
If Pigs Could Fly... Can LLMs Logically Reason Through Counterfactuals?

Anonymous ACL submission

Abstract001

Large Language Models (LLMs) demonstrate002
impressive reasoning capabilities in familiar003
contexts, but struggle when the context con-004
flicts with their parametric knowledge. To in-005
vestigate this phenomenon, we introduce Coun-006
terLogic, a dataset containing 1,800 examples007
across 9 logical schemas, explicitly designed008
to evaluate logical reasoning through counter-009
factual (hypothetical knowledge-conflicting)010
scenarios. Our systematic evaluation of 11011
LLMs across 6 different datasets reveals a con-012
sistent performance degradation, with accura-013
cies dropping by 27% on average when rea-014
soning through counterfactual information. We015
propose “Self-Segregate”, a prompting method016
enabling metacognitive awareness (explicitly017
identifying knowledge conflicts) before reason-018
ing. Our method dramatically narrows the av-019
erage performance gaps from 27% to just 11%,020
while significantly increasing the overall accu-021
racy (+7.5%). We discuss the implications of022
these findings and draw parallels to human cog-023
nitive processes, particularly on how humans024
disambiguate conflicting information during025
reasoning tasks. Our findings offer practical in-026
sights for understanding and enhancing LLMs’027
reasoning capabilities in real-world applica-028
tions, especially where models must logically029
reason independently of their factual knowl-030
edge. Our data and code are available here.031

1 Introduction032

LLMs have demonstrated remarkable reasoning033

capabilities across diverse domains, exhibiting pro-034

ficiency in tasks ranging from elementary problem035

solving to complex-level multi-step reasoning chal-036

lenges (Wei et al., 2023; Schick and Schütze, 2021;037

Kojima et al., 2022; Brown et al., 2020; Zhou et al.,038

2023a; Patel et al., 2024). Despite these advances,039

they often exhibit a significant performance degra-040

dation when reasoning with information that con-041

flicts with their parametric knowledge (knowledge042

Figure 1: Example tasks demonstrating LLM reasoning.
While LLMs correctly reason through standard, knowledge-
consistent tasks, they often incorrectly assess counterfactual
(hypothetical knowledge-conflicting) tasks despite having the
same logical structure.

acquired during pre-training) (Xu et al., 2024b; 043

Dasgupta et al., 2024; Wu et al., 2024; Lampinen 044

et al., 2024; Wang et al., 2024; Jin et al., 2024; Su 045

et al., 2024). 046

In Figure 1, the two syllogisms (A logical ar- 047

gument with two premises and a conclusion) are 048

logically equivalent. However, while LLMs excel 049

at reasoning through the first example, they often 050

struggle significantly with the second, despite be- 051

ing explicitly instructed to reason based solely on 052

the given premises (Trichelair et al., 2023; Talmor 053

et al., 2020). This disparity suggests that when 054

faced with premises that contradict their parametric 055

knowledge, LLMs often fail to maintain consistent 056

reasoning performance. 057

The ability to reason effectively in scenarios with 058

potentially conflicting information is crucial for de- 059

ploying LLMs in real-world applications where 060

they must process information that may be novel, 061

unexpected, or even contradictory to their training 062

data (Wang et al., 2024). Consider the question: “If 063

the Earth had two suns, how would seasons differ 064
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from what we experience now?”. Such situations065

arise frequently in everyday contexts (Pearl and066

Mackenzie, 2018), and failure to reason in them067

could lead to unreliable performance (Zhang et al.,068

2024). Additionally, prior research also suggests069

that evaluating reasoning in counterfactual situa-070

tions may serve as a more robust assessment of a071

model’s reasoning capabilities (Wu et al., 2024), as072

standard reasoning tasks can potentially be hacked073

through pattern matching. (Lewis and Mitchell,074

2024; Wu et al., 2024; Liu et al., 2024; McCoy075

et al., 2019; Kaushik et al., 2020)076

While knowledge conflicts are actively studied in077

language models, prior investigations have focused078

on relatively simple tasks involving information079

extraction or single-step reasoning (Example: Who080

is the current president of the USA?) (Xie et al.,081

2024b). These studies typically examine how mod-082

els handle conflicts when retrieving or extracting083

knowledge directly from their parameters or from084

provided text. However, there has been limited085

exploration of how knowledge conflicts affect com-086

plex multi-step logical reasoning processes, which087

is a capability essential for reliable AI systems088

(Wang et al., 2024; Liu et al., 2024).089

To address this gap, we introduce the Coun-090

terLogic dataset, specifically designed to evaluate091

complex logical reasoning in counterfactual scenar-092

ios. CounterLogic features approximately 1,800093

examples spanning 9 logical schemas, carefully bal-094

anced across knowledge-consistent (contexts that095

align with parametric knowledge) and knowledge-096

conflicting (counterfactual) scenarios. Through a097

systematic evaluation of 11 state-of-the-art LLMs098

on 6 different datasets (including CounterLogic),099

we demonstrate a consistent pattern of performance100

degradation (-27% on average) when reasoning101

through counterfactual statements.102

We introduce “Self-Segregation”, a metacogni-103

tive intervention that involves identifying knowl-104

edge conflicts before reasoning through a task.105

Through a series of experiments, we show that this106

simple strategy, used on top of existing methods107

such as chain-of-thought (COT) prompting (Wei108

et al., 2023), significantly boosts LLM reasoning109

abilities, specifically in counterfactual scenarios.110

Our results show that with Self-Segregation, the av-111

erage accuracy gap between knowledge-consistent112

and knowledge-violating scenarios drops by 16%113

(from 27% to 11%), while the overall accuracy114

improves by 7.5%.115

Our findings suggest that the initial performance116

disparity could stem from unresolved or ignored 117

knowledge conflicts rather than inherent limitations 118

in logical reasoning capabilities. Notably, these 119

performance patterns in LLMs mirror human cog- 120

nitive reasoning processes. By introducing self- 121

segregation strategies, we can potentially enable 122

LLMs to more effectively compartmentalize con- 123

flicting information and apply logical operations, 124

independent of their parametric factual knowledge 125

(Thomas et al., 2013). Our approach draws in- 126

spiration from human metacognitive strategies for 127

resolving ambiguities and knowledge conflicts, sug- 128

gesting a promising direction for enhancing logical 129

reasoning capabilities in language models. 130

Our contributions can be summarized as follows: 131

1. We introduce CounterLogic, a novel dataset 132

for evaluating logical reasoning in counter- 133

factual scenarios, and demonstrate that con- 134

temporary models consistently underperform 135

in these contexts despite their strong perfor- 136

mance otherwise. 137

2. We propose a simple yet effective metacogni- 138

tive awareness intervention, Self-Segregation, 139

that involves prompting models to explicitly 140

identify knowledge conflicts before reasoning. 141

Our method significantly improves reasoning 142

in knowledge-violating contexts, reducing the 143

performance gap by 16%. 144

3. Through a series of experiments, we study 145

and discuss how knowledge conflicts impair 146

reasoning in LLMs and how metacognitive in- 147

terventions can mitigate these effects, drawing 148

parallels to human cognitive processes. 149

2 Related Work 150

2.1 Logical Reasoning in LLMs 151

Recent advancements in LLMs have demonstrated 152

significant reasoning capabilities through tech- 153

niques like chain-of-thought prompting (Wei et al., 154

2023) (guiding models to show intermediate rea- 155

soning steps), zero-shot reasoning (Kojima et al., 156

2022) (reasoning without task-specific examples), 157

and tree-of-thought exploration (Shinn et al., 2023) 158

(exploring multiple reasoning paths). While these 159

methods have improved performance across vari- 160

ous benchmarks (Clark et al., 2020; Parmar et al., 161

2024), studies comparing human and LLM reason- 162

ing patterns reveal that models continue to exhibit 163

systematic errors mirroring human reasoning bi- 164

ases (Dasgupta et al., 2024; Eisape et al., 2024). 165
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Research specifically examining logical reason-166

ing limitations shows that models struggle with167

operations involving negations, quantifiers, and168

abstract variables (Dasgupta et al., 2024; Berto-169

lazzi et al., 2024). Performance notably degrades170

when reasoning involves counterfactual informa-171

tion (Chen et al., 2025; Wu et al., 2024), with incon-172

sistent handling of logically equivalent problems173

presented in different formats (Estermann et al.,174

2025). Approaches addressing these limitations in-175

clude symbolic chain-of-thought (Xu et al., 2024a)176

(integrating symbolic representations into reason-177

ing steps), verification mechanisms (Vacareanu and178

Ballesteros, 2024) (validating reasoning against179

formal rules), and theory resolution frameworks180

(Toroghi et al., 2024) (applying systematic proof181

methods), all aimed at enhancing logical consis-182

tency in complex scenarios.183

2.2 Knowledge Conflicts and Counterfactual184

Reasoning185

LLMs encode substantial factual knowledge in186

their parameters (Roberts et al., 2020; Petroni187

et al., 2019), creating challenges when encounter-188

ing conflicting information. Recent studies cate-189

gorize these conflicts into context-memory, inter-190

context, and intra-memory conflicts (Xu et al.,191

2024b) based on where the conflicting informa-192

tion originates. Larger models typically default to193

parametric knowledge over conflicting contextual194

evidence (Longpre et al., 2021), though this varies195

based on evidence coherence and source reliability196

(Wang et al., 2023).197

Counterfactual reasoning presents significant198

challenges, with models often performing poorly199

on tasks involving hypothetical scenarios that con-200

tradict established facts (Chen et al., 2025; Wei201

et al., 2023). Performance on questions with coun-202

terfactual premises drops significantly compared203

to standard tasks, primarily due to conflicts be-204

tween parametric knowledge and counterfactual205

assertions (Lin et al., 2025). Mitigation strategies206

include counterfactual data augmentation (Nee-207

man et al., 2023) (training on synthetically altered208

data), specialized prompting techniques (Xie et al.,209

2024b), and distilled counterfactuals (Chen et al.,210

2023b) (generating targeted examples that high-211

light conflicts).212

2.3 Metacognition, Belief Bias, and Human 213

Reasoning Parallels 214

Human reasoning exhibits well-documented cogni- 215

tive biases, including belief bias, where argument 216

validity judgments are influenced by conclusion be- 217

lievability rather than logical structure (Markovits 218

and Nantel, 1989). This bias intensifies with task 219

difficulty (Trippas et al., 2014) and creates an “il- 220

lusion of objectivity” (Kunda, 1990), where indi- 221

viduals believe their reasoning is unbiased despite 222

evidence to the contrary. 223

LLMs mirror these human cognitive patterns, 224

performing better when semantic content supports 225

logical inferences (Dasgupta et al., 2024) and rea- 226

soning more effectively about believable situations 227

compared to implausible ones (Macmillan-Scott 228

and Musolesi, 2024). Even advanced models ex- 229

hibit systematic errors paralleling human reason- 230

ing biases (Eisape et al., 2024), suggesting shared 231

underlying mechanisms despite the different archi- 232

tectures. 233

Metacognitive strategies in humans improve log- 234

ical reasoning by distinguishing between belief 235

evaluation and logical assessment (Douven et al., 236

2018) —essentially separating “what I know” from 237

“what follows logically.” Similar capabilities are 238

emerging in LLMs, including uncertainty estima- 239

tion (Zhou et al., 2023b) (expressing confidence in 240

outputs), self-evaluation (Wang et al., 2024) (cri- 241

tiquing own reasoning), and belief identification 242

(Chen et al., 2023a) (recognizing when premises 243

conflict with knowledge). When confirmation bias 244

is modulated by confidence, systems become more 245

receptive to corrective information when confi- 246

dence is low (Rollwage and Fleming, 2021), sug- 247

gesting potential mechanisms for improving rea- 248

soning with conflicting knowledge in LLMs. 249

3 The CounterLogic Dataset 250

Despite significant advances in evaluating LLMs’ 251

logical reasoning capabilities (Wei et al., 2023; 252

Schick and Schütze, 2021; Kojima et al., 2022; 253

Brown et al., 2020; Zhou et al., 2023a; Patel et al., 254

2024), existing benchmarks fail to systematically 255

disentangle logical validity from belief alignment 256

(whether premises align with parametric knowl- 257

edge). 258

As shown in Table 1, current benchmarks ei- 259

ther focus on logical structure without controlling 260

for knowledge conflicts (e.g., LogicBench (Parmar 261

et al., 2024), FOLIO (Han et al., 2024)) or em- 262
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Figure 2: (A) Dataset Preparation: The dataset features hierarchical entity triples (e.g., siameses ⊂ cats ⊂ felines) mapped
to 8 logical sentence templates across 9 inference schemas (see Appendix A). Each example is balanced across validity (50%
valid/invalid) and believability (50% aligned/conflicting), with ground truth annotations for both dimensions. The dataset
construction combines subset relationships with propositional logic forms (Modus Ponens, Hypothetical Syllogism, etc.) to
systematically evaluate knowledge-logic interactions. (B) Our Self-Segregate method: While the standard prompt simply
presents LLMs with a counterfactual context followed by related questions, our Self-Segregate approach first engages the model
metacognitively by eliciting its responses to knowledge-alignment questions. (This could be as simple as asking whether a given
statement is true).

phasize knowledge conflicts with simple reasoning263

tasks (e.g., KNOT (Liu et al., 2024), Reasoning &264

Reciting (Wu et al., 2024)). To address this gap, we265

introduce CounterLogic, a benchmark dataset con-266

taining 1,800 examples across 9 logical schemas267

with an equal balance in knowledge-consistent and268

counterfactual datapoints. The dataset systemat-269

ically combines hierarchical entity relationships270

with various levels of formal logical structures to271

evaluate the interaction between knowledge and272

reasoning in LLMs.273

3.1 Dataset Construction274

As illustrated in Figure 2, the CounterLogic dataset275

was constructed through a four-stage process:276

(1) Entity Perturbation: We begin with hi-277

erarchical entity triples (a, b, c) representing strict278

subset relationships: a ⊂ b ⊂ c. These include nat-279

ural taxonomies such as siameses ⊂ cats ⊂ felines.280

(2) Sentence Pair Generation: These enti-281

ties are mapped to four sentence templates form-282

ing complementary logical pairs S and ¬S (e.g.,283

“All {A} are {B}” and “Some {A} are not {B}”),284

yielding diverse sentence pairs that serve as atomic285

propositions. The complete set of triplets and sen-286

tence templates is detailed in Appendix A.1. 287

To ensure systematic coverage, we enforce entity 288

relationship balance: 25% with correct hierarchical 289

relationship (e.g., siameses ⊂ cats), 25% with in- 290

verted relationship (e.g., cats ⊂ siameses), and 50% 291

with unrelated entity pairs. All four sentence-pair 292

templates are distributed evenly across examples. 293

(3) Logical Query Generation: Inspired by 294

LogicBench (Parmar et al., 2024), these sentence 295

pairs are then incorporated into formal logical struc- 296

tures according to the inference schemas such as 297

Modus Ponens (MP), Hypothetical Syllogism (HS), 298

Constructive Dilemma (CD), etc. (See Table 2 in 299

Appendix C). A template-based converter is used 300

to transform these sentences into logical structures. 301

(4) Natural Language Task Generation: We 302

create binary question-answer tasks with system- 303

atic variation across (1) Logical validity (whether 304

conclusions follow from premises) and (2) Knowl- 305

edge alignment (whether conclusions match para- 306

metric knowledge). In order to ensure the LLMs 307

are not simply answering questions via memorized 308

logical rules (Xie et al., 2024a; Wu et al., 2024) , 309

we convert the logical queries to natural language 310

using GPT-4o (see Appendix A.4). We systemat- 311
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Table 1: Comparison of logical reasoning benchmarks. CounterLogic uniquely combines multi-step reasoning with knowledge-
conflicting scenarios while maintaining balance in labels. This enables rigorous evaluation of how parametric knowledge affects
LLMs’ logical reasoning capabilities, addressing limitations in existing benchmarks that typically lack proper balance across
important evaluation dimensions. While the Syllogistic dataset contains knowledge conflicts data in a balanced manner, it
severely lacks natural language queries, diversity, and depth in logical rules (only syllogism).

Dataset Size # Reasoning
Steps

Knowl.
Conflict

Balanced
Labels

LogicBench (Parmar et al., 2024) 2,020 1 ∼ 5 × ×
FOLIO (Han et al., 2024) 1,435 0 ∼ 7 × ×
KNOT (Liu et al., 2024) 5,500 1 ∼ 2 ✓ ×
Reasoning & Reciting - Deductive Logic (Wu et al., 2024) 81 0 ∼ 7 ✓ ×
Syllogistic (Bertolazzi et al., 2024) 2,120 2 ✓ ✓

CounterLogic (Ours) 1,800 1 ∼ 5 ✓ ✓

ically assign ground truth belief status using the312

initial sentence beliefs (obtained through hierarchi-313

cally valid triplets), and logical validity using the314

rules described in Table 2. Additionally, for each315

logical form, we construct both Valid (Instances316

where the conclusion logically follows from the317

premises) and Invalid Instances (where the logical318

structure is violated by replacing the statements319

in the conclusion with statements that cannot be320

inferred from the premises) examples.321

This construction allows for a controlled investi-322

gation of reasoning performance in the presence or323

absence of knowledge alignment.324

4 Methodology325

4.1 Research Questions326

Our investigation focuses on three primary research327

questions:328

1. RQ1 How do LLMs perform on logical rea-329

soning tasks in counterfactual scenarios, com-330

pared to knowledge-consistent scenarios?331

2. RQ2: Can prompt-based interventions that332

modify how models approach reasoning tasks,333

have any effect?334

3. RQ3: What mechanisms might explain the335

observed differences?336

To address these questions, we conduct a series337

of experiments across multiple reasoning tasks338

(Section 4.4), models (Appendix, Section E), and339

prompting strategies (Appendix, Section B). We340

first establish baseline performance across 6 rea-341

soning tasks to quantify the impact of knowledge342

conflicts on reasoning (RQ1), in Section 5.1. We343

then evaluate our most effective prompt-based in-344

tervention (RQ2), “Self-Segregate”, in Section 5.2.345

Finally, we discuss insights from our experiments346

in Section 6 (RQ3).347

4.2 Evaluation Methodology 348

We evaluate 11 state-of-the-art LLMs (listed in 349

Figure 3 and Appendix Section E) spanning dif- 350

ferent architectures, parameter scales, and training 351

paradigms. To ensure robust performance measure- 352

ments, we employ self-consistency checks through 353

multiple sampled outputs per datapoint (5 genera- 354

tions per example), and report their respective mean 355

and variance. This approach accounts for genera- 356

tion variability, as LLMs may produce inconsistent 357

results with similar queries (Bonagiri et al., 2024). 358

4.3 Self-Segregation 359

LLMs tend to process premises directly without ex- 360

plicitly considering whether these premises conflict 361

with their parametric knowledge (This can some- 362

times occur in extended COT reasoning, but our 363

method proves to be superior). Self-Segregate in- 364

troduces a metacognitive step that requires models 365

to first identify whether premises align with or con- 366

tradict their knowledge before performing logical 367

reasoning (illustrated in Figure 2B). 368

The method works in two distinct phases: 369

1. Knowledge Alignment Assessment: Mod- 370

els first examine the premises or conclusion 371

and explicitly state whether they align with or 372

contradict their parametric knowledge. This 373

creates an explicit awareness of a “boundary” 374

between the model’s factual knowledge and 375

the reasoning task. 376

2. Standard Reasoning Process: models pro- 377

ceed to evaluate the logical validity of the 378

argument based solely on the given premises. 379

We use COT as our standard prompt due to its 380

superior performance, and compare against it 381

in all of our results. 382
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Our approach is inspired by human metacogni-383

tive strategies for handling conflicting information384

(i.e, when humans consciously recognize that infor-385

mation contradicts their existing knowledge, they386

can more effectively reason through it by temporar-387

ily compartmentalizing that conflict) (Wang and388

Zhao, 2024; Thomas et al., 2013).389

4.4 Reasoning Datasets390

Along with CounterLogic, we evaluate perfor-391

mance across six other reasoning tasks, each de-392

signed to assess specific aspects of logical reason-393

ing under knowledge conflicts (see Table 3 in Ap-394

pendix D). For each of the following tasks, we im-395

plement a tailored version of our Self-Segregation396

method. The following are the tasks:397

Hierarchical Syllogisms: Derived from classi-398

cal syllogistic reasoning and adapted from Berto-399

lazzi et al. (2024)’s work, this task presents logi-400

cally structured arguments where the conclusion401

may conflict with world knowledge. Each ex-402

ample contains two premises and a conclusion,403

with models evaluating logical validity. For Self-404

Segregation, models first assess the conclusion405

statement in isolation for its alignment with para-406

metric knowledge, then evaluate the full syllo-407

gism’s logical validity(see Figure 2B).408

KNOT: Adapted from the Knowledge Conflict409

Resolution benchmark (Liu et al., 2024), this task410

evaluates reasoning through explicit (KNOT-E) and411

implicit (KNOT-I) conflict resolution. Each in-412

stance contains a passage with counterfactual in-413

formation, a question, and an answer. The Self-414

Segregation implementation first presents the an-415

swer in isolation for plausibility assessment, then416

provides the full passage and question-answer pair417

for contextual reasoning. This separation tests mod-418

els’ ability to distinguish between prior knowledge419

and contextual truth.420

FOLIO: Using long-form deductive reason-421

ing problems from FOLIO (Han et al., 2024), this422

task requires evaluating whether conclusions logi-423

cally follow from multi-step narratives. Our Self-424

Segregation approach first presents the conclusion425

for isolated plausibility judgment, then provides426

the complete narrative for logical analysis.427

LogicBench: This reasoning dataset (Parmar428

et al., 2024) combines first-order, non-monotonic,429

and propositional logic problems. It tests models’430

ability to follow formal logical rules while overrid-431

ing potentially conflicting parametric knowledge.432

The Self-Segregation implementation presents433

questions and answers without supporting context 434

for initial plausibility assessment, followed by com- 435

plete logical contexts for formal evaluation. 436

Reasoning and Reciting, Deductive Logic: 437

Adapted from (Wu et al., 2024) , this task evaluates 438

deductive logic over premise sets. Models must 439

determine whether claims logically follow from 440

premises, regardless of whether those premises con- 441

tradict physical knowledge. The Self-Segregation 442

implementation presents claims in isolation for 443

plausibility assessment before introducing the com- 444

plete premise set for logical evaluation. An exam- 445

ple presents non-physical premises about objects 446

floating forever, testing the ability to follow logical 447

rules despite contradicting physical knowledge. 448

CounterLogic: For our novel benchmark, de- 449

scribed in Section 3, we apply the same two-stage 450

reflection approach used in the Hierarchical Syllo- 451

gisms task, first assessing conclusion plausibility in 452

isolation before evaluating logical validity within 453

the full syllogistic context. 454

5 Results and Analysis 455

Our experimental evaluation reveals consistent pat- 456

terns across all models and tasks, confirming that: 457

(1) LLMs struggle significantly when reasoning 458

through counterfactual premises and (2) metacog- 459

nitive awareness interventions via Self-Segregation 460

substantially improve performance in knowledge- 461

conflicting scenarios. We discuss it in detail in this 462

section (Figures 3 and 4 summarize the results, for 463

more detailed results in a table format, please see 464

Table 5 in Appendix F). 465

5.1 Knowledge Conflicts Significantly Impair 466

LLM Logical Reasoning 467

As shown in Figure 4, when evaluated on the rea- 468

soning tasks, all models demonstrate a substantial 469

performance gap between knowledge-consistent 470

and counterfactual scenarios. We find that this 471

holds even across various prompting strategies 472

like Zero-Shot, Few-Shot, and Chain-of-Thought 473

Prompting (more information in Appendix G). 474

Under the baseline condition, models achieve 475

considerably higher accuracy on knowledge- 476

consistent examples 96% (on average) compared 477

to knowledge-violating examples 69% on average, 478

with performance gaps of about 27% averaged 479

across models. 480

This pattern holds consistently across all the 481

models, indicating that the phenomenon is not spe- 482
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Figure 3: Accuracy comparision between the baseline setup and our metacognitive self-segregation setup across models.
The right bar (sky blue) for each model represents accuracy using standard prompts (ref), while the left bar (salmon) shows
accuracy using our Self-Segregate prompts (ref). Self-Segregate consistently improves performance across tasks, including
KNOT, LogicBench, FOLIO, Hierarchical Syllogisms, and Deductive Logic. All models were run using the OpenRouter API.

cific to particular models or training paradigms.483

Notably, even the most capable models exhibit this484

disparity, suggesting that knowledge-conflict inter-485

ference represents a fundamental challenge in LLM486

reasoning rather than merely a limitation of smaller487

or less capable models. Models like Qwen-2-72B488

show the highest accuracy difference of 47% in489

the baseline setup, which then greatly improves in490

the self-segregation setup bringing the gap down to491

13%.492

This gap appears despite explicit instructions to493

reason based solely on given premises (see Ap-494

pendix B), highlighting the pervasive nature of495

parametric knowledge interference in logical rea-496

soning tasks. Our findings on the CounterLogic497

dataset further confirm this pattern, with an average498

performance of 88% on knowledge-consistent ex-499

amples, 85% on knowledge-violate examples and500

an average performance gap of 3% on the baseline501

condition (Figure 4).502

5.2 Self-Segregation Dramatically Improves503

both Counterfactual and Overall504

Performance505

Our Self-Segregation method (described in Sec-506

tion 4.3) yields substantial improvements across507

all evaluated models and datasets. As illustrated in508

Figure 3, this approach consistently improves the509

overall accuracy across most models and tasks.510

Figure 3 presents this improvement across six511

distinct reasoning tasks. The most dramatic gains512

are observed on the Hierarchical Syllogisms task,513

where Self-Segregation improves overall accuracy514

by an average of 7.5%.515

We observe that the self-segregation strategy was516

more effective for datasets like Hierarchical Syl- 517

logisms, KNOT (Implicit and Explicit), and they 518

show the most improvement, while there was little 519

to no improvement on the FOLIO, emphasizing 520

the need for better conflict resolution strategies for 521

tasks that involve deep chains of reasoning (Han 522

et al., 2024) . 523

The results on our CounterLogic also follow the 524

same trend, with the overall accuracy performance 525

increasing by 5% on average. The performance 526

on knowledge-consistent examples rose to 93% 527

from 88%, and the performance on knowledge- 528

inconsistent examples to 90% from 85%. 529

Importantly, this intervention improves rea- 530

soning on knowledge-violating scenarios without 531

degrading performance on knowledge-consistent 532

ones. In fact, as shown in Figure 4, accuracy 533

on knowledge-consistent examples also improves 534

slightly under the metacognitive condition, suggest- 535

ing that explicit reflection on knowledge alignment 536

benefits logical reasoning more generally. 537

6 Discussion 538

Our findings reveal a fundamental tension in how 539

LLMs approach logical reasoning when faced with 540

information that contradicts their parametric knowl- 541

edge. The consistent performance gap observed 542

across models and tasks suggests this challenge is 543

intrinsic to current language model architectures 544

and training paradigms, rather than a limitation of 545

specific models. 546

This performance disparity echoes well- 547

documented phenomena in human reasoning. 548

Cognitive psychologists have long observed belief 549
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(a) Hierarchical Syllogisms task. (b) CounterLogic task.

Figure 4: Accuracy comparison between knowledge-consistent and knowledge-violating examples across models. The
left panel in each subfigure shows results using ground-truth knowledge-alignment labels (Baseline), and the right panel shows
performance when models (Refer legend in Figure-3) use their own knowledge-alignment prediction (self-segregation). Blue
bars represent knowledge-consistent examples, while orange bars indicate knowledge-violating ones. The self-segregation
setup not only improves accuracy across both subsets but also significantly reduces the performance disparity between them,
demonstrating the effectiveness of metacognitive prompting in enhancing belief-robust reasoning.

bias effects, where humans judge argument validity550

based on conclusion believability rather than551

logical structure (Markovits and Nantel, 1989;552

Lampinen et al., 2024). The parallel between553

human and LLM reasoning biases suggests deeper554

connections between the cognitive mechanisms555

underlying both. This alignment in behavior also556

highlights the potential of leveraging cognitive557

theories to inform the design of more robust558

and interpretable language model reasoning559

frameworks. While humans can override this560

bias through deliberate metacognitive effort, our561

experiments demonstrate that LLMs similarly562

benefit from prompted metacognitive approaches563

(namely our Self-Segregate method).564

The effectiveness of our metacognitive interven-565

tion provides insight into how LLMs process con-566

flicting information. By explicitly prompting mod-567

els to identify knowledge conflicts before reason-568

ing, we create a form of epistemic compartmental-569

ization (Thomas et al., 2013), helping models dis-570

tinguish between what they “know” from their pa-571

rameters and what they must accept as given in the572

current reasoning context. Our approach appears to573

reduce interference between factual knowledge re-574

trieval and logical operation application, allowing575

models to maintain logical consistency even when576

processing counterfactual premises. Our proposed577

approach is a simple abstraction derived from a set578

of extensive experiments, with meaningful insights.579

7 Conclusion and Future Work 580

We demonstrated that LLMs struggle with logical 581

reasoning when premises contradict their paramet- 582

ric knowledge, with performance dropping by 35% 583

in counterfactual scenarios. Our key contribution is 584

the CounterLogic benchmark and the identification 585

of a simple yet effective metacognitive intervention 586

called Self-Segregation, that narrows this perfor- 587

mance gap to just 15%. By prompting models to 588

explicitly identify knowledge conflicts before rea- 589

soning, we hypothesize that this approach enables 590

more effective compartmentalization of conflicting 591

information without requiring model modifications. 592

Future work could (1) explore how knowledge 593

conflicts manifest within model representations, 594

(2) investigate applications of metacognitive tech- 595

niques in other reasoning domains, (3) extend this 596

evaluation to more complex, real-world scenar- 597

ios, where counterfactual thinking is necessary, (4) 598

Build on methods to either improve, or fundamen- 599

tally address issues involving parametric memory 600

clashes with reasoning performance, etc. By ad- 601

dressing this specific limitation in counterfactual 602

reasoning, our work contributes to building more 603

robust AI systems capable of reliable logical in- 604

ference even in contexts that conflict with their 605

training data. 606

8 Limitations 607

While our study provides valuable insights into 608

LLMs’ reasoning under knowledge conflicts, sev- 609
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eral limitations should be noted. First, our Coun-610

terLogic dataset, while diverse, cannot capture all611

forms of complex logical reasoning or knowledge612

conflicts that might arise in real-world applications.613

The dataset focuses primarily on categorical syl-614

logisms and propositional logic structures, which615

represent only a subset but a fundamental part of616

logical reasoning paradigms.617

Second, our experiments were conducted on618

a specific set of models available at the time of619

study; newer models may exhibit different patterns620

of knowledge interference or respond differently621

to our proposed interventions. The rapid pace of622

model development means that architectural inno-623

vations might soon produce systems with intrinsi-624

cally different approaches to handling counterfac-625

tual information.626

Third, the effectiveness of our interventions627

may vary across different languages, cultures, and628

knowledge domains, as parametric knowledge it-629

self varies across these dimensions. Our evalua-630

tion focused on English-language reasoning with631

common-knowledge concepts; performance on spe-632

cialized domains or other languages would require633

further testing.634

Fourth, while we draw parallels to human cog-635

nition, the mechanisms of knowledge interference636

in LLMs may differ fundamentally from human637

reasoning processes. These parallels provide use-638

ful conceptual frameworks but should not be inter-639

preted as evidence of identical or robust cognitive640

processes.641

Finally, while we evaluate LLMs, we also use642

them to synthetically generate natural language643

queries, which may pose unnoticed errors, such644

as inconsistencies or limitations from the LLMs645

themselves being carried over.646

Despite these limitations, our findings demon-647

strate consistent and substantial improvements in648

counterfactual reasoning across diverse models649

and tasks, suggesting that the core insights about650

metacognitive awareness and knowledge compart-651

mentalization are likely to remain relevant even as652

specific implementations evolve.653
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identify the limitations of our methods and find- 661

ings in Section 8, acknowledging the boundaries of 662

our conclusions and where further investigation is 663

warranted. 664

Attribution and Contribution While we uti- 665

lized large language models as tools to assist with 666

certain aspects of writing and implementation, all 667

research ideas, experimental design, analysis of re- 668
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• Implementation details of our Self- 692
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Potential Applications and Impact The insights705

and techniques presented in this paper aim to im-706

prove the robustness of logical reasoning in AI707

systems, particularly when handling counterfac-708

tual scenarios. These improvements have poten-709

tial benefits for various applications requiring re-710

liable reasoning capabilities (including education,711

scientific exploration, and decision support sys-712

tems) while minimizing the risk of logical errors713

stemming from knowledge conflicts.714
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A CounterLogic Dataset Details 977

A.1 Hierarchical Entity Triples 978

The CounterLogic dataset uses the following hi- 979

erarchical entity triples, where each tuple (a, b, c) 980

denotes a strict subset relationship: a ⊂ b ⊂ c. 981

siameses cats felines
labradors dogs canines
sedans cars vehicles
humans animals mortals
cruisers warships watercrafts
chickadees birds winged_animals
boeings planes aircrafts
pines evergreens trees
anguses cows mammals
daisies flowers plants

982

A.2 Sentence Templates 983

From each entity triplet, we generate sentence pairs 984

corresponding to one of four logical sentence tem- 985

plates of the form S and ¬S, capturing contradic- 986

tory or complementary quantifier relations: 987

1. All {A} are {B}, Some {A} are not {B} 988

2. No {A} are {B}, Some {A} are {B} 989

3. Some {A} are {B}, No {A} are {B} 990

4. Some {A} are not {B}, All {A} are {B} 991

A.3 Dataset Statistics 992

The final CounterLogic dataset consists of 1,800 993

examples, with 200 instances for each of the 9 994

logical schemas listed in Table 2. To ensure a com- 995

prehensive and balanced design, four criteria were 996

enforced during dataset construction: 997

• Knowledge alignment Balance: Each logi- 998

cal schema contains 50% of examples where 999

the conclusion is knowledge-consistent under 1000

human priors and 50% where it is not. 1001

• Validity Balance: Half the examples per 1002

schema are logically valid, while the remain- 1003

ing half intentionally violate the logical struc- 1004

ture. 1005

• Entity Relationship Balance: 25% of exam- 1006

ples involve an entity A that is a subset of 1007

entity B (e.g., siameses ⊂ cats), 25% feature 1008

B as a subset of A (e.g., cats ⊂ siameses), and 1009

50% use unrelated entity pairs (e.g., pines and 1010

dogs). 1011
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• Sentence Template Balance: All eight1012

sentence-pair templates are applied evenly1013

across examples within each logical schema,1014

promoting lexical and syntactic diversity.1015

A.4 Prompt for Natural Language1016

Reformulation of Logical Structures1017

To prevent language models from relying on mem-1018

orized patterns of formal logic structures, we refor-1019

mulate logical premises and conclusions into natu-1020

ral language contexts and questions. Specifically,1021

we prompt GPT-4o to carry out this transforma-1022

tion. The model is instructed to rewrite the given1023

premise into a natural language context and the1024

conclusion into a straightforward question, with-1025

out preserving the surface structure of the original1026

logical form. The transformation ensures the re-1027

sulting question does not include meta-references1028

like “in this context,” and the phrasing is natural1029

and intuitive:1030

1031
premise: [premise]1032
conclusion: [conclusion]1033
premise list: [premise list]1034
Make the premise into a context which is1035

like a natural language way of1036
writing the premises. Make1037
conclusion into a question.1038

The context/questions shouldn ’t be too1039
complicated but shouldn ’t directly1040
be like premise/conclusion either.1041
The question must be asked normally1042
without stating things like "in this1043
context" or "with this information1044

".1045
premise list is only given for your1046

better understanding.1047
Reply ONLY with a json with two keys ’1048

context ’ and ’question ’1049

B Prompting Strategies1050

We evaluate three distinct prompting strategies1051

across all tasks:1052

1. Standard Condition: In this baseline condi-1053

tion, models receive direct questions with minimal1054

guidance, instructed to consider only the logical1055

validity of arguments regardless of premise believ-1056

ability:1057

1058
Based on the following premises ,1059

determine if the conclusion1060
logically follows. Consider only1061
the logical validity based on the1062
given premises , regardless of1063
whether the premises themselves1064
are factually true.1065

1066
Premises:1067

1. [Premise 1] 1068
2. [Premise 2] 1069

1070
Conclusion: [Conclusion] 1071

1072
Does the conclusion logically follow 1073

from the premises? Answer with 1074
"Yes" or "No" and explain your 1075
reasoning step by step. 1076

2. Metacognitive Condition: In this condition, 1077

we introduce a preliminary reflection step (asking 1078

the model what it thinks about a statement) before 1079

the reasoning task. 1080

1081
Prompt 1: 1082

1083
Is the following statement factually 1084

correct? 1085
1086

statement: [Conclusion] 1087
1088

Answer only with Yes or No. 1089
1090

Prompt 2(in the same context): 1091
1092

Now , based on the following premises , 1093
determine if the conclusion 1094
logically follows. Consider only the 1095
logical validity based on the 1096

given premises , regardless of whether 1097
the premises themselves are 1098
factually true. 1099

Premises: 1100
1. [Premise 1] 1101
2. [Premise 2] 1102

1103
Conclusion: [Conclusion] 1104

1105
Does the conclusion logically follow 1106

from the premises? Answer with 1107
"Yes" or "No" and explain your 1108
reasoning step by step. 1109

The above is the general structure of our prompt- 1110

ing method. The prompts are modified according 1111

to the dataset we evaluate. 1112

C Logical Inference Schemas 1113

The CounterLogic dataset uses various formal 1114

propositional logic inference schemas to generate 1115

reasoning examples, as detailed in Table 2. 1116

D Task-Specific Reflection Approaches 1117

Our metacognitive intervention is implemented 1118

with task-specific adaptations to ensure appropriate 1119

reflection across different reasoning formats. Ta- 1120

ble 3 details how we adapted the reflective prompt- 1121

ing strategy for each task type. 1122
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Table 2: Formal propositional logic inference schemas used in the CounterLogic dataset. Each row presents a canonical logical
inference rule and its structure in propositional form. Believability is achieved when both the premises and the conclusion are
true independently. Invalid datapoints are created by replacing conclusion statements (e.g., p, q, r) with unrelated ones (e.g., p′,
q′, r′) making the logical rule invalid.

Name Propositional Logic Form
MP ((p → q) ∧ p) ⊢ q
MT ((p → q) ∧ ¬q) ⊢ ¬p
HS ((p → q) ∧ (q → r)) ⊢ (p → r)
DS ((p ∨ q) ∧ ¬p) ⊢ q
CD (p → q) ∧ (r → s) ∧ (p ∨ r) ⊢ (q ∨ s)
DD ((p → q) ∧ (r → s) ∧ (¬q ∨ ¬s)) ⊢ (¬p ∨ ¬r)
BD ((p → q) ∧ (r → s) ∧ (p ∨ ¬s)) ⊢ (q ∨ ¬r)
CT p ⊢ (q ∨ p)
MI (p → q) ⊢ (¬p ∨ q)

Table 3: Task-Specific Implementation of Two-Stage Reflection Approach
This table outlines how our reflective prompting strategy is applied across different task types. Initial Reflection Input refers to
the isolated information presented for knowledge alignment assessment. Reasoning Input shows the complete information
provided in the second stage for logical assessment. This separation helps models distinguish between plausibility assessment
and formal logical analysis.

Task Dataset Content Initial Reflection Input Reasoning Input
Syllogisms Two premises + conclu-

sion
Conclusion statement Full syllogism

KNOT Passage + Q/A pair Answer without passage Full passage + Q/A
FOLIO Narrative + claim Isolated claim Complete narrative
LogicBench Context + Q/A Q/A without context Full context + Q/A
Arithmetic Base equation Equation without base Base-specified equation
Deductive Logic Premise set + claim Isolated claim Full premise set

E Models1123

In our study, we evaluated 11 state-of-the-art large1124

language models from various organizations, span-1125

ning different architectures, parameter scales, and1126

training paradigms. Below we provide details1127

about each model, including their version, size,1128

and key characteristics:1129

E.1 Model Access1130

All models were accessed through the OpenRouter1131

API to ensure consistent evaluation conditions.1132

This approach allowed us to standardize the infer-1133

ence parameters across different model providers,1134

including temperature settings (0), top-p (0.95),1135

and maximum token length (4096 tokens).1136

E.2 Model Selection Criteria1137

We selected these models based on the following1138

criteria:1139

1. State-of-the-art performance: All selected1140

models represent the cutting edge of LLM1141

development at the time of our study.1142

2. Architectural diversity: We included models 1143

with different architectural designs to exam- 1144

ine whether the observed patterns generalize 1145

across various model architectures. 1146

3. Parameter scale variation: The selection 1147

spans from relatively smaller models (7B pa- 1148

rameters) to much larger ones (72B+ parame- 1149

ters) to investigate how model size correlates 1150

with counterfactual reasoning abilities. 1151

4. Training paradigm diversity: The models 1152

employ various training approaches, includ- 1153

ing different pretraining datasets, fine-tuning 1154

strategies, and alignment techniques. 1155

E.3 Model Specifications 1156

E.3.1 OpenAI Models 1157

GPT-4o, GPT-4o-mini and o1 represents the Ope- 1158

nAI’s multimodal model designed for both text and 1159

imageprocessing. GPT-4o is the standard non rea- 1160

soning model provided by OpenAI. GPT-4o mini 1161

is a lightweight and faster version of 4o. o1 is 1162

the reasoning model provided by openAI that uses 1163
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Table 4: Details of the evaluated models

Model Developer Parameters Release Date

GPT-4o OpenAI Unknown May 2024
GPT-4o-mini OpenAI Unknown July 2024
O1-preview OpenAI Unknown September 2024
Gemini-Flash-1.5 Google DeepMind Unknown May 2024
Llama-3.3-70B Meta AI 70B December 2024
Llama-3.1-70B Meta AI 70B July 2024
Llama-3.1-8B Meta AI 8B July 2024
Qwen-2.5-72B Alibaba 72B September 2024
Qwen-2.5-7B Alibaba 7B September 2024
DeepSeek-V3 DeepSeek AI 671B Jan 2025
Deepseek-R1-distill-Llama DeepSeek AI 671B January 2025

specialized token to internally do CoT before an-1164

swering.1165

E.3.2 Google Models1166

Gemini-Flash-1.5 is the lightweight version of1167

Google’s Gemini 1.5 model family, optimized for1168

quick responses while maintaining strong reason-1169

ing capabilities.1170

E.3.3 Meta AI Models1171

Llama-3.3-70B, Llama-3.1-70B, and Llama-3.1-1172

8B represent Meta AI’s open-source LLM efforts.1173

The 3.1 series is an upgrade to the Llama-3 models,1174

with enhanced instruction-following and reasoning1175

capabilities. We include both larger (70B) and1176

smaller (8B) parameter variants to examine scaling1177

effects.1178

E.3.4 Alibaba Models1179

Qwen-2.5-72B and Qwen-2.5-7B are Alibaba’s1180

latest generation language models, known for their1181

strong performance across various benchmarks,1182

particularly in multilingual reasoning tasks.1183

E.3.5 DeepSeek Models1184

DeepSeek-V3 is a 671B parameter model devel-1185

oped by DeepSeek AI, designed specifically for1186

dialogue applications with strong reasoning capa-1187

bilities.1188

DeepSeek-R1-Distill-Llama is reasoning model1189

that is finetuned version of DeepSeek-R1(671b)1190

using the outputs of Llama-3.3-70b-instruct model.1191

E.4 Model Inference Parameters1192

For all evaluations, we used consistent inference1193

parameters across models. We use openRouter for1194

all the non OpenAI models and OpenAI API for1195

the 3 openAI models. All the models that support 1196

system prompts have standard prompt asking for 1197

instruction following. 1198

E.5 Cost of the Evaluations 1199

Overall 83.2$ were spend on openRouter for all 1200

non-OpenAI models across all tasks. 1201

About 2000$ of OpenAI credits were used for run- 1202

ning the evaluation, most of which was used by the 1203

o1-preview model. 1204

F Full Results 1205

Our detailed results for the Figure 3 can be found 1206

in the Table-5 1207

G Ablation Studies 1208

G.1 Comparison of Prompting Strategies 1209

Figure 5 presents an ablation study evaluating 1210

model performance under three prompting strate- 1211

gies: zero-shot, few-shot, and chain-of-thought 1212

(CoT) across three belief consistency conditions; 1213

consistent, violate, and random gibberish. Here ran- 1214

dom gibberish datapoints are obtained by replacing 1215

entities in consistent and violate scenarios with 1216

random strings (such as ’cat’ with ’nsjf’). Consis- 1217

tent and Violate datapoints are from the Syllogistic 1218

Dataset (Bertolazzi et al., 2024). 1219

Across all models, We see that Consistent dat- 1220

apoints perform better than gibberish datapoints 1221

which perform better than violate datapoints, high- 1222

lighting the reliance of model on its internal knowl- 1223

edge and inability to reason purely based on logical 1224

rules. CoT prompting consistently improves accu- 1225

racy without altering the general trend observed in 1226

belief sensitivity. Interestingly, few-shot prompting 1227
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Figure 5: Abalation study comparing the various prompting strategies showing that CoT always outperforms zero-shot but
few-shot fails to do so in some models for the Syllogistic dataset.

Models Explicit Implicit Folio Hierarchical Deductive Counterlogic
Normal Baseline Normal Baseline Normal Baseline Normal Baseline Normal Baseline Normal Baseline

Large models
meta-llama/llama-3.3-70b-instruct 75.7 63.1 39.6 35.0 78.7 77.6 98.1 80.9 85.2 85.7 93.1 87.8
meta-llama/llama-3.1-70b-instruct 69.9 69.9 38.4 37.5 78.6 75.6 95.3 79.0 80.5 74.6 92.3 91.3
google/gemini-flash-1.5 67.3 54.9 34.6 30.2 78.7 76.2 98.9 86.7 76.3 77.3 92.5 91.8
qwen/qwen-2.5-72b-instruct 60.2 60.0 33.4 32.8 86.7 87.6 87.9 72.9 82.7 80.2 93.8 87.7
deepseek/deepseek-chat 71.9 71.2 38.0 37.5 80.7 80.8 91.0 86.7 88.5 87.2 90.9 82.3
gpt-4o 67.9 68.0 32.2 32.4 84.7 77.5 99.7 86.8 88.1 88.9 88.8 80.5

Small models
meta-llama/llama-3.1-8b-instruct 65.8 52.2 50.3 39.3 76.7 77.7 84.1 95.5 45.8 45.5 91.3 79.7
qwen/qwen-2.5-7b-instruct 48.8 50.1 32.8 31.2 80.9 83.0 68.6 58.0 68.7 72.4 90.6 82.4
gpt-4o-mini 66.8 66.7 32.5 30.8 75.2 76.2 72.6 69.1 78.2 80.7 84.9 80.5

Reasoning models
deepseek/deepseek-r1-distill-llama-70b 62.2 63.2 34.6 34.9 84.5 86.7 95.9 98.0 93.8 93.2 90.6 92.4
o1-preview 73.6 74.6 50.8 51.4 81.7 82.5 96.8 95.5 93.0 93.8 94.9 94.0

Table 5: Model performance (Normal vs. Baseline) across datasets.

does not universally help: OpenAI models (e.g.,1228

gpt-4o-mini) actually show degraded performance1229

in few-shot settings across all belief types, suggest-1230

ing potential sensitivity to in-context demonstra-1231

tions or prompt formatting. In contrast, most other1232

models maintain or slightly improve their perfor-1233

mance under few-shot1234

G.2 Perturbing with Model-Generated1235

Evidence1236

To evaluate whether language models reason purely1237

based on logical structure or are influenced by1238

surface-level content, we perform an experiment1239

involving model-generated evidence. Specifically,1240

we prompt the models to generate evidences for a1241

given conclusions and premises: one that supports1242

the conclusion and one that neagtes it. The model1243

is given complete freedom in how it constructs this1244

evidence, encouraging creativity and variability in1245

content. This is adapted from (Xie et al., 2024b)1246

We then construct a separate task: given a1247

premise, above generated evidence, and a conclu- 1248

sion, we ask whether the conclusion follows from 1249

the premise purely logically. The correct answer 1250

is determined solely based on the logical relation 1251

between the premise and conclusion, independent 1252

of the evidence. However, our results reveal a clear 1253

pattern: models show an increase in accuracy for 1254

logically valid datapoints when the supporting ev- 1255

idence aligns with the conclusion, and a drop in 1256

accuracy when the evidence contradicts it. This 1257

behavior suggests that models are not performing 1258

strict logical reasoning, but are instead heavily in- 1259

fluenced by the factuality of premises and conclu- 1260

sions, even when it is explicitly stated to be po- 1261

tentially fabricated. This indicates a reliance on 1262

heuristic signals rather than formal logical infer- 1263

ence. 1264
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