
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LogitSpec : ACCELERATING RETRIEVAL-BASED SPECU-
LATIVE DECODING VIA NEXT NEXT TOKEN SPECULA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Speculative decoding (SD), where a small draft model is employed to propose draft
tokens in advance and then the target model validates them in parallel, has emerged
as a promising technique for LLM inference acceleration. Many endeavors to
improve SD are to eliminate the need for a draft model and generate draft tokens
in a retrieval-based manner in order to further alleviate the drafting overhead
and significantly reduce the difficulty in deployment and applications. However,
retrieval-based SD relies on a matching paradigm to retrieve the most relevant
reference as the draft tokens, where these methods often fail to find matched
and accurate draft tokens. To address this challenge, we propose LogitSpec to
effectively expand the retrieval range and find the most relevant reference as drafts.
LogitSpec is motivated by the observation that the logit of the last token can not
only predict the next token, but also speculate the next next token. Specifically,
LogitSpec generates draft tokens in two steps: (1) utilizing the last logit to speculate
the next next token; (2) retrieving relevant reference for both the next token and
the next next token. LogitSpec is training-free and plug-and-play, which can be
easily integrated into existing LLM inference frameworks. Extensive experiments
on a wide range of text generation benchmarks demonstrate that LogitSpec can
achieve up to 2.61× speedup and 3.28 mean accepted tokens per decoding step.

1 INTRODUCTION

Large Language Models (LLMs), such as GPT-4.5 (OpenAI, 2024), DeepSeek R1 (DeepSeek-
AI, 2025), Qwen 2.5 (Team, 2025), and LLaMA-3 (Team, 2024), have demonstrated remarkable
capabilities across a wide range of natural language processing tasks, including question answering
(Calijorne Soares & Parreiras, 2020), code generation (Jiang et al., 2024), and dialogue systems (Yi
et al., 2024). While they achieve success by scaling up the model parameters, the increase in scale
comes with significant inference challenges. The most straightforward challenge is auto-regressive
decoding, where each LLM decoding step can only generate one token. This token-by-token decoding
process incurs exacerbated latency with both the length of generated tokens and the model scale.

To address this challenge, speculative decoding (SD) (Leviathan et al., 2023; Chen et al., 2023) has
emerged as a promising approach for lossless LLM inference acceleration. The key idea of SD is
to employ a small draft model to first generate γ draft tokens, and then the target model validates
these tokens in parallel within a single forward, ensuring the output distribution to be unchanged.
However, deploying an extra draft model introduces considerable overhead and difficulties, including
(a) complex implementation and deployment, especially in integration with other techniques,(Liu
et al., 2025) (b) additional memory overhead, especially in long-context scenarios. Moreover,
when there exists no available draft model for SD, it takes substantial training cost to construct a
compact draft model (Li et al., 2025c). (Please refer to Section 2 for more details.)

Therefore, many existing works are dedicated to developing draft-model-free SD methods (Saxena,
2023; Fu et al., 2024; He et al., 2024), where the draft tokens are generated in a retrieval-based
manner. At each decoding step, they retrieve the relevant reference according to the last few tokens
and extract draft tokens from the reference. In this way, they can explicitly eliminate the need for a
draft model and reduce the drafting overhead.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

𝑝1 𝑝2

To findWhat is the area of the triangle? the triangle

To findWhat is the area of the triangle? the

𝑝1 𝑝2

area

×

wrong match

of

√√

right match

question token

decoding token

next token

retrieval token

(a) Vanilla Retrieval-based SD

(b) LogitSpec

Figure 1: Illustration of vanilla retrieval-based SD method and our LogitSpec . (a) Retrieval-based SD
retrieves the wrong token “triangle” according to the next token “the”. (b) LogitSpec first speculates
the next next token “area”, and then retrieves the right relevant reference “area of” according to “the
area”. This simple example illustrates how LogitSpec utilizes the last logit to speculate the next next
token and improves the retrieval accuracy.

Despite their promising efficacy and implementation simplicity, these methods rely on a matching
paradigm to effectively retrieve the most relevant reference as draft tokens and often struggle to find
matched and accurate tokens. As shown in Figure 1 (a), with a simple prompt “What is the area of
the triangle?”, vanilla retrieval-based SD methods fail to effectively retrieve the right token “area”
according to the next token “the”, as the most relevant reference is “the triangle”. Moreover, it is
often the case that no matched reference can be found, e.g., there are no matched tokens in more than
30% of decoding steps in PLD (Saxena, 2023).

In this paper, we propose a simple yet effective retrieval-based SD framework, namely LogitSpec,
which leverages the logit of the last token (last logit) to predict the next next token and improves
the accuracy of the retrieval reference. LogitSpec is motivated by the observation that the last logit
can speculate the next next token with a relatively high accuracy. Based on this observation,
we use the speculated next next token as guidance to retrieve reference. Specifically, LogitSpec
generates draft tokens in two steps: (1) utilizing the last logit to speculate the next next token; (2)
retrieving relevant reference for both the next token and the next next token. As shown in Figure 1 (b),
with the speculated token “area”, LogitSpec successfully retrieves the correct draft tokens “area of”.
This two-step process enables better retrieval accuracy—it can help filter the most relevant reference
when the reference is redundant, while extending the searching space when there exists no relevant
reference. To summarize, our contributions are:

(a) We empirically observe that the last logit can speculate the next next token with a relatively
high accuracy. Unlike other retrieval techniques, which are sensitive to the specific task, this
property is robust and effective across various tasks.

(b) Building on this observation, we propose LogitSpec, a plug-and-play retrieval-based SD
framework which can improve the retrieval accuracy and achieve better speedup.

(c) We conduct extensive experiments on various text generation benchmarks to demonstrate
the effectiveness of LogitSpec . Notably, LogitSpec achieves up to 2.61× speedup and 3.28
mean accepted tokens per decoding step without the need for an extra draft model.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

In this section, we briefly review the two main directions of speculative decoding, draft-model-based
speculative decoding and draft-model-free speculative decoding. More discussions are provided in
Appendix A.

Draft-model-based speculative decoding. This line of research focuses on improving the draft
quality, which primarily invests heavily in post-training a specialized draft model to generate high-
quality drafts. Medusa (Cai et al., 2024) pioneers this direction by adding extra MLP heads at the
top of the target model, reusing the hidden states from the target model, and predicting the next few
tokens in parallel. However, the generation from these decoding heads is independent, which harms
the accuracy of the draft tokens. Therefore, some works (Ankner et al., 2024; Xiao et al., 2024)
propose to add sequential dependencies for better performance. Glide (Du et al., 2024) takes a similar
idea of Medusa and proposes to reuse the KV cache from the target model. Recently, Eagle (Li et al.,
2025b; 2024; 2025c) has dominated this research line by training an auto-regressive head and scaling
up the training data. However, while these methods achieve superior speedup, all of them rely on
an extra draft model, which necessitates extra parameters or extensive training. The existence of
the draft model significantly limits its application: (a) deploying a draft model requires complex and
careful implementation. (b) Both the draft model and its KV cache require additional GPU memory,
which may incur load imbalance. In the long context settings, even the KV cache for the draft model
may exceed the capacity of 1 GPU and lead to significant resource competitions; (c) the training cost
is substantial, and the draft model requires retraining when the target model is updated.

Draft-model-free speculative decoding. This line of research focuses on maximizing drafting effi-
ciency by eliminating the need for a draft model entirely, aiming for universal, zero-cost acceleration.
Some existing works (Zhang et al., 2024a; Elhoushi et al., 2024; Xia et al., 2025) observe that the
layer sparsity of LLMs means that not all the layers are necessary to predict the next token. They
propose methods to generate draft tokens with a subset of the layers of the target model. However,
the number of skipped layers is limited, which affects the overall speedup. Recently, retrieval-based
SD (He et al., 2024; Saxena, 2023; Fu et al., 2024) has dominated the draft-model-free speculative
decoding by retrieving the relevant reference as the draft tokens. The relevant reference can be derived
from the question and generated tokens, or an external database. However, there exist two common
issues during the retrieval process: (a) retrieval from the context often fails to find matched draft
tokens; (b) retrieval from an external database often struggles to find accurate draft tokens. These two
issues motivate us to develop a more appropriate retrieval-based speculative decoding framework.

3 BACKGROUND

Speculative Decoding. Let x denote an input sequence (prefix). A speculative decoding step
consists of a drafting phase and a verification phase. During the drafting phase, the draft model Mq

is employed to give γ draft tokens x1, x2, ..., xγ by running γ times the model forward and sampling.
Here, we denote the output logit Mq(x+ [x1, ..., xi−1]) as qi−1, then each draft token is given by
xi ∼ qi−1, i = 1, ..., γ. During the verification phase, the prefix x together with γ draft tokens are
sent to Mp for verification. The target model Mp inputs x + [x1, ..., xγ] and outputs the logits
p0, p1, ..., pγ . Then SD sequentially verifies xi via speculative sampling (Leviathan et al., 2023; Chen
et al., 2023), where the acceptance rate is given by:

αi =


1 pi−1[xi] ≥ qi−1[xi],

pi−1[xi]

qi−1[xi]
pi−1[xi] < qi−1[xi],

(1)

If SD rejects xi, it will resample a token from norm(max(0, pi−1 − qi−1)), otherwise, SD accepts
all the draft tokens and samples an additional token from pγ . In this way, each SD step generates at
least 1 token and at most γ + 1, leading to theoretical lossless quality and efficiency acceleration.

Retrieval-based Speculative Decoding. The retrieval-based SD methods generate draft tokens in
a retrieval-based manner. As retrieval-based SD methods do not require an additional draft model,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

20 40 60 80 100 120
top-K

0.2

0.3

0.4

0.5

0.6

0.7
Ne

xt
 N

ex
t T

ok
en

 P
er

ce
nt

ag
e Average hit rate of the next next token within top-K

vicuna-7b
vicuna-13b
vicuna-33b
llama-3.1-8b
qwen-2.5-0.5b
qwen-2.5-7b

(a)

MT Trans Sum QA Math RAG
Evaluation Tasks

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

M
ea

n
Ac

ce
pt

ed
 To

ke
ns

MAT of different methods in different tasks
REST
PLD
last logit

1.57 1.61 1.56 1.53
1.68

1.55

(b)

Figure 2: Motivated observations. (a) The last logit can speculate the next next token with high
accuracy. In over 50% decoding steps, the next next token can be found in the top-60 entries within the
last logit. This prediction ability exists consistently across different model sizes and architectures. (b)
Compared with other retrieval-based methods, the prediction of the last logit demonstrates robustness
to downstream tasks. Both of these observations motivate us to utilize the last logit to guide the
retrieval process. Note that the prediction of the last logit is only part of our LogitSpec .

we omit the notation for Mq and abbreviate Mp as M. A retrieval model R is employed to store
n-grams (referred as reference) from corpus

R = {(x1
i , x

2
i , ..., x

n
i)}Ni=1. (2)

Here, N denotes the total number of n-grams in R. Existing retrieval-based SD methods mainly
differ in constructing R. At each SD decoding step, given a query m-gram tokens x1

q, x
2
q, ..., x

m
q , the

retrieval model first traverses the reference, finds matched n-grams and returns the subsequent tokens
of the matched tokens:

MATCH(R, (x1
q, x

2
q, ..., x

m
q)) = {(xm+1

i , ..., xn
i)}i∈S , (3)

where S = {i|xt
i = xt

q,∀t = 1, ...,m}. Intuitively, a larger m leads to more precise matches but
lower match probabilities.

4 METHOD

In this section, we introduce our LogitSpec , a novel retrieval-based SD framework that utilizes last
logit as a guidance for retrieval and effectively improves the retrieval performance. We first conduct
a motivated experiment in Section 4.1, and then introduce the whole framework of LogitSpec in
Section 4.2 and 4.3. An overview of LogitSpec is shown in Figure 3.

4.1 MOTIVATED OBSERVATION

Drawing insights from multi-token prediction (Gloeckle et al., 2024) that fine-tuned LLMs can predict
multiple tokens in a single forward, we are interested in the ability of LLMs to predict the next next
token without fine-tuning. We conduct a simple experiment to investigate the rank of the next next
token in the last logit, which is used to predict the next token. Specifically, we use a small fraction of
Spec-Bench (Xia et al., 2024) that contains 13 sub-tasks (detailed in Appendix B) and 6 different
LLMs as backbones. Results in Figure 2(a) demonstrate that the last logit has a strong potential to
predict the next next token. In over 50% decoding steps, the next next token can be found within
the top-60 entries of the last logit. For Llama 3.1 8B (Team, 2024) with a large 128K vocabulary, this
percentage even increases to 64% within the top-60 entries of the last logit. The results of 6 different
LLMs on 13 downstream tasks demonstrate that this observation holds consistently across different
models (Vicuna, Llama 3.1, and Qwen) and scales (ranging from 0.5B to 33B).

We further conduct experiments on Spec-Bench with Vicuna 7B to investigate the robustness of
the predictive capability of the last logit across different tasks. We propose a minimal speculative

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

area

of

……

What is the area of the triangle?

LLM

To find

𝑝1 𝑝2

the

top-k

triangle ?

of the

the area

(a) Last Logit Decoding (b) Retrieval (c) Verification

Draft Tree and Tree Attention

area of the

√ √ √

……

question token decoding token next next tokennext token retrieval token

Figure 3: An overview of LogitSpec. At each decoding step, LogitSpec first utilizes the top-k
entries of the last logit as the speculation for the next next token. Then, LogitSpec retrieves relevant
references for both the next token and the next next token. Finally, LogitSpec organizes the draft
tokens into a draft tree and prepares a tree attention for parallel verification.

decoding algorithm with last logit, last logit decoding for this experiment, where we directly use the
top-60 entries of the last logit to serve as the draft tokens. Each draft token is a guess at the next next
token. If the target model accepts any one of the draft tokens, the others are dropped. Consequently,
at each decoding step, the accepted length is either 2 or 1. As in 2(b), this simple SD method yields
mean accepted tokens per decoding step (MAT) of over 1.5. Compared with other retrieval-based SD
methods such as PLD (Saxena, 2023) and REST (He et al., 2024), which are highly affected by the
task type, the MAT of last logit decoding exhibits superior robustness to the task. These results
demonstrate that the ability of the last logit to predict the next next token widely exists in modern
LLMs themselves, and strongly motivate us to improve retrieval-based SD methods with the last logit.
We provide a detailed experimental setup for the motivation experiments in Appendix B.

4.2 LogitSpec DRAFTING

While last logit decoding has shown great simplicity in implementation and robustness to the
downstream tasks, its theoretical upper bound of the speedup ratio is 2, as all the draft tokens are
guesses for the next next token. In our experiments, the last logit decoding achieves an overall
speedup ratio of 1.2× ∼ 1.4×, which hinders the real-world applications of last logit decoding due
to the unsatisfactory speedup ratio. Therefore, to further improve the overall inference speedup, we
propose to utilize the prediction ability of the last logit as a guidance for retrieval. Specifically, for
a given input prefix x = (x1, x2, ..., xi) and the last logit pi = M(x1, x2, ..., xi), we first sample the
next token xi+1 ∼ pi. Then, we utilize the top-k entries of the last logit (except the next token xi+1)
as the speculation to the next next token x̃i+2:

L = {x̃i+2 | x̃i+2 ∈ TOPk(pi) ∧ x̃i+2 ̸= xi+1}. (4)

Then, we use the retrieval model R to retrieve reference for both the next token and next next tokens:

D = MATCH(R,

m-gram for next token︷ ︸︸ ︷
(xi−m+2, ..., xi, xi+1))∪{MATCH(R,

m-gram for next next token︷ ︸︸ ︷
(xi−m+3, ..., xi, xi+1, x̃i+2))}x̃i+2∈L (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Here, m-gram denotes the last m tokens as the query to retrieve the matched reference. In our
experiments, we retrieve draft tokens with m = 3 first. If no matched tokens are found, we decrease
m to 2 and so on. For simplicity, we only use the user-input prompt and decoded tokens to construct
the retrieval model R, that is to say, our LogitSpec is query-independent, and will not be affected
by other queries. We give the detailed implementation of the retrieval process in Appendix D.1.

Taking the example in Figure 3, we first select the top-k entries of the last logit as the speculation for
the next next token. Then, we retrieve reference for both the next token “the” and the next next token
“area”, and return “of the”. After that, we organize these draft tokens into a draft tree, where the next
token serves as the root. Finally, the token sequence “area of the” is accepted by M.

After the retrieval process, we employ a simple pruning strategy to control the number of draft tokens.
Specifically, we do not prune the retrieval tokens for the next token. For each speculated next next
token, we prune the retrieval tokens with a simple heuristic strategy: if the rank of the next next token
is below 8, we preserve 4 tokens; if the rank of the next next token is below 32, we preserve 3 tokens;
otherwise, we only preserve the speculated next next token itself. The retrieval process is terminated
until the total number of draft tokens exceeds a specific draft tree capacity K. Furthermore, we
explored the impact of various pruning strategies, with results detailed in Tables 13 of Appendix E.4.

4.3 LogitSpec VERIFICATION

After retrieving multiple draft token sequences D, we organize these token sequences into a draft tree
and prepare a tree attention for parallel verification.

Then, we prepare an attention mask to make each draft token sequence invisible to other sequences.
Let Tril(l) denotes a causal mask with length l, and mj denotes the length of the j-th token sequence
in D, the attention mask is given by:

Adraft = diag(Tril(m1),Tril(m2), ...,Tril(mj)). (6)

An illustration of this attention mask is shown in Figure 3(c) (note that the next token is visible to all
sequences, corresponding to the first column). Both the preparation of the attention mask and the
verification of the draft tree are consistent with previous works (Miao et al., 2024; Cai et al., 2024).
We provide a pseudo code of the attention mask preparations in Appendix C.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Tasks and Datasets. We conduct experiments on various text generation benchmarks to evaluate
the effectiveness of LogitSpec . Specifically, we first evaluate the performance of LogitSpec on Spec-
Bench (Xia et al., 2024). Spec-Bench is a widely used comprehensive benchmark that covers diverse
application scenarios, including multi-turn conversation (MT), translation (Trans), summarization
(Sum), question answering (QA), mathematical reasoning (Math), retrieval-augmented generation
(RAG). Furthermore, we evaluate the performance of LogitSpec on HumanEval (Chen et al., 2021),
GSM8K (Cobbe et al., 2021), CNN/DM (Nallapati et al., 2016), MATH (Hendrycks et al., 2021),
AIME 24&25 (Mathematical Association of America, 2025) and LongBench (Bai et al., 2024). which
are widely used text generation benchmarks in existing works.

Baselines. We compare LogitSpec to existing state-of-the-art plug-and-play SD methods: (a)
Lookahead Decoding (Fu et al., 2024): utilizing the dropped draft tokens to serve as the retrieval
model; (b) REST (He et al., 2024): employing an external knowledge base as the retrieval model;
(c) PLD (Saxena, 2023): extracting n-grams from the user-input prompts and decoded tokens as the
retrieval model; and (d) vanilla SpS (Leviathan et al., 2023; Chen et al., 2023): employing a well
trained small-size model Vicuna-68M as the draft model. We use Vicuna series models (7B, 13B,
33B), Llama-2 series models (7B, 13B, 70B), Llama-3.1-Instruct-8B and Qwen-3-8B as backbones,
and report results with baseline methods on Vicuna and Llama-2 as the main results, where the
performance of baseline methods can be reproduced with their official implementations.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Experimental results of LogitSpec on CNN/DM (Nallapati et al., 2016), GSM8K (Cobbe
et al., 2021) and HumanEval (Chen et al., 2021) with Vicuna. We report the mean accepted tokens
per decoding step (MAT) and overall speedup ratio. We bold the best results and underline the
suboptimal results for each backbone model.

Models Method CNN/DM GSM8K HumanEval Average
MAT Speedup MAT Speedup MAT Speedup MAT Speedup

Vicuna 7B

Lookahead 1.54 1.28 1.92 1.64 1.79 1.57 1.75 1.50
REST 1.64 1.19 1.55 1.13 1.96 1.51 1.72 1.28
PLD 2.61 2.26 1.80 1.62 1.84 1.65 2.08 1.84
SpS 2.34 1.58 2.08 1.49 2.56 1.80 2.33 1.62

LogitSpec 3.28 2.61 2.69 2.20 2.62 2.24 2.86 2.35

Vicuna 13B

Lookahead 1.46 1.12 1.88 1.61 1.75 1.57 1.70 1.43
REST 1.65 1.22 1.57 1.18 1.94 1.55 1.72 1.32
PLD 2.34 1.85 1.76 1.61 1.98 1.77 2.03 1.74
SpS 2.18 1.48 2.00 1.55 2.66 1.95 2.28 1.66

LogitSpec 2.90 2.17 2.59 2.13 2.88 2.47 2.79 2.26

Vicuna 33B

Lookahead 1.50 1.18 1.89 1.44 1.66 1.33 1.68 1.32
REST 1.65 1.41 1.57 1.32 1.99 1.64 1.74 1.46
PLD 2.07 1.72 1.66 1.41 1.60 1.42 1.78 1.52
SpS 2.01 1.57 1.97 1.54 2.27 1.80 2.08 1.64

LogitSpec 2.66 2.01 2.46 1.93 2.41 1.95 2.51 1.96

Implementation Details. We follow the setting of Spec-Bench with Pytorch (Paszke et al., 2019)
2.6.0, transformers (Wolf et al., 2020) version of 4.37.1, and CUDA (NVIDIA et al., 2020) 12.4.
The experiments where the model size is between 7B and 33B are conducted on single NVIDIA
SXM A100 80G GPU, while for models with 70B size are conducted on 2 NVIDIA SXM A100 80G
GPUs. The inference precision is float16. Following prior work, we conduct experiments with
temperature 0 and batch size 1. The maximal generation lengths are 1024. More implementation
details can be found in Appendix D. We use two widely used metrics for evaluation: mean accepted
tokens per decoding step (denoted as MAT) and overall speedup ratio (denoted as Speedup).

5.2 MAIN RESULTS

We conduct experiments on various text generation benchmarks to demonstrate the effectiveness of
LogitSpec. As in Tables 1 and 2, LogitSpec outperforms retrieval-based SD baselines by a large
margin. We further present more in-depth analysis of LogitSpec including (i) more LLM backbones
(Llama2 series, Llama-3.1-Instruct-8B and Qwen-3-8B), (ii) more benchmarks (MATH and AIME
datasets), and (iii) long context benchmarks (the LongBench dataset) in Appendix E.

Specifically, we can get the following findings: (a) LogitSpec significantly improves the overall
mean accepted tokens (MAT) of retrieval-based SD methods with an average MAT of 2.13 ∼ 3.28.
Notably, LogitSpec achieves a speedup ratio of 2.61× on CNN/DM with Vicuna 7B and 2.47×
on HumanEval with Vicuna 13B. In contrast, REST only achieves less than 1.5× speedup of the
vicuna model on the CNN/DM dataset. (b) Thanks to the robustness of the last logit, even in
some sub-tasks that are difficult to retrieval-based SD methods, LogitSpec achieves a considerable
speedup ratio. For example, in the Translation task in Spec-Bench, there exists nearly no available
reference to serve as the draft tokens. Consequently, PLD and Lookahead achieve poor acceleration.
Even equipped with a large external database (≈ 12 GB), REST only achieves a speedup with
1.17× ∼ 1.31×, while our LogitSpec achieves a speedup with 1.38× ∼ 1.43× without the external
database, which also demonstrates the prediction ability on the next next token of the last logit. As
LogitSpec is highly plug-and-play, it is also promising future work to employ an external database
for further acceleration. (c) While LogitSpec and PLD are both retrieval-based SD methods that
retrieve reference from the prompt, LogitSpec significantly outperforms PLD across all benchmarks
and model sizes, highlighting the importance of “speculating the next next token”, particularly in
scenarios where the output is less duplicate to the prefix text. All these results validate that the last
logit can be used to predict the next next token and improve the retrieval performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Experimental results of LogitSpec on Spec-Bench (Xia et al., 2024) with Vicuna. We report
the speedup ratio on each sub task, mean accepted tokens per decoding step (MAT) and overall
speedup ratio. We bold the best results and underline the suboptimal results for each backbone model.

Models Method MT Trans Sum QA Math RAG MAT Speedup

Vicuna 7B

Lookahead 1.40 1.14 1.19 1.24 1.55 1.09 1.66 1.27
REST 1.63 1.31 1.36 1.66 1.21 1.73 1.82 1.48
PLD 1.64 1.04 2.43 1.14 1.61 1.71 1.73 1.59
SpS 1.66 1.13 1.62 1.49 1.47 1.55 2.28 1.49

LogitSpec 1.92 1.39 2.68 1.70 2.22 1.87 2.44 2.01

Vicuna 13B

Lookahead 1.30 1.06 1.20 1.12 1.48 1.12 1.63 1.22
REST 1.52 1.17 1.37 1.53 1.19 1.55 1.82 1.38
PLD 1.47 1.02 2.19 1.03 1.57 1.71 1.68 1.48
SpS 1.60 1.13 1.68 1.39 1.53 1.67 2.18 1.49

LogitSpec 1.89 1.43 2.33 1.43 2.23 1.93 2.32 1.93

Vicuna 33B

Lookahead 1.32 1.08 1.20 1.06 1.54 1.15 1.61 1.24
REST 1.63 1.27 1.45 1.61 1.30 1.61 1.80 1.48
PLD 1.44 1.06 2.00 1.07 1.55 1.45 1.55 1.42
SpS 1.75 1.28 1.76 1.53 1.69 1.68 2.01 1.61

LogitSpec 1.77 1.38 2.15 1.37 2.00 1.69 2.13 1.76

Table 3: Ablation experiments of LogitSpec on Spec-Bench (Xia et al., 2024), CNN/DM
(Nallapati et al., 2016), GSM8K (Cobbe et al., 2021) and HumanEval (Chen et al., 2021) with
Vicuna. We report the ablation results with MAT reduction and Speedup reduction with down arrow ↓.

Models Method Spec-Bench CNN/DM GSM8K HumanEval
MAT Speedup MAT Speedup MAT Speedup MAT Speedup

Vicuna 7B
w/o last logit 1.72↓.72 1.27↓.74 2.66↓.62 2.24↓.37 1.81↓.88 1.63↓.57 1.89↓.73 1.69↓.55
w/o retrieval 1.57↓.87 1.24↓.77 1.57↓1.71 1.23↓1.38 1.71↓.98 1.39↓.81 1.69↓.93 1.39↓.85
LogitSpec 2.44 2.01 3.28 2.61 2.69 2.20 2.62 2.24

Vicuna 13B
w/o last logit 1.66↓.66 1.23↓.70 2.34↓.56 1.81↓.36 1.78↓.81 1.61↓.52 2.02↓.86 1.75↓.72
w/o retrieval 1.59↓.73 1.19↓.74 1.58↓1.32 1.22↓.95 1.71↓.88 1.45↓.68 1.63↓1.25 1.37↓1.10
LogitSpec 2.32 1.93 2.90 2.17 2.59 2.13 2.88 2.47

Vicuna 33B
w/o last logit 1.55↓.58 1.22↓.54 2.05↓.61 1.72↓.29 1.64↓.82 1.39↓.54 1.59↓.82 1.40↓.55
w/o retrieval 1.61↓.52 1.25↓.51 1.62↓1.04 1.26↓.75 1.69↓.77 1.33↓.60 1.60↓.81 1.34↓.61
LogitSpec 2.13 1.76 2.66 2.01 2.46 1.93 2.41 1.95

5.3 ABLATION STUDY

To further investigate the components of LogitSpec and provide more insights, we conduct extensive
ablation studies on the aforementioned 4 benchmarks in Table 3. Specifically, we mainly focus on
two components of LogitSpec: last logit and retrieval. We denote LogitSpec without the last logit
decoding and only using retrieval as w/o last logit, and LogitSpec without retrieval and only using
last logit decoding as w/o retrieval. As shown in Table 3, the absence of any component results in a
performance degradation of the entire framework.

Our findings are as follows. First, the absence of retrieval exhibits more importance to the final
acceleration, which is consistent with the discussion in Section 4.2 that the theoretical upper bound
of last logit decoding severely hinders its real-world application. Second, the absence of retrieval and
the absence of last logit show different effects in different sub-tasks. For example, the absence of
retrieval decreases MAT by 0.87 on Spec-Bench with Vicuna 7B, while it decreases MAT by 1.71 on
CNN/DM. In contrast, the absence of last logit leads to a more consistent MAT degradation across
different tasks, which further highlights the robustness of last logit decoding. Finally, these results
demonstrate that combining last logit with retrieval improves the retrieval performance and overall
speedup. We also conduct ablation studies on pruning strategies in the Appendix. E.4 and E.5. The
experimental results suggest that varying the pruning strategy yields only minor differences.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.4 CASE STUDY

Model Forward (93.92%)
Verification (1.03%)
Update (1.05%)

Retrieval (1.17%)
Prepare Attention Mask (2.83%)

Figure 4: Running time breakdown of the
whole decoding process on Spec-Bench with
Vicuna 7B.

In-depth Running Time Analysis. We conduct
experiments to analyze the running time allocation
of the whole decoding. Specifically, there are five
non-negligible components in LogitSpec , including
(a) retrieving draft tokens: the process of retrieving
reference for the next token and the next next tokens;
(b) preparation: preparing attention mask for the
draft tokens; (c) model forward: conducting one-
pass model forward; (d) verification: validating the
draft tokens with speculative sampling; (e) update:
necessary update of KV cache and retrieval model.

As shown in Figure 4, model forward occupies the
majority of wall-clock time. Compared with vanilla
AR decoding, the overhead introduced by LogitSpec ,
i.e., retrieving overhead, only takes 1.17% of the
whole decoding process. It can be further alleviated
by parallel techniques, as the retrieval process is inde-
pendent. The process of verification and update takes
1.03% and 1.05% through the whole process, respec-
tively, which brings negligible overhead as well.

Retrieval Performance. As mentioned in Section 4.2, LogitSpec expands the retrieval range and
improve the retrieval performance. We conduct a simple experiment to test the retrieval success rate,
i.e., whether the model successfully retrieves the reference as draft tokens. As in Table 4, PLD cannot
retrieve any matched tokens in more than 30% decoding steps, while LogitSpec retrieves matched
reference in most decoding steps. These results further demonstrate the effectiveness of LogitSpec .

Real-world examples. We also provide a real-world example in Appendix. E.6 to illustrate how
next-next token speculation allows LogitSpec to succeed where standard retrieval methods fail.

Table 4: Case study experiments of LogitSpec on Spec-Bench and HumanEval with Vicuna. We
report the successful retrieval rate of each method. We report the relative improvements with ↑.

Method Spec-Bench HumanEval
Vicuna 7B Vicuna 13B Vicuna 33B Vicuna 7B Vicuna 13B Vicuna 33B

PLD 63.88 63.08 62.71 69.03 69.51 67.67
LogitSpec 97.76↑53.04% 97.64↑54.79% 97.93↑56.16% 99.29↑43.84% 99.31↑42.87% 99.37↑46.84%

6 CONCLUSION

In this paper, we empirically observe that the logit of the last token can predict the next next token
with a relatively high accuracy without any fine-tuning. Based upon this observation, we propose
a novel retrieval-based SD framework, namely LogitSpec, which utilizes the prediction ability of
the last logit to effectively expand the retrieval range and find the most relevant reference as the
draft tokens. LogitSpec does not require an additional draft model and is a fully plug-and-play
method, which can be easily implemented and integrated into existing LLM frameworks. Extensive
experiments demonstrate that LogitSpec can effectively improve the retrieval performance, leading
to a 1.8× ∼ 2.6× speedup across all the evaluation benchmarks.

Limitations and Future Work. While our LogitSpec is a fully plug-and-play SD framework, its
real-world inference acceleration is less competitive. Our future works involve integrating LogitSpec
into existing draft-model-based SD methods for further acceleration. Moreover, currently LogitSpec
retrieves relevant reference from the prompt, which may incur lower speedup when the prompt is
short. We consider integrating an external database to boost the retrieval model as a future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects or
personally identifiable information (PII), and we did not collect new sensitive data. All datasets are
publicly available under their respective licenses, and third-party resources are credited. We report
methods and results transparently, consider potential risks such as misuse or bias amplification, and
do not recommend deployment in high-stakes settings without additional safety assessment.

REPRODUCIBILITY STATEMENT

We provide details to facilitate replication: dataset names and versions, preprocessing steps, mod-
el/configuration, training schedules, and evaluation protocols. All hyperparameters are listed in the
appendix; complete scripts and configs are included in the anonymous supplementary materials. For
theoretical or algorithmic components, assumptions and full proofs are provided in the appendix.
These pointers collectively enable independent reproduction of our results.

REFERENCES

Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa decoding. In
First Conference on Language Modeling, 2024. URL https://openreview.net/forum?
id=FbhjirzvJG.

Gregor Bachmann, Sotiris Anagnostidis, Albert Pumarola, Markos Georgopoulos, Artsiom
Sanakoyeu, Yuming Du, Edgar Schönfeld, Ali Thabet, and Jonas Kohler. Judge decoding:
Faster speculative sampling requires going beyond model alignment, 2025. URL https:
//arxiv.org/abs/2501.19309.

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. Fast and robust early-exiting
framework for autoregressive language models with synchronized parallel decoding, 2023. URL
https://arxiv.org/abs/2310.05424.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
multitask benchmark for long context understanding. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3119–3137,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.172. URL https://aclanthology.org/2024.acl-long.172.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. In
Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org,
2024.

Marco Antonio Calijorne Soares and Fernando Silva Parreiras. A literature review on question
answering techniques, paradigms and systems. Journal of King Saud University - Computer
and Information Sciences, 32(6):635–646, 2020. ISSN 1319-1578. doi: https://doi.org/10.1016/
j.jksuci.2018.08.005. URL https://www.sciencedirect.com/science/article/
pii/S131915781830082X.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling, 2023. URL
https://arxiv.org/abs/2302.01318.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas

10

https://openreview.net/forum?id=FbhjirzvJG
https://openreview.net/forum?id=FbhjirzvJG
https://arxiv.org/abs/2501.19309
https://arxiv.org/abs/2501.19309
https://arxiv.org/abs/2310.05424
https://aclanthology.org/2024.acl-long.172
https://www.sciencedirect.com/science/article/pii/S131915781830082X
https://www.sciencedirect.com/science/article/pii/S131915781830082X
https://arxiv.org/abs/2302.01318

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu, Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu,
Liqiang Nie, Zhaopeng Tu, and Yang You. Glide with a cape: a low-hassle method to accelerate
speculative decoding. In Proceedings of the 41st International Conference on Machine Learning,
ICML’24. JMLR.org, 2024.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed A Aly, Beidi Chen, and
Carole-Jean Wu. Layerskip: Enabling early exit inference and self-speculative decoding, August
2024. URL https://aclanthology.org/2024.acl-long.681.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm inference
using lookahead decoding. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction, 2024. URL https://arxiv.
org/abs/2404.19737.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and Di He. REST: Retrieval-based speculative
decoding. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 1582–1595, Mexico City, Mexico,
June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.88. URL
https://aclanthology.org/2024.naacl-long.88/.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Hasan Genc, Kurt Keutzer, Amir Gholami,
and Sophia Shao. Speed: Speculative pipelined execution for efficient decoding, 2024. URL
https://arxiv.org/abs/2310.12072.

Yuxuan Hu, Ke Wang, Xiaokang Zhang, Fanjin Zhang, Cuiping Li, Hong Chen, and Jing Zhang.
Sam decoding: Speculative decoding via suffix automaton, 2024. URL https://arxiv.org/
abs/2411.10666.

Kaixuan Huang, Xudong Guo, and Mengdi Wang. Specdec++: Boosting speculative decod-
ing via adaptive candidate lengths, 2025. URL https://openreview.net/forum?id=
NnExMNiTHw.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation, 2024. URL https://arxiv.org/abs/2406.00515.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 19274–19286. PMLR, 23–
29 Jul 2023. URL https://proceedings.mlr.press/v202/leviathan23a.html.

11

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948
https://aclanthology.org/2024.acl-long.681
https://arxiv.org/abs/2404.19737
https://arxiv.org/abs/2404.19737
https://aclanthology.org/2024.naacl-long.88/
https://openreview.net/forum?id=7Bywt2mQsCe
https://arxiv.org/abs/2310.12072
https://arxiv.org/abs/2411.10666
https://arxiv.org/abs/2411.10666
https://openreview.net/forum?id=NnExMNiTHw
https://openreview.net/forum?id=NnExMNiTHw
https://arxiv.org/abs/2406.00515
https://proceedings.mlr.press/v202/leviathan23a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jinze Li, Yixing Xu, Haiduo Huang, Xuanwu Yin, Dong Li, Edith C. H. Ngai, and Emad Barsoum.
Gumiho: A hybrid architecture to prioritize early tokens in speculative decoding, 2025a. URL
https://arxiv.org/abs/2503.10135.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster inference of
language models with dynamic draft trees. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 7421–7432, Miami, Florida, USA, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.emnlp-main.422. URL https://aclanthology.org/
2024.emnlp-main.422/.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty, 2025b. URL https://arxiv.org/abs/2401.15077.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference accel-
eration of large language models via training-time test, 2025c. URL https://arxiv.org/
abs/2503.01840.

Jiahao Liu, Qifan Wang, Jingang Wang, and Xunliang Cai. Speculative decoding via early-exiting for
faster llm inference with thompson sampling control mechanism, 2024. URL https://arxiv.
org/abs/2406.03853.

Tianyu Liu, Yun Li, Qitan Lv, Kai Liu, Jianchen Zhu, Winston Hu, and Xiao Sun. PEARL:
Parallel speculative decoding with adaptive draft length. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
QOXrVMiHGK.

Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming Zhang, Xuanyu Zhang, Qing Yang, Dongliang
Xu, and Wanxiang Che. Turning trash into treasure: Accelerating inference of large language
models with token recycling, 2024. URL https://arxiv.org/abs/2408.08696.

Mathematical Association of America. Maa invitational competitions. https://maa.org/
maa-invitational-competitions/, 2025. Accessed: 2025-09-09.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan
Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating large language model serv-
ing with tree-based speculative inference and verification. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages and Operat-
ing Systems, Volume 3, ASPLOS ’24, pp. 932–949, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400703867. doi: 10.1145/3620666.3651335. URL
https://doi.org/10.1145/3620666.3651335.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Çağlar Gu̇lçehre, and Bing Xiang. Abstractive
text summarization using sequence-to-sequence RNNs and beyond. In Stefan Riezler and Yoav
Goldberg (eds.), Proceedings of the 20th SIGNLL Conference on Computational Natural Language
Learning, pp. 280–290, Berlin, Germany, August 2016. Association for Computational Linguistics.
doi: 10.18653/v1/K16-1028. URL https://aclanthology.org/K16-1028/.

NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. Cuda, release: 10.2.89, 2020. URL https:
//developer.nvidia.com/cuda-toolkit.

OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019. URL https://arxiv.org/abs/1912.01703.

Apoorv Saxena. Prompt lookup decoding, November 2023. URL https://github.com/
apoorvumang/prompt-lookup-decoding/.

12

https://arxiv.org/abs/2503.10135
https://aclanthology.org/2024.emnlp-main.422/
https://aclanthology.org/2024.emnlp-main.422/
https://arxiv.org/abs/2401.15077
https://arxiv.org/abs/2503.01840
https://arxiv.org/abs/2503.01840
https://arxiv.org/abs/2406.03853
https://arxiv.org/abs/2406.03853
https://openreview.net/forum?id=QOXrVMiHGK
https://openreview.net/forum?id=QOXrVMiHGK
https://arxiv.org/abs/2408.08696
https://maa.org/maa-invitational-competitions/
https://maa.org/maa-invitational-competitions/
https://doi.org/10.1145/3620666.3651335
https://aclanthology.org/K16-1028/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1912.01703
https://github.com/apoorvumang/prompt-lookup-decoding/
https://github.com/apoorvumang/prompt-lookup-decoding/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.
21783.

Qwen Team. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.

Jikai Wang, Yi Su, Juntao Li, Qingrong Xia, Zi Ye, Xinyu Duan, Zhefeng Wang, and Min Zhang.
Opt-tree: Speculative decoding with adaptive draft tree structure, 2024. URL https://arxiv.
org/abs/2406.17276.

Yepeng Weng, Dianwen Mei, Huishi Qiu, Xujie Chen, Li Liu, Jiang Tian, and Zhongchao Shi. Coral:
Learning consistent representations across multi-step training with lighter speculative drafter, 2025.
URL https://arxiv.org/abs/2502.16880.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey
of speculative decoding. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of
the Association for Computational Linguistics ACL 2024, pp. 7655–7671, Bangkok, Thailand and
virtual meeting, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-acl.456. URL https://aclanthology.org/2024.findings-acl.456.

Heming Xia, Yongqi Li, Jun Zhang, Cunxiao Du, and Wenjie Li. SWIFT: On-the-fly self-speculative
decoding for LLM inference acceleration. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=EKJhH5D5wA.

Bin Xiao, Chunan Shi, Xiaonan Nie, Fan Yang, Xiangwei Deng, Lei Su, Weipeng Chen, and Bin
Cui. Clover: Regressive lightweight speculative decoding with sequential knowledge, 2024. URL
https://arxiv.org/abs/2405.00263.

Zihao Yi, Jiarui Ouyang, Yuwen Liu, Tianhao Liao, Zhe Xu, and Ying Shen. A survey on recent
advances in llm-based multi-turn dialogue systems, 2024. URL https://arxiv.org/abs/
2402.18013.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft
& verify: Lossless large language model acceleration via self-speculative decoding. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 11263–11282, Bangkok,
Thailand, August 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.
acl-long.607. URL https://aclanthology.org/2024.acl-long.607/.

Lefan Zhang, Xiaodan Wang, Yanhua Huang, and Ruiwen Xu. Learning harmonized representations
for speculative sampling. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=T9u56s7mbk.

Situo Zhang, Hankun Wang, Da Ma, Zichen Zhu, Lu Chen, Kunyao Lan, and Kai Yu. Adaeagle:
Optimizing speculative decoding via explicit modeling of adaptive draft structures, 2024b. URL
https://arxiv.org/abs/2412.18910.

13

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2406.17276
https://arxiv.org/abs/2406.17276
https://arxiv.org/abs/2502.16880
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://aclanthology.org/2024.findings-acl.456
https://openreview.net/forum?id=EKJhH5D5wA
https://arxiv.org/abs/2405.00263
https://arxiv.org/abs/2402.18013
https://arxiv.org/abs/2402.18013
https://aclanthology.org/2024.acl-long.607/
https://openreview.net/forum?id=T9u56s7mbk
https://arxiv.org/abs/2412.18910

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A MORE DISCUSSIONS TO RELATED WORK

We give more discussions to existing works in both draft-model-based speculative decoding and
draft-model-free speculative decoding. An intuitive comparison is shown in Table 5.

Table 5: Training and deployment comparison for different methods. Example training costs: EAGLE
8× RTX 3090 for 1–2 days; HYDRA 8× A100 for training; MEDUSA 1× A100 for 5 hours.
Methods Training Cost Additional Parameters Lossless Quality? Deployment Difficulty

EAGLE High AR Heads ✓ High
HYDRA High MLP Heads ✗ Moderate
MEDUSA Moderate MLP Heads ✗ Moderate
LogitSpec (Ours) None None ✓ Plug-and-Play

Draft-model-based speculative decoding. Besides the discussions in Section 2, there are also
many excellent works related to the draft-model-based speculative decoding. For example, HASS
(Zhang et al., 2025) discovers the inconsistency of EAGLE between training and inference, and
proposes a multi-step training framework to address this. CORAL (Weng et al., 2025) proposes a
cross-step representation alignment to address this problem. Judge Decoding (Bachmann et al., 2025)
recognizes the potential of accepting high-quality but refused draft tokens to further improve the
acceleration. Gumiho (Li et al., 2025a) demonstrates that the initial draft token is more important and
proposes a hybrid model to combine serial and parallel draft heads.

Besides these methods that focus on the training process, the process of verification also draws
extensive interest, mainly focusing on adaptive draft length. SpecDec++ (Huang et al., 2025)
formulates the verification process as a Markov decision process to adaptively determine the draft
length. OPT-Tree (Wang et al., 2024) proposes a method to search for the optimal tree structure that
maximizes the mathematical expectation of the acceptance length in each decoding step. AdaEAGLE
(Zhang et al., 2024b) proposes a novel framework to explicitly model the draft tree structure for
EAGLE series models. PEARL (Liu et al., 2025) pioneers this direction by serving the draft model
and the target model in parallel to achieve a segmented adaptive draft length.

Draft-model-free speculative decoding. For layer sparsity, SPEED (Hooper et al., 2024) proposes
a method to speculatively execute multiple future tokens in parallel with the current token using
predicted values based on early-layer hidden states. FREE (Bae et al., 2023) proposes a shallow-
deep module and a synchronized parallel decoding to improve the efficiency. EESD (Liu et al.,
2024) proposes an early-exiting framework with a self-distillation method and leverages Thompson
Sampling to regulate the generation processes. For retrieval-based SD, Token Recycling (Luo
et al., 2024) proposes a method to utilize the dropped draft tokens and generate draft tokens via an
adjacency matrix. Different from our method, Token Recycling is a query-dependent method that
utilizes information from other queries, which may result in limitations when applied to real-world
applications with complex and dynamic user inputs. SAM Decoding (Hu et al., 2024) utilizes a
common text corpus and dynamic text sequence as retrieved sources and proposes a suffix automaton
to efficiently obtain yields more accurate match positions.

B EXPERIMENTAL SETUP FOR THE MOTIVATION EXPERIMENTS

To investigate the prediction ability of the last logit, we conduct two motivation experiments to
demonstrate the effectiveness and robustness of the last logit. For the effectiveness of the last logit, as
shown in Figure 2(a), we conduct auto-regressive inference for the 6 models and record the logits
for each decoded token. Then, for each decoded token xi which is sampled from the logit pi−1, we
investigate the rank of xi in pi−2, i.e., the corresponding last logit, and visualize the statistics of
the rank in Figure 2(a). For the robustness of the last logit, as shown in Figure 2(b), we conduct
last logit decoding and investigate its mean accepted tokens per decoding step. Both experiments
are conducted on a small subset of Spec-Bench, where we randomly sample 2 questions for each
sub-category of MT, and 10 questions for other categories (Trans, Sum, QA, Math, RAG).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C PSEUDO CODE TO PREPARE ATTENTION INPUTS

We give a pseudo code to organize the retrieved multiple draft token sequences into a draft tree and
prepare its attention mask. More detailed implementations can be found in our attached code.

def prepare_attention_inputs(past_len, next_token, candidate_list,
num_draft_tokens):
’LogitSpec organizes draft tokens in a tree manner. Each sub-

sequence corresponds to a local causal mask.’

seq_len = num_draft_tokens + 1

organize the candidate list into a sequence
draft_ids = [next_token] + [token for sub in candidate_list

for token in sub]

prepare original position ids and attention mask
position_ids = torch.zeros((1, seq_len), dtype=torch.long)
causal_mask = torch.full((seq_len, past_len + seq_len),

fill_value=0)
causal_mask[:, :past_len+1] = 1

prepare causal mask
idx = 1
for sub_sequence in candidate_list:

l = len(sub_sequence)
sub_mask = torch.tril(torch.ones((l, l)))
causal_mask[idx:idx+l, idx+past_len:idx+past_len+l] =

sub_mask
position_ids[0, idx:idx+l] = torch.arange(l) + 1
idx += l

position_ids += past_len
return draft_ids, causal_mask, position_ids

D MORE IMPLEMENTATION DETAILS

D.1 RETRIEVAL PROCESS

The retrieval process of retrieval-based SD methods will affect the overall acceleration. While the
existing method PLD retrieves a reference with string matching, it is unaffordable for LogitSpec to
retrieve in this way. Specifically, suppose the matching ngram size is m, the length of the whole token
sequence is n, and string matching takes the time complexity of O(mn). However, as LogitSpec
needs to retrieve for all the next next tokens, the retrieval takes the time complexity of O(kmn),
where k is the number of the next next tokens.

To address this issue, we propose a simple yet effective method to reduce the retrieval overhead by
constructing a hash table. Specifically, we go through the token sequence, storing each key ngram
with size 1 to m and its value ngram (its following tokens). In this way, the retrieval overhead is
reduced to O(n+ k) with an additional memory cost O(mn). As the length of the token sequence is
relatively small, the additional memory cost is negligible. Furthermore, we will update the retrieval
model R with the decoded tokens in the same way during each decoding step.

D.2 EVALUATION INSTRUCTIONS

In our experiments, we employ different instructions for different evaluation tasks. Specifically, for
Spec-Bench, we use its standard instructions:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Prompt Templates for Spec-Bench

A chat between a curious user and an artificial intelligence
assistant. The assistant gives helpful, detailed, and polite
answers to the user’s questions.

USER: Question

ASSISTANT:

For CNN/DM, we prepend the instruction “Summarize: ” to the instruction:

Prompt Templates for CNN/DM

A chat between a curious user and an artificial intelligence
assistant. The assistant gives helpful, detailed, and polite
answers to the user’s questions.

USER: Summarize: Question

ASSISTANT:

For GSM8K, we follow the setting with (Liu et al., 2025) and use an 8-shot CoT for inference:

Prompt Templates for GSM8K

A chat between a curious user and an artificial intelligence
assistant. The assistant gives helpful, detailed, and polite
answers to the user’s questions.

USER: 8-shot CoT Q: Question

ASSISTANT:

For HumanEval, we add a simple instruction “Please help me to complete this code, just output your
codes directly.”:

Prompt Templates for HumanEval

A chat between a curious user and an artificial intelligence
assistant. The assistant gives helpful, detailed, and polite
answers to the user’s questions.

USER: Please help me to complete this code, just output your
codes directly. Question

ASSISTANT:

D.3 DATASET CONFIGURATIONS

In our experiments, we evaluate the effectiveness of our LogitSpec on 4 categories of text generation
tasks, including Spec-Bench, CNN/DM, GSM8K, and HumanEval. For Spec-Bench and HumanEval,
we use the full data for evaluation. For CNN/DM and GSM8K, we randomly sample 1000 questions
for evaluation. The maximal generation length is set as 1024 across all the experiments.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.4 MODEL CONFIGURATIONS

In our experiments, all the models are deployed with precision float16. The <|eos token|>
is set the same as the tokenizer’s <|eos token|>. To effectively alleviate the overhead of rolling
back the KV cache to the accepted draft tokens, we follow Medusa (Cai et al., 2024) to allocate
continuous GPU memory for all the KV cache.

E MORE IN-DEPTH ANALYSIS OF LogitSpec

E.1 MORE RESULTS OF DIFFERENT LLM BACKBONES

Here, we provide more results for different LLM backbones to provide more insights into our
LogitSpec , including Llama 2 chat series models, LLaMA-3.1-8B-Instruct, and Qwen3-8B.

We present the results of Llama 2 chat series models on Spec-Bench, CNN/DM, GSM8K, and
HumanEval in Table 6 and Table 7. We still find that LogitSpec achieves the best acceleration results
among all other baselines, which demonstrates the effectiveness of our LogitSpec .

We also present more results applying LLaMA-3.1-8B-Instruct and Qwen3-8B on Spec-Bench,
CNN/DM, GSM8K, and HumanEval in Tables 8 and 9. We still observe that compared to standard
LLM auto-regressive decoding, LogitSpec can consistently achieve around 2 × inference acceleration
for all datasets.

Table 6: Experimental results of LogitSpec on CNN/DM (Nallapati et al., 2016), GSM8K (Cobbe
et al., 2021) and HumanEval (Chen et al., 2021) with Llama-2. We report the mean accepted tokens
per decoding step (MAT) and overall speedup ratio. We bold the best results and underline the
suboptimal results for each backbone model.

Models Method CNN/DM GSM8K HumanEval Overall
MAT Speedup MAT Speedup MAT Speedup MAT Speedup

Llama 2 7B

Lookahead 1.58 1.36 2.02 1.67 1.77 1.53 1.79 1.52
REST 1.71 1.33 1.51 1.18 1.97 1.52 1.73 1.34
PLD 1.89 1.73 3.32 2.98 1.57 1.41 2.26 2.04
SpS 1.99 1.46 2.83 1.87 2.13 1.51 2.32 1.61

LogitSpec 2.41 2.02 4.44 3.68 2.17 1.75 3.01 2.48

Llama 2 13B

Lookahead 1.56 1.18 2.08 1.52 1.84 1.66 1.83 1.45
REST 1.71 1.34 1.53 1.26 1.96 1.63 1.73 1.41
PLD 1.89 1.52 3.24 2.54 1.73 1.63 2.29 1.90
SpS 1.95 1.34 2.87 1.85 2.33 1.76 2.38 1.65

LogitSpec 2.43 2.03 4.31 3.24 2.38 2.10 3.04 2.46

Llama 2 70B

Lookahead 1.53 1.28 1.90 1.57 1.86 1.57 1.76 1.47
REST 1.67 1.35 1.63 1.32 1.96 1.66 1.75 1.44
PLD 1.98 1.74 1.63 1.46 1.62 1.49 1.74 1.56
SpS 2.01 1.71 1.98 1.69 2.21 1.70 2.07 1.70

LogitSpec 2.67 2.10 2.37 1.87 2.33 1.93 2.46 1.97

E.2 MORE RESULTS OF DIFFERENT BENCHMARKS

Table 10: Results of LogitSpec on AIME datasets.

Method AIME24 AIME25

MAT Speedup MAT Speedup

Vanilla 1.00 1.00 1.00 1.00
LogitSpec 3.41 3.25 3.76 3.33

We provide more results of our LogitSpec on
complex math reasoning tasks including MATH
(Hendrycks et al., 2021) and AIME 24 & 25
(Mathematical Association of America, 2025)
datasets in Tables 11 and 10. For each of these
benchmarks, we report the real-world speedup
for each subset, the overall mean accepted to-
kens per decoding step (MAT), and the overall
speedup. These expanded experimental results
further corroborate LogitSpec’s effectiveness

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: Experimental results of LogitSpec on Spec-Bench (Xia et al., 2024) with Llama-2. We
report the speedup ratio on each sub task, mean accepted tokens per decoding step (MAT) and overall
speedup ratio. We bold the best results and underline the suboptimal results for each backbone model.

Models Method MT Trans Sum QA Math RAG MAT Speedup

Llama 2 7B

Lookahead 1.55 1.44 1.42 1.48 1.69 1.46 1.69 1.51
REST 1.58 1.20 1.38 1.61 1.31 1.55 1.83 1.48
PLD 1.46 1.34 1.89 1.23 1.65 1.58 1.59 1.49
SpS 1.57 1.38 1.55 1.46 1.55 1.60 2.07 1.53

LogitSpec 1.83 1.72 2.19 1.63 2.15 1.94 2.15 1.87

Llama 2 13B

Lookahead 1.39 1.36 1.21 1.39 1.69 1.25 1.68 1.37
REST 1.53 1.14 1.30 1.51 1.23 1.45 1.85 1.42
PLD 1.36 1.19 1.58 1.16 1.62 1.37 1.56 1.37
SpS 1.52 1.26 1.43 1.42 1.54 1.50 2.03 1.48

LogitSpec 1.73 1.57 1.86 1.53 2.14 1.73 2.12 1.74

Llama 2 70B

Lookahead 1.45 1.35 1.28 1.38 1.71 1.31 1.66 1.41
REST 1.63 1.33 1.38 1.67 1.35 1.55 1.83 1.53
PLD 1.34 1.32 1.76 1.18 1.63 1.47 1.51 1.39
SpS 1.65 1.50 1.62 1.57 1.70 1.68 1.88 1.63

LogitSpec 1.66 1.58 1.95 1.58 2.03 1.78 2.12 1.72

Table 8: Experimental results of LogitSpec on Spec-Bench (Xia et al., 2024) with LLaMA-3.1-
8B-Instruct and Qwen3-8B. We report the speedup ratio on each sub task, mean accepted tokens
per decoding step (MAT) and overall speedup ratio. We bold the best results for each backbone model.

Model Method MT Trans Sum QA MATH RAG MAT Speedup
Llama-3.1-8B-Instruct Vanilla 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Llama-3.1-8B-Instruct LogitSpec 1.89 1.67 1.94 1.68 2.01 1.77 2.11 1.88
Qwen-3-8B Vanilla 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Qwen-3-8B LogitSpec 1.71 1.74 1.64 1.65 1.89 1.68 1.95 1.75

Table 9: Experimental results of LogitSpec on CNN/DM (Nallapati et al., 2016), GSM8K (Cobbe
et al., 2021) and HumanEval (Chen et al., 2021) with LLaMA-3.1-8B-Instruct and Qwen3-8B. We
report the mean accepted tokens per decoding step (MAT) and overall speedup ratio. We bold the
best results for each backbone model.

Model Method CNN/DM GSM8K Humaneval Overall
MAT Speedup MAT Speedup MAT Speedup MAT Speedup

Llama-3.1-8B-Instruct Vanilla 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Llama-3.1-8B-Instruct LogitSpec 2.04 1.85 2.18 1.95 2.63 2.31 2.28 2.04
Qwen-3-8B Vanilla 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Qwen-3-8B LogitSpec 1.77 1.59 2.18 1.94 2.18 1.92 2.04 1.82

and applicability, yielding an overall MAT of 3.32 on MATH and 3.76 on AIME, with a correspond-
ing overall speedup of 2.78x on MATH and 3.33x on AIME. This demonstrates LogitSpec’s robust
performance even on challenging reasoning tasks.

E.3 MORE RESULTS OF LONG-TEXT DATA SCENARIOS

We conduct a new set of experiments on the LongBench using Llama-3.1-8B-Instruct as the backbone
model, randomly sampling 100 problems for evaluation. We observe that LogitSpec is highly effective
in these long-context scenarios. As shown in Table 12, our method achieves an overall MAT of 3.09
and an overall speedup of 2.01. This strong performance is directly linked to the core mechanics of

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 11: Experimental results of LogitSpec on MATH datasets with Llama 3.1-8B-Instruct as the
backbone model.

Method Algebra Probability Geometry Intermediate Algebra Number Theory Prealgebra Precalculus MAT Speedup
Vanilla 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LogitSpec 2.48 3.24 2.96 2.97 2.53 2.16 3.01 3.32 2.78

our method. LogitSpec’s retrieval model is built from the user-input prompt and previously decoded
tokens. A longer context generally provides a richer database for this retrieval process. However, a
large context also increases the chance of finding ambiguous or incorrect n-grams, which is precisely
where LogitSpec’s "next next token speculation" offers a significant advantage. By using a more
specific multi-token query, it effectively disambiguates the retrieval process, which is particularly
crucial in a long context with many repetitive phrases. Furthermore, our retrieval implementation was
designed for efficiency, using a hash table to ensure that the overhead remains negligible (around
1.17% of the total decoding time) even as the sequence length grows. Therefore, these new results
confirm that LogitSpec is a robust and effective solution for accelerating inference in demanding
long-context scenarios.

Table 12: Experimental results of LogitSpec on LongBench datasets with Llama 3.1-8B-Instruct as
the backbone model.

Method qasper multifieldqa hotpotqa wikimqa report qmsum news vcsum trec MAT Speedup

Vanilla 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LogitSpec 1.60 3.30 1.76 2.06 2.06 1.59 1.89 2.89 1.53 3.09 2.01

E.4 MORE RESULTS OF DIFFERENT PRUNING STRATEGIES

In Section 4.2, we apply a heuristic pruning strategy to control the number of draft tokens. The role of
the pruning algorithm is to effectively control the size of the resulting draft tree, keeping the decoding
overhead low without sacrificing too many possibilities, which is a strategy to balance breadth and
cost. To provide more insight into the pruning strategy, we provide a series of ablation studies on the
pruning strategy in Table 13. Specifically, we consider two different pruning strategies:

(a) Strategy 1: A rank-based heuristic: if the rank is <4, we preserve 5 tokens; <8, 4 tokens;
<16, 3 tokens; <32, 2 tokens; else 1 token.

(b) Strategy 2: A simple heuristic: preserving 4 tokens for all speculated next next tokens.

The results in Table 13 demonstrate that while different pruning strategies have some effect on the
final performance, the overall performance of LogitSpec is quite robust. The speedup remains stable
at 1.9x across these different approaches.

We also would like to clarify that the core contribution of our work is next next token speculation
using the last logit to guide and enhance the efficiency and accuracy of retrieval-based speculative
decoding. The primary purpose of the pruning algorithm is to serve as an auxiliary module for our
core mechanism.

Table 13: Ablation study on pruning strategies. LogitSpec with s1 and LogitSpec with s2 denote
LogitSpec with Strategy 1 and Strategy 2, respectively.

Method MT Trans Sum QA MATH RAG MAT Speedup
LogitSpec with s1 1.90 1.68 1.94 1.66 2.04 1.78 2.12 1.88
LogitSpec with s2 1.86 1.67 1.87 1.68 2.03 1.74 2.02 1.85
LogitSpec (ori) 1.89 1.67 1.94 1.68 2.01 1.77 2.11 1.88

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E.5 MORE RESULTS OF ABLATION STUDY ON PRUNING HYPERPARAMETERS K

As mentioned in Section 4.2, we set the capacity of the draft tree to K=64. To provide further
insight, we evaluate a range of K values from 32 to 128 in Table 14. These results reveal a clear
trade-off: as K increases, the MAT per step improves (from 2.03 to 2.30), since a larger tree offers
more opportunities for token acceptance. However, the overall speedup ratio peaks at K=64 (1.92×)
and subsequently declines. This is because verifying an overly large draft tree introduces significant
computational overhead that ultimately negates the advantages of a higher acceptance rate.

Table 14: Ablation study on pruning hyperparameters K using LLaMA-3.1-8B-Instruct as the
backbone model.

Method MT Trans Sum QA MATH RAG MAT Speedup
Vanilla 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LogitSpec 32 1.79 1.62 1.82 1.56 1.93 1.67 1.95 1.79
LogitSpec 48 1.86 1.66 1.90 1.67 2.00 1.73 2.04 1.85
LogitSpec 64 1.89 1.67 1.94 1.68 2.01 1.77 2.11 1.88
LogitSpec 80 1.85 1.64 1.86 1.67 1.84 1.74 2.14 1.83
LogitSpec 96 1.81 1.65 1.83 1.66 1.84 1.73 2.17 1.80
LogitSpec 112 1.79 1.61 1.77 1.64 1.83 1.69 2.21 1.77
LogitSpec 128 1.74 1.62 1.73 1.58 1.81 1.62 2.22 1.73

E.6 STEP-BY-STEP ACCELERATION PROCESS OF LogitSpec FOR A REAL-WORLD EXAMPLE

To obtain more insights into LogitSpec, we provide the following real-world example to illustrate
how "next next token speculation" allows LogitSpec to succeed where standard retrieval methods fail.

Taking the prefix of

Q: A pen costs as much as a pencil and eraser combined. A pencil
costs $1.20 and an eraser costs $0.30. How much will 8 pens
cost?

A: To find the cost of 8 pens, we first need to find the cost of
one pen. A pencil costs $1.20 and an eraser costs $0.30. The

At the first step, LogitSpec will first generate the next token "combined" and then speculate the next
next token as follows:

• .
• total
• cost
• combination
• pen
• eraser

Then, LogitSpec extends each draft token with retrieved n-grams and verifies these draft tokens:

• [×] . A pencil costs
• [×] total they had
• [✓] cost of one pen
• [×] combination (not retrieved matched n-grams)
• [×] pen.
• [×] eraser costs $

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Finally, with the guidance of the last logit, we successfully accept 3 draft tokens, generate "the
combined cost of one pen". In the next decoding step, LogitSpec accepts 3 draft tokens as well and
generates "the combined cost of one pencil and one eraser". However, without the speculation of the
last logit, only the first n-gram " A pencil costs" can be retrieved.

F LLM USAGE

We used a large language model (LLM)–based writing assistant solely for grammar and wording
improvements on draft text. The LLM did not generate research ideas, claims, proofs, algorithms,
code, figures, or analyses, and it did not have access to any non-public data. All edits suggested
by the LLM were manually reviewed and either accepted or rewritten by the authors, who take full
responsibility for the final content. The LLM is not an author of this paper.

21

	Introduction
	Related Work
	Background
	Method
	Motivated Observation
	LogitSpec Drafting
	LogitSpec Verification

	Experiments
	Experimental Setup
	Main Results
	Ablation Study
	Case Study

	Conclusion
	More Discussions to Related Work
	Experimental Setup for the Motivation Experiments
	Pseudo Code to Prepare Attention Inputs
	More Implementation Details
	Retrieval Process
	Evaluation Instructions
	Dataset Configurations
	Model Configurations

	More In-depth Analysis of LogitSpec
	More Results of different LLM Backbones
	More results of different benchmarks
	More Results of Long-text data scenarios
	More results of different pruning strategies
	More results of Ablation study on pruning hyperparameters K
	Step-by-step acceleration process of LogitSpec for a Real-world example

	LLM Usage

