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ABSTRACT

In this work, we analyze stochastic ℓp steepest descent for non-convex problems.
Specifically, for p > 2, we establish ϵ-approximate stationarity (in expectation)
with respect to the dual norm ∥·∥p

∗

p∗ at a rate of O(ϵ−4), thereby generalizing the
previous guarantees for signSGD (p = ∞). In addition, inspired by techniques
for the convex setting, we present a new accelerated ℓp descent method, called
STACEY, based on interpolated primal-dual iterate sequences that are designed for
non-Euclidean smooth optimization settings. We compare our algorithm against
popular methods such as SGD, Adam, AdamW, and Lion on image classification
and pretraining language modeling tasks, and our results demonstrate the poten-
tial for both faster convergence and achieving higher accuracy. We further evaluate
our algorithm for different values of p across various models and datasets, high-
lighting the importance and efficiency of non-Euclidean methods as compared to
standard Euclidean-based approaches.1

1 INTRODUCTION

Stochastic first-order methods have proven essential for efficiently training modern deep learning
models. In addition to the basic stochastic gradient descent (SGD) algorithm (Robbins & Monro,
1951)—along with its momentum-based variants (Nesterov, 1983; Polyak, 1964)—other methods,
such as AdaGrad (Duchi et al., 2011), Adam (Kingma, 2014), and AdamW (Loshchilov & Hutter,
2019), incorporate second moment gradient information to provide per-coordinate scaling, and the
use of these adaptive techniques has since become standard for optimizing deep neural networks.

A related approach involves updating the parameters based on the sign of the (stochastic) gradi-
ent (Balles et al., 2020; Bernstein et al., 2018; Riedmiller & Braun, 1992). For example, the
Lion method (Chen et al., 2023)—discovered symbolically through a program search—combines
the sign-based step with a certain momentum scheme (which differs from that of the Signum
method (Bernstein et al., 2018)), and more recently, the Lion-K method (Chen et al., 2024) estab-
lishes a family of methods—for which Lion is a special case—defined in terms of a general convex
function K(·). These algorithms have been shown to be competitive with—and in some cases even
outperform—popular adaptive methods, particularly for large language models.

Guarantees for non-convex optimization. Given the empirical success of sign-based methods,
we may then naturally ask why they perform as well as they do.2 Although globally optimizing
non-convex problems is NP-hard in general, one may nevertheless instead consider the relaxed goal
of reaching approximate stationary points—sometimes strengthened to that of finding approximate
local minima (Agarwal et al., 2017; Carmon et al., 2018; Ge et al., 2015)—for both determinis-
tic (Carmon et al., 2017) and stochastic (Ghadimi & Lan, 2013) first-order methods. However, cru-
cial to these guarantees (and their limitations) are the assumptions we make, notable among them
being that the function is smooth, and there additionally lies behind these notions of stationarity (and
smoothness) a particular choice of norm.

1The code is included in the supplementary material and will be publicly available upon acceptance.
2Indeed, understanding the dynamics—not to mention issues of generalization—for deep learning optimiza-

tion has been the subject of significant effort (e.g., (Allen-Zhu et al., 2019a;b; Arora et al., 2019a;b; Du et al.,
2017; 2018; 2019; Gunasekar et al., 2018a;b; Jacot et al., 2018; Jin et al., 2017; Soudry et al., 2018; Ward et al.,
2020; Wilson et al., 2017)), such that a complete accounting is beyond the scope of this paper.
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For example, in the case of SGD, Ghadimi & Lan (2013) establish approximate stationarity guar-
antees of the form E[∥∇f(x̂)∥2] ≤ ϵ (where ∥·∥2 denotes the standard Euclidean norm) under a
smoothness assumption similarly defined with respect to ∥·∥2. On the other hand, Bernstein et al.
(2018) show how signSGD—which we may also view as (unscaled) stochastic steepest descent
w.r.t. ∥·∥∞—can guarantee that E[∥∇f(x̂)∥1] ≤ ϵ, under a particular ℓ2 majorization assumption
(which, as we discuss further in Appendix B, implies smoothness w.r.t. ∥·∥∞ (Balles et al., 2020)).

Stochastic ℓp descent. Taken together, these two examples—albeit from opposite ends of the
(norm) spectrum—suggest a fundamental interplay between the (primal) norm that is the basis of
the steepest descent iteration (paired with smoothness defined in terms of the same norm) and the
(dual) norm used to measure approximate stationarity. Previous works, however, have focused on
either the case of stochastic steepest descent w.r.t. ∥·∥p for p = 2 (SGD) or p = ∞ (signSGD),
or else depend on unconventional noise assumptions (Carlson et al., 2015), thus leaving open the
question—which we address in Section 3—of extending these results to all 2 < p < ∞ under
standard variance assumptions.

While at first glance this may appear to be a straightforward extension, in fact several technical
challenges arise when generalizing the analysis under ℓp smoothness assumptions, among them the
fact that the stochastic coordinate-wise scaled step is not an unbiased estimator of the (deterministic)
steepest descent direction (as for p = 2), nor is the magnitude the same across all coordinates of each
step (as for p = ∞).3 Indeed, extensions of this sort, in terms of general ℓp norms, for minimizing
the dual norm of the gradient have been addressed in the deterministic, convex setting (Diakoniko-
las & Guzmán, 2024) (as have related questions for minimizing the optimality gap (Guzmán &
Nemirovski, 2015; Nemirovskii & Nesterov, 1985)), and so our results provide a natural counterpart
for the stochastic, non-convex setting.

Even so, one may reasonably ask: why should we ever be concerned with any p other than 2 or∞?

Problem geometry and acceleration. In fact, we believe a key observation here lies in determin-
ing the appropriate geometry for the problem at hand, most clearly reflected in not only the choice
of norm used for measuring smoothness, but also the magnitude of the smoothness parameter it-
self.4 (This is naturally to be balanced against the different dual norms—e.g., ∥∇f(x̂)∥2 for p = 2
vs. ∥∇f(x̂)∥1 for p = ∞—used to define approximate stationarity.) Unfortunately, it can be dif-
ficult to determine the precise smoothness parameters w.r.t. general ℓp norms (Balles et al., 2020);
nevertheless, there is ample evidence (e.g., Adolphs et al. (2019); Becker et al. (1988); Cohen et al.
(2021a); Ghorbani et al. (2019); Jiang et al. (2024); Li et al. (2020); Li & Zhang (2024); Papyan
(2018))—including empirical results of our own, as we later present in Section 5—to suggest that a
different choice of p (outside of 2 or∞) could allow for better adapting to the structure of certain
(deep learning) objectives.

As a complement to this matter of defining (and parameterizing) smoothness, however, there arises a
second lens through which we observe the potential for general p, namely that of acceleration (Allen-
Zhu & Orecchia, 2017; Bai & Bullins, 2024; Nemirovskii & Nesterov, 1985; Nesterov, 1983; 2005).
Though we provide a more thorough overview in Section 4, there is, in essence, a fundamental trade-
off (for convex settings) between the rate of acceleration and the norm used to measure the initial
distance to the optimal solution. Concretely, it is well known that, for convex f(x) that is L-smooth
with respect to ∥·∥2, the classic accelerated gradient descent (AGD) method of Nesterov (1983)
converges at the rate f(xT ) − f(x∗) ≤ O

(
L∥x0−x∗∥2

2

T 2

)
, and this rate is indeed tight (Nesterov,

3Although stochastic mirror descent (S-MD) can provide guarantees (in terms of minimizing optimality
gap, e.g., (Bubeck et al., 2015), Theorem 6.1) under smoothness w.r.t. a general norm ∥·∥, we would note
that doing so requires the mirror map to be strongly convex w.r.t. ∥·∥, which leads to certain basic difficulties
in optimization theory when considering ∥·∥p for p > 2. (We refer the reader to, e.g., (Cohen et al., 2021b;
Kelner et al., 2014; Sherman, 2017; Sidford & Tian, 2018), for additional details.) This point likewise suggests
what is a key difference between steepest and mirror descent (as also reflected in our analysis versus that of S-
MD), the exploration of which yields interesting consequences for appropriately accelerating in non-Euclidean
settings (Allen-Zhu & Orecchia, 2017), as we discuss in Section 4.

4We may note that, for all 2 ≤ γ ≤ δ, being Lδ-smooth w.r.t. ∥·∥δ implies being Lδ-smooth w.r.t. ∥·∥γ ,
whereas being Lγ-smooth w.r.t. ∥·∥γ implies being d

2
γ
− 2

δ Lγ-smooth w.r.t. ∥·∥δ .
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2018; Nemirovskij & Yudin, 1983). Importantly, we emphasize the appearance here of ∥·∥2 for both
the measure of smoothness as well as the ∥x0 − x∗∥22 term.

Trade-offs for non-Euclidean acceleration. Based on the discussion so far, it would then be
only natural to ask whether the accelerated rates of AGD hold under general smoothness assump-
tions. Unfortunately, the standard analysis of AGD does not readily adapt to alternative notions of
smoothness, as the design of the algorithm is, in a sense, specific to Euclidean settings; we refer
the reader to the work of Allen-Zhu & Orecchia (2017) for further discussion of this basic incom-
patibility. Nevertheless, several works (Diakonikolas & Guzmán, 2024; Nemirovskii & Nesterov,
1985; Nesterov, 2005; Song et al., 2019)—including that of Allen-Zhu & Orecchia (2017)—have
provided techniques for accelerating in non-Euclidean settings, whereby common among them is,
roughly speaking, a certain type of primal-dual coupling/interpolation. In particular, the approach
of Nemirovskii & Nesterov (1985), for convex f(x) that is L-smooth with respect to ∥·∥p, leads to
guarantees of the form

f(xT )− f(x∗) ≤ O

(
L∥x0 − x∗∥2p

T
p+2
p

)
. (1)

(See also, e.g., Theorem 2 in (Diakonikolas & Guzmán, 2024).) Moreover, these rates are similarly
known to be tight (Guzmán & Nemirovski, 2015).

Looking closely at these convergence guarantees, we may first note that, for p = 2, the rate in
equation 1 recovers that of Nesterov (1983). On the other hand, for p→∞, while ∥x0 − x∗∥2p can,

at best, be as small as d
2
p−1∥x0 − x∗∥22, we also have that limp→∞ T− p+2

p = T−1—in which case
the benefit of acceleration disappears altogether—and in fact this (limiting) rate essentially matches
that of unaccelerated ℓ∞ steepest descent (Kelner et al., 2014).

Consequently, these observations reveal the opportunity afforded by (non-Euclidean) ℓp-based ac-
celerated methods in the form of this trade-off between the dependence on the problem geometry and
the rate of acceleration. As a further illustration, if we consider, e.g., p = 4, there is a (potential)
gain of up to a d1/2 factor (resulting from the ∥·∥24 term) compared to the standard Euclidean (p = 2)
case, whereas the rate of acceleration would degrade from T−2 to T−3/2.

Practical considerations. We acknowledge, of course, that these results are for convex problems,
whereas in this work we focus on the non-convex setting.5 Nevertheless, we would argue there is a
well-established pattern (Agarwal et al., 2019; Dozat, 2016; Gupta et al., 2018; Kingma, 2014; Liu
et al., 2020; 2024; Reddi et al., 2018; Sutskever et al., 2013; Zeiler, 2012) of designing deep learn-
ing optimizers in a manner inspired by those analyzed for convex settings (Boyd & Vandenberghe,
2004; Bubeck et al., 2015; Duchi et al., 2011; Nemirovskij & Yudin, 1983; Nesterov, 1983; Polyak,
1964; Robbins & Monro, 1951), and so we also work from such a starting point—our own inspira-
tion drawing from non-Euclidean methods—in developing our new accelerated algorithm STACEY
(Stochastic Steepest Descent with Acceleration), which we discuss further in Section 4.

1.1 CONTRIBUTIONS AND PAPER OVERVIEW

As a whole, the aim of this work is to examine more carefully the opportunities for non-convex
problems whose geometry is amenable to ℓp norm-based algorithms. To this end, we begin by ad-
dressing in Section 3 the question of reaching ϵ-approximate stationarity under general ℓp smooth-
ness assumptions, whereby we establish, for 2 < p < ∞, convergence guarantees of the form
E[∥∇f(x̂)∥p

∗

p∗ ] ≤ ϵ after O(ϵ−4) iterations of the stochastic ℓp descent algorithm (where we let
p∗ := p

p−1 ). We then present, in Section 4, our algorithm STACEY, which provides for accelerating
these (stochastic) ℓp descent methods, based on a primal-dual interpolation of gradient and mirror
descent steps. Finally, we observe the promising empirical performance of STACEY in Section 5,
as demonstrated via both synthetic examples and large-scale image classification and pretraining
language modeling tasks.

5In fact, under standard assumptions on the non-convex function (i.e., smoothness and being bounded from
below) and the stochastic gradient oracle (i.e., that it is provides an unbiased estimator of the gradient with
bounded variance), known lower bounds establish that, without additional assumptions, acceleration is not
attainable in general (Arjevani et al., 2023; Carmon et al., 2020; 2021).

3
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Algorithm 1 Stochastic ℓp Descent
input p, η, f, θ0

1: for t = 0 to T − 1 do
2: θt+1 = θt − ηs (g(θt)) ▷ s(x) = [s1(x), · · · , sd(x)]⊤ where si(x) =

x(i)

|x(i)|
p−2
p−1

return θT

2 PRELIMINARIES AND ASSUMPTIONS

Throughout we let ∥·∥ and ∥·∥∗ denote a general norm and its dual, respectively. In addition, we
specify ∥·∥p to denote the standard ℓp norm (1 ≤ p ≤ ∞) and ∥·∥p∗ := ∥·∥p/(p−1) to denote its dual
norm. For symmetric M ∈ Rd×d s.t. M ≻ 0, we further let ∥·∥M denote the standard matrix norm,
i.e., ∥x∥M =

√
x⊤Mx for x ∈ Rd. For a vector v ∈ Rd, we use superscript, i.e., v(i) to denote the

ith coordinate of v, and we let diag(v) denote the diagonal matrix such that diag(v)i,i = v(i). We
use subscript, e.g., θt, to denote a vector in the tth iteration.

It will be useful for our analysis to consider certain basic regularity assumptions, such as that of
smoothness.
Definition 1 (Smoothness). We say a function f : Rd 7→ R is L-smooth w.r.t. ∥·∥ if, for all
x, y ∈ Rd, ∥∇f(y)−∇f(x)∥∗ ≤ ∥y − x∥.

Equivalently, we have the following.
Assumption 1 (Smoothness in ℓp norm). Let f : Rd 7→ R be L-smooth w.r.t. ∥·∥p for p ≥ 2. Then,
for all x, y ∈ Rd, ∣∣f(y)− f(x)−∇f(x)⊤(y − x)

∣∣ ≤ L

2
∥y − x∥2p.

Assumption 2 (Unbiased Estimate). The stochastic gradient g(x) is an unbiased estimate of the
true gradient ∇f(x). That is, E[g(x)] = ∇f(x).
Assumption 3 (Bounded Variance). For some data ξ, the variance of each coordinate of the stochas-
tic gradient is bounded, i.e., ∀i ∈ [d], E[|g(x)(i) −∇f(x)(i)|2] ≤ σ2

i .

Corollary 1. By Assumption 3, E[∥g(x)−∇f(x)∥22] ≤ σ2 where for σ := ∥σ⃗∥2, σ⃗ = [σ1, · · · , σd]
⊤.

Corollary 2. If the stochastic gradient is an n-sample mini-batch estimate, then ∀i ∈ [d],
E[|g(x)(i) −∇f(x)(i)|2] ≤ σ2

i

n .

Assumption 4 (Bounded gradient). For G > 0, p ≥ 2, and p∗ where 1
p + 1

p∗ = 1, ∥g(x)∥p∗ ≤ G.

Corollary 3. By Assumption 4, we know that

(a) ∥∇f(x)∥p∗ = ∥E [g(x)]∥p∗ ≤ E [∥g(x)∥p∗ ] ≤ G with Jensen’s inequality.

(b) ∀ i ∈ [d],
∣∣g(x)(i)∣∣ ≤ G and

∣∣∇f(x)(i)∣∣ ≤ G.

3 CONVERGENCE FOR STOCHASTIC ℓp DESCENT

In this section, we present the stochastic ℓp descent algorithm and analyze its convergence. As
demonstrated in Algorithm 1, the update step takes the unscaled form 6 of its counterpart in the

deterministic setting θ
(i)
t+1 = θ

(i)
t − η∥f(θt)∥

p−2
p−1

p∗
f(θt)

(i)

|f(θt)(i)|
p−2
p−1

(Bai & Bullins, 2024), which is de-

rived from the closed form of θt+1 = argminθ
{
⟨ηf (θt) , θ − θt⟩+ 1

2∥θ − θt∥2p
}

. When p = ∞,
Algorithm 1 reduces exactly to signSGD (Bernstein et al., 2018).

For p > 2, we show in Theorem 1 that stochastic ℓp descent converges in expectation to an ϵ-
approximate stationary point with respect to the dual norm at a rate of O(ϵ−4), thereby generalizing

6This is in line with signSGD (Bernstein et al., 2018) compared to the scaled form in (Balles et al., 2020).
In addition, we adopt the unscaled version for clearer convergence analysis and more practical implementation.
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the previous guarantees for signSGD (p =∞). In addition, we provide a proof sketch, deferring the
complete proof to Appendix A.1. Curiously, as we will see, moving from the ℓ2 setting (or even from
the ℓ∞ setting) introduces certain technical considerations that need to be addressed non-trivially.

Theorem 1 (Main). Running Algorithm 1 on some (possibly non-convex) function f that satisfies
Assumptions 1 to 4 yields

E

[
1

T

T−1∑
t=0

∥∇f(θt)∥p
∗

p∗

]
≤ f(θ0)− f(θ∗)

ηT
+

1

T

T−1∑
t=0

2p−1
p−1 G

1
p−1 ∥σ⃗∥1
√
nt

+
LηG

2
p−1

2

where nt is the batch size in iteration t and L, σ⃗, and G are constants from Assumption 1, 3, 4.
Further letting the batch size nt = T , the number of gradient call is N = T 2 for T iterations. With
η = 1

L
1
2 G

1
p−1 T

1
2

we have

E

[
1

T

T−1∑
t=0

∥∇f(θt)∥p
∗

p∗

]
≤ 1

N
1
4

[
L

1
2G

1
p−1

(
f(θ0)− f(θ∗) +

1

2

)
+

2p− 1

p− 1
G

1
p−1 ∥σ⃗∥1

]
,

i.e., Algorithm 1 takes N ∈ O
(
ϵ−4
)

gradient queries to reach an ϵ-approximate stationary point.

Proof Sketch. Starting with Assumption 1 and the descent step in Algorithm 1,

f(θt+1) ≤ f(θt)− η ⟨∇f(θt), s(∇f(θt))⟩︸ ︷︷ ︸
A

+ η ⟨∇f(θt), s(∇f(θt))− s(g(θt))⟩︸ ︷︷ ︸
B

+
Lη2

2
∥s(g(θt))∥2p︸ ︷︷ ︸

C

,

where A = η∥∇f(θt)∥p
∗

p∗ . In conventional first-order analysis, the inner product term B is supposed
to cancel out after taking expectation. In contrast, the closed-form stochastic ℓp descent update is
coordinate-wise re-scaled, which makes the descent step biased, that is, E[s(g(x))] ̸= s(f(x)). In
the literature on biased gradient descent (Stich & Ajalloeian, 2020; Demidovich et al., 2023), the bias
terms simply accumulate as constants and do not decay with the iterations. Thus this term requires
novel techniques to guarantee convergence. Noticing that si(x) = x(i)

|x(i)|
p−2
p−1

= sign(x(i))|x(i)|
1

p−1 ,

B = η

d∑
i=1

∇f(θt)(i)
(
sign

(
∇f(θt)(i)

)
|∇f(θt)(i)|

1
p−1 − sign

(
g(θt)

(i)
)
|g(θt)(i)|

1
p−1

)
= η

d∑
i=1

∣∣∣∇f(θt)(i)∣∣∣ (|∇f(θt)(i)| 1
p−1 + |g(θt)(i)|

1
p−1

)
I
[
sign

(
∇f(θt)(i)

)
̸= sign

(
g(θt)

(i)
)]

+ η

d∑
i=1

∣∣∣∇f(θt)(i)∣∣∣ ∣∣∣|∇f(θt)(i)| 1
p−1 − |g(θt)(i)|

1
p−1

∣∣∣ I [sign(∇f(θt)(i)) = sign
(
g(θt)

(i)
)]

.

Denote the first term as B1 and the second B2. The |∇f(θt)(i)|
1

p−1 + |g(θt)(i)|
1

p−1 term in B1 can
be bounded by 2G

1
p−1 with Corollary 3, after which we take expectation, turning the indicator into a

probability, and Lemma 2 in Appendix A.1 shows E [B1] ≤ 2ηG
1

p−1 ∥σ⃗∥1√
nt

using Markov’s inequality.

B2 requires more sophisticated handling since we cannot push the expectation through
due to the data dependence of the term

∣∣∣|∇f(θt)(i)| 1
p−1 − |g(θt)(i)|

1
p−1

∣∣∣, nor does

P
[
sign

(
∇f(θt)(i)

)
= sign

(
g(θt)

(i)
)]

give us much information. We instead take the zeroth-order
Taylor expansion so that ∀ i ∈ [d], ∃ ζ(i) between ∇f(θt)(i) and g(θt)

(i) such that

|∇f(θt)(i)|
1

p−1 = |g(θt)(i)|
1

p−1 +
1

p− 1
sign(ζ(i))

∣∣∣ζ(i)∣∣∣ 2−p
p−1

(
∇f(θt)(i) − g(θt)

(i)
)

And
∣∣∣|∇f(θt)(i)| 1

p−1 − |g(θt)(i)|
1

p−1

∣∣∣ = 1
p−1 sign(ζ

(i))
∣∣ζ(i)∣∣ 2−p

p−1
(
∇f(θt)(i) − g(θt)

(i)
)
. Further-

more, given sign
(
∇f(θt)(i)

)
= sign

(
g(θt)

(i)
)
, it is either

∣∣∇f(θt)(i)∣∣ ≤ ∣∣ζ(i)∣∣ ≤ ∣∣g(θt)(i)∣∣ or

5
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Algorithm 2 STACEY(p,2) Optimizer
input p, β1, β2, α, τ, η, ϵ, λ, f
initialize θ0, z0,m0 ← 0

1: while θt+1 not converged do
2: gt ← g(θt) ▷ g(θt) s.t. E[g(θt)] = ∇f(θt)
3: ct+1 ← β1mt + (1− β1)gt

4: yt+1 ← θt − ηtsϵ (ct+1) ▷ sϵ(x) = [sϵ1(x), · · · , sϵd(x)]⊤ where sϵi (x) =
x(i)

|x(i)|
p−2
p−1 +ϵ

5: zt+1 = zt − αct+1

6: θt+1 = τzt+1 + (1− τ)yt+1 − ηtλθt
7: mt+1 = β2mt + (1− β2)gt

return θt+1

∣∣∇f(θt)(i)∣∣ ≥ ∣∣ζ(i)∣∣ ≥ ∣∣g(θt)(i)∣∣. Appendix A.1 Lemma 3 shows that E [B2] ≤ ηG
1

p−1 ∥σ⃗∥1

(p−1)
√
nt

in
either case.

Term C is usually turned into mean-squared error that coincides with variance in an unbiased setting,
which the bounded variance assumption can directly handle. This is not the case for our setting. It
is worth noting that the analysis of signSGD (Bernstein et al., 2018), a special case of the ℓp setting
with p = ∞, was able to push through due to its update being in the very form of the sign of
the gradient, which is in itself bounded by the constant 1. Our update, in contrast, is much more
complicated with the absolute value of the coordinates of the gradient in the denominator, which
is only lower bounded 0, or some ϵ > 0 at best. Therefore, we directly apply Assumption 4 and

C = Lη2

2 ∥∇f(θt)∥
2

p−1

p∗ ≤ Lη2G
2

p−1

2 . Moving term A to the left hand side, telescoping through
iteration 0 to T − 1, and dividing both sides by ηT completes the proof. □

4 ACCELERATING STOCHASTIC STEEPEST DESCENT

Building on the unaccelerated stochastic ℓp descent for non-convex settings, we present acceler-
ated versions of the method through the interpolation of two sequences in primal and dual spaces.
Indeed, this type of interpolation is the basis of the linear coupling framework (Allen-Zhu & Orec-
chia, 2017), wherein a steepest descent step is carefully coupled with a mirror descent step. Similar
“coupling” can also be found in Nesterov’s generalization of standard AGD to non-Euclidean set-
tings (Nesterov, 2005) and recent acceleration for ℓp descent in the deterministic convex setting
(Bai & Bullins, 2024). Inspired by these previous examples (and their successes, e.g., (Bullins,
2020; Jambulapati et al., 2019; Sherman, 2017; Sidford & Tian, 2018)), we introduce a practical
acceleration scheme called STACEY, which is specifically designed for non-Euclidean methods. As
presented in Algorithm 2, the algorithm takes the steepest descent step with respect to the ℓp-norm
in line 4 and then a gradient step in line 5. The update on the variable θ is an interpolation between
the two, controlled by the parameter τ . The algorithm generalizes linear coupling (Allen-Zhu &
Orecchia, 2017) with non-Euclidean steepest descent while taking the mirror descent step with the
distance generating function chosen as 1

2∥·∥
2
2. We further specify the name as STACEY(p,2) to clarify

the norms in which the steepest descent and mirror descent steps are taken.

We wish to note that even though for smooth convex optimization, (deterministic) gradient descent
can be accelerated to achieve a rate of O(1/T 2), for stochastic first-order methods, however, it has
been shown that a) in convex settings, SGD cannot improve upon the standard O(1/

√
T ) rate when

noise parameter σ is large enough (Agarwal et al., 2009), and b) in first-order smooth non-convex
settings, SGD cannot be accelerated (in theory) without additional assumptions (in terms of gradient
norm minimization), due to known lower bounds (Arjevani et al., 2023). Nevertheless, standard
practical implementations of SGD are frequently designed to introduce some notion of acceleration
with momentum (e.g., (Bernstein et al., 2018; Sutskever et al., 2013)),7 “pushing” the converging
sequence further along the direction of previous gradients.

7Momentum coincides with Nesterov’s acceleration in the deterministic convex setting, though this by no
means makes them equivalent in stochastic non-convex settings.
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Algorithm 3 STACEY(p,p) Optimizer
input p, β1, β2, α, τ, η, ϵ, λ, f
initialize θ0, z0,m0 ← 0

1: while θt+1 not converged do
2: gt ← g(θt) ▷ g(θt) s.t. E[g(θt)] = ∇f(θt)
3: ct+1 ← β1mt + (1− β1)gt

4: yt+1 ← θt − ηtsϵ (ct+1) ▷ sϵ(x) = [sϵ1(x), · · · , sϵd(x)]⊤ where sϵi (x) =
x(i)

|x(i)|
p−2
p−1 +ϵ

5: z
(i)
t+1 =

∣∣∣z(i)
t

∣∣∣p−2
z
(i)
t −αc

(i)
t+1∣∣∣∣∣∣∣z(i)

t

∣∣∣p−2
z
(i)
t −αc

(i)
t+1

∣∣∣∣ p−2
p−1

, ∀ i ∈ [d]

6: θt+1 = τzt+1 + (1− τ)yt+1 − ηtλθt
7: mt+1 = β2mt + (1− β2)gt

return θt+1
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Figure 1: Results on synthetic p-generalized Gaussian distributions. STACEY optimizer is more
stable on highly non-Euclidean distributions, and converges faster than AdamW and Lion.

In contrast, we take the view of acceleration not as a “pushing” (in the Euclidean sense), but rather
as a (dynamic) interpolation of two iterate sequences: one acting from a (primal) steepest descent
perspective (line 4 Algorithm 2), while the other functions in a dual capacity (line 5 Algorithm 2).
An obvious distinction (pun intended) is momentum, as a separate functionality, can be applied on
top of the acceleration scheme in STACEY(p,2), as demonstrated in lines 3 and 7 of Algorithm 2, for
both the steepest descent and the gradient descent.

In the realm of non-Euclidean methods, we contrast our algorithm with Lion-K (Chen et al., 2024;
Bernstein et al., 2018). While at first glance it may seem that these methods may simply be a
rewriting of each other (based on the choice of parameters), a closer inspection on the very first step
reveals that such is not the case:

Lion-K: θ1 = −η∇K ((1− β1)g (θ0)) ,

STACEY(p,2): θ1 = −(1− τ)ηsϵ ((1− β1)g (θ0))− τα(1− β1)g (θ0) .

where K(·) = ∥·∥p and sϵ (·) is defined in Algorithm 2. The key difference of STACEY(p,2) lies
in the convex combination of a steepest descent step and a gradient descent step, whereas Lion-K
is composed of only the steepest descent step. They only coincide when τ = 0 for STACEY(p,2),
i.e., completely getting rid of the “coupling”, which then defeats the purpose of our acceleration. In
addition, there is no choice of parameters for Lion-K to recover linear coupling. As a result, they are
not iterate-equivalent, which further highlights the fundamental difference between “momentum”
and “acceleration”, a distinction which, crucially, does not appear in the case of standard (Euclidean)
AGD, i.e., when both steepest and mirror descent steps are with respect to Euclidean norms.

Further inspired by the fact that STACEY(p,2) breaks the symmetry (in primal and dual trajecto-
ries) by coupling an ℓp steepest descent step with an ℓ2-based mirror descent step, we present the
natural variant STACEY(p,p) (Algorithm 3), for which we group ℓp steepest descent with a mirror
descent step having 1

p∥·∥
p
p (whose pth-order uniform convexity is useful for non-Euclidean acceler-

ation (Song et al., 2019)) as its distance generating function. The closed-form mirror descent update
is presented in line 5 of the algorithms.

7
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Table 1: Image classification on CIFAR at the 50th, 100th, and 200th epochs. STACEY consistently
outperforms other optimizers at all epochs, demonstrating both superior accuracy and faster conver-
gence.

Optimizer Training NLL ↓ Testing ACC (%) ↑
@50 epoch @100 epoch @200 epoch @50 epoch @100 epoch @200 epoch

SGD w/ Nesterov 0.0523 0.0342 0.0289 91.78 91.93 92.69
Adam 0.1303 0.0487 0.0229 90.03 90.63 91.58
AdamW 0.0620 0.0298 0.0170 89.99 91.39 91.89
Lion 0.0410 0.0199 0.0103 91.85 92.48 92.69
STACEY(p,p) 0.1438 0.0405 0.0006 88.95 91.50 94.05
STACEY(p,2) 0.0375 0.0104 0.0005 91.87 92.92 93.99
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Figure 2: Learning curves of CIFAR classification with varying ℓp-norm.

5 EXPERIMENTS

In this section, we present empirical evidence that the STACEY optimizer outperforms other opti-
mizers in both convergence speed and accuracy. We evaluate STACEY’s effectiveness on synthetic
distributions (Section 5.1), image classification (Section 5.2), and LLM pretraining (Section 5.3).
The hyperparameter choices are summarized in Appendix D.

In all experiments, we underscore the efficiency of the STACEY optimizer by comparing it against
other optimizers as baselines including SGD (with Nesterov’s momentum) (Nesterov, 1983),
Adam (Kingma, 2014), AdamW (Loshchilov & Hutter, 2019), and Lion (Chen et al., 2023). For
synthetic distribution estimation, we demonstrate that STACEY outperforms Lion and AdamW in
convergence speed on generated ℓp Gaussian datasets.

In real-world large datasets, such as training from scratch on ImageNet (Deng et al., 2009) and
LLM (LLaMA (Touvron et al., 2023)) pretraining on C4, we further demonstrate the necessity of
utilizing different ℓp-norms for specific tasks. For example, in the CIFAR image classification, an ℓp-
norm for p close to 2 delivers the best performance (Section 5.2), consistent with the effectiveness
of Euclidean-based optimizers. In contrast, a ℓp-norm with p around 3 proves more effective in
LLM pertaining (Section 5.3). These results highlight the importance of developing non-Euclidean
optimizers and adjusting the choice of ℓp-norm to enhance performance across different tasks.

5.1 ESTIMATING SYNTHETIC DISTRIBUTIONS

STACEY optimizer is designed for generalized ℓp-norm optimization with p ≥ 2. Following
D’Angelo & Fortuin (2021); Li & Zhang (2024), we visualize the trajectory of optimizers when es-
timating synthetic distributions in Fig. 1, to demonstrate STACEY’s faster convergence compared to
other optimizers on p-generalized Gaussian distributions (Subbotin, 1923; Kalke & Richter, 2013).
The synthetic distributionsNp (µ) marginally follow the p-generalized Gaussian distribution whose

probability density function (PDF) is given by p
(
x(i)
)
= p1−1/p

2Γ(1/p) exp
{
−
∣∣x(i) − µ(i)

∣∣p /p}, and
thus the PDF of Np (µ) is

p (x) =

d∏
i=1

p
(
x(i)
)
∝ exp

{
−

d∑
i=1

∣∣x(i) − µ(i)
∣∣p

p

}
= exp

{
−
∥x− µ∥pp

p

}
.
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Table 2: Image classification on ImageNet at the 20th, 50th, and 90th epochs. STACEY consistently
outperforms other optimizers at all epochs, demonstrating both superior accuracy and faster conver-
gence.

Optimizer Training NLL ↓ Testing Top-1 ACC (%) ↑
@20 epoch @50 epoch @90 epoch @20 epoch @50 epoch @90 epoch

SGD 3.9729 2.4376 1.9257 21.05 45.94 63.17
STACEY(p,p) 1.9371 1.2064 0.9902 60.84 68.23 69.88
STACEY(p,2) 3.3706 2.5149 2.1975 32.16 49.39 57.33
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Figure 3: Learning curves of ImageNet classification at the first 6 epochs with varying ℓp-norm.

We sample synthetic datasets from Np([2, 0]
T ) distributions with varying p values, where larger

p typically yields more complex non-Euclidean optimization problems. For each optimizer, we
set their learning rates to be 10−3 and plot 5000-iteration trajectories. Results show that STACEY
maintains stable convergence even with larger p values. In contrast, AdamW (Loshchilov & Hutter,
2019) converges more slowly, and Lion (Chen et al., 2023) exhibits significant fluctuations.

Fig. 1d compares the average convergence rates of different optimizers. We initialize points from
a standard Gaussian distribution and repeat each experiment 100 times. Results show that STACEY
converges faster than AdamW and Lion, especially on the highly non-Euclidean N8 distribution.

5.2 IMAGE CLASSIFICATION

We demonstrate improved accuracy and faster convergence of the STACEY optimizer across image
classification tasks of varying scales, consistent with our algorithm’s design for acceleration.

Training from scratch on CIFAR. We train ResNet18 (He et al., 2016) on the CIFAR
dataset (Krizhevsky, 2009) for 200 epochs, with the results presented in Table 1. We report training
NLL and testing accuracy at the 50th, 100th, and 200th epochs. The proposed STACEY optimizer
consistently outperforms all compared optimizers. As shown in Fig. 2, a p-norm of 2 yields the best
performance for the CIFAR dataset when using the ResNet18 architecture.

Training from scratch on ImageNet. We train ResNet50 (He et al., 2016) with a batch size 2568

on ImageNet (Deng et al., 2009) for 90 epochs. The learning rate schedule is cosine with 10K steps
warm up, and the momentum is saved as bfloat16 to reduce the memory footprint. The learning
curves are shown in Table 2.

5.3 PRETRAINING LARGE LANGUAGE MODELS (LLMS)

We pretrain LLaMA 100M (Touvron et al., 2023) on the C4 dataset9 using various optimizers. The
learning curves, presented in Fig.4, show that the STACEY optimizer outperforms the alternatives.
Additionally, Fig.5 indicates that a p-norm of 3 yields the best performance, which contrasts with
the optimal p = 2 observed in the CIFAR image classification tasks discussed in Section 5.2.

8Our batch size 256 is significantly smaller than Lion’s (Chen et al., 2024) batch size 1024.
9https://huggingface.co/datasets/allenai/c4.

9
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Figure 4: Learning curves of LLM pretraining at the first 5000 iterations among different optimizers.
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Figure 5: Learning curves of LLM pretraining at the first 5000 iterations with varying ℓp-norm.

5.4 DISCUSSION

As we observe throughout the experiments, STACEY demonstrates superior performance over SGD,
which showcases its ability to adapt to a broader range of non-Euclidean geometries. This adaptabil-
ity verifies STACEY’s convergence for general ℓp-norms, making it a better choice for optimization
tasks that present complex geometries and extend beyond the conventional Euclidean frameworks.
Compared with Adam and AdamW, STACEY confirms that the introduced acceleration technique is
well-aligned with the principles of non-Euclidean optimization. The superior results validate that
STACEY’s acceleration mechanism, which is purposefully designed for non-Euclidean spaces, out-
performs the traditional adaptive methods that rely on Euclidean-centric assumptions. Furthermore,
STACEY’s improved performance over Lion highlights the effectiveness of interpolating primal and
dual sequences as an acceleration strategy, in contrast to simply incorporating momentum. The
primal-dual interpolation ensures a more balanced and stable progression towards optimality, lever-
aging information from both primal and dual sequences. This strategy allows STACEY to achieve
faster convergence, even in challenging settings and complex tasks like large-scale image classifica-
tion and pretraining LLMs.

6 CONCLUSION

This paper investigates the steepest descent algorithm in ℓp norm for stochastic non-convex op-
timization. We establish for the stochastic ℓp descent algorithm an O(ϵ−4) convergence rate in
expectation to a stationary point with respect to the dual norm ∥·∥p

∗

p∗ . Building on these techniques,
we further proposed an acceleration scheme for non-Euclidean methods, incorporated stochastic ℓp
descent with mirror descent, and presented an accelerated algorithm called STACEY. We evaluated
the performance of STACEY on large-scale image classification and pretraining language modeling
tasks and achieved both faster convergence and higher accuracy compared to other methods.
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REPRODUCIBILITY STATEMENT

The reproducibility of our research is ensured through two key measures. Firstly, the algorithm
proposed in this paper has been explicitly described in detail in the appendix, allowing for a clear
understanding of our approach. Secondly, to facilitate direct replication of our work, we have pro-
vided the complete implementations as anonymously downloadable source code in the supplemen-
tary materials. These measures should enable other researchers to fully reproduce and validate our
findings.
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A PROOFS

A.1 COMPLETE PROOF FOR THEOREM 1

Theorem 1 (Main). Running Algorithm 1 on some (possibly non-convex) function f that satisfies Assumptions
1 to 4 yields

E

[
1

T

T−1∑
t=0

∥∇f(θt)∥p
∗

p∗

]
≤ f(θ0)− f(θ∗)

ηT
+

1

T

T−1∑
t=0

2p−1
p−1

G
1

p−1 ∥σ⃗∥1
√
nt

+
LηG

2
p−1

2

where nt is the batch size in iteration t and L, σ⃗, and G are constants from Assumption 1, 3, 4. Further letting
the batch size nt = T , the number of gradient call is N = T 2 for T iterations. With η = 1

L
1
2 G

1
p−1 T

1
2

we

have

E

[
1

T

T−1∑
t=0

∥∇f(θt)∥p
∗

p∗

]
≤ 1

N
1
4

[
L

1
2G

1
p−1

(
f(θ0)− f(θ∗) +

1

2

)
+

2p− 1

p− 1
G

1
p−1 ∥σ⃗∥1

]
,

i.e., Algorithm 1 takes N ∈ O
(
ϵ−4
)

gradient queries to reach an ϵ-approximate stationary point.

Proof. Starting with Assumption 1 and the descent step in Algorithm 1,

f(θt+1) ≤ f(θt) + ⟨∇f(θt), θt+1 − θt⟩+
L

2
∥θt+1 − θt∥2p

= f(θt) + η ⟨∇f(θt), −s(g(θt))⟩+
L

2
∥s(g(θt))∥2p

= f(θt)− η ⟨∇f(θt), s(∇f(θt))⟩︸ ︷︷ ︸
A

+ η ⟨∇f(θt), s(∇f(θt))− s(g(θt))⟩︸ ︷︷ ︸
B

+
Lη2

2
∥s(g(θt))∥2p︸ ︷︷ ︸

C

Now we analyze these terms one by one.
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For term B,
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B1 is bounded in expectation by 2ηG
1

p−1 ∥σ⃗∥1√
nt

in Lemma 2 and B2 is bounded in expectation by ηG
1

p−1 ∥σ⃗∥1
(p−1)

√
nt

in Lemma 3.

C =
Lη2

2

(
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Therefore,

ηE
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η(2p− 1)G
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By telescoping through t = 0, · · · , T − 1, we get
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Lemma 2.
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Proof. By Corollary 3 (b),
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where for the last three inequalities we used Markov’s inequality, Jensen’s inequality, and Assumption 3.

Lemma 3.
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Proof. Denoting E
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in which the second equality holds by taking the zeroth order Taylor expansion of
∣∣∣∇f(θt)

(i)
∣∣∣ 1
p−1 at g(θt)(i)

with Lagrange remainder, and ζ(i) is in the range from ∇f(θt)
(i) to g(θt)

(i).

Given sign
(
∇f(θt)

(i)
)

= sign
(
g(θt)

(i)
)

, by the definition of ζ(i) in the Lagrange remainder, we must

have either
∣∣∣∇f(θt)

(i)
∣∣∣ ≤ ∣∣∣ζ(i)∣∣∣ ≤ ∣∣∣g(θt)(i)∣∣∣ or

∣∣∣∇f(θt)
(i)
∣∣∣ ≥ ∣∣∣ζ(i)∣∣∣ ≥ ∣∣∣g(θt)(i)∣∣∣. Now we analyze these

two cases respectively. We write out the derivations separately for clarity and simplicity, alternatively one can
merge these two cases with the law of total expectation.
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(Jensen’s)

≤ ηG
1

p−1

p− 1

d∑
i=1

σi√
nt

(Assumption 3)

=
ηG

1
p−1 ∥σ⃗∥1

(p− 1)
√
nt
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(2) If
∣∣∣∇f(θt)

(i)
∣∣∣ ≥ ∣∣∣ζ(i)∣∣∣ ≥ ∣∣∣g(θt)(i)∣∣∣, then
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nt
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(p− 1)

√
nt

.

Combining these two cases together (e.g. by the law of total expectation) completes the proof.

B ℓ2 MAJORIZATION AND ℓp SMOOTHNESS

Another assumption of interest, as studied by Bernstein et al. (2018) (as well as Karimi et al. (2016)), is that of
ℓ2 majorization (with respect to L⃗ = [L1, . . . , Ld]), meaning that for all x, y ∈ Rd,∣∣∣f(y)− f(x)−∇f(x)⊤(y − x)

∣∣∣ ≤ 1

2

d∑
i=1

Li(y
(i) − x(i))2.

We may equivalently express this condition as 1-smoothness w.r.t. ∥·∥L, where L := diag(L⃗), i.e., for all
x, y ∈ Rd, ∥∇f(y)−∇f(x)∥L−1 ≤ ∥y − x∥L.

Interestingly, we may observe that, for any 1 ≤ p ≤ ∞,

1

∥L⃗∥1/2p∗

∥∇f(y)−∇f(x)∥2p/(2p−1) ≤ ∥∇f(y)−∇f(x)∥L−1 ≤ ∥y − x∥L ≤ ∥L⃗∥1/2p∗ ∥y − x∥2p,

where the first inequality holds by reverse Hölder’s inequality, i.e., for u, v ∈ Rd,
d∑

i=1

|u(i)v(i)| ≥

∥u∥1/q∥v∥ −1
q−1

(where we choose q = 2p−1
p

), and the last inequality holds by Hölder’s inequality.

Rearranging, we have ∥∇f(y)−∇f(x)∥2p/(2p−1) ≤ ∥L⃗∥p∗∥y− x∥2p, and so it follows that ℓ2 majorization
implies ∥L⃗∥ p

p−2
-smoothness w.r.t. ∥·∥p. Thus, while this condition is sufficient to entail ℓp smoothness (as

previously noted by Balles et al. (2020) in the case of p = ∞), we nevertheless prefer to work directly with ℓp
smoothness assumptions, as we believe they provide a more natural pairing for the methods we consider.
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Table 3: Image classification on CIFAR at the 50th, 100th, and 200th epochs. STACEY(2,p) consis-
tently lower performance than STACEY(p,p) at all epochs.

Optimizer Training NLL ↓ Testing ACC (%) ↑
@50 epoch @100 epoch @200 epoch @50 epoch @100 epoch @200 epoch

STACEY(2,p) 0.1017 0.0365 0.0083 90.78 91.88 93.55
STACEY(p,p) 0.1438 0.0405 0.0006 88.95 91.50 94.05
STACEY(p,2) 0.0375 0.0104 0.0005 91.87 92.92 93.99

Table 4: Image classification on ImageNet at the 20th, 50th, and 90th epochs. STACEY(2,p) consis-
tently lower performance than STACEY(p,p) at all epochs.

Optimizer Training NLL ↓ Testing Top-1 ACC (%) ↑
@20 epoch @50 epoch @90 epoch @20 epoch @50 epoch @90 epoch

STACEY(2,p) 2.5178 1.8038 1.4274 50.59 61.72 65.11
STACEY(p,p) 1.9371 1.2064 0.9902 60.84 68.23 69.88
STACEY(p,2) 3.3706 2.5149 2.1975 32.16 49.39 57.33

C THE VARIATION STACEY(2,p)

For the sake of completion, we also considered the (natural) variant STACEY(2,p), which couples ℓ2 steepest
descent with mirror descent (for dgf 1

p
∥·∥pp).

Algorithm 4 STACEY(2,p) Optimizer
input p, β1, β2, α, τ, η, ϵ, λ, f
initialize θ0, z0,m0 ← 0

1: while θt+1 not converged do
2: gt ← g(θt)
3: ct+1 ← β1mt + (1− β1)gt
4: yt+1 ← θt − ηtct+1

5: z
(i)
t+1 =

∣∣∣z(i)
t

∣∣∣p−2
z
(i)
t −αc

(i)
t+1∣∣∣∣∣∣∣z(i)

t

∣∣∣p−2
z
(i)
t −αc

(i)
t+1

∣∣∣∣ p−2
p−1

, ∀ i ∈ [d]

6: θt+1 = τzt+1 + (1− τ)yt+1 − ηtλθt
7: mt+1 = β2mt + (1− β2)gt

return θt+1

Table 3&4 show the classification results of STACEY(2,p) optimizer. The experimental results of STACEY(2,p)

optimizer with varying p-norm are shown in Appendix E. Specifically, the results on CIFAR (Krizhevsky, 2009)
are shown in Fig. 6a&7a, the results on ImageNet (Deng et al., 2009) are shown in Fig. 8a&9a&10a, and the
results on LLM pertaining are shown in Fig. 11a&12a&13a.

D HYPER-PARAMETER CHOICES

We list the hyper-parameters used in the experiments in Table 5&6&7, which are determined by grid search.
We employ Weight & Bias platform10 to tune the hyper-parameters. To ensure a fair comparison, the experi-
mental settings beyond the listed hyper-parameters remain the same for all optimizers. For example, the data
augmentation for ImageNet (Deng et al., 2009) and CIFAR (Krizhevsky, 2009) is random cropping plus random
horizontal flipping.

10https://github.com/wandb/wandb.
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Table 5: CIFAR hyper-parameters.

Model Optimizer Batch Size p lr (η) α β1 β2 λ τ ϵ

ResNet-18 SGD w/ Nesterov 128 - 0.02 - 0.9 - 0.0002 - -
ResNet-18 Adam 128 - 0.001 - 0.9 0.999 0.0005 - 1e-8
ResNet-18 AdamW 128 - 0.01 - 0.9 0.999 0.0005 - 1e-8
ResNet-18 Lion 128 - 0.001 - 0.9 0.99 0.01 - -
ResNet-18 STACEY(2,p) 128 3.5 0.02 0.01 0.9 0.99 0.4 0.001 -
ResNet-18 STACEY(p,p) 128 2 0.1 0.1 0.9 0.99 0.01 0.001 1e-12
ResNet-18 STACEY(p,2) 128 2 0.1 0.1 0.9 0.99 0.01 0.001 1e-12

Table 6: ImageNet hyper-parameters.

Model Optimizer Batch Size p lr (η) α β1 β2 λ τ ϵ

ResNet-50 SGD w/ Nesterov 256 - 0.01 - - - 0.0005 - -
ResNet-50 STACEY(2,p) 256 2.2 0.01 0.01 0.9 0.99 0.0005 0.001 -
ResNet-50 STACEY(p,p) 256 3 0.01 0.1 0.9 0.99 0.0005 0.001 1e-8
ResNet-50 STACEY(p,2) 256 2.8 0.01 0.01 0.9 0.99 0.0005 0.001 1e-8

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 LEARNING CURVES OF VARYING ℓp-NORM ON CIFAR CLASSIFICATION

The results are shown in Fig. 6&7.
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Figure 6: Training loss of CIFAR classification with varying ℓp-norm.

E.2 LEARNING CURVES OF VARYING ℓp-NORM ON IMAGENET CLASSIFICATION

The results are shown in Fig. 8&9&10.

E.3 LEARNING CURVES OF VARYING ℓp-NORM ON LLM PRETRAINING

The results are shown in Fig. 11&12&13.
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Table 7: Hyper-parameters for LLM pretraining.

Model Optimizer Batch Size p lr (η) α β1 β2 λ τ ϵ

Llama 100M SGD 16 - 0.01 - - - 0.0005 - -
Llama 100M Adam 16 - 0.0001 - 0.9 0.999 0.01 - 1e-8
Llama 100M AdamW 16 - 0.0001 - 0.9 0.999 0.05 - 1e-8
Llama 100M Lion 16 - 0.05 - 0.9 0.999 0.01 - -
Llama 100M STACEY(2,p) 16 2.8 0.05 0.01 0.9 0.99 0.01 0.001 -
Llama 100M STACEY(p,p) 16 3 0.01 0.01 0.9 0.99 0.01 0.001 1e-8
Llama 100M STACEY(p,2) 16 2.8 0.01 0.01 0.9 0.99 0.0005 0.001 1e-8
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Figure 7: Testing accuracy of CIFAR classification with varying ℓp-norm.
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Figure 8: Training loss of ImageNet classification with varying ℓp-norm.
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Figure 9: Testing Top-1 accuracy of ImageNet classification with varying ℓp-norm.
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Figure 10: Testing Top-5 accuracy of ImageNet classification with varying ℓp-norm.
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Figure 11: Training loss of pretraining Llama on C4 dataset with varying ℓp-norm.
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Figure 12: Testing loss of pretraining Llama on C4 dataset with varying ℓp-norm.
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Figure 13: Log testing perplexity of pretraining Llama on C4 dataset with varying ℓp-norm.
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