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ABSTRACT

Simultaneously achieving robust classification and high-fidelity generative model-
ing within a single framework presents a significant challenge. Hybrid approaches,
such as Joint Energy-Based Models (JEM), interpret classifiers as EBMs but are
often limited by the instability and poor sample quality inherent in SGLD-based
training. We address these limitations by proposing a novel training framework
that integrates adversarial training (AT) principles for both discriminative robust-
ness and stable generative learning. The proposed method introduces three key
innovations: (1) the replacement of SGLD-based JEM learning with a stable, AT-
based approach that optimizes the energy function by discriminating between real
data and PGD-generated contrastive samples using the BCE loss; (2) synergistic
adversarial training for the discriminative component that enhances classification
robustness while eliminating the need for explicit gradient penalties; and (3) a
two-stage training procedure to resolve the incompatibility between batch normal-
ization and EBM training. Experiments on CIFAR-10, CIFAR-100, and ImageNet
demonstrate that our method substantially improves adversarial robustness over
existing hybrid models while maintaining competitive generative performance. On
ImageNet, when optimized for generative modeling, our model’s generative fidelity
surpasses that of BigGAN and approaches diffusion models, representing the first
MCMC-based EBM approach to achieve high-quality generation on complex, high-
resolution datasets. Our approach addresses key stability issues that have limited
JEM scaling and demonstrates that adversarial training can serve as an effective
foundation for unified frameworks capable of generating and robustly classifying
visual data.

1 INTRODUCTION

Deep learning models have traditionally been developed with either discriminative or generative
objectives in mind, rarely excelling at both simultaneously. Discriminative models are optimized for
classification or regression tasks but lack the ability to model data distributions, while generative
models can synthesize new data samples but may underperform on downstream classification tasks.
Recent research has explored unifying these approaches through joint discriminative-generative
modeling frameworks that aim to combine the predictive power of discriminative approaches with
the rich data understanding of generative models.

Among these unification efforts, Energy-Based Models (EBMs) have emerged as a promising frame-
work due to their flexibility and theoretical connections to both paradigms. In particular, Joint
Energy-Based Models (JEM) (Grathwohl et al., 2019) demonstrated that standard classifier archi-
tectures could be reinterpreted to simultaneously function as EBMs, enabling both high-accuracy
classification and reasonable sample generation. However, a critical limitation of JEM and similar
approaches is their reliance on Markov Chain Monte Carlo (MCMC) methods such as Stochastic
Gradient Langevin Dynamics (SGLD) for training the generative component. SGLD-based EBM
learning suffers from significant training instabilities, computational inefficiency, and often produces
poor-quality samples (Grathwohl et al., 2019; Duvenaud et al., 2021; Du & Mordatch, 2019; Zhao
et al., 2020; Gao et al., 2018; Nijkamp et al., 2019), limiting the practical adoption of these hybrid
models.
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We address these limitations by introducing Dual Adversarial Training (DAT), a novel framework
that leverages adversarial training (AT) principles for both discriminative robustness and stable
generative learning within a unified JEM-based architecture. Our approach employs a dual application
of adversarial training: (1) standard AT for the discriminative component to achieve robustness against
adversarial perturbations, and (2) an AT-based energy function learning strategy for the generative
component that replaces unstable SGLD-based JEM learning.

Our key technical contributions include:

1. A stable AT-based alternative to SGLD-based JEM learning. We replace the unstable
SGLD-based JEM learning with an adversarial training approach that optimizes the energy
function through Binary Cross-Entropy loss using PGD-generated contrastive samples. This
fundamentally addresses the training instabilities that have plagued JEM, enabling reliable
convergence and significantly improved sample quality.

2. Adversarial training with synergistic effects. We incorporate adversarial training for the
discriminative component, which not only enhances classification robustness but also elimi-
nates the need for explicit R1 gradient penalty required by previous AT-EBMs frameworks
(Yin et al., 2022), simplifying the training procedure and avoiding constraints on model
expressiveness.

3. Two-stage training for batch normalization compatibility. We introduce a two-stage
training strategy that reconciles the conflicting requirements of batch normalization for
discriminative training and its incompatibility with EBM sampling, eliminating the need for
alternative normalization techniques.

Experiments across datasets of increasing complexity, from CIFAR-10 to ImageNet, demonstrate
that our approach scales effectively. Compared to existing hybrid models, out approach achieves
substantially improved adversarial robustness while maintaining competitive generative performance.
This unique combination of strong robustness and generative capabilities enables higher-quality
counterfactual explanations—our model creates examples substantially more faithful to target class
characteristics compared to non-robust and robustness-only methods. Furthermore, on ImageNet,
when optimized for generative modeling, our model’s generative fidelity surpasses that of strong,
specialized models like BigGAN and approaches the quality of diffusion models, demonstrating
that EBM-based approaches can compete with other generative models. These results highlight the
flexibility of our framework, demonstrating its capacity to function as both a state-of-the-art hybrid
model and a powerful, standalone generative model with potential applications in a broader range of
image synthesis tasks (Santurkar et al., 2019).

2 RELATED WORK

Joint discriminative-generative modeling The pursuit of joint discriminative-generative modeling,
or hybrid modeling, aims to combine the predictive power of discriminative approaches with the rich
data understanding of generative models within a single framework. This line of research is motivated
by the potential to improve classifier robustness, calibration, and out-of-distribution detection, while
also enabling tasks like sample generation (e.g., for counterfactual explanation) and semi-supervised
learning. A significant thrust in this area involves Energy-Based Models (EBMs). Early work
by Xie et al. (2016) showed how generative ConvNets could be derived from discriminative ones,
framing them as EBMs. Du & Mordatch (2019) demonstrated that implicitly generative EBMs can
achieve strong performance on discriminative tasks like adversarially robust classification and out-of-
distribution detection, while addressing scalable EBM training challenges. Grathwohl et al. (2019)
introduced Joint Energy-Based Models (JEM), which explicitly reinterpret standard classifiers as
EBMs over the joint distribution of data and labels p(x, y), allowing simultaneous classification and
generation. Yang et al. (2023) incorporated sharpness-aware minimization (SAM) to smooth energy
landscapes and removed data augmentation from the EBM loss term to improve both classification
accuracy and generation quality of JEM. Guo et al. (2023) proposed EGC, which employs Fisher
divergence within a diffusion framework to learn an unconditional score function ∇ log p(x) and
a conditional classifier p(y|x) for unified classification and generation, thereby circumventing the
computational challenges of traditional energy-based model training.

Alternative architectural approaches have also been explored for joint modeling. Rather than energy-
based formulations, joint diffusion models (Deja et al., 2023) attach classifiers directly to diffusion
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model UNet encoders for joint end-to-end training. Another distinct approach is “introspective
learning,” where a single model functions as both a generator and a discriminator through an
iterative self-evaluation process, developed across works by Lazarow et al. (2017), Jin et al. (2017),
and Lee et al. (2018). Flow-based models have also been explored for hybrid tasks; for instance,
Residual Flows (Chen et al., 2019) utilized invertible ResNet and showed competitive performance
in joint generative and discriminative settings, offering an alternative to EBMs by allowing exact
likelihood computation. These diverse approaches underscore the continued effort to create models
that synergistically leverage both discriminative and generative learning.

Joint Energy-Based Models (JEM) A significant step towards unifying discriminative and generative
modeling within a single framework was presented by Grathwohl et al. (2019) with their Joint
Energy-Based Model (JEM). Their key insight was to reinterpret the logits produced by a standard
discriminative classifier, typically used to model p(y|x), as defining an energy function for the
joint distribution p(x, y). Specifically, they defined the energy Eθ(x, y) as the negative of the
logit corresponding to class y, Eθ(x, y) = −fθ(x)[y]. This formulation allows for the recovery of
the standard conditional distribution p(y|x) via softmax normalization over y, while also yielding
an unnormalized probability density p(x) by marginalizing out y, effectively using the negative
LogSumExp of the logits as the energy function for p(x). They proposed a hybrid training objective
that combines the standard cross-entropy loss for p(y|x) with an EBM-based objective for p(x)
optimized using Stochastic Gradient Langevin Dynamics (SGLD) (Welling & Teh, 2011). Grathwohl
et al. (2019) demonstrated that this joint training approach allows JEM to achieve strong performance
on both classification and generative tasks, while simultaneously improving classifier calibration,
out-of-distribution detection capabilities, and robustness against adversarial examples compared to
standard discriminative training.

Our work builds upon these foundations by incorporating adversarial training principles into the
joint modeling framework. We draw particularly from recent advances in adversarial training for
EBMs (Yin et al., 2022) and methods for achieving robustness on both in-distribution and out-of-
distribution data (Augustin et al., 2020). The connection between robust classifiers and generative
capabilities has also been explored, with Santurkar et al. (2019) demonstrating that robust classifiers
can perform various image synthesis tasks through gradient-based optimization. For a comprehensive
discussion of these approaches, see Appendix A.1.

3 METHOD

3.1 JOINT ENERGY-BASED MODEL

Our approach builds upon the Joint Energy-Based Model (JEM) framework introduced by Grathwohl
et al. (2019), which reinterprets the outputs of a standard discriminative classifier as an energy-based
model (EBM) over the joint distribution of data x and labels y. Given a classifier network that
produces logits fθ(x) ∈ RK for K classes, JEM defines the joint energy function as:

Eθ(x, y) = −fθ(x)[y] (1)

where fθ(x)[y] is the logit corresponding to class y. This energy function can be normalized to obtain
a joint probability density:

pθ(x, y) =
exp(−Eθ(x, y))

Z(θ)
=

exp(fθ(x)[y])

Z(θ)
(2)

where Z(θ) is an intractable global normalizing constant. By marginalizing out the label y, a marginal
density over the input data x can be obtained:

pθ(x) =
∑
y

pθ(x, y) =

∑
y exp(fθ(x)[y])

Z(θ)
(3)

Thus, a valid energy function for pθ(x) is given by:

Eθ(x) = − log
∑
y

exp(fθ(x)[y]) (4)

This energy is related to the marginal density by pθ(x) =
exp(−Eθ(x))

Z(θ) .

3
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A JEM is trained by maximizing the joint log-likelihood log pθ(x, y) over labeled training datapoints
(x, y) drawn from an empirical joint distribution pdata(x, y). The joint log-likelihood is typically
factorized as log pθ(y|x) + log pθ(x). The conditional term log pθ(y|x) can be maximized by
minimizing the standard cross-entropy classification loss. The marginal term log pθ(x) is optimized
using the EBM gradient:

∇θEx∼pdata(x)[log pθ(x)] = Ex∼pdata(x)[−∇θEθ(x)]− Ex∼pθ(x)[−∇θEθ(x)] (5)
where pdata(x) is the empirical marginal distribution obtained by marginalizing y from pdata(x, y).
This gradient decreases the energy of real data samples while increasing the energy of model-
generated samples. At equilibrium when pθ(x) = pdata(x), these terms balance and the gradient
becomes zero.

To approximate the expectation Ex∼pθ(x)[·], samples are drawn from pθ(x) using Stochastic Gradient
Langevin Dynamics (SGLD) (Welling & Teh, 2011). SGLD generates samples x starting from an
initial distribution p0(x) (e.g., uniform noise) and iteratively applies the update rule:

xt+1 = xt −
α

2
∇xEθ(xt) + ξt, where ξt ∼ N (0, α) (6)

Here, α is the step size, and∇xEθ(xt) is the gradient with respect to the marginal energy function.

3.2 LEARNING JEM WITH ADVERSARIAL TRAINING

The JEM framework successfully integrates generative modeling into classifiers, but its reliance on
SGLD and EBM gradient (Eq. 5) causes significant training instabilities (Grathwohl et al., 2019;
Duvenaud et al., 2021) and results in poor sample quality. We address these limitations by replacing
the SGLD-based JEM with an adversarial training (AT) approach inspired by AT-EBMs (Yin et al.,
2022).

Specifically, we replace the standard EBM gradient (Eq. 5) with a stabilized formulation:
Ex∼pdata(x)[−∇θEθ(x)]− Ex∼pθ(x)[−∇θEθ(x)]

=⇒ Ex∼pdata(x)[−α(x)∇θEθ(x)]− Ex∼pθ(x)[−β(x)∇θEθ(x)] (7)
where α(x) = 1 − σ(−Eθ(x)) and β(x) = σ(−Eθ(x)) are data-dependent scaling factors, and
σ denotes the logistic sigmoid function. This formulation preserves the structural form of Eq. 5
while introducing adaptive scaling factors that modulate gradient contributions according to the
model’s current energy assignments. According to Yin et al. (2022), these scaling factors stabilize
training by providing automatic gradient regularization: as −Eθ(x) increases for pdata samples,
the corresponding scaling factor α(x) = 1 − σ(−Eθ(x)) approaches zero, thereby attenuating
the gradient contribution from such samples and preventing numerical overflow; conversely, when
−Eθ(x) becomes very negative for contrastive samples, β(x) = σ(−Eθ(x)) approaches zero,
preventing numerical underflow. In contrast, the standard EBM gradient (Eq. 5) is unconstrained and
permits −Eθ(x) to achieve arbitrarily large or small magnitudes, resulting in numerical instability
during optimization. This gradient formulation stabilizes training at the cost of limiting the EBM to
modeling the support of pdata rather than learning the full density.

In addition to the above gradient reformualtion, the sampling required to estimate Ex∼pθ(x)[·] is per-
formed using the PGD attack (Madry et al., 2017) instead of SGLD. Specifically, the contrastive sam-
ples x from the model distribution are generated by initializing from an auxiliary out-of-distribution
dataset pood (e.g., the 80 million tiny images dataset for CIFAR-10 training) and performing T
iterations of gradient ascent on the negative energy function −Eθ(x):

xt+1 = xt + η
∇x(−Eθ(xt))

||∇x(−Eθ(xt))||2
, t = 0, 1, . . . , T − 1 (8)

where Eθ(x) is the marginal energy function defined in Eq. 4, η is the step size, and T is the total
number of PGD steps. Using the update direction suggested by Eq. 7 is equivalent to minimizing the
Binary Cross-Entropy (BCE) loss:

LBCE(θ) = −Ex∼pdata(x)[log(σ(−Eθ(x)))]− Ex∼pθ(x)[log(1− σ(−Eθ(x)))] (9)
Minimizing thisLBCE implicitly trains the energy function Eθ(x) to assign low energy to data samples
from pdata(x) and high energy to the contrastive samples computed using the PGD attack.

We find this AT-based approach effectively addresses JEM’s training stability issues and produces
high quality samples.
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3.3 CLASSIFIER ROBUSTNESS AND IMPLICIT REGULARIZATION

Classifier robustness. While our AT-based approach improves the generative capabilities of JEM,
the original JEM’s discriminative component still exhibits weak adversarial robustness compared to
dedicated adversarially trained classifiers. To address this limitation, we complement our generative
improvements by incorporating adversarial training for the discriminative term pθ(y|x).
For each input sample x with label y, we find an adversarial example xadv within an ϵ-ball B(x, ϵ)
around x that maximizes the classification loss:

xadv = argmax
x′∈B(x,ϵ)

LCE(θ;x
′, y) (10)

where LCE(θ;x
′, y) is the standard cross-entropy loss and B(x, ϵ) is an Lp-norm ball. Similar to

our generative component, we approximate this optimization using the PGD attack (Madry et al.,
2017), generating adversarial examples through iterative gradient steps within the constraint set. The
classification term is then defined as:

LAT-CE(θ) = E(x,y)∼pdata(x,y) [− log pθ(y|xadv)] (11)

Implicit regularization. Incorporating AT for the classifier not only ensures robust accuracy but also
yields a synergistic benefit for the generative component. Specifically, we find empirically that it
eliminates the need for the R1 gradient penalty (Mescheder et al., 2018), an explicit regularization
required by the original AT-EBMs framework (Yin et al., 2022) that can constrain model expres-
siveness. Our analysis reveals that AT provides implicit regularization that encompasses R1-style
penalties through its first-order penalty on gradient norms (see Appendix A.2). While these two
approaches operate at different scales and through different objectives, our experiments suggest
that the local smoothness induced by AT provides sufficient implicit regularization for stable EBM
training, reducing the need for explicit gradient penalties.

3.4 DUAL AT FOR JOINT MODELING

Our complete model integrates adversarial training principles for both the generative and discrimina-
tive components, resulting in the combined objective:

L(θ) = LAT-CE(θ) + LBCE(θ) (12)

where LAT-CE(θ) is the robust classification loss from Eq. 11, and LBCE(θ) is the AT-based generative
loss from Eq. 9. This DAT approach simultaneously enhances the model’s discriminative robustness
and generative capabilities, addressing the key limitations of the original JEM framework; full
algorithmic details are provided in Appendix A.3.

Our approach shares conceptual similarities with RATIO (Augustin et al., 2020), which also combines
adversarially robust classification with adversarial perturbations applied to out-of-distribution data:

LRATIO(θ) = LAT-CE(θ) + λEx∼pood(x)

[
max

x′∈B(x,ϵo)
LCE(θ;x

′,1/K)

]
(13)

where 1 is the vector of all ones and K is the number of classes. Despite this structural similarity, the
approaches differ fundamentally in their objectives. RATIO’s secondary term attacks OOD samples
to maximize classifier confidence, then penalizes this confidence via cross-entropy against a uniform
distribution, explicitly targeting robust OOD detection. In contrast, our LBCE(θ) leverages AT-based
energy function learning (Yin et al., 2022), using PGD to generate contrastive samples from OOD
data and employing BCE loss to shape the energy landscape. While RATIO focuses primarily on
reducing confidence in OOD regions, our approach prioritizes learning a stable and effective energy
function that enables high-quality generative modeling alongside robust classification.

3.5 TWO-STAGE TRAINING

A fundamental challenge in training joint models is the use of batch normalization (BN) (Ioffe
& Szegedy, 2015). While BN is highly beneficial for stabilizing and speeding up standard deep
network training, it is often found to interfere with the learning dynamics of EBMs and their sampling

5
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procedures (Grathwohl et al., 2019; Yin et al., 2022; Zhao et al., 2020; 2016). Consistent with
these findings, we observe that enabling BN during joint training destabilizes the optimization of the
generative modeling term LBCE, leading to oscillating losses and failure to converge. This instability
arises from BN’s reliance on batch-dependent normalization statistics: as negative samples (e.g., from
Eq. 6) change throughout training, the BN statistics St continuously drift, effectively transforming
the energy function from a fixed parameterization Eθ(x) into a time-varying one Eθ,St

(x). In our
experiments, we find that disabling BN removes this dependence and restores stable optimization of
LBCE, confirming that the failure mode arises from computing BN statistics on the evolving negative
samples.

However, simply disabling BN from the start would negatively impact the initial training of the robust
classifier backbone. To reconcile these conflicting requirements, we implement a two-stage training
strategy:

• Stage 1 discriminative training. In this initial stage, we train the network with BN enabled,
optimizing only the robust classification objective LAT-CE (Eq. 11). This stage is equivalent
to standard adversarial training and leverages BN to achieve faster convergence and strong
robust classification performance. Notably, this stage can be skipped by initializing from
pretrained off-the-shelf robust classifiers, making our approach immediately applicable to
existing robust models.

• Stage 2 joint training. After robust discriminative training, we disable BN throughout the
network by setting the BN modules in eval mode. We then continue training by optimizing
the complete objective function L(θ) = LAT-CE(θ) + LBCE(θ) (Eq. 12).

While alternative approaches such as spectral normalization and virtual batch normalization have
been considered for stabilizing EBM training (Zhao et al., 2020; Miyato et al., 2018; Zhao et al.,
2016), our experiments demonstrate that this two-stage approach effectively addresses the BN
incompatibility without requiring such alternatives. Disabling BN in Stage 2 enables stable generative
loss convergence and dramatically improves generative performance, with minimal impact on the
robust accuracy established in Stage 1 (see Appendix A.12 for training curves).

3.6 DATA AUGMENTATION

Strong data augmentations are necessary for achieving robust classification (Rebuffi et al., 2021;
Gowal et al., 2020) but can distort the data distribution in ways detrimental to generative modeling. We
therefore follow Yang et al. (2023) and apply separate augmentation strategies to the discriminative
and generative components. While Yang et al. (2023) concludes that augmentations like random
cropping with padding should be excluded from generative training to avoid artifacts like black
borders, we find this is not a limitation in our framework. Notably, even with random cropping
and padding applied, our generated samples do not inherit these artifacts, allowing us to improve
robustness without degrading sample quality (see Appendix A.4.2). We therefore apply strong
augmentations to the discriminative term LAT-CE and mild augmentations to the generative term LBCE.

4 EXPERIMENTS

4.1 TRAINING SETUP

Datasets and architectures. We evaluate our approach on CIFAR-10 (Krizhevsky et al., 2009),
CIFAR-100 (Krizhevsky et al., 2009), and ImageNet (Deng et al., 2009). For CIFAR-10/100
experiments, we use WRN-34-10 (Zagoruyko & Komodakis, 2016) following the official RATIO
implementation. For ImageNet experiments, we employ ResNet-50 (He et al., 2016) and WRN-50-
4 (Zagoruyko & Komodakis, 2016).

Two-stage training. Since Stage 1 training is equivalent to standard adversarial training, we use
pretrained models when available: we use a pretrained CIFAR-10 model from RATIO (Augustin
et al., 2020) and pretrained ImageNet models from Salman et al. (2020), while training our own
CIFAR-100 model following Augustin et al. (2020). For Stage 2 training, we initialize from the Stage
1 model and continue joint training by setting the BN modules to eval mode (which disables BN
while preserving the BN statistics computed during Stage 1). Complete training hyperparameters can
be found in Appendix A.4.1.

6
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Data augmentation. We employ separate data augmentation strategies for Stage 2 training: strong
augmentations for LAT-CE and basic transformations for LBCE to preserve the data distribution.
Detailed specifications can be found in Appendix A.4.2.

Out-of-distribution data. Same as RATIO, we use the 80 million tiny images (Torralba et al., 2008)
as the OOD dataset (pood) for CIFAR-10/100 experiments. For ImageNet, as there are no established
OOD datasets, we follow OpenImage-O (Wang et al., 2022) and construct an OOD dataset from
Open Images training set (Krasin et al., 2016). We randomly sample 350K images, restricting our
selection to those whose labels do not overlap with any ImageNet classes, yielding 300K samples for
training and 50K for FID evaluation.

4.2 EVALUATION METRICS

We measure both classification and generative modeling performance. For classification, we report
clean accuracy and robust accuracy against L2 attacks (ϵ = 0.5 for CIFAR-10/100 and ϵ = 3.0 for
ImageNet) computed using AutoAttack (Croce & Hein, 2020). For generative modeling, we evaluate
sample diversity and visual fidelity using Fréchet Inception Distance (FID) (Heusel et al., 2017)
and Inception Score (IS) (Salimans et al., 2016). We focus on conditional generation; details of the
generation setup are provided in Appendix A.6.

To measure the quality of counterfactuals, we generate sets of counterfactual examples by applying
targeted attacks to training samples across a range of perturbation limits. For each target class, we
compute the class-wise FID score between the set of counterfactuals targeted at that class and the
set of training samples from the same class. Note that counterfactuals are generated by applying
PGD attacks to in-distribution training samples, whereas generative modeling samples are created by
applying PGD attacks to OOD inputs.

4.3 RESULTS

4.3.1 CLASSIFICATION AND GENERATIVE MODELING

Comparison with hybrid models. Most existing hybrid models are not explicitly optimized for
adversarial robustness, achieving significantly lower robust accuracy than standard AT—for example,
JEM (40.5%) and SADA-JEM (31.93%) versus standard AT (75.73%) on CIFAR-10 (Table 1), and
EGC (13.56%) versus standard AT (34.44%/40.28%) on ImageNet (Table 2). Our DAT approach ad-
dresses this limitation by incorporating adversarial training directly into the joint objective, achieving
robust accuracy comparable to standard AT. RATIO is the only existing hybrid that explicitly targets
robustness, but it does not optimize for generation quality. Our approach achieves comparable robust-
ness to RATIO while substantially improving generative performance. These results demonstrate that
our approach bridges the gap between robustness-focused and generation-focused hybrid models,
achieving strong performance in both objectives simultaneously. This synergy between robustness
and generative capabilities yields practical benefits, as shown in Section 4.3.2, where our model
produces substantially higher-quality counterfactuals through PGD-based generation.

Comparison with generative models. On ImageNet, our DAT approach demonstrates competitive
performance relative to dedicated generative models. Our best generative configuration (WRN-50-4
with T = 65) achieves an FID of 5.39, outperforming BigGAN-deep (6.95) and approaching recent
diffusion models such as ADM-G (4.59) and LDM-G (3.60), while requiring significantly less sam-
pling steps. To our knowledge, this represents the first MCMC-based EBM approach to achieve such
high-quality generation on complex, high-resolution datasets like ImageNet. Additionally, our model
attains relatively strong IS performance, likely due to the PGD-based sampling explicitly optimizing
for classifier confidence—a property that aligns with the Inception network-based evaluation metric.
We show ImageNet generated samples in Figure 8.

Trading off generative and discriminative performance. Our experiments reveal that the number
of PGD training steps T in Eq. 8 serves as a mechanism for controlling the balance between
discriminative and generative objectives. On CIFAR-10, increasing T from 40 to 50 improves FID
from 9.07 to 7.57 at the cost of standard and robust accuracy. A similar trend is observed on CIFAR-
100 and ImageNet, where increasing T consistently improves generation quality while reducing
classification performance.

7
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Effect of model capacity. Our experiments on ImageNet demonstrate the benefits of increased
model capacity. Scaling from ResNet-50 (26M parameters) to WRN-50-4 (223M parameters) yields
consistent improvements across both discriminative and generative metrics.

Qualitative results. Figures 5, 6, and 7 show generated samples produced by our approach, RATIO,
and standard AT. We observe that our method produces visually superior samples with fewer artifacts
compared to RATIO and standard AT.

Table 1: Classification and generative modeling results on CIFAR-10 and CIFAR-100.

Method Acc% ↑ Robust Acc% ↑ IS ↑ FID ↓
CIFAR-10 hybrid models

Residual Flow (Chen et al., 2019) 70.3 – 3.6 46.4
Glow (Kingma & Dhariwal, 2018) 67.6 – 3.92 48.9
IGEBM (Du & Mordatch, 2019) 49.1 – 8.3 37.9
JEM (Grathwohl et al., 2019) 92.9 40.5 8.76 38.4
SADA-JEM (Yang et al., 2023) 95.5 31.93 8.77 9.41
EGC (Guo et al., 2023) 95.9 – 9.43 3.30
Joint-Diffusion (Deja et al., 2023) 96.4 – – 6.4
RATIO (Augustin et al., 2020) 92.23 76.25 9.61 21.96
Standard AT (Augustin et al., 2020) 92.43 75.73 9.58 28.41
DAT (T = 40) 91.86 75.66 9.96 9.07
DAT (T = 50) 90.72 74.65 9.86 7.57

CIFAR-10 conditional generative models

SNGAN (Miyato et al., 2018) – – 8.59 25.5
BigGAN (Brock et al., 2018) – – 9.22 14.73
StyleGAN2 (Karras et al., 2020b) – – 9.53 6.96
StyleGAN2 ADA (Karras et al., 2020a) – – 10.24 3.49
EDM (Karras et al., 2022) – – – 1.79

CIFAR-100 hybrid models

Joint-Diffusion (Deja et al., 2023) 77.6 – – 16.8
SADA-JEM (Yang et al., 2023) 75.0 – 11.63 14.4
EGC (Guo et al., 2023) 77.9 – 11.50 4.88
RATIO (Augustin et al., 2020) 71.58 47.74 9.28 24.17
Standard AT (Augustin et al., 2020) 72.16 47.78 9.54 23.59
DAT (T = 45) 65.55 45.97 10.83 10.70
DAT (T = 50) 62.57 45.97 11.51 9.96

Table 2: Classification and generative modeling results on ImageNet (Standard AT and DAT use
224× 224 generation; all other methods use 256× 256 generation).

Method Acc% ↑ Robust Acc% ↑ FID ↓ IS ↑ Params Steps

Hybrid models

Standard AT (Salman et al., 2020) 62.83 34.44 15.97 274.9 26M (ResNet-50) 13
DAT (T = 15) 57.88 34.84 6.64 339.6 26M (ResNet-50) 13
DAT (T = 30) 53.46 32.42 5.88 344.0 26M (ResNet-50) 16

Standard AT (Salman et al., 2020) 69.67 40.28 37.25 228.6 223M (WRN-50-4) 11
DAT (T = 30) 62.09 39.68 6.35 347.6 223M (WRN-50-4) 17
DAT (T = 65) 54.77 34.14 5.39 341.9 223M (WRN-50-4) 20
EGC (Guo et al., 2023) 78.90 13.56 6.05 231.3 543M 1000

Conditional generative models

BigGAN-deep (Brock et al., 2018) – – 6.95 203.6 340M 1
ADM-G (Dhariwal & Nichol, 2021) – – 5.44 – 608M 25
ADM-G (Dhariwal & Nichol, 2021) – – 4.59 186.7 608M 250
LDM-G (Rombach et al., 2022) – – 3.60 247.7 400M 250
VAR (Tian et al., 2024) – – 1.73 350.2 2.0B 10
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4.3.2 COUNTERFACTUAL GENERATION, OOD DETECTION, AND CALIBRATION
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Figure 1: Counterfactual FIDs and classifier confi-
dences under different perturbations.

Counterfactual generation. Figure 1 compares
counterfactual quality across different models
while accounting for classifier confidence. Our
approach consistently generates counterfactuals
with lower FIDs than baseline methods when
achieving similar target class confidence. For
instance, when the RATIO baseline reaches ap-
proximately 0.89 confidence in the target class
(at ϵ = 8), its corresponding FID is 43.18. Our
DAT model achieves a similar confidence level
at ϵ = 4 with a significantly better FID of 25.53.
This demonstrates that, for a comparable level of certainty that the counterfactual represents the target
class, our generated samples are substantially more faithful to the true visual characteristics of that
class, indicating more plausible counterfactuals. Therefore, our model’s improved generative capabil-
ity directly translates to higher-quality counterfactual explanations, enhancing model explainability.
We provide visualizations of counterfactuals in Appendix A.9.

OOD detection. Our approach generally underperforms RATIO on OOD detection. Ablation studies
show this gap persists even when using identical aggressive augmentation for both the generative and
discriminative components, indicating it stems from fundamental objective differences rather than the
use of milder augmentation for the generative term: RATIO explicitly optimizes for OOD detection
while our generative loss prioritizes learning accurate energy functions for generation. The complete
details can be found in Appendix A.7

Calibration. Our model’s calibration performance is dataset-dependent, with detailed results provided
in Appendix A.8. While the model is well-calibrated on CIFAR-10, outperforming the standard AT
and RATIO baselines, it exhibits higher overconfidence on CIFAR-100 and ImageNet. The results
suggest that prioritizing generative quality may come at the cost of calibration.

4.3.3 ADDITIONAL ANALYSES

In Appendix A.5 we conduct additional analyses including component ablation of DAT, OOD dataset
effects, and loss weighting mechanisms. Component ablation reveals that both the generative loss
and decoupled augmentation contribute to the improved generative quality compared to a standard
AT baseline (Appendix A.5.1). OOD dataset analysis demonstrates notable data efficiency of
our approach, suggesting strong performance is achievable even with limited auxiliary OOD data
(Appendix A.5.2). Loss weighting analysis confirms that re-weighting the two loss terms provides an
alternative mechanism for controlling the generative-discriminative trade-off beyond varying PGD
steps (Appendix A.5.3).

5 CONCLUSION

We addressed the challenge of developing models that excel simultaneously at robust classification and
high-fidelity generative modeling. While JEM offers a promising foundation, it suffers from training
instability and poor generation quality. Our DAT approach integrates adversarial training principles
for both components: replacing unstable SGLD-based JEM learning with an AT-based approach for
the generative component, while incorporating standard AT for classification robustness. Experiments
across multiple datasets demonstrate that our approach achieves substantially better adversarial
robustness over existing hybrid models while maintaining competitive generative capabilities; when
optimized for generative performance on ImageNet, it achieves generation quality comparable to
dedicated generative models such as GANs and diffusion models. Future work could advance this
approach in several directions: improving training efficiency with persistent markov chains, scaling
the framework to higher-capacity models to test performance limits; improving secondary tasks like
out-of-distribution detection by developing hybrid objectives that combine our generative loss with
RATIO’s; and applying the model to broader image synthesis tasks such as those demonstrated by
Santurkar et al. (2019).
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REPRODUCIBILITY STATEMENT

We have made substantial efforts to ensure reproducibility of our results. Complete training hyper-
parameters for both stages across all datasets are provided in Tables 3 to 5 and Appendix A.4.1.
The two-stage training procedure is detailed in Section 3.5 with the complete algorithm provided in
Appendix A.3. Data augmentation strategies for each component are specified in Appendix A.4.2. All
evaluation metrics, generation parameters, and experimental settings are documented in Section 4.3
and Appendix A.6. Ablation study configurations are detailed in Appendix A.5. We use standard
publicly available datasets (CIFAR-10/100, ImageNet) and follow established evaluation protocols
to facilitate comparison and reproduction. Source code and model checkpoints for reproducing the
results are provided as supplementary material.
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A SUPPLEMENTARY MATERIAL

A.1 EXTENDED DISCUSSION ON RELATED WORK

Learning EBMs with adversarial training Yin et al. (2022) explored an alternative approach
to learning EBMs by leveraging the mechanism of Adversarial Training (AT). They established a
connection between the objective of binary AT (discriminating real data from adversarially perturbed
out-of-distribution data) and the SGLD-based maximum likelihood training commonly used for
EBMs. Specifically, they showed that the binary classifier learned via AT implicitly defines an energy
function that models the support of the data distribution, assigning low energy to in-distribution
regions and high energy to out-of-distribution (OOD) regions. The PGD attack used in AT to generate
adversarial samples from OOD data was interpreted as a non-convergent sampler that produces
contrastive data, analogous to MCMC sampling in EBM training. Although the resulting energy
function can only capture the support rather than recover the exact density, their model achieves
competitive image generation performance compared to explicit EBMs. Notably, this AT-based EBM
learning approach is more stable than traditional MCMC-based EBM training and demonstrated
strong performance in worst-case out-of-distribution detection, similar to methods like RATIO
(Augustin et al., 2020).

In- and out-distribution adversarial robustness Addressing the multifaceted challenge of creating
models that are simultaneously accurate, robust, and reliable on out-of-distribution (OOD) data,
Augustin et al. (2020) proposed RATIO (Robustness via Adversarial Training on In- and Out-
distribution). Their approach combines standard adversarial training (AT) on the in-distribution data,
aimed at improving robustness against adversarial examples, with a form of AT on OOD data, which
enforces low and uniform confidence predictions within a neighborhood around OOD samples. The
combined objective trains the model to maintain correct, robust classifications for in-distribution
data while actively discouraging high-confidence predictions for OOD inputs, even under adversarial
manipulation. Augustin et al. (2020) demonstrated that RATIO achieves state-of-the-art L2 robustness
on datasets like CIFAR-10, often with less degradation in clean accuracy compared to standard AT
alone. Furthermore, they showed that RATIO yields reliable OOD detection performance, particularly
in worst-case scenarios where OOD samples are adversarially perturbed to maximize confidence.
Their work also highlighted that the L2 robustness fostered by RATIO enables the generation of
meaningful visual counterfactual explanations directly in pixel space, where optimizing confidence
towards a target class results in the emergence of corresponding class-specific visual features.

Robust classifiers for image synthesis and manipulation Santurkar et al. (2019) demonstrated that
adversarially robust classifiers can serve as powerful primitives for diverse image synthesis tasks. The
core insight of their work is that the process of adversarial training—which optimizes the worst-case
loss over an ℓ2 perturbation set rather than expected loss—compels a model to learn more perceptually
aligned and human-interpretable feature representations by preventing reliance on imperceptible
artifacts. Based on this insight, Santurkar et al. (2019) showed that simple gradient ascent on class
scores from such robust classifiers enables a unified framework for image generation, inpainting,
image-to-image translation, super-resolution, and interactive manipulation—tasks typically requiring
specialized GAN architectures or complex generative models.
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A.2 INTUITIVE CONNECTION BETWEEN R1 REGULARIZATION AND ADVERSARIAL TRAINING

We provide mathematical intuition for why adversarial training can serve as implicit regularization in
place of explicit R1 gradient penalties. For classification tasks, consider a vector-valued function
f : Rd → RK producing logits for K classes.

R1 regularization directly penalizes large gradients of the true class logit:

LR1
= E(x,y)∼pdata

[
∥∇xfy(x)∥22

]
(14)

In practice, adversarial training uses cross-entropy loss to enforce consistent predictions:

LAT = E(x,y)∼pdata

[
max
∥δ∥2≤ϵ

L(f(x+ δ), y)

]
(15)

To understand how adversarial training provides implicit gradient regularization, we analyze the
first-order behavior of this cross-entropy adversarial objective.

First-order expansion of the adversarial objective. Let z = f(x) ∈ RK , p = softmax(z), and
Jf (x) ∈ RK×d be the input-Jacobian of the logits. For cross-entropy loss L(z, y) = − log py, a
first-order Taylor expansion gives:

L(f(x+ δ), y) = L(f(x), y) +∇xL(f(x), y)
T δ +O(∥δ∥22) (16)

max
∥δ∥2≤ϵ

L(f(x+ δ), y) ≈ L(f(x), y) + ϵ∥∇xL(f(x), y)∥2 (17)

This approximation is valid for sufficiently small ϵ relative to the local curvature of L, such that
higher-order terms remain negligible over the L2 constraint ball {δ : ∥δ∥2 ≤ ϵ}.
This shows that adversarial training implicitly adds a penalty term proportional to ∥∇xL∥2 (the first
power of the gradient norm). To understand what this gradient represents, we apply the chain rule:

∇xL = Jf (x)
T∇zL = Jf (x)

T (p− ey) (18)

where ey is the one-hot label vector. Let gk(x) := ∇xfk(x) ∈ Rd denote the per-class input gradients
(the rows of Jf ). Then we can write:

∇xL =

K∑
k=1

(pk − δky)gk = −(1− py)gy +
∑
k ̸=y

pkgk (19)

This decomposition reveals that the cross-entropy gradient is a weighted combination of per-class
gradients, where the true class gradient gy appears with negative weight (1 − py) and competitor
gradients gk appear with positive weights pk.

Expansion into R1-style components. To understand how this relates to standard R1 regularization,
we can expand the squared gradient norm by substituting the final expression for ∇xL. Although the
actual adversarial penalty is proportional to ∥∇xL∥2, examining ∥∇xL∥22 provides useful analytical
insight:

∥∇xL∥22 =

∥∥∥∥∥∥−(1− py)gy +
∑
k ̸=y

pkgk

∥∥∥∥∥∥
2

2

(20)

Expanding this expression:

∥∇xL∥22 = (1− py)
2∥gy∥22︸ ︷︷ ︸

down-weighted true-class R1

+
∑
k ̸=y

p2k∥gk∥22︸ ︷︷ ︸
competitor R1 terms

−2(1− py)
∑
k ̸=y

pk⟨gy, gk⟩︸ ︷︷ ︸
true vs competitor alignment

+ 2
∑
i<j
i,j ̸=y

pipj⟨gi, gj⟩

︸ ︷︷ ︸
competitor-competitor alignment

(21)
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This expansion decomposes the adversarial penalty into interpretable components:

1. True-class R1 regularization: (1 − py)
2∥gy∥22, which is the standard R1 penalty on the

true class, down-weighted by confidence
2. Competitor R1 terms:

∑
k ̸=y p

2
k∥gk∥22, providing R1-style regularization on competing

classes weighted by their predicted probabilities
3. Gradient alignment terms: Cross-class inner products ⟨gi, gj⟩ that discourage competitor–

competitor alignment (favoring orthogonality), while encouraging the true-class gradient to
align with the competitor average

The above decomposition shows that E(x,y)[∥∇xL∥22] includes the core R1 regularization term
(1 − py)

2∥gy∥22 alongside additional smoothness constraints, suggesting that adversarial training
may provide comparable regularization to explicit R1 penalties in contexts where gradient control
is important. However, there are important distinctions: adversarial training down-weights high-
confidence points through the (1 − py)

2 factor, has competitor R1 terms, and introduces cross
terms that encourage specific gradient alignment patterns absent in standard R1. Additionally, the
analysis relies on the first-order approximation being valid, which may not hold for the ϵ values
commonly used in practice, and the actual adversarial penalty is proportional to ∥∇xL∥2 rather than
its square. Despite these caveats, this mathematical framework provides insights for why adversarial
training’s comprehensive implicit regularization may offer sufficient smoothness constraints for stable
energy-based model training, without requiring explicit gradient penalties.
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A.3 DAT TRAINING ALGORITHM

The complete training procedure for our combined objective (Eq. 12) is detailed in Algo-
rithm 1. We note that to train the generative component LBCE, we sample from pθ(x) to estimate
Ex∼pθ(x)[−∇θEθ(x)] in Eq. 5. In the context of JEM, there are broadly two strategies for drawing
samples from pθ(x) (Grathwohl et al., 2019):

1. Direct sampling from the marginal distribution using gradient-based MCMC (e.g., SGLD or
PGD) on the marginal energy Eθ(x) = − log

∑
y exp(fθ(x)[y]), as implied by Eq. 8.

2. Ancestral sampling, which first draws a label y ∼ pdata(y), then samples x ∼ pθ(x|y) by
running gradient-based MCMC on the joint energy Eθ(x, y) = −fθ(x)[y].

Although both approaches yield unbiased estimates, we find ancestral sampling to be practically
superior for training stability, possibly because it leverages the classifier’s existing strong class
representations to provide better mode coverage and mixing properties, while direct sampling from
the marginal distribution often diverges. We also find ancestral sampling (conditional generation)
yields substantially better FID than directly sampling from marginal distribution (see Table 11).

Consequently, our implementation adopts ancestral sampling when generating contrastive samples
(Algorithm 1). Specifically, we first sample a label y′ ∼ pdata(y), then generate a contrastive sample
xT by performing T iterations of PGD on the negative joint energy function −Eθ(x, y

′), starting
from an initial sample x0 ∼ pood. This class-conditional contrastive sample xT is then used in the
LBCE objective (Eq. 9), whose gradient (Eq. 7) provide an approximation to Eq. 5.

Algorithm 1 DAT training: Given network logits fθ, in-distribution dataset pdata, auxiliary out-of-
distribution dataset pood, classification AT bound ϵ, PGD iterations T , PGD step size η

1: while not converged do
2: Sample (x, y) ∼ pdata(x, y), apply aggressive augmentation to x
3: Sample x̂ ∼ pdata(x), x0 ∼ pood(x), apply mild augmentation to x̂ and x0

4: Solve xadv = argmaxx′∈B(x,ϵ) LCE(θ;x
′, y) via PGD attack

5: LAT-CE(θ) = − log pθ(y|xadv) ▷ Robust classification loss
6: Initialize xt ← x0 for t = 0, sample y′ ∼ pdata(y)
7: for t ∈ {1, . . . , T} do ▷ Generate contrastive sample for EBM
8: g = ∇x(−Eθ(xt−1, y

′)) ▷ Gradient of negative energy
9: xt ← xt−1 + η · g/||g||2 ▷ Normalized gradient ascent step

10: end for
11: LBCE(θ) = − log(σ(−Eθ(x̂)))− log(1− σ(−Eθ(xT ))) ▷ Generative modeling loss
12: L(θ) = LAT-CE(θ) + LBCE(θ)
13: Compute parameter gradients∇θL(θ) and update θ
14: end while
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A.4 MODEL TRAINING

A.4.1 TRAINING SETUP

We implement the two-stage training approach as described in Section 3.5. Table 3 summarizes the
key hyperparameters used for both stages across different datasets.

For Stage 1, we utilize a pretrained CIFAR-10 model from RATIO (Augustin et al., 2020) and
pretrained ImageNet models from Salman et al. (2020), while training our own CIFAR-100 model
following the RATIO methodology with the hyperparameters specified in Table 3. We select the
EMA model with the best robust test accuracy as the final Stage 1 model.

For Stage 2, we initialize from the Stage 1 model and continue training with batch normalization
disabled by setting all BN modules to evaluation mode. During this stage, we optimize the complete
objective function L(θ) = LAT-CE(θ) + LBCE(θ) using fixed learning rates as specified in Table 3.
The discriminative component LAT-CE(θ) continues to use the same adversarial settings as Stage 1
(see Table 4), while the generative component LBCE(θ) employs the parameters detailed in Table 5.

We select the Stage 2 checkpoint with the best FID score for the final evaluation reported in Sec-
tion 4.3.

Table 3: Training hyperparameters for both stages.

CIFAR-10/100 ImageNet

Architecture WideResNet-34-10 ResNet-50/WideResNet-50-4
Optimizer SGD with Nesterov (momentum=0.9) SGD with Nesterov (momentum=0.9)
Weight decay 5× 10−4 1× 10−4 (Stage 1), 5× 10−4 (Stage 2)
Batch size 128 512
EMA (Gowal et al., 2020) Yes Yes
Learning rate (Stage 1) 0.1 (cosine schedule, 300 epochs) 0.1 (step decay at epochs 30, 60, 90)
Learning rate (Stage 2) 0.001 (CIFAR-10), 0.01 (CIFAR-100) 0.001
Batch normalization (Stage 1) Enabled (training mode) Enabled (training mode)
Batch normalization (Stage 2) Disabled (eval mode) Disabled (eval mode)

Table 4: Adversarial training parameters for LAT-CE (identical across Stage 1 and Stage 2).

CIFAR-10/100 ImageNet

PGD steps 10 2
PGD step size 0.1 2.0
L2 perturbation bound 0.5 3.0

Table 5: Adversarial training parameters for LBCE (Stage 2 only).

CIFAR-10/100 ImageNet

Max PGD steps (T ) 45 15/30/70
PGD step size 0.1 2.0
L2 perturbation bound None (unconstrained) None (unconstrained)
OOD data source 80M Tiny Images (Torralba et al., 2008) Open Images (Krasin et al., 2016)
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A.4.2 DATA AUGMENTATION DETAILS

As described in Section 3.6, we implement separate data augmentation pipelines for the discriminative
and generative components of our objective function. Table 6 summarizes these dataset-specific
augmentation strategies. Note that augmentation strategies for LAT-CE are identical to those used by
RATIO (Augustin et al., 2020) for CIFAR-10/CIFAR-100, and identical to Salman et al. (2020) for
ImageNet. The effects of CIFAR-10 augmentations are illustrated in Figure 2.

Figure 3 illustrates CIFAR-10 training curves from Stage 2 joint training with various augmentation
strategies applied to LBCE (while consistently using AutoAugment with Cutout for LAT-CE). Interest-
ingly, the choice of augmentation for the generative component influences discriminative performance
as well, as evidenced by the decline in robust test accuracy when using no augmentation. The best FID
performance is achieved by no augmentation and random cropping with padding, which minimally
distort the underlying data distribution pdata. Overall we find random cropping with padding provides
the optimal balance between discriminative and generative performances.

Table 6: Data augmentation strategies for discriminative and generative components.

Dataset Component Augmentation Strategy

CIFAR-10/100 LAT-CE AutoAugment + Cutout + RandomHorizontalFlip()
LBCE RandomCrop(32, padding=4) + RandomHorizontalFlip()

ImageNet LAT-CE RandomResizedCrop(224) + RandomHorizontalFlip()
LBCE Resize(224) + CenterCrop(224) + RandomHorizontalFlip()

No augmentation Random crop with padding AutoAugment with cutout

Figure 2: Samples produced by different augmentations on CIFAR-10.
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Figure 3: Training curves under different data augmentations during
stage 2 joint training.
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A.5 ADDITIONAL ANALYSES

A.5.1 INDIVIDUAL CONTRIBUTIONS OF GENERATIVE LOSS AND DECOUPLED AUGMENTATION

To analyze the individual contribution of our primary contributions, we conduct an ablation study
with the following variants on CIFAR-10:

• Standard AT: A baseline adversarially trained model without a generative component.
• DAT with uniform augmentation: Our DAT approach that applies the same aggressive

augmentation for both the discriminative and generative objectives.
• DAT with decoupled augmentation: Our DAT approach that applies aggressive augmentation

to the discriminative term and mild augmentation for the generative term.

The results in Table 7 demonstrate the impacts of the AT-based generative loss and decoupled
augmentation. Introducing the generative loss component to the standard AT baseline significantly
reduces the FID from 33.04 to 15.35, while robust accuracy remains comparable. The subsequent
application of a decoupled augmentation strategy yields a further reduction in FID to 9.07.

Since both our approach and RATIO extend a standard AT baseline with an objective function
that leverages out-of-distribution (OOD) data, it is instructive to compare their relative efficacy in
enhancing generative fidelity. The RATIO objective, which is formulated for robust OOD detection,
reduces the FID from 33.04 to 21.96. In contrast, our generative objective provides a much larger
improvement, lowering the FID to 15.35. This comparison confirms that for the goal of enhancing
sample quality, a dedicated generative loss is more effective than an auxiliary loss designed for OOD
detection.

Table 7: Effect of generative loss and augmentation on CIFAR-10.

Method Acc% ↑ Robust Acc% ↑ FID ↓
Standard AT 92.34 75.73 33.04
DAT (uniform aug) 92.68 75.93 15.35
DAT (decoupled aug) 91.86 75.66 9.07

RATIO (Augustin et al., 2020) 92.23 76.25 21.96

A.5.2 EFFECT OF OOD DATASET SIZE

The out-of-distribution (OOD) dataset is a critical component of our training framework, as it
provides the initialization samples for computing the negative samples in the generative loss term.
The influence of this dataset can be understood through the EBM learning mechanism: a more diverse
OOD dataset provides better coverage of the input space, allowing the PGD attack (acting as an
MCMC sampler) to discover a broader range of spurious modes in the current energy landscape.
These discovered modes are then eliminated as the main objective function is optimized. Given this
crucial role, the diversity and scale of the OOD dataset are expected to influence model performance.

To examine the impact of OOD dataset size, we conducted an ablation study on ImageNet using
our DAT ResNet-50 (T = 15) model with varying OOD dataset sizes: 1K, 10K, 100K, and the full
300K samples. As shown in Table 8, the FID score improves modestly from 6.96 with 1K samples to
6.64 with 300K samples. Classification accuracy remains stable across all dataset sizes, with similar
robustness levels, indicating that the OOD dataset size primarily affects generation quality rather than
discriminative performance.

These results demonstrate notable data efficiency, with only modest improvements when scaling from
1K to 300K OOD samples. A contributing factor to this efficiency is data augmentation: we employ
RandomResizedCrop with scale=(0.08, 1.0) and aspect ratio=(0.75, 1.33), which can crop as little as
8% of the original image with varying aspect ratios, potentially amplifying the effective diversity of
each sample. To investigate the contribution of augmentation, we include a baseline using 1K OOD
samples without data augmentation. While augmentation provides clear benefits—improving FID
from 8.00 to 6.96—even without augmentation, our approach substantially outperforms standard AT
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in generation quality (FID 8.00 vs. 15.97). This indicates the data efficiency can be largely attributed
to the AT-based EBM learning mechanism itself, where the PGD attack can effectively explore the
energy landscape even from limited initialization points.

Table 8: Impact of OOD dataset size on ImageNet performance for DAT ResNet-50 (T = 15).

Method Acc% ↑ Robust Acc% ↑ FID ↓ IS ↑
Standard AT 62.83 34.44 15.97 274.90
DAT 1K w/o aug 57.50 33.80 8.00 320.64
DAT 1K 57.56 34.22 6.94 324.23
DAT 10K 57.82 34.70 6.84 320.78
DAT 100K 58.19 34.88 6.70 322.10
DAT 300K 57.88 34.84 6.64 339.55

A.5.3 GENERATIVE-DISCRIMINATIVE TRADE-OFF VIA LOSS WEIGHTING

Our training objective, L(θ) = LAT-CE(θ) + LBCE(θ), is a composite of a discriminative and a
generative loss. This structure naturally raises the question of whether it is possible to trade off
between these two capabilities by adjusting the relative weight of each component. To investigate
this possibility, we perform experiments on CIFAR-10 with three distinct weighting configurations:

• Standard loss (equal weighting): L(θ) = LAT-CE(θ) + LBCE(θ)

• Emphasize generative modeling: L(θ) = 0.6 · LAT-CE(θ) + 1.4 · LBCE(θ)

• Emphasize classification: L(θ) = 1.4 · LAT-CE(θ) + 0.6 · LBCE(θ)

The results in Table 9 confirm that the balance between generative and discriminative performance
can be tuned by adjusting the loss term weights. Emphasizing the generative component improves
FID at the cost of slightly reduced classification performance, while emphasizing classification
achieves the opposite effect. However, we note that our standard, unweighted loss corresponds to
the natural factorization of the joint log-likelihood in the original JEM formulation: log pθ(x, y) =
log pθ(y|x) + log pθ(x). This suggests that equal weighting is a principled default that performs well
without requiring additional hyperparameter tuning.

Table 9: Trading off generative and discriminative performance by weighting loss terms.

Method Acc% ↑ Robust Acc% ↑ FID ↓
Standard loss 91.88 75.73 9.09
Emphasize generative modeling 91.16 75.11 8.77
Emphasize classification 92.52 75.97 10.02
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A.6 GENERATIVE PERFORMANCE EVALUATION

We evaluate generative performance using Fréchet Inception Distance (FID) and Inception Score (IS).
FID is computed between 50K class-balanced generated samples and the full training set, while IS is
computed on the same set of 50K generated samples.

Conditional generation. We generate an equal number of samples for each class. To generate
samples for a given class y, we first sample an OOD data point x from the corresponding OOD data
source, and then perform T steps of PGD attack according to:

xt+1 = xt + η
∇x(−Eθ(xt, y))

||∇x(−Eθ(xt, y))||2
(22)

where T is the number of PGD steps and η is the corresponding step size (see Table 10).

Unconditional generation. For unconditional generation, we directly sample from the marginal
distribution using PGD according to Eq. 8:

xt+1 = xt + η
∇x(−Eθ(xt))

||∇x(−Eθ(xt))||2

The FID results for both conditional and unconditional generation across all datasets are presented in
Table 11. We find conditional generation consistently outperforms unconditional generation across
all the datasets.

Table 10: Sample generation parameters for FID and IS evaluation. The number of PGD steps for
each model and dataset combination is determined through grid search.

Model Dataset PGD steps (T ) Step size OOD data source

DAT

CIFAR-10 (T = 40) 33 0.2 80M Tiny Images
CIFAR-10 (T = 50) 35 0.2 80M Tiny Images
CIFAR-100 (T = 45) 32 0.2 80M Tiny Images
CIFAR-100 (T = 50) 33 0.2 80M Tiny Images
ImageNet (ResNet-50, T = 15) 13 8.0 Open Images
ImageNet (ResNet-50, T = 30) 16 8.0 Open Images
ImageNet (WRN-50-4, T = 30) 17 8.0 Open Images
ImageNet (WRN-50-4, T = 65) 20 8.0 Open Images

RATIO CIFAR-10 31 0.2 80M Tiny Images
CIFAR-100 14 0.2 80M Tiny Images

Standard AT

CIFAR-10 22 0.2 80M Tiny Images
CIFAR-100 15 0.2 80M Tiny Images
ImageNet (ResNet-50) 13 8.0 Open Images
ImageNet (WRN-50-4) 11 8.0 Open Images

Table 11: FIDs of conditional and unconditional generation of our approach.

CIFAR-10 CIFAR-100 ImageNet

Conditional generation 9.07 10.70 6.64
Unconditional generation 20.57 13.56 18.67
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A.7 OUT-OF-DISTRIBUTION DETECTION

We evaluate both standard out-of-distribution (OOD) detection performance and worst-case OOD
detection under adversarial perturbations. For standard OOD detection, we measure the AUROC
scores between in-distribution test samples and unmodified OOD samples. For worst-case detection,
we evaluate against adversarially perturbed OOD samples specifically optimized to maximize the
OOD detection function output. Results are computed using all the in-distribution test samples
and 1024 out-distribution samples. For generating adversarial OOD samples, we use L2-based
perturbation limit of 1.0 for CIFAR-10/100 and 3.0 for ImageNet.

Energy-based detection. We use an energy-based function sθ(x) = −Eθ(x), which is proportional
to log pθ(x) up to an additive constant. To find adversarial OOD inputs for this function, we employ
a PGD attack to maximize the negative energy:

xadv = argmax
x′∈B(x,ϵo)

−Eθ(x
′) (23)

where x is a clean OOD input and B(x, ϵo) represents an L2-ball of radius ϵo centered at x.

Maximum confidence detection. We employ a maximum confidence function sθ(x) =
maxy pθ(y|x) that uses the confidence in the most likely class (also used by RATIO (Augustin
et al., 2020)). For this detection function, following RATIO (Augustin et al., 2020), we compute
adversarial OOD inputs by maximizing the cross-entropy loss against a uniform distribution:

xadv = argmax
x′∈B(x,ϵo)

LCE(θ;x
′,1/K) (24)

where 1/K represents a uniform distribution over all K classes. Maximizing this loss encourages the
model to produce a non-uniform (confident) prediction, thereby maximizing the detection function.

Table 12 presents a comparison of the above two OOD detection functions. The results reveal
complementary strengths: the energy-based function (−Eθ(x)) achieves near-perfect AUROC scores
on uniform noise detection, while the maximum confidence function (maxy pθ(y|x)) demonstrates
superior performance on natural image OOD datasets. Based on these findings, we adopt the
maximum confidence score for subsequent comparisons with other methods.

Table 13 presents comparative results across different baselines. Notably, our DAT model achieves
OOD detection performance comparable to standard AT on natural image datasets (CIFAR-100,
SVHN), despite incorporating an additional OOD dataset during training. This observation suggests
that our generative training component primarily enhances generation quality rather than improving
OOD detection capabilities beyond those provided by standard adversarial training.

Compared to RATIO, our model exhibits lower OOD detection performance across most datasets. To
investigate whether this gap stems from our use of milder augmentations for the generative component,
we trained an ablation model that applies RATIO’s aggressive augmentation strategy to both loss
terms. The results show that this variant performs similarly to our standard DAT model and still
underperforms RATIO. This finding indicates that the performance gap is not primarily caused by the
augmentation strategy but rather by the fundamental differences in the training objectives: RATIO’s
loss is explicitly optimizes for OOD detection performance, while our generative loss prioritizes
learning an accurate energy function for generation.

A potential avenue for addressing this limitation involves developing a hybrid objective that combines
our generative loss with RATIO’s explicit OOD detection term. This approach is theoretically
motivated by the complementary nature of these objectives: our generative component learns to
model the energy landscape of in-distribution data while naturally assigning low probability to
out-of-distribution regions, which aligns conceptually with RATIO’s strategy of enforcing low
confidence predictions in neighborhoods around OOD samples. Such a hybrid formulation could
potentially preserve the generative modeling benefits of our approach while recovering the superior
OOD detection performance of RATIO. Future work could explore this direction by investigating
appropriate weighting strategies between the generative and OOD detection terms to achieve optimal
performance across both objectives.
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Table 12: Comparison of OOD detection functions on CIFAR-10.

CIFAR-100 SVHN Uniform noise

Method Clean Adversarial Clean Adversarial Clean Adversarial

DAT (maxy pθ(y|x)) 0.8709 0.6480 0.9609 0.8334 0.8922 0.8257
DAT (−Eθ(x)) 0.8484 0.6647 0.8011 0.6046 0.9995 0.9983

Table 13: OOD detection performance (AUROC) with CIFAR-10 as ID dataset (JEM results are
from Augustin et al. (2020)). All methods use the maximum confidence detection function sθ(x) =
maxy pθ(y|x).

CIFAR-100 SVHN Uniform noise

Method Clean Adversarial Clean Adversarial Clean Adversarial

JEM 0.8760 0.1920 0.8930 0.0730 0.1180 0.0250
Standard AT 0.8759 0.6364 0.9625 0.8306 0.8501 0.7902
DAT (T = 40, uniform aug) 0.8751 0.6261 0.9642 0.8303 0.9546 0.9254
DAT (T = 40) 0.8709 0.6480 0.9609 0.8334 0.8922 0.8257
RATIO 0.9157 0.7516 0.9843 0.9130 0.9999 0.9999

Table 14: OOD detection performance (AUROC) with CIFAR-100 as ID dataset.

CIFAR-10 SVHN Uniform noise

Method Clean Adversarial Clean Adversarial Clean Adversarial

Standard AT 0.7430 0.4093 0.8700 0.4863 0.7858 0.5048
RATIO 0.7320 0.3795 0.8439 0.4356 0.7769 0.5881
DAT (T = 45) 0.7027 0.5145 0.8271 0.5823 0.4024 0.2283

Table 15: OOD detection performance (AUROC) with ImageNet as ID dataset.

CIFAR-10 SVHN Uniform noise

Method Clean Adversarial Clean Adversarial Clean Adversarial

Standard AT (ResNet-50) 0.7235 0.5304 0.9239 0.8089 0.8678 0.8377
DAT (ResNet-50, T = 15) 0.6599 0.4870 0.8813 0.7754 0.6899 0.6268
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A.8 CALIBRATION
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Figure 4: Calibration diagrams on CIFAR-10 (without temperature scaling).
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(a) Standard AT
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(b) RATIO
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(c) DAT

Figure 5: Calibration diagrams on CIFAR-100 (without temperature scaling).
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(a) Standard AT (ResNet-50)
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(b) DAT (ResNet-50, K = 15)
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(c) DAT (ResNet-50, K = 30)
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(d) Standard AT (WRN-50-4)
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(e) DAT (WRN-50-4, K = 30)
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(f) DAT (WRN-50-4, K = 65)

Figure 6: Calibration diagrams on ImageNet (without temperature scaling).
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A.9 COUNTERFACTUAL GENERATION
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Figure 7: CIFAR-10 counterfactual examples with perturbation limits of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0.
These figures display counterfactuals and corresponding classifier confidences for both the correct
class (top row) and a target wrong class (bottom row). As the perturbation budget increases from
left to right, the generated counterfactuals progressively resemble samples from the target class
distribution while the target class confidence correspondingly increases, demonstrating that our model
effectively captures the distributions of different classes and can generate meaningful class-to-class
transformations.
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Figure 8: ImageNet counterfactual examples with perturbations limits of 10., 20., 30., 40., 50.
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A.10 GNERATION RESULTS

(a) Seed images used for producing
the generated samples.

(b) Uncurated conditional samples
of DAT (T = 50).

(c) Uncurated conditional samples
of RATIO.

Figure 5: CIFAR-10 class-conditional generation results. Note that some samples from the RATIO
baseline show potential artifacts (e.g., saturated or unnatural colors) possibly linked to the aggressive
AutoAugment policy used for model training.

(a) Seed images used for producing
the generated samples.

(b) Uncurated conditional samples
of DAT (T = 50).

(c) Uncurated conditional samples
of RATIO.

Figure 6: CIFAR-100 conditional generation results.

(a) Seed images used for producing
the generated samples.

(b) Uncurated conditional samples
of DAT (WRN-50-4 T = 65).

(c) Uncurated conditional samples
of standard AT (WRN-50-4).

Figure 7: ImageNet class-conditional generation results for the first 10 classes: tench, goldfish,
great white shark, tiger shark, hammerhead, electric ray, stingray, cock, hen, ostrich (images are in
224× 224 resolution).

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 8: Selected ImageNet conditional generation results for class 88 (macaw), 107 (jellyfish), 130
(flamingo), 145 (king penguin), 248 (husky), 258 (Samoyed), 291 (lion), 511 (convertible), and 980
(volcano). Results are generated with DAT (WRN-50-4, T = 65) at 224× 224 resolution.
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A.11 VARIABILITY OF DAT PERFORMANCE ACROSS DATASETS

Table 16: Mean and standard deviation of DAT performance across datasets, computed over three
independent runs with different random seeds.

Dataset Acc% ↑ Robust Acc% ↑ IS ↑ FID ↓
CIFAR-10 (T = 40) 91.86 ± 0.03 75.66 ± 0.01 9.96 ± 0.02 9.07 ± 0.03
CIFAR-100 (T = 45) 65.55 ± 0.62 45.97 ± 0.49 10.83 ± 0.11 10.70 ± 0.22
ImageNet (ResNet-50, T = 15) 57.91 ± 0.09 34.87 ± 0.09 334.11 ± 8.96 6.60 ± 0.08

A.12 TRAINING CURVES

0 5K 10K
Iterations

10

15

20

25

30

35

FI
D

FID
Robust Test Accuracy

0.75

0.76

0.77

0.78
Ro

bu
st

 Te
st

 A
cc

ur
ac

y

(a) CIFAR-10 (T = 40)
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(b) CIFAR-100 (T = 45)
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(c) ImageNet (ResNet-50, T = 15)

Figure 9: Training curves from Stage 2 joint training demonstrating substantial FID score improve-
ments while preserving Stage 1 robust test accuracy (evaluated via PGD attacks; FID measured using
10K generated samples).
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