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Abstract

Recent years have seen a surge of interest in utilizing diffusion models for sampling from an
unnormalized target density without access to data. A common approach is to construct a
reverse diffusion SDE whose terminal distribution matches the desired target. In this work,
we propose a novel method that trains a diffusion model to sample from unnormalized dis-
tributions by reformulating the sampling problem as a sequence of posterior inference tasks.
To effectively solve these inference problems, we leverage existing Monte Carlo methods
and design a training objective based on the inference results. Empirically, our method
demonstrates competitive performance on Gaussian mixture densities and achieves better
performance on the DW-4 particle system, compared to other diffusion-based sampling
methods. These results highlight the potential of integrating diffusion models with ad-
vanced posterior inference techniques for improved sampling in complex distributions.

1. Introduction

Sampling from an unnormalized target distribution is a fundamental problem in many
applications, ranging from Bayesian inference to simulating molecular systems. Simulation-
based methods such as Markov chain Monte Carlo (Brooks, 1998), importance sampling
(Tokdar and Kass, 2010), and sequential Monte Carlo (Doucet et al., 2001) are classic ways
to draw approximate samples in a large compute limit. However, they can suffer from slow
convergence and poor scalability to high-dimensional problems.

Diffusion models have recently emerged as a promising tool for sampling problems.
Standard diffusion models learn the target distribution via a neural network-parameterized
stochastic differential equation (SDE) trained on a large dataset (Ho et al., 2020; Song
et al., 2020). For sampling tasks where such data is unavailable, recent works form various
approximations to the SDE directly using the unnormalized target (Huang et al., 2023; He
et al., 2024b; Grenioux et al., 2024). While flexible, they require expensive Monte Carlo
(MC) simulations at inference time and introduce approximation biases. Other approaches
train diffusion models to enable faster sampling (Akhound-Sadegh et al., 2024), though they
may encounter challenges with high-variance training objectives (Noble et al., 2024).

In this work, we introduce a novel method for training diffusion models to sample
from unnormalized target distributions by amortizing posterior inference. Building on prior
works, we first identify the sampling problem as a sequence of posterior inference tasks, each
indexed by a varying noise level. At each noise level, we define a posterior distribution by
conditioning the target (acting as a prior) on a Gaussian noising likelihood introduced by
the forward process of diffusion models. While these posteriors remain intractable, due to
Gaussian noise conditioning, they are easier to approach with existing inference techniques
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compared to the original sampling problem. We then train an amortized neural network
targeting the posterior mean. This network effectively parametrizes a diffusion model,
enabling efficient sampling from the unnormalized target distribution.

We evaluate the empirical performance of our method on Gaussian mixtures and double-
well potentials associated with n-body particle systems (DW4, Köhler et al., 2020). Our
method achieves competitive performance with other diffusion-based sampling methods on
Gaussian mixture densities while outperforming others on most metrics for DW-4.

To summarize, our contributions are:

1. A novel method that trains a diffusion model to sample from unnormalized distribu-
tions by amortizing a sequence of posterior inference tasks.

2. Empirical evaluation of Gaussian mixture densities and the DW-4 particle system,
showing competitive or superior performance to other diffusion-based methods.

2. Background

Diffusion models (Ho et al., 2020; Song et al., 2020) define a forward SDE that transforms
a target distribution p(x0) at t = 0 into a reference distribution p(x1) at t = 1:

dxt = f(t)xt dt+ g(t) dBt, (1)

where Bt is the standard Brownian motion, f(t)xt is the drift coefficient, and g(t) is the
diffusion coefficient. See common diffusion parameterizations in Appendix A.

To generate a sample from p(x0), one simulates from the reverse process which starts
with x1 ∼ p(x1) and evolves the sample through the reverse-time SDE:

dxt =
[
f(t)xt − g(t)2∇xt log p(xt)

]
dt + g(t) dBt, (2)

where ∇xt log p(xt) is the gradient of the marginal density p(xt) at time t, known as the
score function. Typically, the score function is intractable and hence is approximated by a
score network trained using samples from p(x0).

3. Method

Our goal is to sample from a target distribution p(x0), whose density is known up to a nor-
malization constant, with a learned diffusion model. We first describe a general framework
that connects diffusion models to a sequence of posterior inference problems. Building on
this framework, we then present the practical algorithm to train a diffusion model to sample
from p(x0) by leveraging existing inference techniques.

Diffusion model from a posterior inference perspective. Consider the forward SDE
in Equation (1) with the initial distribution set to the target p(x0). To draw samples from
p(x0), we aim to simulate from the corresponding reverse SDE in Equation (2), which
requires computing the intractable score function ∇xt log p(xt).

A key observation is that the intermediate variable xt ∼ p(xt) can be interpreted within
a latent variable model:

x0 ∼ p(x0), xt | x0 ∼ p(xt | x0) := N (xt | αtx0, σ
2
t I) (3)
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where the prior is the target, and the likelihood is the transition kernel of the forward SDE
with signal and noise parameters αt, σt, making xt a noisy observation of x0.

Based on the above observation, we can relate the score function to the posterior mean
via Tweedie’s formula (Roberts and Tweedie, 1996):

∇xt log p(xt) =
αtE[x0 | xt]− xt

σ2
t

. (4)

This connection reduces the problem of estimating the score function to estimating the
posterior mean E[x0 | xt]. Due to Gaussian conditioning, posterior inference for p(x0 | xt)
is often more tractable than p(x0). In particular, when t→ 0, the posterior is increasingly
dominated by likelihood as the signal in xt becomes stronger.

We can thus form an MC estimate of the score: we draw M approximate samples
{xm0 }Mm=1 from p(x0 | xt) using existing inference methods, and then estimate the score by

ŝ(xt) :=
αtx̂0 − xt

σ2
t

≈ ∇xt log p(xt). (5)

where x̂0 :=
1
M

∑M
m=1 x

m
0 approximates the posterior mean.

A similar perspective has been explored in Huang et al. (2023) for a specific diffusion pa-
rameterization. We generalize it to broader settings. Next, we propose a training procedure
of diffusion models that amortizes the posterior inference results.

Diffusion model training by amortizing posterior inference. We train an amortized
score network sθ(xt, t) targeting at the score estimate ŝ(xt) in Equation (5). We specify
two components: (1) a procedure to generate training inputs (xt, t) , and (2) a tractable
posterior inference algorithm that constructs the training target ŝ(xt).

For (1), we ideally want xt drawn from the target distribution p(xt) for each t. To this
end we use the replay buffer strategy (Mnih et al., 2015; Akhound-Sadegh et al., 2024).
We initialize the buffer with training inputs sampled from the initial diffusion model and
continuously update it with new samples generated by the current model during train-
ing. When the buffer reaches its maximum capacity, the oldest samples are discarded. As
training proceeds, the model approaches the target distribution and the training inputs are
increasingly representative of the desired target.

For (2), while any approximate inference method can be used in principle, it must
sufficiently explore the posterior to ensure good diffusion model performance. We primarily
use Annealed Importance Sampling (AIS Neal, 2001) and include additional results with
Hamiltonian Monte Carlo (HMC Neal, 2012) in Appendix C.

Our algorithm is summarized in Algorithm 1. Training begins with a replay buffer
populated with samples from a randomly initialized diffusion model. In each epoch, a
batch {x0} is drawn from the buffer, and noisy observations {xt} are generated from the
likelihood N (xt | αtx0, σ

2
t I) under a noising schedule {αt, σt}. We use an approximate

posterior sampler (e.g. AIS or HMC) to estimate ŝ(xt) by Equation (5). The score network
is then updated by minimizing a time-weighted reconstruction loss w(t)∥sθ(xt, t)− ŝ(xt)∥2,
where w(t) is some time-weighting function. After each epoch, we update the buffer with
new samples {x0} from the current diffusion model.

3



Han Wu Cunningham

Algorithm 1: Diffusion training via amortizing posterior inference

Input: Number of epochs N , number of iterations per epochs I, batch size B, a
randomly initialized score network sθ(·, ·), target distribution p(x0), schedule
{αt, σt}, an approximate posterior sampler, time-weighting function w(t)

Output: Updated score network sθ(·, ·).
Initialize the buffer B with samples from the initial diffusion model
for epoch n = 1, · · · , N do

Sample data {x(b)0 }Bb=1 from Buffer B
for iteration i = 1, · · · , I do

Sample timesteps {tb}Bb=1 independently from Uniform[0, 1]

Sample noisy data {x(b)t }Bb=1 independently from N (x
(b)
t | αtx

(b)
0 , σ2

t I)
Estimate posterior mean x̂

(b)
0 using the approximate posterior sampler targeting

p(x0 | x(b)t ) ∝ p(x0)N (x
(b)
t | αtx0, σ

2
t I)

Estimate the score ŝ(b)(xt, t) =
αtx̂

(b)
0 −x

(b)
t

σ2
t

Update θ by minimizing the loss
∑B

b=1w(t)∥sθ(x
(b)
t , t(b))− ŝ(x

(b)
t )∥2

end

Update the buffer B ←
(
B ∪ {x0}

)
with new samples {x0} from the current model

end

4. Related Work

Simulation-based methods. Huang et al. (2023) is among the first to connect diffusion
models and sampling by formulating the score estimation problem as a non-parametric
posterior mean estimation one. They developed an MC sampling algorithm that first applies
an importance sampling estimator, followed by an unadjusted Langevin algorithm correction
to estimate the posterior mean. He et al. (2024b) proposed a similar algorithm based on
rejection sampling that is shown to be effective in low-dimensional settings. However, these
approaches require MC simulations at inference time and do not scale to high dimensions.
Grenioux et al. (2024) extended this idea to general SDEs and developed practical strategies
to efficiently sample from higher dimensional densities.

Learning-based methods. Similar to our objective, Akhound-Sadegh et al. (2024) also
approaches the sampling problem by learning the score network of diffusion models. Unlike
our approach based on posterior inference, they form an importance sampling estimator of
the score, whose complexity scales exponentially with dimensions (Chatterjee and Diaconis,
2018). Consequently, the training objective exhibits high variance (Noble et al., 2024).
Alternatively, He et al. (2024a) trains an implicit generative model that produces samples
in a single step, unlike diffusion models, which rely on a multi-step sampling process. Despite
this difference, it also involves solving a score function estimation problem, and therefore
we consider it as a diffusion-based method. In Appendix B we show this method can
be interpreted as a distilled version of our diffusion model. In addition to regressing a
score network against an estimated objective, recent works also explore variational methods
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Figure 1: Comparison on the GMM-40 target (d = 2, top row; d = 5, bottom row). Results
averaged over 5 runs, with error bars showing one standard error. DiKL outper-
forms other methods across all metrics, while our method closely follows DiKL
and outperforms iDEM in both average performance and variability.

based on divergences between path measures of time-reversed diffusion processes (e.g. Zhang
and Chen, 2021; Vargas et al., 2023a,b). We refer to Richter and Berner (2023) for a
comprehensive review.

5. Experiments

We evaluate our method with AIS as posterior sampler on 40-component Gaussian Mix-
ture Models (GMM-40) in both 2-dimensional and 5-dimensional settings, and a 4-particle
double-well system (DW-4) in 8 dimensions. We compare our approach to two diffusion-
based methods: DiKL (He et al., 2024a) and iDEM (Akhound-Sadegh et al., 2024). We
report metrics including Wasserstein-1 distance (W1), Wasserstein-2 distance (W2), total
variation distance (TVD), mean squared error (MSE), L1 norm, and L2 norm. For hyper-
parameter tuning, we use 2,000 target samples as validation data and choose the model
with the lowest W2. All additional details and results are included in Appendix C.

5.1. GMM-40

We first consider the 2-dimensional GMM-40 target proposed by Midgley et al. (2023). Ad-
ditionally, we include a 5-dimensional GMM target that preserves a lower dimensional mean
structure. Both our method and iDEM use the same multilayer perceptron (MLP) archi-
tecture with sinusoidal positional embeddings for the score network, while DiKL employs a
larger MLP for the one-step generator network.

In Figure 1, we observe that DiKL achieves the best overall performance, and our method
performs comparably across all metrics. iDEM exhibits higher variance and worse average
performance, particularly in W2, MSE, and L2 norm. See Table 1 for full results.

We note that iDEM applied a data scaling factor of 50 for GMM experiments as sug-
gested in Akhound-Sadegh et al. (2024). In Appendix C.4, we preliminarily explore the
necessity of this scaling and observe that, without proper scaling, iDEM struggles to accu-
rately capture the structure of GMM-40.
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We also experimented with our method using HMC as the posterior sampler and ob-
served slightly worse performance than AIS, highlighting the importance of posterior infer-
ence quality. See details in Appendix C.3.

5.2. DW-4

Köhler et al. (2020) introduced the 8-dimensional DW-4 target distribution for a 4-particle
system in a 2-dimensional space, which exhibits intrinsic symmetry (see details in Ap-
pendix C.5). To incorporate this symmetry, we employ the same E(3)-equivariant graph
neural networks (EGNN) architecture for the score network in both our method and iDEM,
while DiKL employs a larger EGNN for its one-step generator network.

Figure 2 shows that our method consistently outperforms iDEM and DiKL across most
metrics, except for Energy TVD, where iDEM achieves the best result. Additionally, DiKL’s
one-step generator struggles to capture the more complicated density of DW-4, particularly
in W1,W2 and Energy TVD, likely due to its limited capacity compared to multi-step
approaches taken by our method and iDEM. These results highlight the potential of our
method to scale to more challenging distributions where one-step generators and existing
diffusion models may fall short.
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Figure 2: Comparison on the DW-4 target (d = 8). Results averaged over 5 runs, with error
bars showing one standard error. Our method outperforms or matches iDEM and
DiKL across all metrics except Energy TVD, where iDEM performs better.

6. Discussions

We introduce a diffusion-based framework to sample from unnormalized distributions by
amortizing posterior inference results. A key strength of our framework is its flexibility to
incorporate existing posterior samplers. In this work, we experiment with AIS and HMC
as posterior samplers. Empirical results demonstrate that our method achieves competitive
performance to other learning-based diffusion samplers across several benchmark targets.

The performance of our method depends on the accuracy and scalability of posterior
inference methods, particularly in higher-dimensional settings. To improve the overall sam-
pling performance, future work will explore more effective posterior inference algorithms
and tuning strategies. One promising direction is to leverage the SDE parameterization
and discretization strategy proposed in Grenioux et al. (2024) to mitigate the challenges
of posterior inference at high noise levels. Additionally, incorporating variational inference
techniques as an alternative to MC simulations for posterior inference could offer a more
efficient and scalable solution to high-dimensional targets.
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Appendix A. Review of diffusion noising schedules

Variance-preserving (VP) noising schedule. In VP schedule (Ho et al., 2020), the
coefficients of the forward SDE in Equation (1) are given by

f(t) = −1

2
b(t), g(t) =

√
b(t),

where b(t) is a time-dependent function

b(t) = bmin + t(bmax − bmin),

for some constants bmin ≈ 0≪ bmax. For a large value of bmax, the reference distribution is
approximately standard normal, p(x1) ≈ N (x1 | 0, 1).

By Ito’s calculus (see e.g. Särkkä and Solin (2019)), one can show that the transition
kernel p(xt | x0) in (3) are parameterized with

αt = exp

(
−1

2

∫ t

0
b(s)ds

)
, σ2

t =

∫ t

0
b(s)ds.

Variance-exploding (VE) noising schedule. In VE schedule (Song et al., 2020), the
coefficients are given by

f(t) = 0, g(t) =

√
dσ2(t)

dt
,

for some non-negative function σ(t) monotone in t with σ(0) = 0. For a large value of σ(1),
the reference distribution can be approximated by p(x1) ≈ N (x1 | 0, σ(1)2).

Similarly to the VP case, one can derive the following parameters of the transition kernel
p(xt | x0):

αt = 1, σt = σ(t).

Appendix B. Connection between our method and He et al. (2024a)

We establish the connection between our method and DiKL proposed by He et al. (2024a),
viewing the later as a distilled version of ours.

Background on DiKL. DiKL trains a one-step generative model pθ(x) that is induced
by the following generative process,

z ∼ N (z | 0, I), x = gθ(z) (6)

where gθ is a deterministic neural network.
The training objective for gθ is defined as follows

L(θ) :=
∫ tmax

tmin

w(t)KL [pθ(xt)∥p(xt)] dt, (7)
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where w(t) is a time-weighting function, 0 ≤ tmin < tmax ≤ 1 are some constants, and

pθ(xt) :=

∫
pθ(x0)N (xt | αtx0, σ

2
t )dx0, (8)

p(xt) :=

∫
p(x0)N (xt | αtx0, σ

2
t )dx0, (9)

are distributions of the model and the target convolved with a Gaussian noising kernel, re-
spectively, with {αt, σt} some noising schedule similarly to the one that appears in diffusion
models.

The gradient of the training objective can be expressed as

∇θL =

∫
w(t)

∫
pθ(xt) (∇xt log pθ(xt)−∇xt log p(xt))

∂xt
∂θ

dxtdt. (10)

This gradient expression involves two intractable terms, the intermediate model score∇xt log pθ(xt),
and the intermediate target score ∇xt log p(xt). Notably, ∇xt log p(xt) is exactly the score
function in the diffusion reverse SDE from Equation (2) that we aim to estimate.

DiKL approaches the estimation of the score function ∇xt log p(xt) using similarly to
ours, constructing an estimator based on posterior samples from p(x0 | xt) (see their Section
4.2). To estimate the intermediate model score ∇xt log pθ(xt), they learn an auxiliary score
network sϕ(xt, t) using the denoising score matching loss (Song et al., 2020) based on samples
drawn from pθ(x0), as in conventional diffusion training.

DiKL viewed as a distilled version of our method. In diffusion distillation literature
(e.g. Salimans et al., 2024), the goal is to train a one-step generator as in Equation (6) that
distills a pretraind diffusion model. The distillation objective is similar to Equation (7)
where p(xt) is replaced with the distribution induced by the pretrained diffusion model.
Consequently. ∇xt log p(xt) is directly provided by the pretrained score network.

Drawing on this connection, we can view DiKL as a distilled version of our model. This
perspective aligns with the comparisons in the distillation literature, where the distilled
model (DiKL) enables faster generation, while the full model (ours) remains more expressive
and provides tractable density estimation.

Appendix C. Experiment Details

We evaluate our method on GMM-40 and DW-4 targets. This section details the exper-
imental design, including diffusion setups, network architectures, posterior samplers, and
validation strategies.

C.1. Parametrization Strategies

We consider two parameterizations for the score network sθ. In our experiments, we use the
noise parametrization for GMM-40 in both 2D and 5D and use the mean parametrization
for DW-4.
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Mean Parametrization. We learn a neural network xθ(xt, t) to approximate E[x0 | xt]
and relate it to the score function via

E[x0 | xt] =
σ2
t∇xt log p(xt) + xt

αt
.

Therefore, the resulting score network is

sθ(xt, t) :=
αtxθ(xt, t)− xt

σ2
t

.

Noise Parametrization. For a given x0 and xt, we define a noise variable:

ϵ =
xt − αtx0

σt
.

In this case, we alternatively learn a neural network ϵθ(xt, t) to approximate E[ϵ | xt].
Consequently, the score network is given by

sθ(xt, t) := −αtϵθ(xt, t)

This reparametrization simplifies the learning process by focusing on the noise space,
which often exhibits smaller variance and leads to more stable training.

C.2. Reported Metrics

We evaluate the performance of our models using several statistical metrics that capture
different aspects of distributional similarity and sample quality. Below, we detail the key
metrics employed in our experiments.

1-Wasserstein Distance (W1) We use the 1-Wasserstein distance to measure the dis-
crepancy between empirical samples from the sampler and the true samples. The 1-
Wasserstein distance is defined as

W1(µ, ν) = inf
π

∫
π(x, y)d(x, y) dx dy, (11)

where π is the transport plan with marginals constrained to µ and ν respectively. We use
the Hungarian algorithm as implemented in the Python optimal transport package (POT)
(Flamary et al., 2021).

2-Wasserstein Distance (W2) The 2-Wasserstein distance is defined as

W1(µ, ν) =
(
inf
π

∫
π(x, y)d(x, y) dx dy

)1/2
, (12)

where π is the transport plan with marginals constrained to µ and ν respectively. We
also use the Hungarian algorithm as implemented in the Python optimal transport package
(POT) (Flamary et al., 2021). It is reported in Akhound-Sadegh et al. (2024); He et al.
(2024a,b).
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Total Variation Distance (TVD) Total Variation Distance measures the maximum
difference between the probabilities assigned by two distributions over all possible events.
In practice, we approximate TVD by discretizing the sample space into 1000 bins between
[−100, 100] in each dimension and comparing the normalized histograms of the true and
model-generated samples:

TVD =
1

2

∑
i

|p̂i − q̂i|,

where p̂i and q̂i represent the probability mass in the i-th bin for the true and generated
distributions, respectively. TVD is also reported in Akhound-Sadegh et al. (2024).

Mean Squared Error (MSE) MSE is a distance-based metric that quantifies the av-
erage of the squared differences between the mean of the predicted and true values. It is
defined as:

MSE =
1

d

d∑
i=1

(xi − x̂i)
2,

where xi is the i-th dimension of the mean of the true samples, x̂i is the i-th dimension of
the mean of the model-generated samples and d is the dimension.

L1 Norm The L1 norm measures the absolute difference between the means of the true
and generated samples:

L1 = ∥x− x̂∥1 =
d∑

i=1

|xi − x̂i|,

where xi is the i-th dimension of the mean of the true samples, x̂i is the i-th dimension of
the mean of the model-generated samples and d is the dimension.

L2 Norm The L2 norm measures the root of the sum of squared differences between the
mean of the predicted and true values:

L2 = ∥x− x̂∥2 =

√√√√ d∑
i=1

(xi − x̂i)2,

where xi is the i-th dimension of the mean of the true samples, x̂i is the i-th dimension of
the mean of the model-generated samples and d is the dimension.

C.3. Mixture of 40 Gaussians (GMM-40)

Implementation Details. We evaluate our approach on the GMM-40 dataset as pro-
posed in Midgley et al. (2023). The diffusion process is configured with 100 steps using a
Variance Preserving (VP) noising scheme (Ho et al., 2020), with bmin = 0.1 and bmax = 20.
The weighting function is set as the inverse signal, w(t) = 1/αt, to emphasize low-noise
regions. The score network sθ is implemented as a 3-layer multilayer perceptron (MLP)
with a hidden dimension of 128 and SiLU activation functions. The training uses the Adam
optimizer for 1000 epochs, with 100 iterations per epoch, a learning rate of 5×10−4, a batch
size of 64, and gradient clipping at a norm of 10.0.

12



Diffusion-based Sampling via Amortized Posterior Inference

For AIS-based posterior sampling, we employ Hamiltonian dynamics as the transition
kernel, performing a single leapfrog step with a step size of 1.0. From 500 AIS-generated
samples, one is resampled based on AIS weights and used to initialize five MALA steps with
a step size of 0.01. For HMC-based posterior sampling, we generate 10 samples through
five HMC iterations, each consisting of five leapfrog steps with a step size of 0.2. Hyperpa-
rameters are tuned empirically for efficient posterior exploration.

For DiKL (He et al., 2024a) and iDEM (Akhound-Sadegh et al., 2024), we use the exact
setups as described in their respective papers.

We use the same validation procedure for all methods where we generate 2,000 samples
using the target distribution as validation data and save the model with the lowest W2.

For the 5-dimensional GMM-40 target, we retain the same mean structure in the first
two dimensions as in the 2D case, fixing the remaining dimensions at zero. We keep the same
hyperparameters and training procedures with the 2D experiments across iDEM, DiKL, and
our methods to ensure comparability.

Additional Results. The scatter plots in Figure 3 visualize the samples generated from
DiKL, iDEM and our methods using AIS and HMC posterior samplers compared to the
ground truth samples.

Figure 3: Scatter plot for 4000 samples from DiKL, iDEM and our methods using AIS and
HMC posterior samplers from GMM-40 in 2D.

Moreover, we apply importance sampling (IS) to refine samples generated from our
model. Given a set of samples, we compute the importance weights by

logwi = log p0(xi)− log pmodel(xi),

where we compute the model likelihood pmodel by integrating the corresponding probability
flow ODE (Song et al., 2020). To ensure numerical stability, we subtract the maximum
log weight before exponentiation. The raw importance weights are then exponentiated and
normalized:

w̃i =
exp(logwi)∑
j exp(logwj)

.

We perform resampling with replacement according to the normalized weights w̃i, producing
a corrected set of samples that better represent the target distribution. Figure 4 shows that
IS effectively refines the sample boundaries around the modes compared to Figure 3 for our
methods. It highlights that the density estimation provided by our method can be leveraged
to potentially reduce estimation bias through importance sampling.
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Figure 4: Scatter plot for 4000 samples from our methods using AIS and HMC posterior
samplers after importance sampling.

Table 1 summarizes the performance metrics for GMM-40 in both 2D and 5D settings
reported in Figure 1.

Table 1: Performance Summary for GMM-40. Metrics are reported as mean (standard
error) averaged over 5 runs. DiKL achieves the best performance in all metrics
and our method using AIS as the posterior sampler has close performance. Bold
via Welch’s two sample t-test p < 0.1.

Target Metric iDEM DiKL Ours (AIS) Ours (HMC)

GMM-40 (d = 2)

W1 5.77 (1.27) 2.22 (0.05) 2.94 (0.04) 5.69 (0.23)
W2 8.68 (1.31) 3.78 (0.13) 4.34 (0.15) 7.88 (0.28)
TVD 0.19 (0.01) 0.20 (0.01) 0.21 (0.00) 0.21 (0.00)
MSE 15.60 (8.67) 0.27 (0.10) 0.46 (0.13) 0.75 (0.17)
L1 Norm 6.56 (1.97) 0.77 (0.14) 1.11 (0.14) 1.54 (0.16)
L2 Norm 4.97 (1.47) 0.67 (0.15) 0.92 (0.14) 1.19 (0.15)

GMM-40 (d = 5)

W1 13.78 (2.37) 3.29 (0.13) 4.94 (0.14) 6.45 (0.03)
W2 16.63 (2.86) 4.48 (0.18) 6.19 (0.12) 8.23 (0.05)
TVD 0.17 (0.01) 0.10 (0.00) 0.12 (0.00) 0.11 (0.00)
MSE 20.67 (15.82) 0.21 (0.12) 0.57 (0.22) 0.99 (0.08)
L1 Norm 11.92 (5.84) 1.42 (0.29) 2.18 (0.31) 3.23 (0.18)
L2 Norm 8.45 (4.00) 0.91 (0.24) 1.55 (0.34) 2.21 (0.09)

C.4. Necessity of Scaling in iDEM in GMM experiments

iDEM (Akhound-Sadegh et al., 2024) applied an additional scaling step in the GMM-40
experiments. where they scale the data by 50. We explore the necessity of scaling in
iDEM for the GMM-40 (d=2). To assess its impact, we follow the exact implementation
in Akhound-Sadegh et al. (2024) and change the data normalization factor to 1. Without
proper scaling, iDEM struggles to accurately capture the structure of the Gaussian Mixture
Model (GMM), leading to sample collapse, as shown in Figure 5 (left). In contrast, when a
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scaling factor of 50 is applied, iDEM better separates the mixture components, producing
a more accurate representation of the underlying distribution as shown in Figure 5 (right).

While the rationale for scaling is not disclosed in the original paper, we hypothesize that
it helps reduce the separation between modes, which in turn mitigates the high variance in
iDEM’s estimates of intermediate scores, particularly at higher noise levels.

Figure 5: Comparison of scatter plots for samples from GMMs with 40 modes in 2D, with
and without data scaling.

C.5. Double-Well-4 (DW-4)

DW-4 target density. The DW4 target, introduced by Köhler et al. (2020), represents
the energy function of a system of 4 particles in a 2-dimensional space. The system is
governed by a double-well potential, which depends on the pairwise distances of the particles.
For a system of 4 particles, x = {x1, · · · , x4}, the energy is given by

E(x) =
1

2τ
a(dij − d0) + b(dij − d0)

2 + c(dij − d0)
4, (13)

where dij = ∥xi − xj∥2. Following previous works, we set a = 0, b = 04, c = 0.9, τ = 1. The
DW-4 target density is then given by p(x) ∝ exp{−E(x)}. We use a validation and test set
from the MCMC samples in Klein et al. (2023) as the approximately ground-truth samples.

Implementation Details. We train our model with 100 diffusion steps with a VP noising
scheme (Ho et al., 2020), setting bmin = 0.1 and bmax = 20. We apply constant weighting
function and mean parametrization. The score network sθ is designed as an E(3)-equivariant
graph neural network (EGNN) following Hoogeboom et al. (2022), with three layers, a
hidden dimension of 128, and SiLU activations. Training employs the Adam optimizer for
100 epochs, 100 iterations per epoch, a learning rate of 10−4, a batch size of 256, and
gradient clipping at a norm of 10.

AIS-based posterior sampling uses 20 importance samples and 10 AIS steps, each incor-
porating a one-step MALA transition with a step size of 0.01. From 1,000 AIS samples, one
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is resampled according to AIS weights and refined through 50 MALA steps. The MALA step
size is dynamically adjusted to maintain an acceptance rate between 0.5 and 0.6, increasing
or decreasing by a factor of 1.5 based on the acceptance rate.

For DiKL (He et al., 2024a) and iDEM (Akhound-Sadegh et al., 2024), we use the exact
setups as described in their respective papers.

For validation of all methods, we generate 2,000 samples using the target distribution
as validation data. We save the model with the lowest W2 across all methods.

Additional Results. Table 2 summarizes the performance metrics for DW-4 reported in
Figure 2.

Table 2: Performance Summary for DW-4. Metrics are reported as mean (standard error)
averaged over 5 runs. Our method outperforms or matches iDEM and DiKL in all
metrics, except Energy TVD. Bold via Welch’s two sample t-test p < 0.1

Target Metric iDEM DiKL Ours (AIS)

DW-4 (d = 8)

W1 1.61 (0.00) 1.84 (0.06) 1.59 (0.01)
W2 1.85 (0.01) 1.95 (0.06) 1.80 (0.01)
Energy TVD 0.11 (0.01) 0.81 (0.05) 0.27 (0.04)
MSE 0.02 (0.00) 0.02 (0.00) 0.01 (0.00)
L1 Norm 0.96 (0.01) 0.83 (0.05) 0.76 (0.04)
L2 Norm 0.38 (0.01) 0.36 (0.02) 0.32 (0.01)
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