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Abstract
Recent developments in Machine Learning ap-
proaches for modelling physical systems have be-
gun to mirror the past development of numerical
methods in the computational sciences. In this sur-
vey we begin by providing an example of this with
the parallels between the development trajectories
of graph neural network acceleration for physical
simulations and particle-based approaches. We
then give an overview of simulation approaches,
which have not yet found their way into state-of-
the-art Machine Learning methods and hold the
potential to make Machine Learning approaches
more accurate and more efficient. We conclude
by presenting an outlook on the potential of these
approaches for making Machine Learning models
for science more efficient.

1. Introduction
Recent years have seen an ever-larger push towards the
application of Machine Learning to problems from the
physical sciences such as Molecular Dynamics (Musaelian
et al., 2022b), coarse-graining (Wang et al., 2022), the
time-evolution of incompressible fluid flows (Wang et al.,
2020), learning governing equations from data (Brunton
et al., 2016; Cranmer et al., 2020), large-scale transformer
models for chemistry (Frey et al., 2022), and the accelera-
tion of numerical simulations with machine learning tech-
niques (Kochkov et al., 2021). All of these algorithms build
on the infrastructure underpinning modern Machine Learn-
ing in combing state-of-the-art approaches with a deep un-
derstanding of the physical problems at hand. This begs the
questions if there exist more insights and tricks hidden in
existing, classical approaches in the physical sciences which
have the potential to maybe not only make the algorithm for
the particular problem class more efficient, but maybe even
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Figure 1. Characterization of the physical scales the example meth-
ods of section 2 operate on. The Graph Network-based approaches
MeshGraphNets, and Graph Network-based Simulators are placed
in relation to their classical counterparts.

Machine Learning in general?

Inspired by recent theoretical advances in the algorithmic
alignment between Graph Neural Networks (GNNs) and
dynamic programming (Xu et al., 2020; Veličković et al.,
2020), we surmise that the extension of this analysis to
classical PDE solvers, and the physical considerations they
incorporate, enables us to learn from the development tra-
jectory in the physical sciences to inform the development
of new algorithms. In this workshop paper we make the
following contributions towards this goal:

• A comparison of the development of graph-based
learned solvers, and the proximity of their develop-
ment ideas to the development of Smoothed Particle
Hydrodynamics starting from Molecular Dynamics in
the physical sciences.

• An analysis of classical numerical solvers, and their
algorithmic features to inform new ideas for new algo-
rithms.

2. MeshGraphNets and its relation to classical
methods

An excellent example of the parallels between the develop-
ment of Machine Learning methods for the sciences and
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the development of classical approaches is the recent devel-
opment of graph-based simulators. When we relate their
inherent assumptions and techniques to the development of
particle-based methods, starting with Molecular Dynamics,
a great many parallels arise. For an impression of the scales
the classical methods operate on, and where graph-based
simulators are placed in relation, please refer to Figure 1.

In this section, we analyze the structure of two of the first ma-
ture learned solvers (GNS (Sanchez-Gonzalez et al., 2020),
MeshGraphNets (Pfaff et al., 2021)) and how these two
approaches align with three of the classical methods (MD,
FPM, SPH). We select these learned algorithms because they
were one of the first of their kind to show promising results
on real world data. Also, GNS is trained directly on SPH
data which further motivates an algorithmic comparison.

2.1. Graph Neural Network-based Approaches to
Simulation

The Graph Network (GN) (Battaglia et al., 2018) is a frame-
work that generalizes graph-based learning and specifically
the Graph Neural Network (GNN) architecture by Scarselli
et al. (2008). However, in this work, we use the terms
GN and GNN interchangeably. Adopting the Graph Net-
work formulation, the main design choices are the choice
of update-function, and aggregation-function. For physics-
informed modeling this gives us the ability to blur the line
between classical methods and graph-based methods by in-
cluding biases similar to CNNs for non-regular grids, as well
as encoding physical laws into our network structure with
the help of spatial equivariance/invariance, local interac-
tions, the superposition principle, and differential equations.
E.g. translational equivariance can easily be incorporated
using relative positions between neighboring nodes, or the
superposition principle can be encoded in graphs by using
the summation aggregation over the representation of forces
as edge features.

Viewing MeshGraphNets (Pfaff et al., 2021) from a physics-
motivated perspective, we argue that MeshGraphNets orig-
inate from Molecular Dynamics. To present this argu-
ment in all its clarity, we have to begin with its predeces-
sor: the Graph Network-based Simulators (GNS) (Sanchez-
Gonzalez et al., 2020).

2.1.1. GRAPH NETWORK-BASED SIMULATORS

The Graph Networks-based Simulator builds on the encoder-
processor-decoder approach, where Graph Networks are
applied iteratively on the encoded space. Proving GNS’
ability to simulate systems with up to 85k particles, their
approach can be summarized as follows.

Let Xt denote the states of a particle system at time t. X
might contain the position, velocity, type of particle, or any

other physical information specific to a material particle. A
set of k + 1 subsequent past states

Xt0:K =
{

Xt0 ; Xt1 ; : : : ; Xtk
}

if given to the network. The core task is to then learn the
differential operator d�, which approximates the dynamics

d� : Xtk �! Y tk ; Xtk+1 = Update
{

Xtk ; d�
}

:

Here, Y t is the acceleration, which is used to obtain the next
state Xt+1 via integration using a deterministic ”Update”
routine, e.g. semi-implicit Euler scheme. The differential
operator d� is learned with the encoder-processor-decoder
approach where the encoder takes in 1 to 10 previous states,
and encodes them into a graph. This graph consists of nodes
- latent representation of the states X - and edges - between
each pair of particles closer than some cut-off radius there
is another latent vector, which initially contains the dis-
tance or displacement information. The processor is then
a multilayer Graph Network of which the exact number of
message-passing Graph Networks is a hyperparameter. The
result on the graph-space is then decoded back to physi-
cal space. The loss is computed as the mean-squared error
between the learned acceleration, and the target acceler-
ation. While the approach showed promising results for
fluid simulations, and fluid-solid interactions, it struggled
on deforming meshes, such as thin shells.

2.1.2. MESHGRAPHNETS

To better represent meshes MeshGraphNets (Pfaff et al.,
2021) supplemented the Graph Network simulation with an
additional set of edges to define a mesh, on which interac-
tions can be learned. Closely related to the superposition
principle in physics, the principle of splitting a complicated
function into the sum of multiple simpler ones, the interac-
tion function is split into the interaction of mesh-type edges
and collision-type edges.

Following the widespread use of remeshing in engineering,
MeshGraphNets have the ability to adaptively remesh to
model a wider spectrum of dynamics. Mesh deformation
without adaptive remeshing would lead to the loss of high
frequency information.

The last major improvement of MeshGraphNets over GNS
is extending the output vector Y with additional components
to also predict further targets, such as the stress field.

In difference to the Graph Network-based Simulators, the
input here includes a predefined mesh and the output is
extended to contain dynamical features like pressure.
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Figure 2.Illustration of the MeshGraphNets scheme with a decom-
position of its algorithm into the encoder, processor, and decoder
(Image source: Pfaff et al. (2021)).

2.2. Similarities between the Development Trajectories
of Particle-based Methods and Graph Neural
Network-based Approaches to Simulations

Beginning with Molecular Dynamics, the earliest and most
fundamental particle-based method, we will now outline the
similarities between the development trajectories, and the
derivations inherent to them, of MeshGraphNets and the
development of particle-based methods in physics.

2.2.1. SIMILARITIES TO MOLECULAR DYNAMICS

Molecular Dynamics is a widely used simulation method
which generates the trajectories of an N-body atomic system.
For the sake of intellectual clarity we restrict ourselves to
its simplest form, the unconstrained Hamiltonian mechanics
description.

The construction of connections, and edges is one of
the clearest similarities between Molecular Dynamics and
MeshGraphNets. Both can potentially have a mesh as an
input, and both compute the interactions based on spatial
distances up to a �xed threshold. Iterative updates, or the
repeated application of Graph Network layers in the Mesh-
GraphNets, extend the effective interaction radius beyond
the immediate neighbourhood of a particle such that all parti-
cles can be interacted with. Both approaches are at the same
time translationally invariant w.r.t. accelerations, and permu-
tation equivariant w.r.t. the particles, and use a symplectic
time-integrator. While there are theoretical reasons for this
choice in Molecular Dynamics, it is choice of convenience
in the context of learned approaches. The main difference
between the two approaches lies in the computation of the
accelerations. In Molecular Dynamics the derivative of a
prede�ned potential function is evaluated, whereas a learned
model is used in the Graph Network-based Simulators.

2.2.2. SIMILARITIES TO SMOOTHED PARTICLE

HYDRODYNAMICS

A closer relative to the Graph Network-based Simulators is
the Smoothed Particle Hydrodynamics algorithm originat-
ing from astrophysics (Lucy, 1977; Gingold & Monaghan,
1977). Smoothed Particle Hydrodynamics discretizes the
governing equations of �uid dynamics, the Navier-Stokes
equations, with kernels such that the discrete particles follow
Newtonian mechanics with the equivalent of a prescribed
molecular potential. Both, Smoothed Particle Hydrodynam-
ics, and Graph Network-based Simulators obey the contin-
uum assumption, whereas Molecular Dynamics presumes a
discrete particle distribution, and is constrained to extremely
short time intervals.

2.2.3. THE DIFFERENCES

Summarizing the key differences between the closely re-
lated approaches, Molecular Dynamics and Smoothed Par-
ticle Hydrodynamics both take one past stateX t as an in-
put, whereas Graph-based approaches require a history of
k statesX t 0: K . Molecular Dynamics encodes geometric
relations in the potential, MeshGraphNets encode the ge-
ometry in the mesh, while there exists no direct way for
inclusion in the other two approaches. Molecular Dynamics,
and Smoothed Particle Hydrodynamics explicitly encode
physical laws, for learned methods all these parameters and
relations have to be learned from data.

A key advancement of MeshGraphNets, coming from the
Graph Network-based Simulators, is the explicit superim-
position of solutions on both sets of edges, which far out-
performs the implicit distinction of interactions. This ap-
proach is equally applicable to all conventional particle-,
and mesh-based simulations in engineering. Borrowing the
Fluid Particle Model from �uid mechanics, we can sub-
sequently connect the classical methods with the learned
approaches by viewing meshes and particles as the same
entity under the �uid-particle paradigm.

2.2.4. CONNECTING MESHGRAPHNETS TOGRAPH

NEURAL NETWORK-BASED SIMULATIONS WITH

THE FLUID PARTICLE MODEL

The Fluid Particle Model (Espanol, 1998) is a mesoscopic
Newtonian model, as seen in Figure 1, situated on an inter-
mediate scale between the microscopic Molecular Dynamics
and the macroscopic Smoothed Particle Hydrodynamics. It
views particles from the point of view of a Voronoi tesse-
lation of the molecular �uid, see Figure 3. The Voronoi
tesselation coarse-grains the atomistic system to a pseu-
doparticle system with ensembles of atoms in thermal equi-
librium summarized as pseudoparticles. This pseudoparti-
cle construction is closely related to the MeshGraphNets
construction, where each mesh node also corresponds to


