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Abstract

Large Language Models (LLMs) demonstrate
impressive reasoning capabilities in familiar
contexts, but struggle when the context con-
flicts with their parametric knowledge. To in-
vestigate this phenomenon, we introduce Coun-
terLogic, a dataset containing 1,800 examples
across 9 logical schemas, explicitly designed
to evaluate logical reasoning through counter-
factual (hypothetical knowledge-conflicting)
scenarios. Our systematic evaluation of 11
LLMs across 6 different datasets reveals a con-
sistent performance degradation, with accura-
cies dropping by 27% on average when rea-
soning through counterfactual information. We
propose “Self-Segregate”, a prompting method
enabling metacognitive awareness (explicitly
identifying knowledge conflicts) before reason-
ing. Our method dramatically narrows the av-
erage performance gaps from 27% to just 11%,
while significantly increasing the overall accu-
racy (+7.5%). We discuss the implications of
these findings and draw parallels to human cog-
nitive processes, particularly on how humans
disambiguate conflicting information during
reasoning tasks. Our findings offer practical in-
sights for understanding and enhancing LLMs’
reasoning capabilities in real-world applica-
tions, especially where models must logically
reason independently of their factual knowl-
edge. Our data and code are available here.

1 Introduction

LLMs have demonstrated remarkable reasoning
capabilities across diverse domains, exhibiting pro-
ficiency in tasks ranging from elementary problem
solving to complex-level multi-step reasoning chal-
lenges (Wei et al., 2023; Schick and Schiitze, 2021;
Kojima et al., 2022; Brown et al., 2020; Zhou et al.,
2023a; Patel et al., 2024). Despite these advances,
they often exhibit a significant performance degra-
dation when reasoning with information that con-
flicts with their parametric knowledge (knowledge

Standard (Knowledge-Consistent)

If all Humans are Animals,

and all Animals are Mortals,
Then

All Humans are Mortals

Counterfactual (Knowledge-Violating)

If all Pigs are Animals,
and all Animals are Birds,
Then
All Pigs are Birds

Figure 1: Example tasks demonstrating LLM reasoning.
While LLMs correctly reason through standard, knowledge-
consistent tasks, they often incorrectly assess counterfactual
(hypothetical knowledge-conflicting) tasks despite having the
same logical structure.

acquired during pre-training) (Xu et al., 2024b;
Dasgupta et al., 2024; Wu et al., 2024; Lampinen
et al., 2024; Wang et al., 2024; Jin et al., 2024; Su
et al., 2024).

In Figure 1, the two syllogisms (A logical ar-
gument with two premises and a conclusion) are
logically equivalent. However, while LLMs excel
at reasoning through the first example, they often
struggle significantly with the second, despite be-
ing explicitly instructed to reason based solely on
the given premises (Trichelair et al., 2023; Talmor
et al., 2020). This disparity suggests that when
faced with premises that contradict their parametric
knowledge, LLMs often fail to maintain consistent
reasoning performance.

The ability to reason effectively in scenarios with
potentially conflicting information is crucial for de-
ploying LLMs in real-world applications where
they must process information that may be novel,
unexpected, or even contradictory to their training
data (Wang et al., 2024). Consider the question: “If
the Earth had two suns, how would seasons differ
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from what we experience now?”. Such situations
arise frequently in everyday contexts (Pearl and
Mackenzie, 2018), and failure to reason in them
could lead to unreliable performance (Zhang et al.,
2024). Additionally, prior research also suggests
that evaluating reasoning in counterfactual situa-
tions may serve as a more robust assessment of a
model’s reasoning capabilities (Wu et al., 2024), as
standard reasoning tasks can potentially be hacked
through pattern matching. (Lewis and Mitchell,
2024; Wu et al., 2024; Liu et al., 2024; McCoy
et al., 2019; Kaushik et al., 2020)

While knowledge conflicts are actively studied in
language models, prior investigations have focused
on relatively simple tasks involving information
extraction or single-step reasoning (Example: Who
is the current president of the USA?) (Xie et al.,
2024b). These studies typically examine how mod-
els handle conflicts when retrieving or extracting
knowledge directly from their parameters or from
provided text. However, there has been limited
exploration of how knowledge conflicts affect com-
plex multi-step logical reasoning processes, which
is a capability essential for reliable Al systems
(Wang et al., 2024; Liu et al., 2024).

To address this gap, we introduce the Coun-
terLogic dataset, specifically designed to evaluate
complex logical reasoning in counterfactual scenar-
i0s. CounterLogic features approximately 1,800
examples spanning 9 logical schemas, carefully bal-
anced across knowledge-consistent (contexts that
align with parametric knowledge) and knowledge-
conflicting (counterfactual) scenarios. Through a
systematic evaluation of 11 state-of-the-art LLMs
on 6 different datasets (including CounterLogic),
we demonstrate a consistent pattern of performance
degradation (-27% on average) when reasoning
through counterfactual statements.

We introduce “Self-Segregation”, a metacogni-
tive intervention that involves identifying knowl-
edge conflicts before reasoning through a task.
Through a series of experiments, we show that this
simple strategy, used on top of existing methods
such as chain-of-thought (COT) prompting (Wei
et al., 2023), significantly boosts LLM reasoning
abilities, specifically in counterfactual scenarios.
Our results show that with Self-Segregation, the av-
erage accuracy gap between knowledge-consistent
and knowledge-violating scenarios drops by 16%
(from 27% to 11%), while the overall accuracy
improves by 7.5%.

Our findings suggest that the initial performance

disparity could stem from unresolved or ignored
knowledge conflicts rather than inherent limitations
in logical reasoning capabilities. Notably, these
performance patterns in LLMs mirror human cog-
nitive reasoning processes. By introducing self-
segregation strategies, we can potentially enable
LLMs to more effectively compartmentalize con-
flicting information and apply logical operations,
independent of their parametric factual knowledge
(Thomas et al., 2013). Our approach draws in-
spiration from human metacognitive strategies for
resolving ambiguities and knowledge conflicts, sug-
gesting a promising direction for enhancing logical
reasoning capabilities in language models.

Our contributions can be summarized as follows:

1. We introduce CounterLogic, a novel dataset
for evaluating logical reasoning in counter-
factual scenarios, and demonstrate that con-
temporary models consistently underperform
in these contexts despite their strong perfor-
mance otherwise.

2. We propose a simple yet effective metacogni-
tive awareness intervention, Self-Segregation,
that involves prompting models to explicitly
identify knowledge conflicts before reasoning.
Our method significantly improves reasoning
in knowledge-violating contexts, reducing the
performance gap by 16%.

3. Through a series of experiments, we study
and discuss how knowledge conflicts impair
reasoning in LLMs and how metacognitive in-
terventions can mitigate these effects, drawing
parallels to human cognitive processes.

2 Related Work
2.1 Logical Reasoning in LLMs

Recent advancements in LLMs have demonstrated
significant reasoning capabilities through tech-
niques like chain-of-thought prompting (Wei et al.,
2023) (guiding models to show intermediate rea-
soning steps), zero-shot reasoning (Kojima et al.,
2022) (reasoning without task-specific examples),
and tree-of-thought exploration (Shinn et al., 2023)
(exploring multiple reasoning paths). While these
methods have improved performance across vari-
ous benchmarks (Clark et al., 2020; Parmar et al.,
2024), studies comparing human and LLLM reason-
ing patterns reveal that models continue to exhibit
systematic errors mirroring human reasoning bi-
ases (Dasgupta et al., 2024; Eisape et al., 2024).



Research specifically examining logical reason-
ing limitations shows that models struggle with
operations involving negations, quantifiers, and
abstract variables (Dasgupta et al., 2024; Berto-
lazzi et al., 2024). Performance notably degrades
when reasoning involves counterfactual informa-
tion (Chen et al., 2025; Wu et al., 2024), with incon-
sistent handling of logically equivalent problems
presented in different formats (Estermann et al.,
2025). Approaches addressing these limitations in-
clude symbolic chain-of-thought (Xu et al., 2024a)
(integrating symbolic representations into reason-
ing steps), verification mechanisms (Vacareanu and
Ballesteros, 2024) (validating reasoning against
formal rules), and theory resolution frameworks
(Toroghi et al., 2024) (applying systematic proof
methods), all aimed at enhancing logical consis-
tency in complex scenarios.

2.2 Knowledge Conflicts and Counterfactual
Reasoning

LLMs encode substantial factual knowledge in
their parameters (Roberts et al., 2020; Petroni
et al., 2019), creating challenges when encounter-
ing conflicting information. Recent studies cate-
gorize these conflicts into context-memory, inter-
context, and intra-memory conflicts (Xu et al.,
2024b) based on where the conflicting informa-
tion originates. Larger models typically default to
parametric knowledge over conflicting contextual
evidence (Longpre et al., 2021), though this varies
based on evidence coherence and source reliability
(Wang et al., 2023).

Counterfactual reasoning presents significant
challenges, with models often performing poorly
on tasks involving hypothetical scenarios that con-
tradict established facts (Chen et al., 2025; Wei
et al., 2023). Performance on questions with coun-
terfactual premises drops significantly compared
to standard tasks, primarily due to conflicts be-
tween parametric knowledge and counterfactual
assertions (Lin et al., 2025). Mitigation strategies
include counterfactual data augmentation (Nee-
man et al., 2023) (training on synthetically altered
data), specialized prompting techniques (Xie et al.,
2024b), and distilled counterfactuals (Chen et al.,
2023b) (generating targeted examples that high-
light conflicts).

2.3 Metacognition, Belief Bias, and Human
Reasoning Parallels

Human reasoning exhibits well-documented cogni-
tive biases, including belief bias, where argument
validity judgments are influenced by conclusion be-
lievability rather than logical structure (Markovits
and Nantel, 1989). This bias intensifies with task
difficulty (Trippas et al., 2014) and creates an “il-
lusion of objectivity” (Kunda, 1990), where indi-
viduals believe their reasoning is unbiased despite
evidence to the contrary.

LLMs mirror these human cognitive patterns,
performing better when semantic content supports
logical inferences (Dasgupta et al., 2024) and rea-
soning more effectively about believable situations
compared to implausible ones (Macmillan-Scott
and Musolesi, 2024). Even advanced models ex-
hibit systematic errors paralleling human reason-
ing biases (Eisape et al., 2024), suggesting shared
underlying mechanisms despite the different archi-
tectures.

Metacognitive strategies in humans improve log-
ical reasoning by distinguishing between belief
evaluation and logical assessment (Douven et al.,
2018) —essentially separating “what I know” from
“what follows logically.” Similar capabilities are
emerging in LLMs, including uncertainty estima-
tion (Zhou et al., 2023b) (expressing confidence in
outputs), self-evaluation (Wang et al., 2024) (cri-
tiquing own reasoning), and belief identification
(Chen et al., 2023a) (recognizing when premises
conflict with knowledge). When confirmation bias
is modulated by confidence, systems become more
receptive to corrective information when confi-
dence is low (Rollwage and Fleming, 2021), sug-
gesting potential mechanisms for improving rea-
soning with conflicting knowledge in LLMs.

3 The CounterLogic Dataset

Despite significant advances in evaluating LL.Ms’
logical reasoning capabilities (Wei et al., 2023;
Schick and Schiitze, 2021; Kojima et al., 2022;
Brown et al., 2020; Zhou et al., 2023a; Patel et al.,
2024), existing benchmarks fail to systematically
disentangle logical validity from belief alignment
(whether premises align with parametric knowl-
edge).

As shown in Table 1, current benchmarks ei-
ther focus on logical structure without controlling
for knowledge conflicts (e.g., LogicBench (Parmar
et al., 2024), FOLIO (Han et al., 2024)) or em-
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Figure 2: (A) Dataset Preparation: The dataset features hierarchical entity triples (e.g., siameses C cats C felines) mapped
to 8 logical sentence templates across 9 inference schemas (see Appendix A). Each example is balanced across validity (50%
valid/invalid) and believability (50% aligned/conflicting), with ground truth annotations for both dimensions. The dataset
construction combines subset relationships with propositional logic forms (Modus Ponens, Hypothetical Syllogism, etc.) to
systematically evaluate knowledge-logic interactions. (B) Our Self-Segregate method: While the standard prompt simply
presents LLMs with a counterfactual context followed by related questions, our Self-Segregate approach first engages the model
metacognitively by eliciting its responses to knowledge-alignment questions. (This could be as simple as asking whether a given

statement is true).

phasize knowledge conflicts with simple reasoning
tasks (e.g., KNOT (Liu et al., 2024), Reasoning &
Reciting (Wu et al., 2024)). To address this gap, we
introduce CounterLogic, a benchmark dataset con-
taining 1,800 examples across 9 logical schemas
with an equal balance in knowledge-consistent and
counterfactual datapoints. The dataset systemat-
ically combines hierarchical entity relationships
with various levels of formal logical structures to
evaluate the interaction between knowledge and
reasoning in LLMs.

3.1 Dataset Construction

As illustrated in Figure 2, the CounterLogic dataset
was constructed through a four-stage process:

(1) Entity Perturbation: We begin with hi-
erarchical entity triples (a, b, ¢) representing strict
subset relationships: a C b C c. These include nat-
ural taxonomies such as siameses C cats C felines.

(2) Sentence Pair Generation: These enti-
ties are mapped to four sentence templates form-
ing complementary logical pairs S and -5 (e.g.,
“All {A} are {B}” and “Some {A} are not { B}”),
yielding diverse sentence pairs that serve as atomic
propositions. The complete set of triplets and sen-

tence templates is detailed in Appendix A.1.

To ensure systematic coverage, we enforce entity
relationship balance: 25% with correct hierarchical
relationship (e.g., siameses C cats), 25% with in-
verted relationship (e.g., cats C siameses), and 50%
with unrelated entity pairs. All four sentence-pair
templates are distributed evenly across examples.

(3) Logical Query Generation: Inspired by
LogicBench (Parmar et al., 2024), these sentence
pairs are then incorporated into formal logical struc-
tures according to the inference schemas such as
Modus Ponens (MP), Hypothetical Syllogism (HS),
Constructive Dilemma (CD), etc. (See Table 2 in
Appendix C). A template-based converter is used
to transform these sentences into logical structures.

(4) Natural Language Task Generation: We
create binary question-answer tasks with system-
atic variation across (1) Logical validity (whether
conclusions follow from premises) and (2) Knowl-
edge alignment (whether conclusions match para-
metric knowledge). In order to ensure the LLMs
are not simply answering questions via memorized
logical rules (Xie et al., 2024a; Wu et al., 2024) ,
we convert the logical queries to natural language
using GPT-4o0 (see Appendix A.4). We systemat-



Table 1: Comparison of logical reasoning benchmarks. CounterLogic uniquely combines multi-step reasoning with knowledge-
conflicting scenarios while maintaining balance in labels. This enables rigorous evaluation of how parametric knowledge affects
LLMs’ logical reasoning capabilities, addressing limitations in existing benchmarks that typically lack proper balance across
important evaluation dimensions. While the Syllogistic dataset contains knowledge conflicts data in a balanced manner, it
severely lacks natural language queries, diversity, and depth in logical rules (only syllogism).

Dataset Size # Reasoning Knowl. Balanced
Steps Conflict Labels
LogicBench (Parmar et al., 2024) 2,020 1~5 X X
FOLIO (Han et al., 2024) 1,435 0~7 X X
KNOT (Liu et al., 2024) 5,500 1~2 v X
Reasoning & Reciting - Deductive Logic (Wu et al., 2024) 81 0~7 v X
Syllogistic (Bertolazzi et al., 2024) 2,120 2 v v
CounterLogic (Ours) 1,800 1~5 v v

ically assign ground truth belief status using the
initial sentence beliefs (obtained through hierarchi-
cally valid triplets), and logical validity using the
rules described in Table 2. Additionally, for each
logical form, we construct both Valid (Instances
where the conclusion logically follows from the
premises) and Invalid Instances (where the logical
structure is violated by replacing the statements
in the conclusion with statements that cannot be
inferred from the premises) examples.

This construction allows for a controlled investi-
gation of reasoning performance in the presence or
absence of knowledge alignment.

4 Methodology

4.1 Research Questions

Our investigation focuses on three primary research
questions:

1. RQ1 How do LLMs perform on logical rea-
soning tasks in counterfactual scenarios, com-
pared to knowledge-consistent scenarios?

2. RQ2: Can prompt-based interventions that
modify how models approach reasoning tasks,
have any effect?

3. RQ3: What mechanisms might explain the
observed differences?

To address these questions, we conduct a series
of experiments across multiple reasoning tasks
(Section 4.4), models (Appendix, Section E), and
prompting strategies (Appendix, Section B). We
first establish baseline performance across 6 rea-
soning tasks to quantify the impact of knowledge
conflicts on reasoning (RQ1), in Section 5.1. We
then evaluate our most effective prompt-based in-
tervention (RQ2), “Self-Segregate”, in Section 5.2.
Finally, we discuss insights from our experiments
in Section 6 (RQ3).

4.2 Evaluation Methodology

We evaluate 11 state-of-the-art LLMs (listed in
Figure 3 and Appendix Section E) spanning dif-
ferent architectures, parameter scales, and training
paradigms. To ensure robust performance measure-
ments, we employ self-consistency checks through
multiple sampled outputs per datapoint (5 genera-
tions per example), and report their respective mean
and variance. This approach accounts for genera-
tion variability, as LLMs may produce inconsistent
results with similar queries (Bonagiri et al., 2024).

4.3 Self-Segregation

LLMs tend to process premises directly without ex-
plicitly considering whether these premises conflict
with their parametric knowledge (This can some-
times occur in extended COT reasoning, but our
method proves to be superior). Self-Segregate in-
troduces a metacognitive step that requires models
to first identify whether premises align with or con-
tradict their knowledge before performing logical
reasoning (illustrated in Figure 2B).

The method works in two distinct phases:

1. Knowledge Alignment Assessment: Mod-
els first examine the premises or conclusion
and explicitly state whether they align with or
contradict their parametric knowledge. This
creates an explicit awareness of a “boundary’
between the model’s factual knowledge and
the reasoning task.

il

2. Standard Reasoning Process: models pro-
ceed to evaluate the logical validity of the
argument based solely on the given premises.
We use COT as our standard prompt due to its
superior performance, and compare against it
in all of our results.



Our approach is inspired by human metacogni-
tive strategies for handling conflicting information
(i.e, when humans consciously recognize that infor-
mation contradicts their existing knowledge, they
can more effectively reason through it by temporar-
ily compartmentalizing that conflict) (Wang and
Zhao, 2024; Thomas et al., 2013).

4.4 Reasoning Datasets

Along with CounterLogic, we evaluate perfor-
mance across six other reasoning tasks, each de-
signed to assess specific aspects of logical reason-
ing under knowledge conflicts (see Table 3 in Ap-
pendix D). For each of the following tasks, we im-
plement a tailored version of our Self-Segregation
method. The following are the tasks:

Hierarchical Syllogisms: Derived from classi-
cal syllogistic reasoning and adapted from Berto-
lazzi et al. (2024)’s work, this task presents logi-
cally structured arguments where the conclusion
may conflict with world knowledge. Each ex-
ample contains two premises and a conclusion,
with models evaluating logical validity. For Self-
Segregation, models first assess the conclusion
statement in isolation for its alignment with para-
metric knowledge, then evaluate the full syllo-
gism’s logical validity(see Figure 2B).

KNOT: Adapted from the Knowledge Conflict
Resolution benchmark (Liu et al., 2024), this task
evaluates reasoning through explicit (KNOT-E) and
implicit (KNOT-I) conflict resolution. Each in-
stance contains a passage with counterfactual in-
formation, a question, and an answer. The Self-
Segregation implementation first presents the an-
swer in isolation for plausibility assessment, then
provides the full passage and question-answer pair
for contextual reasoning. This separation tests mod-
els’ ability to distinguish between prior knowledge
and contextual truth.

FOLIO: Using long-form deductive reason-
ing problems from FOLIO (Han et al., 2024), this
task requires evaluating whether conclusions logi-
cally follow from multi-step narratives. Our Self-
Segregation approach first presents the conclusion
for isolated plausibility judgment, then provides
the complete narrative for logical analysis.

LogicBench: This reasoning dataset (Parmar
et al., 2024) combines first-order, non-monotonic,
and propositional logic problems. It tests models’
ability to follow formal logical rules while overrid-
ing potentially conflicting parametric knowledge.
The Self-Segregation implementation presents

questions and answers without supporting context
for initial plausibility assessment, followed by com-
plete logical contexts for formal evaluation.

Reasoning and Reciting, Deductive Logic:
Adapted from (Wu et al., 2024) , this task evaluates
deductive logic over premise sets. Models must
determine whether claims logically follow from
premises, regardless of whether those premises con-
tradict physical knowledge. The Self-Segregation
implementation presents claims in isolation for
plausibility assessment before introducing the com-
plete premise set for logical evaluation. An exam-
ple presents non-physical premises about objects
floating forever, testing the ability to follow logical
rules despite contradicting physical knowledge.

CounterLogic: For our novel benchmark, de-
scribed in Section 3, we apply the same two-stage
reflection approach used in the Hierarchical Syllo-
gisms task, first assessing conclusion plausibility in
isolation before evaluating logical validity within
the full syllogistic context.

S5 Results and Analysis

Our experimental evaluation reveals consistent pat-
terns across all models and tasks, confirming that:
(1) LLMs struggle significantly when reasoning
through counterfactual premises and (2) metacog-
nitive awareness interventions via Self-Segregation
substantially improve performance in knowledge-
conflicting scenarios. We discuss it in detail in this
section (Figures 3 and 4 summarize the results, for
more detailed results in a table format, please see
Table 5 in Appendix F).

5.1 Knowledge Conflicts Significantly Impair
LLM Logical Reasoning

As shown in Figure 4, when evaluated on the rea-
soning tasks, all models demonstrate a substantial
performance gap between knowledge-consistent
and counterfactual scenarios. We find that this
holds even across various prompting strategies
like Zero-Shot, Few-Shot, and Chain-of-Thought
Prompting (more information in Appendix G).

Under the baseline condition, models achieve
considerably higher accuracy on knowledge-
consistent examples 96% (on average) compared
to knowledge-violating examples 69% on average,
with performance gaps of about 27% averaged
across models.

This pattern holds consistently across all the
models, indicating that the phenomenon is not spe-
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Figure 3: Accuracy comparision between the baseline setup and our metacognitive self-segregation setup across models.
The right bar (sky blue) for each model represents accuracy using standard prompts (ref), while the left bar (salmon) shows
accuracy using our Self-Segregate prompts (ref). Self-Segregate consistently improves performance across tasks, including
KNOT, LogicBench, FOLIO, Hierarchical Syllogisms, and Deductive Logic. All models were run using the OpenRouter API.

cific to particular models or training paradigms.
Notably, even the most capable models exhibit this
disparity, suggesting that knowledge-conflict inter-
ference represents a fundamental challenge in LLM
reasoning rather than merely a limitation of smaller
or less capable models. Models like Qwen-2-72B
show the highest accuracy difference of 47% in
the baseline setup, which then greatly improves in
the self-segregation setup bringing the gap down to
13%.

This gap appears despite explicit instructions to
reason based solely on given premises (see Ap-
pendix B), highlighting the pervasive nature of
parametric knowledge interference in logical rea-
soning tasks. Our findings on the CounterLogic
dataset further confirm this pattern, with an average
performance of 88% on knowledge-consistent ex-
amples, 85% on knowledge-violate examples and
an average performance gap of 3% on the baseline
condition (Figure 4).

5.2 Self-Segregation Dramatically Improves
both Counterfactual and Overall
Performance

Our Self-Segregation method (described in Sec-
tion 4.3) yields substantial improvements across
all evaluated models and datasets. As illustrated in
Figure 3, this approach consistently improves the
overall accuracy across most models and tasks.

Figure 3 presents this improvement across six
distinct reasoning tasks. The most dramatic gains
are observed on the Hierarchical Syllogisms task,
where Self-Segregation improves overall accuracy
by an average of 7.5%.

We observe that the self-segregation strategy was

more effective for datasets like Hierarchical Syl-
logisms, KNOT (Implicit and Explicit), and they
show the most improvement, while there was little
to no improvement on the FOLIO, emphasizing
the need for better conflict resolution strategies for
tasks that involve deep chains of reasoning (Han
etal., 2024) .

The results on our CounterLogic also follow the
same trend, with the overall accuracy performance
increasing by 5% on average. The performance
on knowledge-consistent examples rose to 93%
from 88%, and the performance on knowledge-
inconsistent examples to 90% from 85%.

Importantly, this intervention improves rea-
soning on knowledge-violating scenarios without
degrading performance on knowledge-consistent
ones. In fact, as shown in Figure 4, accuracy
on knowledge-consistent examples also improves
slightly under the metacognitive condition, suggest-
ing that explicit reflection on knowledge alignment
benefits logical reasoning more generally.

6 Discussion

Our findings reveal a fundamental tension in how
LLMs approach logical reasoning when faced with
information that contradicts their parametric knowl-
edge. The consistent performance gap observed
across models and tasks suggests this challenge is
intrinsic to current language model architectures
and training paradigms, rather than a limitation of
specific models.

This performance disparity echoes well-
documented phenomena in human reasoning.
Cognitive psychologists have long observed belief
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Figure 4: Accuracy comparison between knowledge-consistent and knowledge-violating examples across models. The
left panel in each subfigure shows results using ground-truth knowledge-alignment labels (Baseline), and the right panel shows
performance when models (Refer legend in Figure-3) use their own knowledge-alignment prediction (self-segregation). Blue
bars represent knowledge-consistent examples, while orange bars indicate knowledge-violating ones. The self-segregation
setup not only improves accuracy across both subsets but also significantly reduces the performance disparity between them,
demonstrating the effectiveness of metacognitive prompting in enhancing belief-robust reasoning.

bias effects, where humans judge argument validity
based on conclusion believability rather than
logical structure (Markovits and Nantel, 1989;
Lampinen et al., 2024). The parallel between
human and LLM reasoning biases suggests deeper
connections between the cognitive mechanisms
underlying both. This alignment in behavior also
highlights the potential of leveraging cognitive
theories to inform the design of more robust
and interpretable language model reasoning
frameworks. While humans can override this
bias through deliberate metacognitive effort, our
experiments demonstrate that LLMs similarly
benefit from prompted metacognitive approaches
(namely our Self-Segregate method).

The effectiveness of our metacognitive interven-
tion provides insight into how LLMs process con-
flicting information. By explicitly prompting mod-
els to identify knowledge conflicts before reason-
ing, we create a form of epistemic compartmental-
ization (Thomas et al., 2013), helping models dis-
tinguish between what they “know” from their pa-
rameters and what they must accept as given in the
current reasoning context. Our approach appears to
reduce interference between factual knowledge re-
trieval and logical operation application, allowing
models to maintain logical consistency even when
processing counterfactual premises. Our proposed
approach is a simple abstraction derived from a set
of extensive experiments, with meaningful insights.

7 Conclusion and Future Work

We demonstrated that LLMs struggle with logical
reasoning when premises contradict their paramet-
ric knowledge, with performance dropping by 35%
in counterfactual scenarios. Our key contribution is
the CounterLogic benchmark and the identification
of a simple yet effective metacognitive intervention
called Self-Segregation, that narrows this perfor-
mance gap to just 15%. By prompting models to
explicitly identify knowledge conflicts before rea-
soning, we hypothesize that this approach enables
more effective compartmentalization of conflicting
information without requiring model modifications.

Future work could (1) explore how knowledge
conflicts manifest within model representations,
(2) investigate applications of metacognitive tech-
niques in other reasoning domains, (3) extend this
evaluation to more complex, real-world scenar-
ios, where counterfactual thinking is necessary, (4)
Build on methods to either improve, or fundamen-
tally address issues involving parametric memory
clashes with reasoning performance, etc. By ad-
dressing this specific limitation in counterfactual
reasoning, our work contributes to building more
robust Al systems capable of reliable logical in-
ference even in contexts that conflict with their
training data.

8 Limitations

While our study provides valuable insights into
LLMs’ reasoning under knowledge conflicts, sev-



eral limitations should be noted. First, our Coun-
terLogic dataset, while diverse, cannot capture all
forms of complex logical reasoning or knowledge
conflicts that might arise in real-world applications.
The dataset focuses primarily on categorical syl-
logisms and propositional logic structures, which
represent only a subset but a fundamental part of
logical reasoning paradigms.

Second, our experiments were conducted on
a specific set of models available at the time of
study; newer models may exhibit different patterns
of knowledge interference or respond differently
to our proposed interventions. The rapid pace of
model development means that architectural inno-
vations might soon produce systems with intrinsi-
cally different approaches to handling counterfac-
tual information.

Third, the effectiveness of our interventions
may vary across different languages, cultures, and
knowledge domains, as parametric knowledge it-
self varies across these dimensions. Our evalua-
tion focused on English-language reasoning with
common-knowledge concepts; performance on spe-
cialized domains or other languages would require
further testing.

Fourth, while we draw parallels to human cog-
nition, the mechanisms of knowledge interference
in LLMs may differ fundamentally from human
reasoning processes. These parallels provide use-
ful conceptual frameworks but should not be inter-
preted as evidence of identical or robust cognitive
processes.

Finally, while we evaluate LLMs, we also use
them to synthetically generate natural language
queries, which may pose unnoticed errors, such
as inconsistencies or limitations from the LLMs
themselves being carried over.

Despite these limitations, our findings demon-
strate consistent and substantial improvements in
counterfactual reasoning across diverse models
and tasks, suggesting that the core insights about
metacognitive awareness and knowledge compart-
mentalization are likely to remain relevant even as
specific implementations evolve.

9 Ethics Statement

This research adheres to the ACL Ethics Policy and
addresses several important ethical considerations:

Research Integrity We prioritize transparency
and reproducibility throughout our work. All ex-
periments are documented with sufficient detail to

enable replication by other researchers. We clearly
identify the limitations of our methods and find-
ings in Section 8, acknowledging the boundaries of
our conclusions and where further investigation is
warranted.

Attribution and Contribution While we uti-
lized large language models as tools to assist with
certain aspects of writing and implementation, all
research ideas, experimental design, analysis of re-
sults, and scientific conclusions presented in this
paper are solely attributable to the authors. We
have properly credited all relevant prior work and
acknowledge the contributions of the research com-
munity upon which our work builds.

Data and Resource Considerations The Coun-
terLogic dataset was constructed using synthetic
data and template-based generation methods that
do not involve the collection of personally identifi-
able information or data from human subjects. Our
evaluation utilized commercially available large
language model APIs through standardized inter-
faces, ensuring fair comparison across systems.

Release of Materials We commit to releasing all
artifacts from this research upon acceptance, if not
done already, This includes:

* The complete CounterLogic dataset, includ-
ing all examples and annotations. (Already
has been provided via the anonymous GitHub
link).

* Reproducible evaluation code and scripts used
in our experiments. (Already provided via the
anonymous GitHub link).

* Implementation details of our Self-

Segregation method
* Prompt templates and model configurations

* Comprehensive documentation to facilitate
use by other researchers

Environmental Considerations We acknowl-
edge the computational resources required for our
experiments. To minimize environmental impact,
we designed our evaluation to be as efficient as
possible, reusing model instances where appropri-
ate and limiting the number of inference runs to
the minimum necessary for statistically significant
results.



Potential Applications and Impact The insights
and techniques presented in this paper aim to im-
prove the robustness of logical reasoning in Al
systems, particularly when handling counterfac-
tual scenarios. These improvements have poten-
tial benefits for various applications requiring re-
liable reasoning capabilities (including education,
scientific exploration, and decision support sys-
tems) while minimizing the risk of logical errors
stemming from knowledge conflicts.
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A CounterLogic Dataset Details
A.1 Hierarchical Entity Triples

The CounterLogic dataset uses the following hi-
erarchical entity triples, where each tuple (a, b, ¢)
denotes a strict subset relationship: a C b C c.

siameses cats felines
labradors  dogs canines

sedans cars vehicles

humans animals mortals

cruisers warships watercrafts
chickadees  birds winged_animals
boeings planes aircrafts

pines evergreens  trees

anguses cows mammals
daisies flowers plants

A.2 Sentence Templates

From each entity triplet, we generate sentence pairs
corresponding to one of four logical sentence tem-
plates of the form S and —.S, capturing contradic-
tory or complementary quantifier relations:

1. All {A] are {B}, Some {A} are not (B}
2. No {A} are {B}, Some {A} are {B)
3. Some {A} are (B}, No {A} are (B}
4. Some {A) are not (B}, All {A} are (B}

A.3 Dataset Statistics

The final CounterLogic dataset consists of 1,800
examples, with 200 instances for each of the 9
logical schemas listed in Table 2. To ensure a com-
prehensive and balanced design, four criteria were
enforced during dataset construction:

* Knowledge alignment Balance: Each logi-
cal schema contains 50% of examples where
the conclusion is knowledge-consistent under
human priors and 50% where it is not.

Validity Balance: Half the examples per
schema are logically valid, while the remain-
ing half intentionally violate the logical struc-
ture.

Entity Relationship Balance: 25% of exam-
ples involve an entity A that is a subset of
entity B (e.g., siameses C cats), 25% feature
B as a subset of A (e.g., cats C siameses), and
50% use unrelated entity pairs (e.g., pines and
dogs).
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* Sentence Template Balance: All eight
sentence-pair templates are applied evenly
across examples within each logical schema,
promoting lexical and syntactic diversity.

A.4 Prompt for Natural Language
Reformulation of Logical Structures

To prevent language models from relying on mem-
orized patterns of formal logic structures, we refor-
mulate logical premises and conclusions into natu-
ral language contexts and questions. Specifically,
we prompt GPT-40 to carry out this transforma-
tion. The model is instructed to rewrite the given
premise into a natural language context and the
conclusion into a straightforward question, with-
out preserving the surface structure of the original
logical form. The transformation ensures the re-
sulting question does not include meta-references
like “in this context,” and the phrasing is natural
and intuitive:

premise: [premise]

conclusion: [conclusion]

premise list: [premise list]

Make the premise into a context which is
like a natural language way of

writing the premises. Make
conclusion into a question.
context/questions shouldn’t be too
complicated but shouldn’t directly

be like premise/conclusion either.

The question must be asked normally

without stating things like "in this
context” or "with this information

The

”

premise list is only given for your
better understanding.

Reply ONLY with a json with two keys ’
context’ and ’question’

B Prompting Strategies

We evaluate three distinct prompting strategies
across all tasks:

1. Standard Condition: In this baseline condi-
tion, models receive direct questions with minimal
guidance, instructed to consider only the logical
validity of arguments regardless of premise believ-
ability:

Based on the following premises,
determine if the conclusion
logically follows. Consider only
the logical validity based on the
given premises, regardless of
whether the premises themselves
are factually true.

Premises:
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1. [Premise 1]
2. [Premise 2]

Conclusion: [Conclusion]

Does the conclusion logically follow
from the premises? Answer with
"Yes"” or "No" and explain your
reasoning step by step.

2. Metacognitive Condition: In this condition,
we introduce a preliminary reflection step (asking
the model what it thinks about a statement) before
the reasoning task.

Prompt 1:

Is the following statement factually
correct?

statement: [Conclusion]

Answer only with Yes or No.
Prompt 2(in the same context):

Now, based on the following premises,

determine if the conclusion
logically follows. Consider only the
logical validity based on the

given premises, regardless of whether
the premises themselves are
factually true.

Premises:
1. [Premise 1]
2. [Premise 2]

Conclusion: [Conclusion]

Does the conclusion logically follow
from the premises? Answer with
"Yes"” or "No" and explain your
reasoning step by step.

The above is the general structure of our prompt-
ing method. The prompts are modified according
to the dataset we evaluate.

C Logical Inference Schemas

The CounterLogic dataset uses various formal
propositional logic inference schemas to generate
reasoning examples, as detailed in Table 2.

D Task-Specific Reflection Approaches

Our metacognitive intervention is implemented
with task-specific adaptations to ensure appropriate
reflection across different reasoning formats. Ta-
ble 3 details how we adapted the reflective prompt-
ing strategy for each task type.



Table 2: Formal propositional logic inference schemas used in the CounterLogic dataset. Each row presents a canonical logical
inference rule and its structure in propositional form. Believability is achieved when both the premises and the conclusion are
true independently. Invalid datapoints are created by replacing conclusion statements (e.g., p, ¢, ) with unrelated ones (e.g., p’,
q’, r') making the logical rule invalid.

Name | Propositional Logic Form

MP | ((p—q)Ap)Fq

MT | ((p—q)A—g)F—p

HS | (p—gNA(g—=7)F(p—T)

DS | ((pVg)A-p)tgq

CD p=gANr—=s)ApVr)E(qVs)

DD | (p—= @) A(r—s)A(=gV=s)) bk (mpV-r)
BD | (p—=a)A(r—s)A(pV—s))k(qgV-r)
CT |pk(qVp)

ML | (p—=qF(-pVy

Table 3: Task-Specific Implementation of Two-Stage Reflection Approach

This table outlines how our reflective prompting strategy is applied across different task types. Initial Reflection Input refers to
the isolated information presented for knowledge alignment assessment. Reasoning Input shows the complete information
provided in the second stage for logical assessment. This separation helps models distinguish between plausibility assessment
and formal logical analysis.

Task Dataset Content Initial Reflection Input | Reasoning Input
Syllogisms Two premises + conclu- | Conclusion statement Full syllogism

sion
KNOT Passage + Q/A pair Answer without passage | Full passage + Q/A
FOLIO Narrative + claim Isolated claim Complete narrative
LogicBench Context + Q/A Q/A without context Full context + Q/A
Arithmetic Base equation Equation without base Base-specified equation
Deductive Logic | Premise set + claim Isolated claim Full premise set

E Models

In our study, we evaluated 11 state-of-the-art large
language models from various organizations, span-
ning different architectures, parameter scales, and
training paradigms. Below we provide details
about each model, including their version, size,
and key characteristics:

E.1 Model Access

All models were accessed through the OpenRouter
API to ensure consistent evaluation conditions.
This approach allowed us to standardize the infer-
ence parameters across different model providers,
including temperature settings (0), top-p (0.95),
and maximum token length (4096 tokens).

E.2 Model Selection Criteria
We selected these models based on the following

criteria:

1. State-of-the-art performance: All selected
models represent the cutting edge of LLM
development at the time of our study.
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2. Architectural diversity: We included models
with different architectural designs to exam-
ine whether the observed patterns generalize
across various model architectures.

3. Parameter scale variation: The selection
spans from relatively smaller models (7B pa-
rameters) to much larger ones (72B+ parame-
ters) to investigate how model size correlates
with counterfactual reasoning abilities.

4. Training paradigm diversity: The models
employ various training approaches, includ-
ing different pretraining datasets, fine-tuning
strategies, and alignment techniques.

E.3 Model Specifications
E.3.1 OpenAl Models

GPT-40, GPT-40-mini and o1 represents the Ope-
nAI’s multimodal model designed for both text and
imageprocessing. GPT-4o is the standard non rea-
soning model provided by OpenAl. GPT-40 mini
is a lightweight and faster version of 40. ol is
the reasoning model provided by openAl that uses



Table 4: Details of the evaluated models

Model Developer Parameters Release Date
GPT-4o0 OpenAl Unknown May 2024
GPT-40-mini OpenAl Unknown July 2024
Ol-preview OpenAl Unknown September 2024
Gemini-Flash-1.5 Google DeepMind Unknown May 2024
Llama-3.3-70B Meta Al 70B December 2024
Llama-3.1-70B Meta Al 70B July 2024
Llama-3.1-8B Meta Al 8B July 2024
Qwen-2.5-72B Alibaba 72B September 2024
Qwen-2.5-7B Alibaba 7B September 2024
DeepSeek-V3 DeepSeek Al 671B Jan 2025
Deepseek-R1-distill-Llama DeepSeek Al 671B January 2025

specialized token to internally do CoT before an-
swering.

E.3.2 Google Models

Gemini-Flash-1.5 is the lightweight version of
Google’s Gemini 1.5 model family, optimized for
quick responses while maintaining strong reason-
ing capabilities.

E.3.3 Meta AI Models

Llama-3.3-70B, Llama-3.1-70B, and Llama-3.1-
8B represent Meta AI’s open-source LLM efforts.
The 3.1 series is an upgrade to the Llama-3 models,
with enhanced instruction-following and reasoning
capabilities. We include both larger (70B) and
smaller (§B) parameter variants to examine scaling
effects.

E.3.4 Alibaba Models

Qwen-2.5-72B and Qwen-2.5-7B are Alibaba’s
latest generation language models, known for their
strong performance across various benchmarks,
particularly in multilingual reasoning tasks.

E.3.5 DeepSeek Models

DeepSeek-V3 is a 671B parameter model devel-
oped by DeepSeek Al, designed specifically for
dialogue applications with strong reasoning capa-
bilities.

DeepSeek-R1-Distill-Llama is reasoning model
that is finetuned version of DeepSeek-R1(671b)
using the outputs of Llama-3.3-70b-instruct model.

E.4 Model Inference Parameters

For all evaluations, we used consistent inference
parameters across models. We use openRouter for
all the non OpenAl models and OpenAl API for
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the 3 openAl models. All the models that support
system prompts have standard prompt asking for
instruction following.

E.5 Cost of the Evaluations

Overall 83.2$ were spend on openRouter for all
non-OpenAl models across all tasks.

About 2000$ of OpenAl credits were used for run-
ning the evaluation, most of which was used by the
ol-preview model.

F Full Results

Our detailed results for the Figure 3 can be found
in the Table-5

G Ablation Studies

G.1 Comparison of Prompting Strategies

Figure 5 presents an ablation study evaluating
model performance under three prompting strate-
gies: zero-shot, few-shot, and chain-of-thought
(CoT) across three belief consistency conditions;
consistent, violate, and random gibberish. Here ran-
dom gibberish datapoints are obtained by replacing
entities in consistent and violate scenarios with
random strings (such as ’cat’ with 'nsjf’). Consis-
tent and Violate datapoints are from the Syllogistic
Dataset (Bertolazzi et al., 2024).

Across all models, We see that Consistent dat-
apoints perform better than gibberish datapoints
which perform better than violate datapoints, high-
lighting the reliance of model on its internal knowl-
edge and inability to reason purely based on logical
rules. CoT prompting consistently improves accu-
racy without altering the general trend observed in
belief sensitivity. Interestingly, few-shot prompting



Model Performance by Prompting Method and Category

Valid Correct Rate
°

H

m= cot - Consistent
== cot - random_gibberish

= cot - Violate

= few-shot - Consistent

= few-shot - random_gibberish
= few-shot - Violate

m= zero-shot - Consistent

m zero-shot - random_gibberish
mzero-shot - Violate

Figure 5: Abalation study comparing the various prompting strategies showing that CoT always outperforms zero-shot but
few-shot fails to do so in some models for the Syllogistic dataset.

Models Explicit Implicit Folio Hierarchical Deductive Counterlogic
Normal Baseline Normal Baseline Normal Baseline Normal Baseline Normal Baseline Normal Baseline
Large models
meta-llama/llama-3.3-70b-instruct 75.7 63.1 39.6 35.0 78.7 77.6 98.1 80.9 85.2 85.7 93.1 87.8
meta-llama/llama-3.1-70b-instruct 69.9 69.9 384 375 78.6 75.6 95.3 79.0 80.5 74.6 92.3 91.3
google/gemini-flash-1.5 67.3 54.9 34.6 30.2 78.7 76.2 98.9 86.7 76.3 71.3 92.5 91.8
qwen/qwen-2.5-72b-instruct 60.2 60.0 334 32.8 86.7 87.6 87.9 72.9 82.7 80.2 93.8 87.7
deepseek/deepseek-chat 71.9 71.2 38.0 37.5 80.7 80.8 91.0 86.7 88.5 87.2 90.9 823
gpt-4o 67.9 68.0 322 324 84.7 77.5 99.7 86.8 88.1 88.9 88.8 80.5
Small models
meta-llama/llama-3.1-8b-instruct 65.8 522 50.3 39.3 76.7 71.7 84.1 95.5 45.8 45.5 91.3 79.7
qwen/qwen-2.5-7b-instruct 48.8 50.1 32.8 31.2 80.9 83.0 68.6 58.0 68.7 72.4 90.6 824
gpt-4o-mini 66.8 66.7 32.5 30.8 75.2 76.2 72.6 69.1 78.2 80.7 84.9 80.5
Reasoning models
deepseek/deepseek-r1-distill-llama-70b 62.2 63.2 34.6 349 84.5 86.7 95.9 98.0 93.8 93.2 90.6 92.4
ol-preview 73.6 74.6 50.8 514 81.7 82.5 96.8 95.5 93.0 93.8 94.9 94.0

Table 5: Model performance (Normal vs. Baseline) across datasets.

does not universally help: OpenAl models (e.g.,
gpt-4o0-mini) actually show degraded performance
in few-shot settings across all belief types, suggest-
ing potential sensitivity to in-context demonstra-
tions or prompt formatting. In contrast, most other
models maintain or slightly improve their perfor-
mance under few-shot

G.2 Perturbing with Model-Generated
Evidence

To evaluate whether language models reason purely
based on logical structure or are influenced by
surface-level content, we perform an experiment
involving model-generated evidence. Specifically,
we prompt the models to generate evidences for a
given conclusions and premises: one that supports
the conclusion and one that neagtes it. The model
is given complete freedom in how it constructs this
evidence, encouraging creativity and variability in
content. This is adapted from (Xie et al., 2024b)
We then construct a separate task: given a

premise, above generated evidence, and a conclu-
sion, we ask whether the conclusion follows from
the premise purely logically. The correct answer
is determined solely based on the logical relation
between the premise and conclusion, independent
of the evidence. However, our results reveal a clear
pattern: models show an increase in accuracy for
logically valid datapoints when the supporting ev-
idence aligns with the conclusion, and a drop in
accuracy when the evidence contradicts it. This
behavior suggests that models are not performing
strict logical reasoning, but are instead heavily in-
fluenced by the factuality of premises and conclu-
sions, even when it is explicitly stated to be po-
tentially fabricated. This indicates a reliance on
heuristic signals rather than formal logical infer-
ence.
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