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ABSTRACT

Speculative decoding (SD), where a small draft model is employed to propose draft
tokens in advance and then the target model validates them in parallel, has emerged
as a promising technique for LLM inference acceleration. Many endeavors to
improve SD are to eliminate the need for a draft model and generate draft tokens
in a retrieval-based manner in order to further alleviate the drafting overhead
and significantly reduce the difficulty in deployment and applications. However,
retrieval-based SD relies on a matching paradigm to retrieve the most relevant
reference as the draft tokens, where these methods often fail to find matched
and accurate draft tokens. To address this challenge, we propose LogitSpec to
effectively expand the retrieval range and find the most relevant reference as drafts.
LogitSpec is motivated by the observation that the logit of the last token can not
only predict the next token, but also speculate the next next token. Specifically,
LogitSpec generates draft tokens in two steps: (1) utilizing the last logit to speculate
the next next token; (2) retrieving relevant reference for both the next token and
the next next token. LogitSpec is training-free and plug-and-play, which can be
easily integrated into existing LLM inference frameworks. Extensive experiments
on a wide range of text generation benchmarks demonstrate that LogitSpec can
achieve up to 2.61× speedup and 3.28 mean accepted tokens per decoding step.

1 INTRODUCTION

Large Language Models (LLMs), such as GPT-4.5 (OpenAI, 2024), DeepSeek R1 (DeepSeek-
AI, 2025), Qwen 2.5 (Team, 2025), and LLaMA-3 (Team, 2024), have demonstrated remarkable
capabilities across a wide range of natural language processing tasks, including question answering
(Calijorne Soares & Parreiras, 2020), code generation (Jiang et al., 2024), and dialogue systems (Yi
et al., 2024). While they achieve success by scaling up the model parameters, the increase in scale
comes with significant inference challenges. The most straightforward challenge is auto-regressive
decoding, where each LLM decoding step can only generate one token. This token-by-token decoding
process incurs exacerbated latency with both the length of generated tokens and the model scale.

To address this challenge, speculative decoding (SD) (Leviathan et al., 2023; Chen et al., 2023) has
emerged as a promising approach for lossless LLM inference acceleration. The key idea of SD is
to employ a small draft model to first generate γ draft tokens, and then the target model validates
these tokens in parallel within a single forward, ensuring the output distribution to be unchanged.
However, deploying an extra draft model introduces considerable overhead and difficulties, including
(a) complex implementation and deployment, especially in integration with other techniques,(Liu
et al., 2025) (b) additional memory overhead, especially in long-context scenarios. Moreover,
when there exists no available draft model for SD, it takes substantial training cost to construct a
compact draft model (Li et al., 2025c). (Please refer to Section 2 for more details.)

Therefore, many existing works are dedicated to developing draft-model-free SD methods (Saxena,
2023; Fu et al., 2024; He et al., 2024), where the draft tokens are generated in a retrieval-based
manner. At each decoding step, they retrieve the relevant reference according to the last few tokens
and extract draft tokens from the reference. In this way, they can explicitly eliminate the need for a
draft model and reduce the drafting overhead.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

𝑝1 𝑝2

To findWhat is the area of the triangle? the triangle

To findWhat is the area of the triangle? the

𝑝1 𝑝2

area

×

wrong match 

of

√√

right match 

question token

decoding token

next token

retrieval token

(a) Vanilla Retrieval-based SD

(b) LogitSpec

Figure 1: Illustration of vanilla retrieval-based SD method and our LogitSpec . (a) Retrieval-based SD
retrieves the wrong token “triangle” according to the next token “the”. (b) LogitSpec first speculates
the next next token “area”, and then retrieves the right relevant reference “area of” according to “the
area”. This simple example illustrates how LogitSpec utilizes the last logit to speculate the next next
token and improves the retrieval accuracy.

Despite their promising efficacy and implementation simplicity, these methods rely on a matching
paradigm to effectively retrieve the most relevant reference as draft tokens and often struggle to find
matched and accurate tokens. As shown in Figure 1 (a), with a simple prompt “What is the area of
the triangle?”, vanilla retrieval-based SD methods fail to effectively retrieve the right token “area”
according to the next token “the”, as the most relevant reference is “the triangle”. Moreover, it is
often the case that no matched reference can be found, e.g., there are no matched tokens in more than
30% of decoding steps in PLD (Saxena, 2023).

In this paper, we propose a simple yet effective retrieval-based SD framework, namely LogitSpec,
which leverages the logit of the last token (last logit) to predict the next next token and improves
the accuracy of the retrieval reference. LogitSpec is motivated by the observation that the last logit
can speculate the next next token with a relatively high accuracy. Based on this observation,
we use the speculated next next token as guidance to retrieve reference. Specifically, LogitSpec
generates draft tokens in two steps: (1) utilizing the last logit to speculate the next next token; (2)
retrieving relevant reference for both the next token and the next next token. As shown in Figure 1 (b),
with the speculated token “area”, LogitSpec successfully retrieves the correct draft tokens “area of”.
This two-step process enables better retrieval accuracy—it can help filter the most relevant reference
when the reference is redundant, while extending the searching space when there exists no relevant
reference. To summarize, our contributions are:

(a) We empirically observe that the last logit can speculate the next next token with a relatively
high accuracy. Unlike other retrieval techniques, which are sensitive to the specific task, this
property is robust and effective across various tasks.

(b) Building on this observation, we propose LogitSpec, a plug-and-play retrieval-based SD
framework which can improve the retrieval accuracy and achieve better speedup.

(c) We conduct extensive experiments on various text generation benchmarks to demonstrate
the effectiveness of LogitSpec . Notably, LogitSpec achieves up to 2.61× speedup and 3.28
mean accepted tokens per decoding step without the need for an extra draft model.
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2 RELATED WORK

In this section, we briefly review the two main directions of speculative decoding, draft-model-based
speculative decoding and draft-model-free speculative decoding. More discussions are provided in
Appendix A.

Draft-model-based speculative decoding. This line of research focuses on improving the draft
quality, which primarily invests heavily in post-training a specialized draft model to generate high-
quality drafts. Medusa (Cai et al., 2024) pioneers this direction by adding extra MLP heads at the
top of the target model, reusing the hidden states from the target model, and predicting the next few
tokens in parallel. However, the generation from these decoding heads is independent, which harms
the accuracy of the draft tokens. Therefore, some works (Ankner et al., 2024; Xiao et al., 2024)
propose to add sequential dependencies for better performance. Glide (Du et al., 2024) takes a similar
idea of Medusa and proposes to reuse the KV cache from the target model. Recently, Eagle (Li et al.,
2025b; 2024; 2025c) has dominated this research line by training an auto-regressive head and scaling
up the training data. However, while these methods achieve superior speedup, all of them rely on
an extra draft model, which necessitates extra parameters or extensive training. The existence of
the draft model significantly limits its application: (a) deploying a draft model requires complex and
careful implementation. (b) Both the draft model and its KV cache require additional GPU memory,
which may incur load imbalance. In the long context settings, even the KV cache for the draft model
may exceed the capacity of 1 GPU and lead to significant resource competitions; (c) the training cost
is substantial, and the draft model requires retraining when the target model is updated.

Draft-model-free speculative decoding. This line of research focuses on maximizing drafting effi-
ciency by eliminating the need for a draft model entirely, aiming for universal, zero-cost acceleration.
Some existing works (Zhang et al., 2024a; Elhoushi et al., 2024; Xia et al., 2025) observe that the
layer sparsity of LLMs means that not all the layers are necessary to predict the next token. They
propose methods to generate draft tokens with a subset of the layers of the target model. However,
the number of skipped layers is limited, which affects the overall speedup. Recently, retrieval-based
SD (He et al., 2024; Saxena, 2023; Fu et al., 2024) has dominated the draft-model-free speculative
decoding by retrieving the relevant reference as the draft tokens. The relevant reference can be derived
from the question and generated tokens, or an external database. However, there exist two common
issues during the retrieval process: (a) retrieval from the context often fails to find matched draft
tokens; (b) retrieval from an external database often struggles to find accurate draft tokens. These two
issues motivate us to develop a more appropriate retrieval-based speculative decoding framework.

3 BACKGROUND

Speculative Decoding. Let x denote an input sequence (prefix). A speculative decoding step
consists of a drafting phase and a verification phase. During the drafting phase, the draft model Mq

is employed to give γ draft tokens x1, x2, ..., xγ by running γ times the model forward and sampling.
Here, we denote the output logit Mq(x+ [x1, ..., xi−1]) as qi−1, then each draft token is given by
xi ∼ qi−1, i = 1, ..., γ. During the verification phase, the prefix x together with γ draft tokens are
sent to Mp for verification. The target model Mp inputs x + [x1, ..., xγ ] and outputs the logits
p0, p1, ..., pγ . Then SD sequentially verifies xi via speculative sampling (Leviathan et al., 2023; Chen
et al., 2023), where the acceptance rate is given by:

αi =


1 pi−1[xi] ≥ qi−1[xi],

pi−1[xi]

qi−1[xi]
pi−1[xi] < qi−1[xi],

(1)

If SD rejects xi, it will resample a token from norm(max(0, pi−1 − qi−1)), otherwise, SD accepts
all the draft tokens and samples an additional token from pγ . In this way, each SD step generates at
least 1 token and at most γ + 1, leading to theoretical lossless quality and efficiency acceleration.

Retrieval-based Speculative Decoding. The retrieval-based SD methods generate draft tokens in
a retrieval-based manner. As retrieval-based SD methods do not require an additional draft model,
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Figure 2: Motivated observations. (a) The last logit can speculate the next next token with high
accuracy. In over 50% decoding steps, the next next token can be found in the top-60 entries within the
last logit. This prediction ability exists consistently across different model sizes and architectures. (b)
Compared with other retrieval-based methods, the prediction of the last logit demonstrates robustness
to downstream tasks. Both of these observations motivate us to utilize the last logit to guide the
retrieval process. Note that the prediction of the last logit is only part of our LogitSpec .

we omit the notation for Mq and abbreviate Mp as M. A retrieval model R is employed to store
n-grams (referred as reference) from corpus

R = {(x1
i , x

2
i , ..., x

n
i )}Ni=1. (2)

Here, N denotes the total number of n-grams in R. Existing retrieval-based SD methods mainly
differ in constructing R. At each SD decoding step, given a query m-gram tokens x1

q, x
2
q, ..., x

m
q , the

retrieval model first traverses the reference, finds matched n-grams and returns the subsequent tokens
of the matched tokens:

MATCH(R, (x1
q, x

2
q, ..., x

m
q )) = {(xm+1

i , ..., xn
i )}i∈S , (3)

where S = {i|xt
i = xt

q,∀t = 1, ...,m}. Intuitively, a larger m leads to more precise matches but
lower match probabilities.

4 METHOD

In this section, we introduce our LogitSpec , a novel retrieval-based SD framework that utilizes last
logit as a guidance for retrieval and effectively improves the retrieval performance. We first conduct
a motivated experiment in Section 4.1, and then introduce the whole framework of LogitSpec in
Section 4.2 and 4.3. An overview of LogitSpec is shown in Figure 3.

4.1 MOTIVATED OBSERVATION

Drawing insights from multi-token prediction (Gloeckle et al., 2024) that fine-tuned LLMs can predict
multiple tokens in a single forward, we are interested in the ability of LLMs to predict the next next
token without fine-tuning. We conduct a simple experiment to investigate the rank of the next next
token in the last logit, which is used to predict the next token. Specifically, we use a small fraction of
Spec-Bench (Xia et al., 2024) that contains 13 sub-tasks (detailed in Appendix B) and 6 different
LLMs as backbones. Results in Figure 2(a) demonstrate that the last logit has a strong potential to
predict the next next token. In over 50% decoding steps, the next next token can be found within
the top-60 entries of the last logit. For Llama 3.1 8B (Team, 2024) with a large 128K vocabulary, this
percentage even increases to 64% within the top-60 entries of the last logit. The results of 6 different
LLMs on 13 downstream tasks demonstrate that this observation holds consistently across different
models (Vicuna, Llama 3.1, and Qwen) and scales (ranging from 0.5B to 33B).

We further conduct experiments on Spec-Bench with Vicuna 7B to investigate the robustness of
the predictive capability of the last logit across different tasks. We propose a minimal speculative

4
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Figure 3: An overview of LogitSpec. At each decoding step, LogitSpec first utilizes the top-k
entries of the last logit as the speculation for the next next token. Then, LogitSpec retrieves relevant
references for both the next token and the next next token. Finally, LogitSpec organizes the draft
tokens into a draft tree and prepares a tree attention for parallel verification.

decoding algorithm with last logit, last logit decoding for this experiment, where we directly use the
top-60 entries of the last logit to serve as the draft tokens. Each draft token is a guess at the next next
token. If the target model accepts any one of the draft tokens, the others are dropped. Consequently,
at each decoding step, the accepted length is either 2 or 1. As in 2(b), this simple SD method yields
mean accepted tokens per decoding step (MAT) of over 1.5. Compared with other retrieval-based SD
methods such as PLD (Saxena, 2023) and REST (He et al., 2024), which are highly affected by the
task type, the MAT of last logit decoding exhibits superior robustness to the task. These results
demonstrate that the ability of the last logit to predict the next next token widely exists in modern
LLMs themselves, and strongly motivate us to improve retrieval-based SD methods with the last logit.
We provide a detailed experimental setup for the motivation experiments in Appendix B.

4.2 LogitSpec DRAFTING

While last logit decoding has shown great simplicity in implementation and robustness to the
downstream tasks, its theoretical upper bound of the speedup ratio is 2, as all the draft tokens are
guesses for the next next token. In our experiments, the last logit decoding achieves an overall
speedup ratio of 1.2× ∼ 1.4×, which hinders the real-world applications of last logit decoding due
to the unsatisfactory speedup ratio. Therefore, to further improve the overall inference speedup, we
propose to utilize the prediction ability of the last logit as a guidance for retrieval. Specifically, for
a given input prefix x = (x1, x2, ..., xi) and the last logit pi = M(x1, x2, ..., xi), we first sample the
next token xi+1 ∼ pi. Then, we utilize the top-k entries of the last logit (except the next token xi+1)
as the speculation to the next next token x̃i+2:

L = {x̃i+2 | x̃i+2 ∈ TOPk(pi) ∧ x̃i+2 ̸= xi+1}. (4)

Then, we use the retrieval model R to retrieve reference for both the next token and next next tokens:

D = MATCH(R,

m-gram for next token︷ ︸︸ ︷
(xi−m+2, ..., xi, xi+1))∪{MATCH(R,

m-gram for next next token︷ ︸︸ ︷
(xi−m+3, ..., xi, xi+1, x̃i+2))}x̃i+2∈L (5)
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Here, m-gram denotes the last m tokens as the query to retrieve the matched reference. In our
experiments, we retrieve draft tokens with m = 3 first. If no matched tokens are found, we decrease
m to 2 and so on. For simplicity, we only use the user-input prompt and decoded tokens to construct
the retrieval model R, that is to say, our LogitSpec is query-independent, and will not be affected
by other queries. We give the detailed implementation of the retrieval process in Appendix D.1.

Taking the example in Figure 3, we first select the top-k entries of the last logit as the speculation for
the next next token. Then, we retrieve reference for both the next token “the” and the next next token
“area”, and return “of the”. After that, we organize these draft tokens into a draft tree, where the next
token serves as the root. Finally, the token sequence “area of the” is accepted by M.

After the retrieval process, we employ a simple pruning strategy to control the number of draft tokens.
Specifically, we do not prune the retrieval tokens for the next token. For each speculated next next
token, we prune the retrieval tokens with a simple heuristic strategy: if the rank of the next next token
is below 8, we preserve 4 tokens; if the rank of the next next token is below 32, we preserve 3 tokens;
otherwise, we only preserve the speculated next next token itself. The retrieval process is terminated
until the total number of draft tokens exceeds a specific draft tree capacity K. Furthermore, we
explored the impact of various pruning strategies, with results detailed in Tables 13 of Appendix E.4.

4.3 LogitSpec VERIFICATION

After retrieving multiple draft token sequences D, we organize these token sequences into a draft tree
and prepare a tree attention for parallel verification.

Then, we prepare an attention mask to make each draft token sequence invisible to other sequences.
Let Tril(l) denotes a causal mask with length l, and mj denotes the length of the j-th token sequence
in D, the attention mask is given by:

Adraft = diag(Tril(m1),Tril(m2), ...,Tril(mj)). (6)

An illustration of this attention mask is shown in Figure 3(c) (note that the next token is visible to all
sequences, corresponding to the first column). Both the preparation of the attention mask and the
verification of the draft tree are consistent with previous works (Miao et al., 2024; Cai et al., 2024).
We provide a pseudo code of the attention mask preparations in Appendix C.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Tasks and Datasets. We conduct experiments on various text generation benchmarks to evaluate
the effectiveness of LogitSpec . Specifically, we first evaluate the performance of LogitSpec on Spec-
Bench (Xia et al., 2024). Spec-Bench is a widely used comprehensive benchmark that covers diverse
application scenarios, including multi-turn conversation (MT), translation (Trans), summarization
(Sum), question answering (QA), mathematical reasoning (Math), retrieval-augmented generation
(RAG). Furthermore, we evaluate the performance of LogitSpec on HumanEval (Chen et al., 2021),
GSM8K (Cobbe et al., 2021), CNN/DM (Nallapati et al., 2016), MATH (Hendrycks et al., 2021),
AIME 24&25 (Mathematical Association of America, 2025) and LongBench (Bai et al., 2024). which
are widely used text generation benchmarks in existing works.

Baselines. We compare LogitSpec to existing state-of-the-art plug-and-play SD methods: (a)
Lookahead Decoding (Fu et al., 2024): utilizing the dropped draft tokens to serve as the retrieval
model; (b) REST (He et al., 2024): employing an external knowledge base as the retrieval model;
(c) PLD (Saxena, 2023): extracting n-grams from the user-input prompts and decoded tokens as the
retrieval model; and (d) vanilla SpS (Leviathan et al., 2023; Chen et al., 2023): employing a well
trained small-size model Vicuna-68M as the draft model. We use Vicuna series models (7B, 13B,
33B), Llama-2 series models (7B, 13B, 70B), Llama-3.1-Instruct-8B and Qwen-3-8B as backbones,
and report results with baseline methods on Vicuna and Llama-2 as the main results, where the
performance of baseline methods can be reproduced with their official implementations.
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Table 1: Experimental results of LogitSpec on CNN/DM (Nallapati et al., 2016), GSM8K (Cobbe
et al., 2021) and HumanEval (Chen et al., 2021) with Vicuna. We report the mean accepted tokens
per decoding step (MAT) and overall speedup ratio. We bold the best results and underline the
suboptimal results for each backbone model.

Models Method CNN/DM GSM8K HumanEval Average
MAT Speedup MAT Speedup MAT Speedup MAT Speedup

Vicuna 7B

Lookahead 1.54 1.28 1.92 1.64 1.79 1.57 1.75 1.50
REST 1.64 1.19 1.55 1.13 1.96 1.51 1.72 1.28
PLD 2.61 2.26 1.80 1.62 1.84 1.65 2.08 1.84
SpS 2.34 1.58 2.08 1.49 2.56 1.80 2.33 1.62

LogitSpec 3.28 2.61 2.69 2.20 2.62 2.24 2.86 2.35

Vicuna 13B

Lookahead 1.46 1.12 1.88 1.61 1.75 1.57 1.70 1.43
REST 1.65 1.22 1.57 1.18 1.94 1.55 1.72 1.32
PLD 2.34 1.85 1.76 1.61 1.98 1.77 2.03 1.74
SpS 2.18 1.48 2.00 1.55 2.66 1.95 2.28 1.66

LogitSpec 2.90 2.17 2.59 2.13 2.88 2.47 2.79 2.26

Vicuna 33B

Lookahead 1.50 1.18 1.89 1.44 1.66 1.33 1.68 1.32
REST 1.65 1.41 1.57 1.32 1.99 1.64 1.74 1.46
PLD 2.07 1.72 1.66 1.41 1.60 1.42 1.78 1.52
SpS 2.01 1.57 1.97 1.54 2.27 1.80 2.08 1.64

LogitSpec 2.66 2.01 2.46 1.93 2.41 1.95 2.51 1.96

Implementation Details. We follow the setting of Spec-Bench with Pytorch (Paszke et al., 2019)
2.6.0, transformers (Wolf et al., 2020) version of 4.37.1, and CUDA (NVIDIA et al., 2020) 12.4.
The experiments where the model size is between 7B and 33B are conducted on single NVIDIA
SXM A100 80G GPU, while for models with 70B size are conducted on 2 NVIDIA SXM A100 80G
GPUs. The inference precision is float16. Following prior work, we conduct experiments with
temperature 0 and batch size 1. The maximal generation lengths are 1024. More implementation
details can be found in Appendix D. We use two widely used metrics for evaluation: mean accepted
tokens per decoding step (denoted as MAT) and overall speedup ratio (denoted as Speedup).

5.2 MAIN RESULTS

We conduct experiments on various text generation benchmarks to demonstrate the effectiveness of
LogitSpec. As in Tables 1 and 2, LogitSpec outperforms retrieval-based SD baselines by a large
margin. We further present more in-depth analysis of LogitSpec including (i) more LLM backbones
(Llama2 series, Llama-3.1-Instruct-8B and Qwen-3-8B), (ii) more benchmarks (MATH and AIME
datasets), and (iii) long context benchmarks (the LongBench dataset) in Appendix E.

Specifically, we can get the following findings: (a) LogitSpec significantly improves the overall
mean accepted tokens (MAT) of retrieval-based SD methods with an average MAT of 2.13 ∼ 3.28.
Notably, LogitSpec achieves a speedup ratio of 2.61× on CNN/DM with Vicuna 7B and 2.47×
on HumanEval with Vicuna 13B. In contrast, REST only achieves less than 1.5× speedup of the
vicuna model on the CNN/DM dataset. (b) Thanks to the robustness of the last logit, even in
some sub-tasks that are difficult to retrieval-based SD methods, LogitSpec achieves a considerable
speedup ratio. For example, in the Translation task in Spec-Bench, there exists nearly no available
reference to serve as the draft tokens. Consequently, PLD and Lookahead achieve poor acceleration.
Even equipped with a large external database (≈ 12 GB), REST only achieves a speedup with
1.17× ∼ 1.31×, while our LogitSpec achieves a speedup with 1.38× ∼ 1.43× without the external
database, which also demonstrates the prediction ability on the next next token of the last logit. As
LogitSpec is highly plug-and-play, it is also promising future work to employ an external database
for further acceleration. (c) While LogitSpec and PLD are both retrieval-based SD methods that
retrieve reference from the prompt, LogitSpec significantly outperforms PLD across all benchmarks
and model sizes, highlighting the importance of “speculating the next next token”, particularly in
scenarios where the output is less duplicate to the prefix text. All these results validate that the last
logit can be used to predict the next next token and improve the retrieval performance.
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Table 2: Experimental results of LogitSpec on Spec-Bench (Xia et al., 2024) with Vicuna. We report
the speedup ratio on each sub task, mean accepted tokens per decoding step (MAT) and overall
speedup ratio. We bold the best results and underline the suboptimal results for each backbone model.

Models Method MT Trans Sum QA Math RAG MAT Speedup

Vicuna 7B

Lookahead 1.40 1.14 1.19 1.24 1.55 1.09 1.66 1.27
REST 1.63 1.31 1.36 1.66 1.21 1.73 1.82 1.48
PLD 1.64 1.04 2.43 1.14 1.61 1.71 1.73 1.59
SpS 1.66 1.13 1.62 1.49 1.47 1.55 2.28 1.49

LogitSpec 1.92 1.39 2.68 1.70 2.22 1.87 2.44 2.01

Vicuna 13B

Lookahead 1.30 1.06 1.20 1.12 1.48 1.12 1.63 1.22
REST 1.52 1.17 1.37 1.53 1.19 1.55 1.82 1.38
PLD 1.47 1.02 2.19 1.03 1.57 1.71 1.68 1.48
SpS 1.60 1.13 1.68 1.39 1.53 1.67 2.18 1.49

LogitSpec 1.89 1.43 2.33 1.43 2.23 1.93 2.32 1.93

Vicuna 33B

Lookahead 1.32 1.08 1.20 1.06 1.54 1.15 1.61 1.24
REST 1.63 1.27 1.45 1.61 1.30 1.61 1.80 1.48
PLD 1.44 1.06 2.00 1.07 1.55 1.45 1.55 1.42
SpS 1.75 1.28 1.76 1.53 1.69 1.68 2.01 1.61

LogitSpec 1.77 1.38 2.15 1.37 2.00 1.69 2.13 1.76

Table 3: Ablation experiments of LogitSpec on Spec-Bench (Xia et al., 2024), CNN/DM
(Nallapati et al., 2016), GSM8K (Cobbe et al., 2021) and HumanEval (Chen et al., 2021) with
Vicuna. We report the ablation results with MAT reduction and Speedup reduction with down arrow ↓.

Models Method Spec-Bench CNN/DM GSM8K HumanEval
MAT Speedup MAT Speedup MAT Speedup MAT Speedup

Vicuna 7B
w/o last logit 1.72↓.72 1.27↓.74 2.66↓.62 2.24↓.37 1.81↓.88 1.63↓.57 1.89↓.73 1.69↓.55
w/o retrieval 1.57↓.87 1.24↓.77 1.57↓1.71 1.23↓1.38 1.71↓.98 1.39↓.81 1.69↓.93 1.39↓.85
LogitSpec 2.44 2.01 3.28 2.61 2.69 2.20 2.62 2.24

Vicuna 13B
w/o last logit 1.66↓.66 1.23↓.70 2.34↓.56 1.81↓.36 1.78↓.81 1.61↓.52 2.02↓.86 1.75↓.72
w/o retrieval 1.59↓.73 1.19↓.74 1.58↓1.32 1.22↓.95 1.71↓.88 1.45↓.68 1.63↓1.25 1.37↓1.10
LogitSpec 2.32 1.93 2.90 2.17 2.59 2.13 2.88 2.47

Vicuna 33B
w/o last logit 1.55↓.58 1.22↓.54 2.05↓.61 1.72↓.29 1.64↓.82 1.39↓.54 1.59↓.82 1.40↓.55
w/o retrieval 1.61↓.52 1.25↓.51 1.62↓1.04 1.26↓.75 1.69↓.77 1.33↓.60 1.60↓.81 1.34↓.61
LogitSpec 2.13 1.76 2.66 2.01 2.46 1.93 2.41 1.95

5.3 ABLATION STUDY

To further investigate the components of LogitSpec and provide more insights, we conduct extensive
ablation studies on the aforementioned 4 benchmarks in Table 3. Specifically, we mainly focus on
two components of LogitSpec: last logit and retrieval. We denote LogitSpec without the last logit
decoding and only using retrieval as w/o last logit, and LogitSpec without retrieval and only using
last logit decoding as w/o retrieval. As shown in Table 3, the absence of any component results in a
performance degradation of the entire framework.

Our findings are as follows. First, the absence of retrieval exhibits more importance to the final
acceleration, which is consistent with the discussion in Section 4.2 that the theoretical upper bound
of last logit decoding severely hinders its real-world application. Second, the absence of retrieval and
the absence of last logit show different effects in different sub-tasks. For example, the absence of
retrieval decreases MAT by 0.87 on Spec-Bench with Vicuna 7B, while it decreases MAT by 1.71 on
CNN/DM. In contrast, the absence of last logit leads to a more consistent MAT degradation across
different tasks, which further highlights the robustness of last logit decoding. Finally, these results
demonstrate that combining last logit with retrieval improves the retrieval performance and overall
speedup. We also conduct ablation studies on pruning strategies in the Appendix. E.4 and E.5. The
experimental results suggest that varying the pruning strategy yields only minor differences.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.4 CASE STUDY

Model Forward (93.92%)
Verification (1.03%)
Update (1.05%)

Retrieval (1.17%)
Prepare Attention Mask (2.83%)

Figure 4: Running time breakdown of the
whole decoding process on Spec-Bench with
Vicuna 7B.

In-depth Running Time Analysis. We conduct
experiments to analyze the running time allocation
of the whole decoding. Specifically, there are five
non-negligible components in LogitSpec , including
(a) retrieving draft tokens: the process of retrieving
reference for the next token and the next next tokens;
(b) preparation: preparing attention mask for the
draft tokens; (c) model forward: conducting one-
pass model forward; (d) verification: validating the
draft tokens with speculative sampling; (e) update:
necessary update of KV cache and retrieval model.

As shown in Figure 4, model forward occupies the
majority of wall-clock time. Compared with vanilla
AR decoding, the overhead introduced by LogitSpec ,
i.e., retrieving overhead, only takes 1.17% of the
whole decoding process. It can be further alleviated
by parallel techniques, as the retrieval process is inde-
pendent. The process of verification and update takes
1.03% and 1.05% through the whole process, respec-
tively, which brings negligible overhead as well.

Retrieval Performance. As mentioned in Section 4.2, LogitSpec expands the retrieval range and
improve the retrieval performance. We conduct a simple experiment to test the retrieval success rate,
i.e., whether the model successfully retrieves the reference as draft tokens. As in Table 4, PLD cannot
retrieve any matched tokens in more than 30% decoding steps, while LogitSpec retrieves matched
reference in most decoding steps. These results further demonstrate the effectiveness of LogitSpec .

Real-world examples. We also provide a real-world example in Appendix. E.6 to illustrate how
next-next token speculation allows LogitSpec to succeed where standard retrieval methods fail.

Table 4: Case study experiments of LogitSpec on Spec-Bench and HumanEval with Vicuna. We
report the successful retrieval rate of each method. We report the relative improvements with ↑.

Method Spec-Bench HumanEval
Vicuna 7B Vicuna 13B Vicuna 33B Vicuna 7B Vicuna 13B Vicuna 33B

PLD 63.88 63.08 62.71 69.03 69.51 67.67
LogitSpec 97.76↑53.04% 97.64↑54.79% 97.93↑56.16% 99.29↑43.84% 99.31↑42.87% 99.37↑46.84%

6 CONCLUSION

In this paper, we empirically observe that the logit of the last token can predict the next next token
with a relatively high accuracy without any fine-tuning. Based upon this observation, we propose
a novel retrieval-based SD framework, namely LogitSpec, which utilizes the prediction ability of
the last logit to effectively expand the retrieval range and find the most relevant reference as the
draft tokens. LogitSpec does not require an additional draft model and is a fully plug-and-play
method, which can be easily implemented and integrated into existing LLM frameworks. Extensive
experiments demonstrate that LogitSpec can effectively improve the retrieval performance, leading
to a 1.8× ∼ 2.6× speedup across all the evaluation benchmarks.

Limitations and Future Work. While our LogitSpec is a fully plug-and-play SD framework, its
real-world inference acceleration is less competitive. Our future works involve integrating LogitSpec
into existing draft-model-based SD methods for further acceleration. Moreover, currently LogitSpec
retrieves relevant reference from the prompt, which may incur lower speedup when the prompt is
short. We consider integrating an external database to boost the retrieval model as a future work.
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A MORE DISCUSSIONS TO RELATED WORK

We give more discussions to existing works in both draft-model-based speculative decoding and
draft-model-free speculative decoding. An intuitive comparison is shown in Table 5.

Table 5: Training and deployment comparison for different methods. Example training costs: EAGLE
8× RTX 3090 for 1–2 days; HYDRA 8× A100 for training; MEDUSA 1× A100 for 5 hours.
Methods Training Cost Additional Parameters Lossless Quality? Deployment Difficulty

EAGLE High AR Heads ✓ High
HYDRA High MLP Heads ✗ Moderate
MEDUSA Moderate MLP Heads ✗ Moderate
LogitSpec (Ours) None None ✓ Plug-and-Play

Draft-model-based speculative decoding. Besides the discussions in Section 2, there are also
many excellent works related to the draft-model-based speculative decoding. For example, HASS
(Zhang et al., 2025) discovers the inconsistency of EAGLE between training and inference, and
proposes a multi-step training framework to address this. CORAL (Weng et al., 2025) proposes a
cross-step representation alignment to address this problem. Judge Decoding (Bachmann et al., 2025)
recognizes the potential of accepting high-quality but refused draft tokens to further improve the
acceleration. Gumiho (Li et al., 2025a) demonstrates that the initial draft token is more important and
proposes a hybrid model to combine serial and parallel draft heads.

Besides these methods that focus on the training process, the process of verification also draws
extensive interest, mainly focusing on adaptive draft length. SpecDec++ (Huang et al., 2025)
formulates the verification process as a Markov decision process to adaptively determine the draft
length. OPT-Tree (Wang et al., 2024) proposes a method to search for the optimal tree structure that
maximizes the mathematical expectation of the acceptance length in each decoding step. AdaEAGLE
(Zhang et al., 2024b) proposes a novel framework to explicitly model the draft tree structure for
EAGLE series models. PEARL (Liu et al., 2025) pioneers this direction by serving the draft model
and the target model in parallel to achieve a segmented adaptive draft length.

Draft-model-free speculative decoding. For layer sparsity, SPEED (Hooper et al., 2024) proposes
a method to speculatively execute multiple future tokens in parallel with the current token using
predicted values based on early-layer hidden states. FREE (Bae et al., 2023) proposes a shallow-
deep module and a synchronized parallel decoding to improve the efficiency. EESD (Liu et al.,
2024) proposes an early-exiting framework with a self-distillation method and leverages Thompson
Sampling to regulate the generation processes. For retrieval-based SD, Token Recycling (Luo
et al., 2024) proposes a method to utilize the dropped draft tokens and generate draft tokens via an
adjacency matrix. Different from our method, Token Recycling is a query-dependent method that
utilizes information from other queries, which may result in limitations when applied to real-world
applications with complex and dynamic user inputs. SAM Decoding (Hu et al., 2024) utilizes a
common text corpus and dynamic text sequence as retrieved sources and proposes a suffix automaton
to efficiently obtain yields more accurate match positions.

B EXPERIMENTAL SETUP FOR THE MOTIVATION EXPERIMENTS

To investigate the prediction ability of the last logit, we conduct two motivation experiments to
demonstrate the effectiveness and robustness of the last logit. For the effectiveness of the last logit, as
shown in Figure 2(a), we conduct auto-regressive inference for the 6 models and record the logits
for each decoded token. Then, for each decoded token xi which is sampled from the logit pi−1, we
investigate the rank of xi in pi−2, i.e., the corresponding last logit, and visualize the statistics of
the rank in Figure 2(a). For the robustness of the last logit, as shown in Figure 2(b), we conduct
last logit decoding and investigate its mean accepted tokens per decoding step. Both experiments
are conducted on a small subset of Spec-Bench, where we randomly sample 2 questions for each
sub-category of MT, and 10 questions for other categories (Trans, Sum, QA, Math, RAG).
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C PSEUDO CODE TO PREPARE ATTENTION INPUTS

We give a pseudo code to organize the retrieved multiple draft token sequences into a draft tree and
prepare its attention mask. More detailed implementations can be found in our attached code.

def prepare_attention_inputs(past_len, next_token, candidate_list,
num_draft_tokens):
’LogitSpec organizes draft tokens in a tree manner. Each sub-

sequence corresponds to a local causal mask.’

seq_len = num_draft_tokens + 1

# organize the candidate list into a sequence
draft_ids = [next_token] + [token for sub in candidate_list

for token in sub]

# prepare original position ids and attention mask
position_ids = torch.zeros((1, seq_len), dtype=torch.long)
causal_mask = torch.full((seq_len, past_len + seq_len),

fill_value=0)
causal_mask[:, :past_len+1] = 1

# prepare causal mask
idx = 1
for sub_sequence in candidate_list:

l = len(sub_sequence)
sub_mask = torch.tril(torch.ones((l, l)))
causal_mask[idx:idx+l, idx+past_len:idx+past_len+l] =

sub_mask
position_ids[0, idx:idx+l] = torch.arange(l) + 1
idx += l

position_ids += past_len
return draft_ids, causal_mask, position_ids

D MORE IMPLEMENTATION DETAILS

D.1 RETRIEVAL PROCESS

The retrieval process of retrieval-based SD methods will affect the overall acceleration. While the
existing method PLD retrieves a reference with string matching, it is unaffordable for LogitSpec to
retrieve in this way. Specifically, suppose the matching ngram size is m, the length of the whole token
sequence is n, and string matching takes the time complexity of O(mn). However, as LogitSpec
needs to retrieve for all the next next tokens, the retrieval takes the time complexity of O(kmn),
where k is the number of the next next tokens.

To address this issue, we propose a simple yet effective method to reduce the retrieval overhead by
constructing a hash table. Specifically, we go through the token sequence, storing each key ngram
with size 1 to m and its value ngram (its following tokens). In this way, the retrieval overhead is
reduced to O(n+ k) with an additional memory cost O(mn). As the length of the token sequence is
relatively small, the additional memory cost is negligible. Furthermore, we will update the retrieval
model R with the decoded tokens in the same way during each decoding step.

D.2 EVALUATION INSTRUCTIONS

In our experiments, we employ different instructions for different evaluation tasks. Specifically, for
Spec-Bench, we use its standard instructions:
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Prompt Templates for Spec-Bench

A chat between a curious user and an artificial intelligence
assistant. The assistant gives helpful, detailed, and polite
answers to the user’s questions.

USER: Question

ASSISTANT:

For CNN/DM, we prepend the instruction “Summarize: ” to the instruction:

Prompt Templates for CNN/DM

A chat between a curious user and an artificial intelligence
assistant. The assistant gives helpful, detailed, and polite
answers to the user’s questions.

USER: Summarize: Question

ASSISTANT:

For GSM8K, we follow the setting with (Liu et al., 2025) and use an 8-shot CoT for inference:

Prompt Templates for GSM8K

A chat between a curious user and an artificial intelligence
assistant. The assistant gives helpful, detailed, and polite
answers to the user’s questions.

USER: 8-shot CoT Q: Question

ASSISTANT:

For HumanEval, we add a simple instruction “Please help me to complete this code, just output your
codes directly.”:

Prompt Templates for HumanEval

A chat between a curious user and an artificial intelligence
assistant. The assistant gives helpful, detailed, and polite
answers to the user’s questions.

USER: Please help me to complete this code, just output your
codes directly. Question

ASSISTANT:

D.3 DATASET CONFIGURATIONS

In our experiments, we evaluate the effectiveness of our LogitSpec on 4 categories of text generation
tasks, including Spec-Bench, CNN/DM, GSM8K, and HumanEval. For Spec-Bench and HumanEval,
we use the full data for evaluation. For CNN/DM and GSM8K, we randomly sample 1000 questions
for evaluation. The maximal generation length is set as 1024 across all the experiments.
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D.4 MODEL CONFIGURATIONS

In our experiments, all the models are deployed with precision float16. The <|eos token|>
is set the same as the tokenizer’s <|eos token|>. To effectively alleviate the overhead of rolling
back the KV cache to the accepted draft tokens, we follow Medusa (Cai et al., 2024) to allocate
continuous GPU memory for all the KV cache.

E MORE IN-DEPTH ANALYSIS OF LogitSpec

E.1 MORE RESULTS OF DIFFERENT LLM BACKBONES

Here, we provide more results for different LLM backbones to provide more insights into our
LogitSpec , including Llama 2 chat series models, LLaMA-3.1-8B-Instruct, and Qwen3-8B.

We present the results of Llama 2 chat series models on Spec-Bench, CNN/DM, GSM8K, and
HumanEval in Table 6 and Table 7. We still find that LogitSpec achieves the best acceleration results
among all other baselines, which demonstrates the effectiveness of our LogitSpec .

We also present more results applying LLaMA-3.1-8B-Instruct and Qwen3-8B on Spec-Bench,
CNN/DM, GSM8K, and HumanEval in Tables 8 and 9. We still observe that compared to standard
LLM auto-regressive decoding, LogitSpec can consistently achieve around 2 × inference acceleration
for all datasets.

Table 6: Experimental results of LogitSpec on CNN/DM (Nallapati et al., 2016), GSM8K (Cobbe
et al., 2021) and HumanEval (Chen et al., 2021) with Llama-2. We report the mean accepted tokens
per decoding step (MAT) and overall speedup ratio. We bold the best results and underline the
suboptimal results for each backbone model.

Models Method CNN/DM GSM8K HumanEval Overall
MAT Speedup MAT Speedup MAT Speedup MAT Speedup

Llama 2 7B

Lookahead 1.58 1.36 2.02 1.67 1.77 1.53 1.79 1.52
REST 1.71 1.33 1.51 1.18 1.97 1.52 1.73 1.34
PLD 1.89 1.73 3.32 2.98 1.57 1.41 2.26 2.04
SpS 1.99 1.46 2.83 1.87 2.13 1.51 2.32 1.61

LogitSpec 2.41 2.02 4.44 3.68 2.17 1.75 3.01 2.48

Llama 2 13B

Lookahead 1.56 1.18 2.08 1.52 1.84 1.66 1.83 1.45
REST 1.71 1.34 1.53 1.26 1.96 1.63 1.73 1.41
PLD 1.89 1.52 3.24 2.54 1.73 1.63 2.29 1.90
SpS 1.95 1.34 2.87 1.85 2.33 1.76 2.38 1.65

LogitSpec 2.43 2.03 4.31 3.24 2.38 2.10 3.04 2.46

Llama 2 70B

Lookahead 1.53 1.28 1.90 1.57 1.86 1.57 1.76 1.47
REST 1.67 1.35 1.63 1.32 1.96 1.66 1.75 1.44
PLD 1.98 1.74 1.63 1.46 1.62 1.49 1.74 1.56
SpS 2.01 1.71 1.98 1.69 2.21 1.70 2.07 1.70

LogitSpec 2.67 2.10 2.37 1.87 2.33 1.93 2.46 1.97

E.2 MORE RESULTS OF DIFFERENT BENCHMARKS

Table 10: Results of LogitSpec on AIME datasets.

Method AIME24 AIME25

MAT Speedup MAT Speedup

Vanilla 1.00 1.00 1.00 1.00
LogitSpec 3.41 3.25 3.76 3.33

We provide more results of our LogitSpec on
complex math reasoning tasks including MATH
(Hendrycks et al., 2021) and AIME 24 & 25
(Mathematical Association of America, 2025)
datasets in Tables 11 and 10. For each of these
benchmarks, we report the real-world speedup
for each subset, the overall mean accepted to-
kens per decoding step (MAT), and the overall
speedup. These expanded experimental results
further corroborate LogitSpec’s effectiveness
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Table 7: Experimental results of LogitSpec on Spec-Bench (Xia et al., 2024) with Llama-2. We
report the speedup ratio on each sub task, mean accepted tokens per decoding step (MAT) and overall
speedup ratio. We bold the best results and underline the suboptimal results for each backbone model.

Models Method MT Trans Sum QA Math RAG MAT Speedup

Llama 2 7B

Lookahead 1.55 1.44 1.42 1.48 1.69 1.46 1.69 1.51
REST 1.58 1.20 1.38 1.61 1.31 1.55 1.83 1.48
PLD 1.46 1.34 1.89 1.23 1.65 1.58 1.59 1.49
SpS 1.57 1.38 1.55 1.46 1.55 1.60 2.07 1.53

LogitSpec 1.83 1.72 2.19 1.63 2.15 1.94 2.15 1.87

Llama 2 13B

Lookahead 1.39 1.36 1.21 1.39 1.69 1.25 1.68 1.37
REST 1.53 1.14 1.30 1.51 1.23 1.45 1.85 1.42
PLD 1.36 1.19 1.58 1.16 1.62 1.37 1.56 1.37
SpS 1.52 1.26 1.43 1.42 1.54 1.50 2.03 1.48

LogitSpec 1.73 1.57 1.86 1.53 2.14 1.73 2.12 1.74

Llama 2 70B

Lookahead 1.45 1.35 1.28 1.38 1.71 1.31 1.66 1.41
REST 1.63 1.33 1.38 1.67 1.35 1.55 1.83 1.53
PLD 1.34 1.32 1.76 1.18 1.63 1.47 1.51 1.39
SpS 1.65 1.50 1.62 1.57 1.70 1.68 1.88 1.63

LogitSpec 1.66 1.58 1.95 1.58 2.03 1.78 2.12 1.72

Table 8: Experimental results of LogitSpec on Spec-Bench (Xia et al., 2024) with LLaMA-3.1-
8B-Instruct and Qwen3-8B. We report the speedup ratio on each sub task, mean accepted tokens
per decoding step (MAT) and overall speedup ratio. We bold the best results for each backbone model.

Model Method MT Trans Sum QA MATH RAG MAT Speedup
Llama-3.1-8B-Instruct Vanilla 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Llama-3.1-8B-Instruct LogitSpec 1.89 1.67 1.94 1.68 2.01 1.77 2.11 1.88
Qwen-3-8B Vanilla 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Qwen-3-8B LogitSpec 1.71 1.74 1.64 1.65 1.89 1.68 1.95 1.75

Table 9: Experimental results of LogitSpec on CNN/DM (Nallapati et al., 2016), GSM8K (Cobbe
et al., 2021) and HumanEval (Chen et al., 2021) with LLaMA-3.1-8B-Instruct and Qwen3-8B. We
report the mean accepted tokens per decoding step (MAT) and overall speedup ratio. We bold the
best results for each backbone model.

Model Method CNN/DM GSM8K Humaneval Overall
MAT Speedup MAT Speedup MAT Speedup MAT Speedup

Llama-3.1-8B-Instruct Vanilla 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Llama-3.1-8B-Instruct LogitSpec 2.04 1.85 2.18 1.95 2.63 2.31 2.28 2.04
Qwen-3-8B Vanilla 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Qwen-3-8B LogitSpec 1.77 1.59 2.18 1.94 2.18 1.92 2.04 1.82

and applicability, yielding an overall MAT of 3.32 on MATH and 3.76 on AIME, with a correspond-
ing overall speedup of 2.78x on MATH and 3.33x on AIME. This demonstrates LogitSpec’s robust
performance even on challenging reasoning tasks.

E.3 MORE RESULTS OF LONG-TEXT DATA SCENARIOS

We conduct a new set of experiments on the LongBench using Llama-3.1-8B-Instruct as the backbone
model, randomly sampling 100 problems for evaluation. We observe that LogitSpec is highly effective
in these long-context scenarios. As shown in Table 12, our method achieves an overall MAT of 3.09
and an overall speedup of 2.01. This strong performance is directly linked to the core mechanics of
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Table 11: Experimental results of LogitSpec on MATH datasets with Llama 3.1-8B-Instruct as the
backbone model.

Method Algebra Probability Geometry Intermediate Algebra Number Theory Prealgebra Precalculus MAT Speedup
Vanilla 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LogitSpec 2.48 3.24 2.96 2.97 2.53 2.16 3.01 3.32 2.78

our method. LogitSpec’s retrieval model is built from the user-input prompt and previously decoded
tokens. A longer context generally provides a richer database for this retrieval process. However, a
large context also increases the chance of finding ambiguous or incorrect n-grams, which is precisely
where LogitSpec’s "next next token speculation" offers a significant advantage. By using a more
specific multi-token query, it effectively disambiguates the retrieval process, which is particularly
crucial in a long context with many repetitive phrases. Furthermore, our retrieval implementation was
designed for efficiency, using a hash table to ensure that the overhead remains negligible (around
1.17% of the total decoding time) even as the sequence length grows. Therefore, these new results
confirm that LogitSpec is a robust and effective solution for accelerating inference in demanding
long-context scenarios.

Table 12: Experimental results of LogitSpec on LongBench datasets with Llama 3.1-8B-Instruct as
the backbone model.

Method qasper multifieldqa hotpotqa wikimqa report qmsum news vcsum trec MAT Speedup

Vanilla 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LogitSpec 1.60 3.30 1.76 2.06 2.06 1.59 1.89 2.89 1.53 3.09 2.01

E.4 MORE RESULTS OF DIFFERENT PRUNING STRATEGIES

In Section 4.2, we apply a heuristic pruning strategy to control the number of draft tokens. The role of
the pruning algorithm is to effectively control the size of the resulting draft tree, keeping the decoding
overhead low without sacrificing too many possibilities, which is a strategy to balance breadth and
cost. To provide more insight into the pruning strategy, we provide a series of ablation studies on the
pruning strategy in Table 13. Specifically, we consider two different pruning strategies:

(a) Strategy 1: A rank-based heuristic: if the rank is <4, we preserve 5 tokens; <8, 4 tokens;
<16, 3 tokens; <32, 2 tokens; else 1 token.

(b) Strategy 2: A simple heuristic: preserving 4 tokens for all speculated next next tokens.

The results in Table 13 demonstrate that while different pruning strategies have some effect on the
final performance, the overall performance of LogitSpec is quite robust. The speedup remains stable
at 1.9x across these different approaches.

We also would like to clarify that the core contribution of our work is next next token speculation
using the last logit to guide and enhance the efficiency and accuracy of retrieval-based speculative
decoding. The primary purpose of the pruning algorithm is to serve as an auxiliary module for our
core mechanism.

Table 13: Ablation study on pruning strategies. LogitSpec with s1 and LogitSpec with s2 denote
LogitSpec with Strategy 1 and Strategy 2, respectively.

Method MT Trans Sum QA MATH RAG MAT Speedup
LogitSpec with s1 1.90 1.68 1.94 1.66 2.04 1.78 2.12 1.88
LogitSpec with s2 1.86 1.67 1.87 1.68 2.03 1.74 2.02 1.85
LogitSpec (ori) 1.89 1.67 1.94 1.68 2.01 1.77 2.11 1.88
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E.5 MORE RESULTS OF ABLATION STUDY ON PRUNING HYPERPARAMETERS K

As mentioned in Section 4.2, we set the capacity of the draft tree to K=64. To provide further
insight, we evaluate a range of K values from 32 to 128 in Table 14. These results reveal a clear
trade-off: as K increases, the MAT per step improves (from 2.03 to 2.30), since a larger tree offers
more opportunities for token acceptance. However, the overall speedup ratio peaks at K=64 (1.92×)
and subsequently declines. This is because verifying an overly large draft tree introduces significant
computational overhead that ultimately negates the advantages of a higher acceptance rate.

Table 14: Ablation study on pruning hyperparameters K using LLaMA-3.1-8B-Instruct as the
backbone model.

Method MT Trans Sum QA MATH RAG MAT Speedup
Vanilla 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LogitSpec 32 1.79 1.62 1.82 1.56 1.93 1.67 1.95 1.79
LogitSpec 48 1.86 1.66 1.90 1.67 2.00 1.73 2.04 1.85
LogitSpec 64 1.89 1.67 1.94 1.68 2.01 1.77 2.11 1.88
LogitSpec 80 1.85 1.64 1.86 1.67 1.84 1.74 2.14 1.83
LogitSpec 96 1.81 1.65 1.83 1.66 1.84 1.73 2.17 1.80
LogitSpec 112 1.79 1.61 1.77 1.64 1.83 1.69 2.21 1.77
LogitSpec 128 1.74 1.62 1.73 1.58 1.81 1.62 2.22 1.73

E.6 STEP-BY-STEP ACCELERATION PROCESS OF LogitSpec FOR A REAL-WORLD EXAMPLE

To obtain more insights into LogitSpec, we provide the following real-world example to illustrate
how "next next token speculation" allows LogitSpec to succeed where standard retrieval methods fail.

Taking the prefix of

Q: A pen costs as much as a pencil and eraser combined. A pencil
costs $1.20 and an eraser costs $0.30. How much will 8 pens
cost?

A: To find the cost of 8 pens, we first need to find the cost of
one pen. A pencil costs $1.20 and an eraser costs $0.30. The

At the first step, LogitSpec will first generate the next token "combined" and then speculate the next
next token as follows:

• .
• total
• cost
• combination
• pen
• eraser

Then, LogitSpec extends each draft token with retrieved n-grams and verifies these draft tokens:

• [×] . A pencil costs
• [×] total they had
• [✓] cost of one pen
• [×] combination (not retrieved matched n-grams)
• [×] pen.
• [×] eraser costs $
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Finally, with the guidance of the last logit, we successfully accept 3 draft tokens, generate "the
combined cost of one pen". In the next decoding step, LogitSpec accepts 3 draft tokens as well and
generates "the combined cost of one pencil and one eraser". However, without the speculation of the
last logit, only the first n-gram " A pencil costs" can be retrieved.

F LLM USAGE

We used a large language model (LLM)–based writing assistant solely for grammar and wording
improvements on draft text. The LLM did not generate research ideas, claims, proofs, algorithms,
code, figures, or analyses, and it did not have access to any non-public data. All edits suggested
by the LLM were manually reviewed and either accepted or rewritten by the authors, who take full
responsibility for the final content. The LLM is not an author of this paper.
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