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Abstract

The planning of how to synthesize molecules, also known as retrosynthesis, has been a
growing focus of the machine learning and chemistry communities in recent years. Despite
the appearance of steady progress, we argue that imperfect benchmarks and inconsistent
comparisons mask systematic shortcomings of existing techniques. To remedy this, we present
a benchmarking library called SYNTHESEUS which promotes best practice by default, enabling
consistent meaningful evaluation of single-step and multi-step retrosynthesis algorithms.
We use SYNTHESEUS to re-evaluate a number of previous retrosynthesis algorithms, and
find that the ranking of state-of-the-art models changes when evaluated carefully. We end
with guidance for future works in this area.
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1 Introduction

Over the past five years, the use of machine learning, and generative models in particular,
has led to renewed interest in the automated computational design of novel molecules (Segler
et al., 2017; Gémez-Bombarelli et al., 2018; Meyers et al., 2021; Maziarz et al., 2022). Al-
though such approaches can help to discover compounds with the desired property profiles
more efficiently, most existing methods do not explicitly account for synthesizability, and
therefore often output molecules which are hard to synthesize in a wet-lab (Klebe, 2009). This
motivates the development of fast and reliable computer-aided synthesis planning (CASP)
algorithms which check for synthesizability by explicitly designing synthesis routes for an
input molecule (Strieth-Kalthoff et al., 2020), also known as retrosynthesis.

Retrosynthesis works by recursively decomposing a target molecule into increasingly
simpler molecules using formally reversed chemical reactions, until a set of purchasable or
known building block molecules is found. Starting with the building blocks, the reactions
in the forward direction provide a recipe of how to synthesize the target. Most work in the
area has focused on studying these two components, single-step retrosynthesis models and
multi-step planning algorithms, independently. Despite the recent rise in large generalist
models such as GPT-4 (Achiam et al., 2023), in scientific domains these approaches fall
short of specialized ones (Al4Science and Quantum, 2023). Currently, all practically useful
algorithms are explicitly designed to target single-step retrosynthesis and multi-step planning
without relying on transfer from highly disparate tasks or domains.
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In single-step retrosynthesis, models are given a molecule and output reactions which
produce that molecule in one step (Segler and Waller, 2017; Coley et al., 2017; Liu et al.,
2017; Dai et al., 2019; Tetko et al., 2020; Yan et al., 2022; Wang et al., 2023). Recent
work in this area has generally focused on training neural networks to predict reactions
extracted from the scientific literature or patents (Lowe, 2012; Zhong et al., 2023b). In
multi-step planning, given a target molecule, a set of purchasable molecules, and a single-step
retrosynthesis model, the goal is to produce complete synthesis routes. This is challenging
as the search space is extremely large compared to the number of solutions. Recent work
in this area has used Monte Carlo Tree Search (MCTS), Reinforcement Learning (RL), or
heuristic-guided search algorithms, to selectively explore a tree of possible reactions from
the starting molecule (Segler et al., 2018; Coley et al., 2019; Schwaller et al., 2020; Chen
et al., 2020; Xie et al., 2022; Tripp et al., 2022; Liu et al., 2023; Tripp et al., 2023).

In this work, we take a closer look at the commonly used metrics for single and multi-step
retrosynthesis. First, it is not clear how metrics used when benchmarking single-step and multi-
step in isolation should be interpreted in the context of an end-to-end retrosynthesis pipeline.
Second, model comparison and metrics use in prior work has been inconsistent. The goal of this
paper is to specify best practices for evaluating retrosynthesis algorithms and perform a rigor-
ous re-evaluation and analysis of prior work. To facilitate this, we developed a python package
called SYNTHESEUS which allows researchers to evaluate their approaches in a consistent way.

2 Pitfalls and Best Practice for Retrosynthesis Evaluation

Evaluation in retrosynthesis is largely constrained by two realities. First, actually performing
synthesis in the lab is costly, time-consuming, and requires significant expertise; it is therefore
infeasible for most researchers who work on algorithm development, and should not be a
requirement, even though experimental validation is clearly important. Second, because
of the division into single-step and multi-step, most works seek to evaluate one part of
the retrosynthesis pipeline in isolation rather than holistically, while the key to real-world
adoption lies in end-to-end performance. Keeping this in mind, in this section we survey the
merits and shortcomings of existing evaluation practices for single-step models and multi-step
search algorithms.

2.1 Single-Step Models

Single-step retrosynthesis models have several functions in CASP programs: (1) defining
which reactions are feasible ways of obtaining a given molecule, effectively defining the
search environment; and (2) ranking or otherwise expressing preference over these reactions,
effectively acting as a policy or heuristic to guide the search. Most single-step retrosynthesis
models output a list of reactions, and are trained using supervised learning to output reactions
which were used in real synthesis routes and furthermore to rank these reactions highly. The
most common evaluation strategy is to evaluate the top-k accuracy on a held-out test set,
i.e. the fraction of molecules where the reaction which occurred in the dataset is ranked
in the first k£ outputs (Segler and Waller, 2017; Liu et al., 2017; Coley et al., 2017). This
parallels evaluation commonly used in computer vision (Deng et al., 2009; Krizhevsky et al.,
2017). In this section, we explain how this evaluation metric does not fully measure the
utility of single-step models in CASP programs, and how subtle differences in evaluation
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have distorted the numbers reported in prior works. We suggest best practice for each of
these points.

Pitfall S1: measuring recall rather than precision By measuring how often reactions
from the dataset occur in the model outputs, top-k accuracy essentially tests the model’s
ability to recall the dataset. Unless & = 1 and the top-1 accuracy is nearly 100%, a multi-step
search algorithm using this single-step model will almost certainly use reactions not contained
in the dataset for planning. If these reactions have low quality or feasibility then routes using
them will not be useful. On the other hand, in many cases there are several possible ways
to make a particular molecule. Therefore, as previously argued by Schwaller et al. (2020),
top-k precision of a single-step model (what fraction of the top k reactions are feasible) is
arguably equally or more important than recall for multi-step search. Unfortunately, without
an expert chemist or a wet-lab, precision is hard to measure. Nonetheless, this suggests that
models with a higher top-k accuracy are not necessarily more useful in CASP programs.
Best practice: Although it is not clear how this can be done, we believe authors should
strive to evaluate the precision of their models, at the very least through a visual check
of several examples. Some prior works use round-trip accuracy using a forward reaction
model (also referred to as back-translation) to measure feasibility of reactions that are not
necessarily ground-truth (Schwaller et al., 2019; Chen and Jung, 2021). However, we note
the inconsistent use of the term “round-trip accuracy” in prior work: Chen and Jung (2021)
compute it in a top-k fashion where at least one of the top-k results has to round-trip in order
for the prediction to count as successful, which does not measure precision; in (Schwaller
et al., 2020) this metric is called coverage. Round-trip accuracy also relies on a fixed forward
model, which is usually only trained on real reactions (i.e. is given sets of reactants that
actually react as input) without the presence of negative data; it is unclear whether such a
model can be used to evaluate reaction feasibility more broadly. In summary, while the best
way to evaluate model precision is not clear, we think this needs more attention and thought
from the community.

Best practice S2: use consistent and realistic post-processing Most prior works
perform some amount of post-processing of model outputs when measuring accuracy. Un-
fortunately, this has not been done consistently by previous papers, distorting comparisons
between methods. In general, the evaluation post-processing should match the post-processing
that would be performed if the model was used in a CASP program. We identify several
instances of this below and suggest best practice.

e Invalid outputs: some models can output invalid molecules (e.g. a syntactically invalid
SMILES string) (Irwin et al., 2022). When computing top-k accuracy, some prior works
include invalid molecules in the top-k, whereas other works filter them and consider the
top-k wvalid molecules. Because the validity of molecules is generally easy to check, a
well-engineered CASP program would discard invalid molecules instead of considering
them during search. Therefore, we believe best practice should be to only consider valid
molecules when computing top-k accuracy.

e Duplicate outputs: some models can produce the same result (i.e. same set of reac-
tants) multiple times. Clearly, a well-engineered CASP program would remove duplicate
reactions, because they are redundant for search. However, this has not been done
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consistently in prior work. For example, we found that the published top-5 accuracy
of GLN (Dai et al., 2019) on USPTO-50K can be increased by as much as 5.8% by
applying simple deduplication. Therefore, we think best practice is to measure accuracy
after deduplicating the outputs.

e Stereochemistry: in general, the stereochemistry of chiral molecules is important
for chemical reactivity; for this reason, many prior works require an exact match of
stereochemistry in order for a prediction to count as correct. In popular datasets like
USPTO (Schneider et al., 2016) stereochemistry is often unlabelled or mislabelled, which
motivated the authors of LocalRetro (Chen and Jung, 2021) to measure a relaxed notion of
accuracy where a prediction can be deemed correct even if its stereochemistry is different
to the dataset. However, this practice was not applied to baselines LocalRetro was com-
pared to, and subsequent authors copied the result from (Chen and Jung, 2021) unaware
that it uses a different definition of success. In our re-evaluation we found that using a
relaxed comparison significantly boosted the reported accuracy of LocalRetro on USPTO-
50K (e.g. +1.3% top-1 and +2.6% top-50); same is true for RetroKNN (Xie et al., 2023a)
which built upon LocalRetro and re-used their evaluation code. While some datasets
like USPTO-50K indeed contain chirality errors, real-world CASP programs should not
discard it; we therefore believe that best practice is to report the standard exact match.

Best practice S3: report inference time In contemporary ML works, it is common
to give little attention to inference time, and focus on pushing the quantitative model
performance. However, in retrosynthesis prediction, the purpose of a single-step model is
to act as an environment during multi-step search. In practice, having a drastically faster
single-step model can translate to doing a much more extensive search, thus single-step model
speed is directly tied to quantitative performance downstream. Due to that, we believe future
research should give more attention to accurately reporting inference speed, reasoning in
terms of a speed-accuracy Pareto front rather than accuracy alone. At the very least, we
believe best practice is to report inference time in addition to accuracy.

Best practice S4: focus on prediction with unknown reaction type Most single-step
works using USPTO report two sets of metrics: one for when the reaction type is not known,
and another one for when the reaction type is given as auxiliary input; a practice started
by (Liu et al., 2017). The rationale for the latter usually involves an interactive setting
where a chemist may prefer one reaction type over another. In the context of multi-step
search this information would not be available, and it is unlikely that a given reaction type is
universally preferred across the entire search tree. In any case, none of the popular multi-step
search algorithms add reactions conditioned on a particular reaction type, so this “conditional
reaction prediction” would not be used by existing approaches. Thus, our recommendation
is for researchers to focus on the “reaction type unknown” setting, as this is the one most
directly applicable to multi-step search.

Best practice S5: avoid data leakage through atom mappings Some results on
USPTO-50K were later found to be flawed due to unexpected behaviour of rdkit canonical-
ization after removing the atom mapping from test molecules (Yan et al., 2020; Gao et al.,
2022). While this problem is known to many practitioners, we mention it for completeness.
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To avoid this pitfall, the input molecules should be provided to the model with the atom
mapping information removed, and they have to be re-canonicalized after said removal.

2.2 Multi-Step Search

The role of a multi-step search algorithm is to use a single-step model, a set of purchasable
molecules, and optionally some heuristic functions, in order to find synthesis routes. Most
prior works evaluate multi-step search algorithms by reporting the fraction of test molecules
solved in a given time window, where time is often measured with the number of calls to the
reaction model. As in the previous section, here we explain the pitfalls and abuses of this
metric and suggest best practice going forward.

Pitfall M1: changing the single-step model Many algorithms use single-step reaction
models not only to define the search environment, but also use the rankings or probabilities
from a single-step model as a policy, cost function, or to otherwise guide the search (Segler
et al., 2018; Kishimoto et al., 2019; Chen et al., 2020). Naturally this has led some works to
modify the single-step model in order to improve search performance (Kim et al., 2021; Yu
et al., 2022). These modifications not only change the relative rankings, but also the set of pro-
duced reactions. We see two pitfalls with the way this has been used in practice. First, unless
the single-step model is separately validated, it is not clear whether it still outputs realistic
reactions: for example, a change in the solution rate could just be the result of new unrealistic
reactions being outputted by the model. Second, even disregarding model quality, comparing
search algorithms with different single-step models is essentially comparing two algorithms in
different environments, which is not a meaningful comparison. We think that best practice
in this aspect should be training a policy model to re-rank the top-k outputs of a fixed
single-step model without changing the set of feasible reactions. This allows for meaningful
improvement while still keeping the same accuracy guarantees and comparability of using the
original single-step model. We note that this strategy was recently used by Liu et al. (2023).

Pitfall M2: using search success rate to compare single-step models Some
works (Hassen et al., 2022; Torren-Peraire et al., 2023) run search using various single-step
models and use the success of such search to rank the models themselves. While we agree
that single-step models should be benchmarked as part of search, inferring that a model
is better solely because it allows for finding more routes can lead to flawed conclusions: an
overly permissive single-step model may yield many routes simply because it lets search make
unrealistic retrosynthetic steps, as demonstrated in the baseline experiments in Segler et al.
(2018). Instead, success rate should be treated as an initial metric; a final determination
of whether one end-to-end retrosynthesis pipeline is better than another is only possible if
the quality of routes found is properly assessed. Outside of actually running synthesis, this
could also be achieved using a reaction feasibility model; however, training such models in
a generalizable way is so far an underexplored research direction.

Best practice M3: carefully choose how search experiments are capped if varying
the single-step model Existing works differ in how search experiments are limited: some
use number of calls to the reaction model (Tripp et al., 2022), while others combine this with
a wall-clock time limit (Hassen et al., 2022). Capping the number of model calls is a reliable
choice if the single-step model is kept fixed; however, varying the single-step model can lead
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to some models being allocated vastly more resources (e.g. time) than others (Torren-Peraire
et al., 2023). This may be justified if one believes the model speed is subject to change, and
that perhaps all compared models can be optimized to eventually take a similar amount of
time per call, but in the absence of such belief we recommend limiting search using a measure
that treats the algorithm as a black-box (e.g. wall-clock time or memory consumption), as
such approach also more directly reflects downstream use in CASP systems.

Best practice M4: cache calls to the reaction model If the same molecule is encoun-
tered twice during search, a naive implementation will call the reaction model twice. As
calling the reaction model is expensive, a well-engineered CASP system would clearly cache
the outputs of the reaction model to avoid duplicate computation. Therefore, we believe it is
best practice to use a cache for the single-step model when evaluating multi-step algorithms.
This may sound like a minor implementation detail, but it actually has a significant impact
on the evaluation: often large sub-trees can occur in multiple places during search; without
a cache, expanding each occurrence of these subtrees will count against an algorithm’s time
budget, whereas with a cache these expansions are effectively free (Tripp et al., 2022).

Best practice M5: evaluate the diversity of proposed routes While previous works
emphasize finding a single synthesis route quickly, because outputs of CASP programs may
not work in the wet lab it is preferable to return multiple routes, and that these routes be
diverse. Put another way, once an algorithm is able to find a single route, it is desirable to
evaluate its ability to find additional ones which differ from the one already found. There
are many ways to measure diversity, but we think that a good diversity metric must be
monotonic with respect to input routes (otherwise algorithms could be penalized for finding
more routes). One such metric is the packing number, also called #Circles (Xie et al., 2023b),
which can be instantiated as the number of synthesis routes with no overlapping reactions.

Best practice M6: quality assessment by chemists Finally, we recommend practi-
tioners perform qualitative assessment of the discovered routes by expert chemists, similarly
to Segler et al. (2018). This is closer to experimental validation than commonly used metrics,
and has the potential to catch many pitfalls, including (but not limited to) most of those
described above. Additionally, it can capture poor synthesis strategies e.g. repetitions of
similar steps, redundant (de)protection chemistry, or poor choice of linear vs convergent
synthesis routes, which are difficult to spot with computational metrics.

3 Synthesesus

To encourage and promote the principles and practices discussed in Section 2, we built a
benchmarking library called SYNTHESEUS. SYNTHESEUS is designed to be a platform for
researchers developing methods for retrosynthesis, rather than a specific set of models or
tasks. Currently, there is no generic package for retrosynthesis evaluation, forcing researchers
to either write evaluation code themselves (which can be subtly inconsistent with prior work)
or directly copy code from prior works (which have not followed the best practices from
Section 2). SYNTHESEUS provides a working end-to-end retrosynthesis pipeline which is
modular and extensible for both novel single-step models and novel multi-step search algo-
rithms; this allows researchers to plug their methods into a well-tested evaluation framework
which implements best practice by default. We highlight key features of SYNTHESEUS in
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Appendix A, but refer the reader to github.com/microsoft /syntheseus for an in-depth look
into its API. We discuss related work in Appendix C.

4 Experiments: re-evaluation of existing methods

We use SYNTHESEUS to re-evaluate many existing single-step models in conjunction with
popular search algorithms, providing a holistic view of the existing methods, and in many
instances correcting the numbers from the literature. We did not re-implement any of the
models, and used open-source codebases wrapped into SYNTHESEUS’s single-step model
interface, demonstrating its flexibility. Crucially, all results in this paper were produced by
our evaluation framework, which ensures a fair comparison immune to many issues discussed
in Section 2. We present a summary of the results below, deferring extended plots and
experimental details to Appendix B. However, we caution the reader not to treat these results
as a final recommendation; as discussed in Section 2, existing metrics provide a useful but
incomplete view of the performance of single-step models and search algorithms.

4.1 Single-Step

Datasets As a starting point we use the USPTO-50K dataset (Schneider et al., 2016).
However, USPTO-50K is a small dataset, and it may not be representative of the full data
distribution. Thus, we also use the proprietary Pistachio dataset (Mayfield et al., 2017), and
evaluate out-of-distribution generalization of the model checkpoints trained on USPTO-50K.

Models We re-evaluate established single-step models where either the code is publicly
available (Chemformer (Irwin et al., 2022), GLN (Dai et al., 2019), Graph2Edits (Zhong et al.,
2023a), LocalRetro (Chen and Jung, 2021), MEGAN (Sacha et al., 2021), MHNreact (Seidl
et al., 2021) and RootAligned (Zhong et al., 2022)) or we were able to obtain it from the
authors (RetroKNN (Xie et al., 2023a)). For all models we used the provided checkpoint if one
using the right data split was available, and trained a new model using the original training
code otherwise. We used the original implementations adapted to our shared interface.

Results We present top-5 accuracy results on both datasets in Figure 1 (see Appendix B for
other values of k as well as reasons for why we believe k = 5 is a good middle-ground). First,
we note that two of the models (RootAligned, Chemformer) predict the reactants SMILES
from scratch using a Transformer decoder (Vaswani et al., 2017), while the other models
predict the graph rewrite to apply to the product. Across datasets and metrics, models of
the former type tend to be slower, and while they show good performance in top-1 accuracy,
they are surpassed by the graph-transformation-based models for higher k. We hypothesize
that, due to more explicit grounding in the set of transformations occurring in training
data, transformation-based models tend to produce a more complete coverage of the data
distribution. Second, many of the USPTO-50K results we report are better than the numbers
from the literature (see Table 1 in Appendix B for a detailed breakdown), especially in terms
of top-k accuracy for k > 1, which is affected by deduplication. This also changes some of
the model rankings, e.g. LocalRetro was originally reported to have a better top-1 accuracy
than GLN, but we find that to not be the case. Surprisingly, model ranking on USPTO-50K
transfers to Pistachio quite well, although all results are substantially degraded, e.g. in terms
of top-50 accuracy all models still fall below 55%, compared to nearly 100% on USPTO.
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Figure 1: Trade-off between top-5 accuracy and speed. Circle area is proportional to number

of parameters; color denotes whether a model uses reaction templates (blue), gener-
ates a sequence of graph edits (green) or produces the output SMILES from scratch
(red). Dashed gray line shows the Pareto front. We show in-distribution results
on USPTO-50K (left) and out-of-distribution generalization on Pistachio (right).

4.2 Multi-step

Setup We followed one of the experimental setups from Tripp et al. (2022) and used the
190 target molecules from the Retro* Hard set (Chen et al., 2020). We combined each of the
seven single-step models with two search algorithms: an MCTS variant and Retro* (Chen
et al., 2020). All runs were limited to 10 minutes per molecule.

Results We present the results in Figure 4 in Appendix B, tracking when the first solution
was found as well as number of non-overlapping routes present in the search graph. For
most models (all apart from Chemformer, GLN and MHNreact), both search algorithms are
able to find several disjoint routes for the majority of targets. Notably, RootAligned obtains
promising results despite on average making less than 30 model calls (due to its high cost).

5 Conclusion and Future Work

We presented an analysis of pitfalls and best practices for evaluating retrosynthesis programs,
a package called SYNTHESEUS to help researchers benchmark their methods following these
best practices, and used SYNTHESEUS to re-evaluate existing models and algorithms. These
results “set the record straight” regarding the performance of existing algorithms, and the
evaluation protocol of SYNTHESEUS can ensure that future works do not continue to make
the same mistakes. Despite this, several issues remain in the field. As we argue in Section 2,
metrics of recall (S1) and solve rate (M1/M2) are not ideal for comparing arbitrary end-to-end
retrosynthesis pipelines. Assuming evaluation by chemists (M6) is not possible, we believe
the most plausible substitute is to develop reaction “feasibility” models, which could be used
to evaluate the precision of single-step models (resolving S1) and assign a feasibility score
to entire routes (resolving M1/M2). We designed SYNTHESEUS with this in mind and have a
clear way to support feasibility models in both single-step and multi-step evaluation. However,
how to train a high-quality feasibility model is still an open research question. Finally, the
lack of information on reaction conditions, required quality of the starting materials, required
equipment, and purification, is a significant barrier to actually executing the synthesis plans
from CASP systems which SYNTHESEUS does not address. We encourage the community
to work together with us on these challenges in the future.
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Appendix A. Syntheseus Overview

Unrestricted single-step model development SYNTHESEUS uses a minimal standard
interface to interact with single-step models. This enables users to build their models
separately from SYNTHESEUS and integrate them by writing a thin wrapper, allowing
SYNTHESEUS to evaluate and use all single-step models in a consistent way. Furthermore,
as the framework controls the inputs and outputs of the wrapped model, it automatically
prevents “cheating” in the form of relying on atom mappings (S5), takes care of post-processing
the outputs when evaluating accuracy (S2), and measures inference time (S3). When used in
multi-step search, SYNTHESEUS also automatically performs caching (M4).

Separation of components in multi-step search SYNTHESEUS cleanly separates the
various components of a multi-step search algorithm: the single-step model, set of purchasable
molecules, the search graph, and search heuristics (policies and value functions). This makes
it easy to change one part of a CASP program and see the effect: for example, run MCTS
with two different single-step models, or run Retro* with two different sets of purchasable
molecules.

Detailed metrics for multi-step search In addition to tracking whether a synthesis
route has been found, SYNTHESEUS also tracks when it has been found using several different
time measures (wallclock time, number of calls to the reaction model), making it easy to
track the performance of an algorithm over time. SYNTHESEUS also implements several
diversity metrics (M5), and provides visualization tools to allow the routes to be inspected
by researchers or expert chemists (M6).

Appendix B. Experimental Details and Extended Results
B.1 Single-Step

Details on the USPTO-50K dataset We use the version of the dataset split by Dai
et al. (2019), as all of the models we consider report results on this dataset, allowing us to
contrast the published numbers with ones obtained from our re-evaluation. We note there is
a newer version of this dataset available (Lin et al., 2022), but since our aim is to correct the
existing results, we focus on the more established version and leave using the newer one for
future work.

Details on the Pistachio dataset The Pistachio dataset is much larger than USPTO-50K,
containing more than 15.6M raw reactions which lead to 3.4M samples after preprocessing. To
the best of our knowledge, no prior work has tested generalization from a smaller dataset to
Pistachio. While some works also make use of Pistachio (Jiang et al., 2023), it is rather used
as a pretraining dataset before fine-tuning on USPTO. As most researchers do not have access
to Pistachio, by reporting generalization we aim to gain insight into how USPTO-trained
models work across a wider input distribution they may be exposed to during multi-step
search. We performed significant cleaning and preprocessing on the Pistachio data to ensure
the test set is of high quality, and also to limit overlap between the USPTO training set and
Pistachio test set; see Appendix D for the details of our preprocessing pipeline.
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Details on the setup We queried all models for n = 100 outputs (see below for a
discussion on how obtaining multiple results is handled for different model types). Note that
we measure top-k only up to k = 50 but set n > k to account for deduplication. We used
a fixed batch size of 1 for all models. While all models could easily handle larger batches,
batch size used during search typically cannot be set arbitrarily, and in most cases it is equal
to 1 as usually search is not parallelized. Thus, speed under batch size of 1 directly translates
to the maximum number of model calls that can be performed during search with a fixed
time budget. All inference time measurements used a single V100 GPU.

Obtaining multiple results from single-step models During evaluation, we need to
obtain n results for a given input. It is worth noting that the value of n is used differently
depending on model type: models based on templates and local templates (GLN, LocalRetro,
MHNreact and RetroKNN) first process the input and then apply the templates until n results
are obtained, while models that employ a sequential auto-regressive decoder (Chemformer,
Graph2Edits and MEGAN) use beam search with n beams. These two approaches lead to
different scaling, as in the former case the bulk of the computation is amortized and does not
scale with n, while in the latter case the entire procedure scales with n essentially linearly.
Finally, the RootAligned model is a special case, as it uses a combination of beam search and
test-time data augmentation; scaling up either of these hyperparameters increases inference
time and number of results, but the right balance between them requires careful tuning. In
our work we used the default settings (20 augmentations, 10 beams) which correspond to a
maximum of 20 - 10 > n results being generated (recall that n = 100).

Choice of metric We compute top-k accuracy for k£ up to 50 and Mean Reciprocal Rank
(MRR). It is not clear what value of k is the most relevant metric to consider, but given
the target use of single-step models in search, it is desirable for k to be roughly similar to
the expected or desired breadth of the search tree (number of children visited for a typical
internal node); thus, £ = 1 would be too narrow. Typically, values beyond k = 50 are not
reported, as models tend to saturate past this point. Several CASP programs also restrict
the expansion beyond the top-50 (Segler et al., 2018; Genheden et al., 2020). For these
reasons we chose k = 5 as a reasonable default to highlight in the main paper.

Models not included in our evaluation We do not evaluate Dual-{TB,TF} (Sun et al.,
2020) and E-SMILES (Xiong et al., 2023) as we have no access to the code. Even though these
models reported promising performance, we were unable to verify it under our framework.

Extended discussion on the results In the results presented in the main paper, we see
that after transfer to Pistachio results are substantially degraded. While for template-based
models this is a result of insufficient coverage, we note that some of the models tested here are
template-free, and yet they fail to generalize better than their template-based counterparts
(this is similar to the findings of Tu et al. (2022)). To further ground our Pistachio results,
we note that Jiang et al. (2023) report 66.1% top-5 accuracy when training on Pistachio
directly (compared to our transfer results of up to 45%); however, these values are not fully
comparable due to differences in preprocessing.
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Extended results
both USPTO-50K and Pistachio.

Trade-off between MRR and speed (USPTO)

In Figures 2 and 3, we show results for other values of £ and MRR for

Trade-off between top-1 accuracy and speed (USPTO)

56%

@ RootAligned

< 0.68 1 4 RootAligned ®
s RetrokKNN - RetroKNN .
= . & 54% Graph2Edits  Chemformer
9] Graph2Edits 5
© 0.66 3
s ® LocalRetro O ¢GLN
o NGLN © 52% 4
(9] —
4 MHNreact |
= 064 O % LocalRetro @ MHNreact
] O = 50%
=
0.621 @ MEGAN Chemformer ® MEGAN
T T T 48% T T T
1.0 10.0 100.0 1.0 10.0 100.0
Time per molecule (seconds) Time per molecule (seconds)
Trade-off between top-3 accuracy and speed (USPTO) Trade-off between top-5 accuracy and speed (USPTO)
80% -
) 86% : )
78% ® RootAligned ® RootAligned
>
o) RetroKNN I @ RetroKNN
g 76% o .G h2Edit: 0 84%1 LocalRetro
5 76% LocalRetro rap its 5
o %
o é o . .
© 74%- GLN © Graph2Edits
m N 82% -
> o @ MHNreact N dan
o 1 o
= 72% MEGAN =l MHNreact
( ) 80%
Chemformer
70% 1 Chemformer © MEGAN
T T T T v T
1.0 10.0 100.0 1.0 10.0 100.0

Time per molecule (seconds)

Trade-off between top-10 accuracy and speed (USPTO)

92%
® RetroKNN

> 91% 1 o
o LocalRetro RootAligned
5 90% 1
o
© 89%
S *Graph2€dits
5 88%7 ‘GLN P
2

87% ® MHNreact

a6 | MEGAN @ Chemformer

T T T
1.0 10.0 100.0

Time per molecule (seconds)

Trade-off between top-50 accuracy and speed (USPTO)

Time per molecule (seconds)

98%
97%
96%
5%
4%

93%

top-50 accuracy
o o

92% 1

91%

LocalRetro
®e
RetroKNN
@ RootAligned
© MEGAN
GLN @ MHNreact
. Chemformer
Graph2Edits
T T T
1.0 10.0 100.0

Time per molecule (seconds)

Figure 2: Results on USPTO-50K in same format as Figure 1 but extended with top-1, top-3,
top-10, top-50, and MRR. Plot for top-5 shown in Figure 1 is reprinted here for

convenience.
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Comparison with published numbers In Table 1, we present the results from Figure 2
in numeric form, as well as contrast them with the published numbers. For results produced
with SYNTHESEUS we additionally investigate the effect of deduplication.

Table 1: Results on USPTO-50K compared to the numbers reported in the literature. SYNTH
denotes whether we used SYNTHESEUS to produce the result (as opposed to copying
the published number, or, in case of LocalRetro with exact match, generating
the number ourselves using authors’ code), D denotes whether deduplication was
performed (which in SYNTHESEUS is enabled by default, but can be turned off). We
underline values that differ significantly from the previous row (at least 0.7% for
top-k or 0.003 for MRR), and use colors to distinguish whether the value is better
(green) or worse (red) than the row directly above.

Model SYNTH D top-1 top-3 top-5 top-10 top-50 MRR

54.3% - 62.3% 63.0% -
X 55.0% 67.8% 70.5% 72.5% 74.8% 0.6182
v 55.0% 709% 73.7% 75.4% 76.0% 0.6312

Chemformer

GLN 52.5% 69.0% 75.6% 83.7"% 92.4% -
X 524% 688% 75.4% 83.5% 92.5% 0.6262
v 524% T4.6% 81.2% 88.0% 93.1% 0.6509
Graph2Edits 55.1% 77.3% 83.4% 89.4% 92.7% -
X 54.6% 76.4% 82.6% 88.5% 91.7% 0.6672
v 54.6% 76.6% 82.8% 88.7% 91.7% 0.6683
LocalRetro 53.4% T7.5% 85.9% 92.4% 97.7% -

52.0% 75.5% 83.4% 90.0% 95.7% -
X 51.5% 75.6% 83.5% 90.6% 96.7% 0.6530
51.5% 76.5% 84.3% 91.0% 96.7% 0.6565

(exact match)

MEGAN 48.1% 70.7% 78.4% 86.1% 93.2% -
X 487% 71.9% 78.9% 86.0% 93.2% 0.6203
v o 487% 723% 719.5% 86.7% 93.5% 0.6226
MHNreact 50.5% 73.9% 81.0% 87.9% 94.1% -
X 50.6% 73.1% 80.1% 86.4% 92.6% 0.6356
v 50.6% 73.1% 80.1% 86.4% 92.6% 0.6356
RetroKNN 57.2% 78.9% 86.4% 92.7% 98.1% -
X 55.3% 76.9% 84.3% 90.8% 96.5% 0.6796
v 55.3% T77.9% 85.0% 91.5% 96.6% 0.6834
RootAligned 56.3% 79.2% 86.2% 91.0% 94.6%

56.0% 79.1% 86.1% 91.0% 94.2% 0.6886
56.0% 79.1% 86.1% 91.0% 94.2% 0.6886

SNAOUX NI SN SUXX|[NSSUX%|[SSUX% NSNS X%
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We make the following observations:

Chemformer’s results are improved when switching to SYNTHESEUS, and then further
when turning on deduplication. The former could be explained by the fact that
SYNTHESEUS removes invalid molecules, which Chemformer (as a SMILES-based
model) can produce.

GLN'’s published results match those obtained with SYNTHESEUS with no deduplication.
However, its top-k accuracies for k > 1 improve significantly with deduplication turned
on.

Graph2Edits’ results are slightly worse than originally published, which may be ex-
plained by differences in hyperparameters such as the number of beams.

LocalRetro (and by extension RetroKNN) used a relaxed notion of success, and we
see that the results deteriorate significantly when using SYNTHESEUS. For LocalRetro,
we additionally measured accuracy using authors’ original code but replacing the
relaxed match with an exact one (see row labelled with “(exact match)”), which caused
a similar drop in performance, confirming that the way of measuring accuracy is
indeed responsible for the difference. Both LocalRetro and RetroKNN improve due to
deduplication, but the final results still fall short of the originally reported numbers.

MEGAN’s published results improve slightly after moving to SYNTHESUES, and then
there is a small further improvement from deduplication. We hypothesize the former
might be a result of retraining the model (while the authors did release a checkpoint
trained on USPTO-50K, our analysis seemed to indicate that model used a different data
split for training, as the performance on our USPTO-50K test set was unrealistically
high).

MHNreact’s results are not affected by deduplication, but the numbers we obtain with
SYNTHESEUS are worse than those originally published; this may be explained by either
the fact that we retrained the model or implementation details.

RootAligned’s published results closely match those obtained with SYNTHESEUS and
are unaffected by deduplication, showing this model likely already conforms to many
of the best practices from Section 2.

Next, in Table 2 we present the exact numbers corresponding to the results from Figure 3.

However, here we cannot compare to published results, as to the best of our knowledge these
are not available.

B.2 Multi-Step

Details on the setup Our single-step model wrappers expose the underlying output
probabilities, which are used by both algorithms to guide the search, either in the form of a
search policy in MCTS or a cost function in Retro*.
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Table 2: Generalization results on Pistachio in numeric form.

Model top-1  top-3 top-5 top-10 top-50 MRR
Chemformer 26.1% 35.0% 37.1% 38.4% 39.1% 0.3089
GLN 254% 374% 41.5% 45.9% 50.3% 0.3254

Graph2Edits 26.3% 38.9% 43.4% 47.5% 50.1% 0.3363
LocalRetro 26.4% 40.0% 44.7% 48.8% 53.5% 0.3433
MEGAN 22.8% 35.3% 40.3% 45.1% 51.0% 0.3046
MHNreact 24.0% 36.3% 40.8% 45.1% 49.7% 0.3134
RetroKNN 27.1% 40.6% 45.0% 48.9% 53.4% 0.3488
RootAligned 27.7% 40.5% 44.6% 48.6% 52.4% 0.3510

Hyperparameter tuning 7To ensure a fair comparison, we tuned the hyperparameters
of both MCTS and Retro* separately for each single-step model. For both algorithms we
focused on tuning the component that directly interacts with the single-step model: policy in
MCTS and cost function in Retro*. Notably, we did not vary many of the other components
of the algorithms (e.g. reward function in MCTS or value function in Retro*) to avoid an
infeasibly large search space.

All tuning runs used 25 targets from the ChemBL Hard set used in Tripp et al. (2022)
and searched under a time limit of 5 minutes. As the primary objective we used the solve
rate (i.e. number of solved targets), breaking ties first by the median and then mean number
of non-overlapping routes found (formally, these three objectives were combined with weights
1.0, 0.1 and 0.01, respectively). For each search algorithm and single-step model combination
we ran 50 trials using the default tuning algorithm in optuna (Akiba et al., 2019) to maximize
the combined score.

For MCTS, we tuned the clipping range for the single-step model probabilities (lower
bound in [10~',1071° ..., 107?], upper bound in [0.9999,0.999,0.99,0.9]), temperature
applied to the clipped distribution (in [0.125,0.25, ...,4.0,8.0]), bound constant (in [1, 10, 100,
1000, 10000]) and node value constant (in [0.25,0.5,0.75]). For Retro*, we only tuned the
clipping range (over the same values as for MCTS), as the temperature would have no effect
due to using a constant-0 value function (referred to as Retro*-0 in Chen et al. (2020)).

In general, we found that the single-step probability clipping range has little effect on
the algorithms, and so the performance of Retro* was not significantly improved through
the hyperparameter tuning. Conversely, in MCTS parameters such as bound constant and
temperature can have a sizable effect on the behaviour, and indeed choosing them carefully
improved performance with respect to an initial guess. While MCTS seemingly performed
worse than Retro® when using untuned hyperparameters, carefully setting the parameters of
the former led it to perform on par with Retro*, echoing the conclusions from Tripp et al.
(2022).
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Figure 4:
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Search results on the Retro* Hard target set with different single-step models. Left:
Time until first solution was found (or ) if not solved). Orange line represents
the median, box represents 25th and 75th percentile, whiskers represent 5th and
95th percentile, points outside this range are shown as dots. Right: Approximate
number of non-overlapping routes present in the search graph (tracked over time
and aggregated across target molecules). Solid line represents the median, shaded
area shows the 40th and 60th percentile. On the right hand side we note the
average number of calls made by the model within the allotted time limit.
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Appendix C. Related Work

Many works have proposed benchmarks for retrosynthesis. For single-step, the USPTO-50K
dataset (Schneider et al., 2016) is the most popular, while for multi-step many papers report
results on the 190 hard molecules from Retro* (Chen et al., 2020). However, these benchmarks
do not have a standardized evaluation pipeline, leading to inconsistent re-implementations by
different authors often subject to pitfalls discussed in Section 2 (particularly S2, S5 and M1,
M4). SYNTHESEUS allows these benchmarks to be run in a consistent and comparable way.
Nonetheless, these benchmarks are far from perfect: their standard metrics include recall (S1)
and success rate (M2) but do not include inference time (S3) or diversity (M5). In a major
step forward, Genheden and Bjerrum (2022) propose the PaRoutes benchmark for multi-step
search, which does include an assessment of diversity (M5) and a standardized evaluation
script. Unfortunately, it measures diversity with the output of a clustering algorithm: a
metric which is non-monotonic. This makes it possible for an algorithm to find strictly more
routes than another algorithm yet be rated as less diverse. In contrast, the diversity metrics
included with SYNTHESEUS are monotonic, meaning that finding additional routes will never
cause diversity to decrease.

More broadly, some works have highlighted the deficiencies with retrosynthesis evaluation.
Zhong et al. (2023b) point out how separate evaluation of single-step and multi-step may not
lead to effective CASP programs and mention the limitations of recall (S1). Segler et al. (2018)
noted the inherent shortcomings of in-silico evaluation and benchmarked their algorithm
with an A/B test by expert chemists. However, evaluation through human feedback is not
scalable, making such examples rare in ML venues. Hassen et al. (2022) correctly noted that
the performance of multi-step search algorithms will depend on the single-step model and
performed a large evaluation of many single-step models combined with popular multi-step
search algorithms; this analysis was later extended in Torren-Peraire et al. (2023) to large
proprietary training datasets. However, these works quantitatively compare the results across
different single-step models using success rate, which we argue is not best practice (M2).

Finally, it is worth mentioning several popular software packages for retrosynthesis.
ASKCOS (Coley et al., 2019) and AiZynthFinder (Genheden et al., 2020) are software
packages for multi-step search with a simple interface and interactive visualizations. However,
they are primarily designed to support MCTS with template-based models. In contrast,
SYNTHESEUS is designed in a model-agnostic and algorithm-agnostic way, and is easy to
extend to arbitrary models and algorithms. IBM RXN (rxn.res.ibm.com) and Chematica
(Klucznik et al., 2018) are popular software tools for retrosynthesis, but unlike SYNTHESEUS
cannot be used for benchmarking as they are closed-source. Ultimately, none of these packages
act as benchmarking platforms to the same degree as SYNTHESEUS.

Appendix D. Pistachio Preprocessing

The raw Pistachio data (version 2023Q2, released in June 2023) contained 15684 711 raw
reactions; however, this included many duplicates, outliers (e.g. reactions with extremely
large products), and potentially samples that are erroneous. To ensure the test data is of
high quality, we performed careful filtering and processing of the raw Pistachio data. We
applied the following steps in order:
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e Remove duplicate reactions and reactions with more than 4 reactants.

e Compute occurrence count of each product molecule across the dataset (counting
individual products in multi-product reactions). For every reaction with products
[P1, ..., Pm] (including reactions with a single product i.e. m = 1), remove all side
products. Product p; is considered a side product if it either has less than 5 atoms, or
appears at least 1000 times across the dataset. The latter condition allows us to remove
common side products, which may have 5 or more atoms but are still uninteresting.
Retain only those reactions where exactly one p; remained after this procedure.

e Remove reactions where the (now unique) product has more than 100 atoms, or the
ratio of the number of reactant atoms to the number of product atoms exceeds 20.

e Remove reactions where the product appears as one of the reactants.
e Refine reactions by removing the atom mapping numbers that appear only on one side.

e Remove reactions that have double-mapped atoms on either the main product side or
the reactants side, or those that lack atom mapping numbers entirely.

e Refine reactions by removing reactants that do not contribute atoms to the product.

We chose the processing steps above such that we exclude erroneous reactions, extreme
outliers (i.e. those that are either very large or have an extreme imbalance between the size of
the reactants and the size of the product), and reactions with no clearly defined main product.
These processing steps (and the particular constants used therein) were informed by expert
qualitative analysis of the reactions, as well as practical considerations. For example, we
found that several very large outliers in raw Pistachio data seem to cause rdkit’s template
extraction routines to hang; however, these reactions did not survive our filtering. Further
discussion on preprocessing chemical reaction data for use in Deep Learning can be found
in Wigh et al. (2023).

After the preprocessing we obtained 3445 833 single-product samples, which we grouped
by their product, and split into train, validation and test sets following a 90/5/5 ratio, making
sure the groups of samples with the same product are placed into the same fold. We used
a random split, except for those products which were found in USPTO-50K data; in those
cases, we attempt to place the corresponding group of samples in the same fold as it appears
in USPTO (this limits overlap between training set of one dataset and test set of another,
which could distort our generalization results). As the USPTO-50K split from Dai et al.
(2019) contains a small amount of product overlap between folds, this process of ensuring a
“compatible” Pistachio split was imperfect; the product overlap between USPTO-50K training
set and Pistachio test set is non-zero, but it is negligibly small. Note that an alternative
approach to preventing overlap would be to completely remove USPTO products from
Pistachio before splitting the dataset, but we did not want to artificially exclude (valuable)
products present in USPTO-50K.

In this work we use Pistachio solely for testing generalization, thus we only used the test
fold, which we randomly subsampled to 20000 samples for faster evaluation (note that this
is still 4 times larger than the test set of USPTO-50K). We described the full procedure to
generate all folds to facilitate future work.
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