, such as the stress field.

In difference to the Graph Network-based Simulators, the
input here includes a predefined mesh and the output is
extended to contain dynamical features like pressure.
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Figure 2. Illustration of the MeshGraphNets scheme with a decom-
position of its algorithm into the encoder, processor, and decoder
(Image source: Pfaff et al. (2021)).

2.2. Similarities between the Development Trajectories
of Particle-based Methods and Graph Neural
Network-based Approaches to Simulations

Beginning with Molecular Dynamics, the earliest and most
fundamental particle-based method, we will now outline the
similarities between the development trajectories, and the
derivations inherent to them, of MeshGraphNets and the
development of particle-based methods in physics.

2.2.1. SIMILARITIES TO MOLECULAR DYNAMICS

Molecular Dynamics is a widely used simulation method
which generates the trajectories of an N-body atomic system.
For the sake of intellectual clarity we restrict ourselves to
its simplest form, the unconstrained Hamiltonian mechanics
description.

The construction of connections, and edges is one of
the clearest similarities between Molecular Dynamics and
MeshGraphNets. Both can potentially have a mesh as an
input, and both compute the interactions based on spatial
distances up to a fixed threshold. Iterative updates, or the
repeated application of Graph Network layers in the Mesh-
GraphNets, extend the effective interaction radius beyond
the immediate neighbourhood of a particle such that all parti-
cles can be interacted with. Both approaches are at the same
time translationally invariant w.r.t. accelerations, and permu-
tation equivariant w.r.t. the particles, and use a symplectic
time-integrator. While there are theoretical reasons for this
choice in Molecular Dynamics, it is choice of convenience
in the context of learned approaches. The main difference
between the two approaches lies in the computation of the
accelerations. In Molecular Dynamics the derivative of a
predefined potential function is evaluated, whereas a learned
model is used in the Graph Network-based Simulators.

2.2.2. SIMILARITIES TO SMOOTHED PARTICLE
HYDRODYNAMICS

A closer relative to the Graph Network-based Simulators is
the Smoothed Particle Hydrodynamics algorithm originat-
ing from astrophysics (Lucy, 1977; Gingold & Monaghan,
1977). Smoothed Particle Hydrodynamics discretizes the
governing equations of fluid dynamics, the Navier-Stokes
equations, with kernels such that the discrete particles follow
Newtonian mechanics with the equivalent of a prescribed
molecular potential. Both, Smoothed Particle Hydrodynam-
ics, and Graph Network-based Simulators obey the contin-
uum assumption, whereas Molecular Dynamics presumes a
discrete particle distribution, and is constrained to extremely
short time intervals.

2.2.3. THE DIFFERENCES

Summarizing the key differences between the closely re-
lated approaches, Molecular Dynamics and Smoothed Par-
ticle Hydrodynamics both take one past state Xt as an in-
put, whereas Graph-based approaches require a history of
k states Xt0:K . Molecular Dynamics encodes geometric
relations in the potential, MeshGraphNets encode the ge-
ometry in the mesh, while there exists no direct way for
inclusion in the other two approaches. Molecular Dynamics,
and Smoothed Particle Hydrodynamics explicitly encode
physical laws, for learned methods all these parameters and
relations have to be learned from data.

A key advancement of MeshGraphNets, coming from the
Graph Network-based Simulators, is the explicit superim-
position of solutions on both sets of edges, which far out-
performs the implicit distinction of interactions. This ap-
proach is equally applicable to all conventional particle-,
and mesh-based simulations in engineering. Borrowing the
Fluid Particle Model from fluid mechanics, we can sub-
sequently connect the classical methods with the learned
approaches by viewing meshes and particles as the same
entity under the fluid-particle paradigm.

2.2.4. CONNECTING MESHGRAPHNETS TO GRAPH
NEURAL NETWORK-BASED SIMULATIONS WITH
THE FLUID PARTICLE MODEL

The Fluid Particle Model (Espanol, 1998) is a mesoscopic
Newtonian model, as seen in Figure 1, situated on an inter-
mediate scale between the microscopic Molecular Dynamics
and the macroscopic Smoothed Particle Hydrodynamics. It
views particles from the point of view of a Voronoi tesse-
lation of the molecular fluid, see Figure 3. The Voronoi
tesselation coarse-grains the atomistic system to a pseu-
doparticle system with ensembles of atoms in thermal equi-
librium summarized as pseudoparticles. This pseudoparti-
cle construction is closely related to the MeshGraphNets
construction, where each mesh node also corresponds to
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Figure 3. Single points (left), Delaunay triangulation (middle), and
Voronoi diagram (right)(Image source: Rokicki & Gawell (2016)

the cell center of a simulated pseudoparticle. Smoothed
Particle Hydrodynamics as well as Dissipative Particle Dy-
namics (Hoogerbrugge & Koelman, 1992) also both operate
on pseudoparticles. All of these approaches share that they
have to presume a large enough number of atoms per pseu-
doparticles to be viewed as a thermodynamic system.

Especially in Dissipative Particle Dynamics one injects
Gaussian noise to approximate a physical system, just as
is done for Graph Network-based Simulators and Mesh-
GraphNets to stabilize the training. We surmise that this
injection of noise into graph-based simulators amounts to
forcing the learned model to predict the true output despite
the noisy inputs, hence leading the model to converge to the
central limit of the estimated conditional distribution of the
acceleration.

The construction of Voronoi tesselations governs that the
size of the cells is to be inversely proportional to variations
in their properties, hence leading to more sampling in re-
gions with high property variation. The very same argument
based on the curvature as a heuristic is being used to derive
the mesh refinement of the MeshGraphNets algorithm.

3. Relation to Numerical Schemes
After the recent success of Neural ODEs solvers (Chen
et al., 2018), it has taken almost four years to start consid-
ering Neural PDEs in general (Brandstetter et al., 2022).
By definition, PDEs deal with derivatives of multiple vari-
ables, compared to ODEs having one variable. As a result,
typical numerical approximations of PDEs are much more
diverse depending on the peculiarities of the PDE of interest.
Typical PDE solvers operating on grids (Eulerian descrip-
tion) include Finite Difference Methods (FDM), Finite Vol-
ume Methods (FVM), and Finite Element Methods (FEM),
whereas other methods follow the trajectory of irregularly
spaced points (Lagrangian description) like Smoothed Parti-
cle Hydrodynamics (SPH), Fluid Particle Model (FPM),
Dissipative Particle Dynamics (DPD) (Hoogerbrugge &
Koelman, 1992), Volume of Fluid Method (VOF) (Hirt &
Nichols, 1981), Particle-in-Cell (PIC) (Brackbill & Rup-
pel, 1986), Material Point Method (MPM) (Sulsky et al.,
1993), Discrete Element Method (DEM) (Cundall & Strack,
1979), and Meshless FEM (MFEM). Finally, there are also

approaches to solving PDEs without any discretization as
in Sawhney et al. (2022). Each of these methods works
best for a specific type of PDE, boundary/initial conditions,
and parameter range. In this section we compare concepts
from these classical methods to state-of-the-art learned al-
gorithms.

3.1. Data augmentation with white noise

Two popular papers corrupting training inputs with addi-
tive Gaussian noise include Sanchez-Gonzalez et al. (2020);
Pfaff et al. (2021), as described before. The goal of this ap-
proach is to force the model to deal with accumulating noise
leading to a distribution shift during longer rollouts. Thus,
the noise acts as an effective regularization technique, which
in these two papers allows for much longer trajectories than
seen during training. However, one major issue with this
approach is that the scale of the noise is represented by
two new hyperparameters, which have to be tuned manually
(Pfaff et al. (2021), Appendix 2.2).

A perspective on noise injection coming from the physical
sciences is to see it through the lens of mesoscopic parti-
cle methods like the Fluid Particle Model and Dissipative
Particle Dynamics, in which the noise originates from the
Brownian motion at small scales. Although GNS and Mesh-
GraphNets operate on scales too large for the relevance of
Brownian motion, the Fluid Particle Model provides a prin-
cipled way of relating particle size and noise scale. The
underlying considerations from statistical mechanics might
aid to a better understanding of the influence of training
noise and in turn make approaches based on it more effi-
cient.

3.2. Data augmentation by multi-step loss

Another way of dealing with the distribution shift is by
training a model to correct its own mistakes via some form
of a multi-step loss, i.e. during training a short trajectory is
generated and the loss is summed over one or multiple past
steps (Tompson et al., 2017; Um et al., 2020; Ummenhofer
et al., 2020; Brandstetter et al., 2022). The results on this
vary with some researchers reporting better performance
than with noise injection (Brandstetter et al., 2022), while
others report the opposite experience (Sanchez-Gonzalez
et al., 2020).

Looking at classical solvers for something related to the
multi-step loss, it is natural to think of adaptive time integra-
tors used by default in ODE routines like ODE45 in Matlab
(Dormand & Prince, 1980). Adaptive integrators work by
generating two short trajectories of the same time length,
but with different step sizes, and as long as the outcome with
larger steps differs within some bounds, then the step size is
increased. This guarantees some level of long-term rollout
stability just as attempted with the multi-step loss, but the
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multi-step loss forces the network to implicitly correct for
future deviations of the trajectory without actually changing
the step size. The adaptive step-size idea has gained popu-
larity in ML with the introduction of Neural ODEs (Chen
et al., 2018).

3.3. Equivariance bias

Numerical PDE solvers come in two flavors: stencil-based
and kernel-based, both of which are equivariant to trans-
lation, rotation, and reflection in space (Euclidean group
equivariance), as well as translation in time (by Noether’s
theorem). These properties arise from the conservation of
energy, which is a fundamental principle in physics. While
equivariance, with respect to the Euclidean group, has been
around for a couple of years on grids (Weiler et al., 2018),
its extension to the grid-free (Lagrangian) setting is gaining
popularity just recently (Brandstetter et al., 2021; Schütt
et al., 2021; Batzner et al., 2022; Musaelian et al., 2022a).
Here, we talk about equivariance in terms of a neural net
operation on vectors, which rotates the output exactly the
same way as the input is rotated, as opposed to working
with scalar values, which is called an invariant operation,
e.g. SchNet (Schütt et al., 2017). The performance boost
by including equivariant features is significant and reaches
up to an order of magnitude compared to invariant methods
(Batzner et al., 2022).

3.4. Input multiple past steps

Another common performance improvement in neural net
training is observed by stacking multiple past states as an
input (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021;
Brandstetter et al., 2022). One argument supporting this
approach is overfitting prevention by inputting more data
(Pfaff et al., 2021). Looking at conventional solvers we
very rarely see multiple past states as input and this is done
for materials with memory property, e.g. rheological flu-
ids or ”smart” materials. Thus, providing multiple past
states implicitly assumes that there is some nonphysical
non-Markovian retardation process, which in most cases
does not correspond to the physics used for training data
generated.

The only physical justification of a multi-step input we
are aware of arises if we train the model to learn a coarse-
grained representation of the system. Li et al. (2015) showed
that explicit memory effects are necessary in Dissipative
Particle Dynamics for the correct coarse-graining of a com-
plex dynamical system using the Mori-Zwanzig formalism.
Given that papers like GNS and MeshGraphNets do not
make use of coarse-graining, it is questionable why we ob-
serve improvement in performance and whether this trick
generalizes well to different settings.

3.5. Spatial multi-scale modeling

Conventional multi-scale methods include, among others,
all types of coarse-graining, Wavelet-based methods (e.g.
Kim et al. (2008)), and the Fast Multipole Method (Rokhlin,
1985). Graph Networks seem especially suitable for tasks
like coarse-graining as they are designed to work on unstruc-
tured domains, opposed for example to approaches using
Wavelet or Fourier transforms, which require regular grids.
GNNs seem especially promising with many applications
in Molecular Dynamics (Husic et al., 2020) and engineer-
ing (Lino et al., 2021; Valencia et al., 2022; Migus et al.,
2022; Han et al., 2022). It is particularly interesting to see
works like Migus et al. (2022) inspired by multi-resolution
methods and Valencia et al. (2022) resembling geometric
coarse-graining by weighted averaging. All these methods
rely on the fact that physical systems exhibit multi-scale be-
havior, meaning that the trajectory of a particle depends on
its closest neighbors, but also on more far-reaching weaker
forces. Splitting the scales and combining their contribu-
tions can greatly reduce computation. One of the great ad-
vantages of GNNs is their capability to operate on irregularly
spaced data, which is necessary for most coarse-graining
approaches.

3.6. Locality of interactions

In most cases, graph-based approaches to solving PDEs
define the edges in the graph, based on an interaction radius.
Methods using the Graph Network architecture (Battaglia
et al., 2018) effectively expand the receptive field of each
node with every further layer, in the extreme case resulting
in the phenomenon known as over-smoothing. But if we
keep the number of layers reasonably low, the receptive field
will always be larger compared to a conventional simula-
tion with the same radius. Until recently, it was thought
that a large receptive field is the reason for the success of
learned simulators, but Musaelian et al. (2022a) question
that assumption. In this paper, an equivariant graph net-
work with fixed interaction neighbors performs on a par
with the very similar Graph Network-based method NequIP
(Batzner et al., 2022) on molecular property prediction tasks.
This finding supports the physics-based argument about the
locality of interactions.

3.7. Mesh vs Particle

GNN-based simulation approaches offer the flexibility to
combine particles and meshes out-of-the-box. If we then
train one neural network to reproduce the results of a Finite
Element solution on a mesh and Smoothed Particle Hy-
drodynamics solution over particles, this is where learned
methods really shine. This was achieved with the Mesh-
GraphNets framework (Pfaff et al., 2021). We argue that
the transition from particles to meshes is a direct result of a
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Figure 4. Overview of the currently under-utilized ideas discussed in Section 4 for Machine Learning approaches for the physical sciences.

coarse-graining procedure using Voronoi tessellation, which
is related to the derivation of the Fluid Particle Model. The
main assumption in this derivation is that each mesh cell
should be small enough that it can be treated as being in equi-
librium - similar to the assumption made when discretizing
a domain with points.

3.8. Stencils

We talk about stencils when operating on regular grids. Al-
though this is not the main strength of GNNs, there are some
useful concepts from stencil-based simulations, which are
conventionally nontrivial to generalize to particles, but can
easily be adapted with GNNs. Brandstetter et al. (2022)
state that their paper is motivated by the observation that
the Weighted Essentially Non-Oscillatory scheme (WENO)
(Shu, 1998) can be written as a special case of a GNN.
Another work, inspired by the general idea of the Finite Vol-
ume Method, looking at the fluxes at the left and right cell
boundary, was developed by Praditia et al. (2021). Inspired
by the Finite Element Method, finite element networks were
introduced by weighting the contributions of neighbouring
cells by their volume, as is done in Finite Element analy-
sis (Lienen & Günnemann, 2022).

3.9. Integration schemes

In addition to the time-step adaptation mentioned in relation
to multi-step losses, another topic investigated in literature is
the order of the integrator (Sanchez-Gonzalez et al., 2019).
This work points to the fact that higher order integrators
lead to much better robustness, with respect to the choice
of an integration time step. Another interesting question
discussed in this paper is whether symplectic integrators
improve performance of a learned Hamiltonian neural net.
The answer seems to be that the symplectic property is much
less important than the order of the integrator, which is in
contrast with conventional Molecular Dynamics integrators,
which work extremely poorly if not symplectic.

4. Untapped Ideas from Classical Approaches
In this subsection, we introduce potentially useful ideas
from conventional differential equation solvers in science,
which to the best of our knowledge have not been adapted
in main-stream learned PDE solvers yet. Figure 4 is a col-
lection of these concepts in the form of a word cloud.

4.1. Noise during inference

Adding noise to the inputs during training has proven to
be useful, but has not been done during testing. One idea
would be to use noise during inference to emulate Brownian
motion. And one further topic we already mentioned is the
relation of the noise scale to particle mass. From mesoscopic
methods and the Fluctuation-dissipation theorem we would
expect the noise to scale as 1/

√
m if a coarser representation

is used.

4.2. Multiple time steps

Learned Molecular Dynamics simulations stick to using
only the last past state and doing the same for larger-scale
simulations might partially explain the unphysical behavior
of the GNS method demonstrated in Klimesch et al. (2022).
For coarse-graining though a longer history might be help-
ful.

4.3. Feature Engineering

From the Volume of Fluid Method we could adapt the idea
of including features corresponding to the ratio of different
material, if we are interested in simulating multi-material
flows. The Discrete Element Method suggests encoding
much more features like rotational degree of freedom (in
magnetic field or simulating friction), stateful contact infor-
mation (contact simulations), and often complicated geom-
etry (for non-spherical, e.g. granular particles). Inspired
by shock-capturing methods used routinely for the solu-
tion of nonlinear fluid dynamics problems (Ketcheson et al.,
2020), one could think of further hand-tuned node features
indicating the presence of a shock.
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4.4. Particles and Grid

There are a number of methods using the best of both parti-
cle and grid worlds like the Particle-in-Cell method and its
successor Material Point Method. The idea of updating the
node features and from time to time also based on the grid
cell they belong to, might speed up simulations and is worth
exploring. Now, if we restrict ourselves to regularly spaced
particles, respectively grid cells, our solver toolkit becomes
much richer with methods like the Fast Fourier Transform
(which has already seen great success with the Fourier Neu-
ral Operator (Li et al., 2020)) and the Wavelet Transform
(as used in the PDE-Net (Long et al., 2018)) at our disposal,
as mentioned above in the context of multi-scale modeling.

4.5. Integrator

Taking the perspective of Neural ODEs (Chen et al., 2018)
with the neural network learning the perfect acceleration,
one could arguably expect the next evolutionary step to
be the combination of learned integrators with adaptive
integration schemes. Incorporating insights from classi-
cal numerical methods, one should possibly seek to define
an equivalent stability criterion for learned methods as the
Courant-Friedrichs-Lewy (CFL) condition for classical nu-
merical methods. This would in turn aid in bounding the
time, and subsequently explore time steps smaller than the
critical value.

5. Conclusion & Discussion
In this article, we claim that studying classical PDE solvers
and their past development offers a direct path to the acceler-
ation of the development of learned PDE solvers. Examples
in literature show that biasing a learned solver by means of
architectural design, data augmentation, feature engineer-
ing, etc. incorporating existing knowledge from classical
solvers can greatly improve performance, explainability, and
data-efficiency.

In Section 2 we show how this development has already sub-
consciously played out in the development of graph-based
learned solvers following the same development as particle-
based methods such as Molecular Dynamics, Smoothed
Particle Hydrodynamics, and the Fluid-Particle Model. This
investigation is revisited for algorithmic comparisons and
illustrations of the limitations of classical solvers later on. In
Section 3 we then focus on ideas from classical approaches
which have found their way into recent learned solver litera-
ture, and discuss the physical interpretation of these devel-
opments. In the discussed examples, the included physically
motivated biases are used to improve robustness w.r.t. hy-
perparameter choices, lower errors, and speed-up inference.

Section 4 takes a glimpse into a possible version of the fu-
ture with ideas which have, to the best of our knowledge,

not yet been integrated in learned methods. Given the elabo-
rate history of classical methods, and the short, but highly
dynamic history of learned approaches, there is still a lot
of potential to be realized within the latter by incorporating
insights from the former.

Going further, many exciting problems in the physical sci-
ences, such as simulations involving multiple spatial scales,
multiple temporal scales, non-Newtonian fluids, or phase-
changing materials, are heavily data-constrained and will
hence have to rely on insights from classical methods for
Machine Learning approaches to become feasible.
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