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Abstract

Large language models (LLMs), despite their
remarkable text generation capabilities, often
hallucinate and generate text that is factually
incorrect and not grounded in real-world knowl-
edge. Such hallucinations are particularly con-
cerning in domains such as healthcare, finance,
and customer support, where incorrect informa-
tion can have severe consequences. A typical
way to use LLMs is via the APIs provided by
LLM vendors where there is no access to model
weights or options to fine-tune the model to con-
trol its behavior. Existing methods to detect hal-
lucinations in settings where the model access
is restricted or constrained by resources typi-
cally require making multiple calls to the under-
lying LLM to check and refine the output or to
sample many responses to estimate output prob-
abilities. Such a large number of calls signifi-
cantly increases latency and cost, becoming a
bottleneck for adopting these methods in practi-
cal scenarios. We introduce CONFACTCHECK,
an efficient hallucination detection approach
that does not leverage any external knowledge
base and works on the simple intuition that
responses to questions probing factual compo-
nents of the text should be consistent within a
single LLM and across different LLMs. Rigor-
ous empirical evaluation on multiple datasets
that cover both the generation of factual texts
and the open generation reveals the strengths
of CONFACTCHECK compared to the state-of-
the-art baselines. CONFACTCHECK can detect
hallucinated facts efficiently using fewer re-
sources and achieves significantly higher ac-
curacy scores compared to existing baselines
that operate under similar conditions. We will
release the code and resources on acceptance.

1 Introduction

Large Language Models (LLMs) are the goto tools
for NLP applications given their excellent text
generation capabilities (Zhao et al., 2023) How-
ever, despite recent developments in model archi-
tecture and training, even state-of-the-art models

such as GPT-4 (Achiam et al., 2023) and PALM-
540B (Chowdhery et al., 2023) often generate text
that appears plausible, but is factually incorrect or
non-sensical — a phenomenon termed hallucina-
tion (Huang et al., 2023). A formal analysis by
Xu et al. (2024) shows that LLMs cannot learn all
possible computational functions, and hence, by
design, will always hallucinate, albeit to different
degrees. Consequently, detecting when the LLM
hallucinates is imperative to take corrective action
and minimize misinformation from reaching users.

Such model hallucinations can be either intrinsic
or extrinsic (Ji et al., 2023). Intrinsic hallucinations
occur when the model output contradicts the in-
formation in the input (or in-context instructions).
Such hallucinations are relatively easier to detect
by checking if the output is faithful to the provided
input (Huang et al., 2023). Extrinsic hallucinations,
on the other hand, occur when the model output
is factually incorrect and is not grounded on the
pre-training data (Huang et al., 2023). Given the
volume of pre-training data and that it is typically
inaccessible by the users, extrinsic hallucinations
pose a greater challenge due to their unverifiable
nature (Ji et al., 2023).

Hallucinations in LLMs are typically addressed
either by improving factual accuracy through train-
ing or fine-tuning (Tian et al., 2023; Azaria and
Mitchell, 2023a; Chuang et al., 2023), or by ver-
ifying model outputs using external knowledge
sources (Cheng et al., 2024). However, in many
practical cases, end-users or developers lack ac-
cess to model weights or external verification
sources. As a result, recent efforts have focused
on iteratively querying or prompting LLMs (Man-
akul et al., 2023; Zhang et al., 2023a; Liu et al.,
2022)to thoroughly verify responses or sample
large number of outputs to estimate output prob-
ability distributions, leading to significantly in-
creased cost and latency. To address these limita-
tions, we propose CONFACTCHECK, a lightweight
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Figure 1: Key fact-based hallucination detec-
tion through the Fact Alignment check of our
CONFACTCHECK pipeline. Each fact is used to gener-
ate a question, and the fact is regenerated by prompting
the question to the LLM. The regenerated facts are com-
pared with the original extracted key facts to check for
their consistency.

method for detecting hallucinations that leverages
the LLM’s internal knowledge and does not de-
pend on any external knowledge source. Figure 1
illustrates the process with the help of an exam-
ple. CONFACTCHECK identifies key entities in
the generated output and then formulates contextu-
ally relevant questions around these entities. The
LLM’s answers to these questions are checked for
consistency with the original response, with high
consistency indicating that the output is grounded
in the model’s pre-training data (reflective of the
world knowledge).

We evaluate CONFACTCHECK on four dif-
ferent datasets spanning question-answering
(NQ_Open (Kwiatkowski et al., 2019), Hot-
potQA (Yang et al., 2018), WebQA (Berant et al.,
2013)) and open-ended generation tasks where
inputs to the LLM lack any additional context (Wik-
iBio (Manakul et al., 2023)). CONFACTCHECK
outperforms recent state-of-the-art self-check or
self-consistency-based baselines (Manakul et al.,
2023; Zhang et al., 2023a; Liu et al., 2022) along
with baselines relying on the internal states of
models (Chen et al., 2024) for LLMs of different
model families. CONFACTCHECK achieves this
outperformance while being significantly faster
and requiring a lower number of LLM calls (c.f.,
Table 2). We also report the results of various
ablation studies guiding our design choices
and conclude by discussing the strengths and
limitations of CONFACTCHECK.

2 Related Work

LLMs, by design, are prone to hallucinations (Xu
et al., 2024; Ji et al., 2023) and are observed even
in visual and multi-modal LLMs (Bai et al., 2024,
Liu et al., 2024). Consequently, significant efforts
have been made to detect hallucinations and miti-
gate their impact (Huang et al., 2023; Zhang et al.,
2023b; Tonmoy et al., 2024). We briefly review
and summarize the various techniques for hallu-
cination detection covering methods that follow a
prompt-based self-checking paradigm as well as
methods that need access to model weights or ex-
ternal knowledge sources.

Zhang et al. (2023a) propose Semantic-Aware
Cross-Check Consistency (SAC?), which is a
sampling-based method that checks for self-
consistency of the model across multiple gener-
ations. Similarly, Manakul et al. (2023) present
SelfCheckGPT, another sampling-based approach
for fact-checking, which uses an LLM to gener-
ate stochastically similar outputs and scores the
similarity of sampled responses with the original
to self-check the LLM’s confidence over the orig-
inal generation. InterrogateLL.M (Yehuda et al.,
2024), focuses on regenerating the original query
for a generated answer by reversing few-shot QA
pairs to few-shot AQ pairs to self-check for model
confidence during regeneration. These self-refining
approaches often rely on the target LMs themselves,
which is also demonstrated in Self-Refine (Madaan
et al., 2023), an iterative mitigation-based approach
for hallucinations. Miindler et al. (2023) analyze
self-contradiction in instruction-tuned LMs by em-
ploying two separate LLMs for text generation and
contradiction analysis for hallucination detection.
Honovich et al. (2022) introduce TRUE, an evalua-
tion of factual consistency measures on pre-existing
texts manually annotated for factual consistency.
Their study employs a range of metrics, including
n-gram-based, model-based, and NLI-based evalu-
ations, conducted on the FEVER dataset (Thorne
et al., 2018). Liu et al. (2022) propose a reference-
free, token-level method for detecting hallucina-
tions. The work is supported by an innovatively
curated Hallucination Detection dataset (HaDes),
with raw web text being perturbed and then an-
notated by humans to design it for hallucination
detection as a classification task. FactScore (Min
et al., 2023) is another consistency-based approach,
which breaks outputs into atomic facts, and score
those through reliable external knowledge sources.
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Figure 2: Pipeline of the CONFACTCHECK approach, with NER tagging of outputs followed by the first comparison-
based check (Fact Alignment Check) and the secondary KS test-based probability check (Uniform Distribution
Check) for rechecking the classfied non-hallucinations, result in the final tagging of hallucinations.

Methods Requiring Access to Model Weights
and External Sources: Tian et al. (2023) showed
that fine-tuning the model using factuality prefer-
ence rankings can help improve factual correct-
ness in LLLM output. Azaria and Mitchell (2023b)
suggest a method to assess the veracity of out-
puts and detect hallucinations by passing the inter-
nal states/activations of an LLM through a trained
classifier to output its probabilities of truthfulness.
Chen et al. (2024) propose INSIDE, an approach
that leverages the internal states of LLMs during
generation to detect for hallucinations in outputs.
Their approach utilizes the layer of sentence em-
bedding outputs and exploits the eigenvalues of
the covariance matrix of outputs to measure con-
sistency in the dense embedding space. Various
decoding strategies (Chuang et al., 2023; Shi et al.,
2024) have also been developed that utilize token
probabilites at various layers to detect and mitigate
hallucinations. Some approaches such as HaluA-
gent (Cheng et al., 2024) use additional tools such
web search engines, code interpreters etc for text,
code-based detection of hallucinations.

3 The CONFACTCHECK Approach

Figure 2 summarizes our proposed approach for
hallucination detection. Our solution consists of
two main steps — (i) a fact alignment check step
where key facts present in the output text are com-
pared with facts obtained by the targeted probing
of the LLM; and (ii) a uniform distribution check
step that serves as an additional check, filtering out
the low confidence predictions. We now describe

the overall pipeline in detail.

3.1 Fact Alignment Check

Extracting Key Facts: To check whether a piece
of text, A, generated by an LLM M is hallucinated,
we start with the assumption that the generated text
is correct. We then generate questions that can be
answered based on the information in .A. Subse-
quently, we employ the LLM to answer the ques-
tions and see if the answers match the information
in A, a mismatch indicating hallucinations. The ini-
tial step is to identify the factual components within
a sentence. According to Kai et al. (2024), factual
information in a sentence is typically conveyed
through specific parts of speech, viz., nouns, pro-
nouns, cardinal numbers, and adjectives. We high-
light tags with such information as key facts that
are to be extracted. Min et al. (2023) use a similar
concept, where they classify short sentences in text
(obtained by InstructGPT generation and human
annotation) as atomic facts. However, the key facts
we discuss are extracted NER/POS tags containing
factual information, and hence are different. Key
facts can be extracted by performing part-of-speech
(POS) tagging or Named Entity Recognition (NER)
on the sentence. Given an LLM output A, we
perform coreferencing and decompose A into sen-
tences 51,59, ...,5n, where N is the total num-
ber of sentences, such that A = {S7,S2...,Sn}.
Each sentence is tagged to extract key facts a;;,
where i € {1,..., N}, and j depends on the num-
ber of tagged entities in a sentence. The tagging
can be either POS-based or NER-based, as dis-



cussed in Section 5.4.2. For example, given the
original sentence “Argentina won the World Cup in
the years, 1978, 1986 and 2006.”, in Figure 1, the
key facts consist of a = [a11 = Argentina,ajo =
World Cup, a13 = 1978, 1986 and 2006].
Targeted Question Generation: After identify-
ing key facts, the next step involves verifying
whether each fact is hallucinated within the context
of the sentence. Unlike previous methodologies
that assign a hallucination score to each sentence,
CONFACTCHECK focuses on key facts, thereby
enhancing explainability by pinpointing the ex-
act parts of a sentence that are hallucinated and
providing reasons for this determination, as de-
tailed in Section 5.5. Specifically, for each key
fact a;; given sentence S;, a corresponding ques-
tion ¢;; is generated (using a T5-based model that
is specifically finetuned for this task of question
regeneration), with a;; as the target answer and
S; as the context, expressed as ¢;; = Q(ai;|S;),
where Q represents the question generation module.
In Figure 1, each key fact provides one question
q = [q11 = Question 1, g2 = Question 2, 13 =
Question 3]. LLM M’ is then used to evaluate
these questions at a low temperature to ensure re-
sponse consistency, as it enables the LLM to gen-
erate high-quality and deterministic outputs. Each
individual key fact-based question is answered by
the LLM with greater precision and therefore helps
to better identify whether the fact is correct or incor-
rect (Dhuliawala et al., 2024). Note that M’ may
or may not be the same as M, as another LLM can
be used to evaluate the responses of LLM M.
Consistency Checking The responses from M’
generate regenerated facts f;;, which are then
checked for consistency with a;;. This is done
using F1 score-based matching to measure the sim-
ilarity between f;; and a;;.

Let us understand this better with the help
of example in Figure 1 where the set of re-
generated facts is given by f = [fu =
Argentina, f15 =  FIFA World Cup, f13 =
1978, 1986, and 2022], while the original key
facts are a = [a11 = Argentina,a1a =
World Cup, a3 = 1978, 1986, and 2006]. In this
example, f13 and a3 yield a low Fl-score and
are therefore classified as non-aligned, whereas
the first two facts are considered aligned due to
their higher scores. It should also be noted that the
number of key facts per sentence varies depend-
ing on the factual content, which in turn affects
the number of generated questions. Broadly speak-

ing, this approach enables the decomposition of
sentence-level information into discrete factual ele-
ments. This method operates under the assumption
that the LLM’s responses will remain consistent
for factual information when sampled at a low tem-
perature.

3.2 Uniform Distribution Check

After the fact-alignment step, we perform a subse-
quent step to check if the facts were regenerated
with high confidence. The underlying intuition be-
hind this step is that if the LLM is confident in
regenerating a fact correctly, the probability distri-
bution of the generated tokens will be skewed, with
the selected tokens having significantly higher prob-
abilities than the other possible tokens. This results
in a non-uniform distribution of token probabilities.
Conversely, if the LLM is uncertain, even though
the generated tokens may have the highest relative
probability, their values will be closer to those of
alternative tokens (closer to a uniform distribution)
and indicating less confidence in LLM prediction.
To quantify this, we use a Kolmogorov—Smirnov
test on the top-5 tokens (selected heuristically) for
each regenerated fact f;;. If the test indicates a non-
uniform distribution, the LLM is deemed confident
in regeneration, and original fact a;; is classified as
non-hallucinated. However, if the token probabili-
ties follow a uniform distribution, the second check
concludes that the particular fact is hallucinated,
reflecting the LLM’s lack of confidence. The final
hallucination score for a sentence S; is calculated
by averaging the individual scores of a;; present in
it to give a probability of how likely a sentence has
been hallucinated.

4 Experimental Protocol

4.1 Task and Datasets

We consider two common task settings — question
answering (QA) and text summarization. In the QA
setting, LLMs are particularly susceptible to factual
hallucinations, especially when no external context
or information is provided with the input questions.
The summarization task is a representative of the
long-form text generation tasks where the output
is not limited to be a short answer (a phrase or a
sentence), and hence enables us to evaluate the abil-
ity of various methods to detect hallucinations in
longer pieces of text. In addition, this setting also
tests the ability of the LLM to generate text that
is faithful to the input context (text to be summa-



rized). We use the following four datasets for our
experiments.

1. Natural Questions (NQ)-open (Kwiatkowski
et al., 2019) is an open-domain QA benchmark
derived from the Natural Questions dataset (Lee
et al., 2019).We use these questions as input for the
LLM to generate answers, which are then checked
for hallucination by various methods.

2. HotpotQA (Yang et al., 2018) is a QA dataset
that features complex questions requiring multi-
hop reasoning.

3. WebQA (Berant et al., 2013) dataset is a factoid
QA dataset where the questions are derived from
the Freebase knowledge base.

4. WikiBio (Manakul et al., 2023) is a hallucination
detection dataset derived from Wikipedia biogra-
phies. It consists of 238 randomly selected articles
from among the longest 20% Wikipedia articles.
It also provides synthetic summaries generated by
GPT-3 for each of the original articles, along with
labels for factual correctness of the sentences.

4.2 Baselines

We use following four representative self-check
and self-consistency based hallucination detection
methods as baselines.

HaDes (Liu et al., 2022) is an external reference-
free method that leverages various token-level fea-
tures such as POS tags, average word probability,
mutual information, and TF-IDF scores to identify
if a token is hallucinated or not.

SelfCheckGPT (Manakul et al., 2023) is a sam-
pling based approach built upon the intuition that
for hallucinated responses, stochastically sampled
responses for the same input are likely to diverge.
SAC? (Zhang et al., 2023a), another sampling-
based approach that generates responses to multiple
semantically similar inputs to the original input and
checks for consistency in the generated outputs.
INSIDE (Chen et al., 2024) detects hallucina-
tions using the EigenScore metric, calculated us-
ing the eigenvalues of the covariance matrix of
the responses to measure the semantic consis-
tency/diversity in the dense embedding space of
the generated outputs.

4.3 Implementation details

Models Used. We use Mistral-7B-Instruct and
LLaMAZ2-7B-Inst as the base LLMs for comparing
CONFACTCHECK and various baselines. Further,
we use different models of Phi-3 family to study
how well CONFACTCHECK performs with LLMs

of varying scale (Section 5.3). We present abla-
tions that guided our design choices in Sections
5.4.2 and 5.4.3. We use the official implemen-
tations of HaDes!, SelfCheckGPT?, SAC33, and
INSIDE? for +our experiments. For SAC?, we com-
pute the question-level consistency SAC3-Q score
and employ thresholds as recommended in the orig-
inal work to discern the presence of hallucinated
outputs.

Metrics for Analysis: We consider hallucination
detection as a binary classification task where the
text generated by the LLM is either hallucinated
or not. For QA datasets, we assign labels of 1
for hallucination and 0 for non-hallucination to the
original outputs by comparing them with the golden
answers in the QA datasets using F1 score-based
similarity. For WikiBio, each sentence-level golden
label is provided in the dataset itself. We compare
the baselines with our approach (see Table 1) and
report the Accuracy scores on the 3 open-domain
QA datasets, as well as the WikiBio summarization
dataset. Note that the SelfCheckGPT baseline is
applicable on the WikiBio dataset, as the others
deal with only the QA task and require questions
as part of their input.

S Empirical Results and Discussions

We now present results of experiments to under-
stand how CONFACTCHECK compares with the
SoTA baselines as well as ablation studies reveal-
ing the role of different components of the proposed
pipeline.

5.1 CONFACTCHECK for Hallucination
Detection

Table 1 summarizes the results of different methods
for the four datasets and across two LLM back-
bones (Mistral and Llama-2). We observe that
CoNFAcTCHECKoutperforms all four baselines
for all the datasets and the two LM backbones.
The second-best performing method in each col-
umn (LLM backbone and dataset combination)
is underlined. We note that no baseline model
achieves consistently high performance across all
the settings. While HaDes achieves the second-
best performance on HotpotQA (with LLaMa2)
and WebQA for both LMs, SAC? achieves the
best performance on the three QA datasets with

1https: //github.com/microsoft/HaDes
2https: //github.com/potsawee/selfcheckgpt
3https://github.com/intuit/sac3
*https://github.com/alibaba/eigenscore
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Model NQ Open HotpotQA WebQA WikiBio
Mistral LLaMA2 Mistral LLaMA2 Mistral LLaMA2 Mistral LLaMA2
HaDes (Liu et al., 2022) 0.52 0.57 0.59 0.67 0.64 0.63 — —
SAC? (Zhang et al., 2023a) 0.69 0.51 0.71 0.51 0.64 0.44 — —
SelfCheckGPT (Manakul et al., 2023)  0.59 0.58 0.61 0.55 0.54 0.50 0.57 0.61
INSIDE (Chen et al., 2024) 0.67 0.59 0.59 0.57 0.60 0.47 — —
CONFACTCHECK 0.75 0.86 0.73 0.87 0.69 0.77 0.72 0.71
% gain over best baseline +6% +27% +2% +20% +5% +14% +15% +10%

Table 1: Model Accuracy for NQ Open, HotpotQA, WebQA, and WikiBio datasets. We compare ConFactCheck in
the same settings as the baselines, using Mistral-7B-Inst and LLaMa2-7B-Inst as the base models. Accuracy for
CONFACTCHECK: S reported for the Fact Alignment check and when beam decoding is used on the whole pipeline
(this yields best possible results). The best performing method in a given column is in bold and the second best

performing model is underlined.

Mistral as the backbone. Further, only SelfCheck-
GPT can be used for detecting hallucinations in
free-form text (WikiBio dataset), as the other base-
lines are designed for detecting hallucinations in
QA tasks and need questions as part of their input.
CONFACTCHECK, on the other hand, can detect
hallucinations in QA as well as free-form text set-
tings and achieves strong outperformance across
all settings, with double-digit absolute percentage
gains in five of the eight settings. Such strong per-
formance of CONFACTCHECKcan be attributed to
the fact that it identifies the key atomic facts in the
generated text and probes the LLM regarding its
knowledge around these key facts.

5.2 Computational Efficiency of Different
Methods

Recall from discussions in Section 1 that self-check
or self-refinement style methods suffer from high
latencies due to the need to query the LLM repeat-
edly to estimate the output probability distributions
or for a thorough verification of the generated out-
put. CONFACTCHECK, on the other hand, identi-
fies key facts in the generated output and gener-
ates targeted questions around these facts, thereby
greatly reducing the number of LLLM calls. Fur-
ther, CONFACTCHECK relies on lightweight com-
parisons and statistical operations (Section 3) to
check if the answers to targeted questions align
with the original output. Table 2 presents the
average number of LLM calls made and the av-
erage inference time for different methods. We
note from the table that CONFACTCHECK achieves
the fastest inference time for both the LLaMA2
and Mistral backbones. Compared to INSIDE,
CONFACTCHECK offers upto ~2x speedup (7.09s
vs. 15.15s for LLaMAZ2; 3.53s vs. 6.21s for Mis-

tral), and up to ~10x speedup compared to Self-
CheckGPT () (7.09s vs. 69.59s for LLaMA2; 3.53s
vs. 30.76s for Mistral). Note also that in the case of
CONFACTCHECK the number of calls being made
to the LLM is equivalent to the average number
of key facts extracted per input in the dataset. On
the other hand, SelfCheckGPT and SAC? need to
repeatedly query the LLM to compute their respec-
tive scores and the accuracies increase with increas-
ing number of queries to the LLM. In Table 2), we
report the latency numbers for SelfCheckGPT with
10 and 5 LLM calls per question and SAC? with 5
and 2 LLM calls, and INSIDE with 10 LLM calls
per question as recommended by the respective
papers. Also note that the performance numbers
for SelfCheckGPT and SAC? in Table 1 are with
the higher number of LLM calls (i.e 10 for Self-
CheckGPT and 5 for SAC?) to exhibit their best
performance.

Method #LLM calls Mistral LLaMA2
SelfCheckGPT 10 30.76 s 69.59 s
SelfCheckGPT 5 891s 24.81 s
SAC3 5 13.24 s 31.85s
SAC3 2 7.94 s 22.7s
INSIDE 10 6.21s 15.15s
CONFACTCHECK 2.6 3.53s 7.09s

Table 2: Average inference time (in seconds) for
CONFACTCHECK and the baselines (which have con-
figurable amount of LLM calls) over the samples of
the NQ_Open dataset while using Mistral and LLaMA2
models. CONFACTCHECK offers significant speedups
over the baselines.



5.3 CoNFACTCHECKwith LLMs of Varying
Scale

We now study how the performance of
CONFACTCHECK varies with the scale of
the underlying LLM. We use the Phi-3 instruct
family (Abdin et al., 2024) of models for this
purpose and chose models of 3 sizes — 3.8B, 7B,
and 13B. Table 3 summarizes the results for the
three Phi-3 models on the three QA datasets. In
addition to the accuracy of hallucination detection,
we also report the percentage of hallucinated
outputs in each setting to understand the severity
of hallucinations at different model scales. We
note from the table that for all three datasets, there
is a significant amount of hallucinated outputs,
with only a slight decrease from the 3.8B to 13B
models. This shows that just increasing the model
size may not eliminate hallucinations. We also
note that the ability of CONFACTCHECK to detect
hallucinations is consistent across different model
sizes. While the gains, as we go from 3.8B to 13 B
models, are moderate for HotpotQA and NQ-open
(one and two percentage points, respectively), they
are substantial for WebQA dataset (absolute gains
of six percentage points).

Model NQ Open HotpotQA WebQA
Acc  %Hall. Acc. %Hall. Acc. %Hall.
Phi-3-4b 054 0.75 062 0.76 047 0.81
Phi-3-7b 056  0.79 057 0.74 047 0.74
Phi-3-13b  0.56 0.71 063 075 053 0.78

Table 3: Performance of CONFACTCHECK for different
size models of the Phi-3 family. We report accuracy
of hallucination detection (Acc.) and percentage of
hallucinated outputs (Hall.) for the 3.8B, 7b, and 13B
models for the three QA datasets.

5.4 Ablation Studies

We now describe different ablation stud-
ies that guided different design choices for
CONFACTCHECK. We report the impact of
fact-alignment and uniform distribution check
steps in the pipeline (Section 3). We also describe
the effects of different decoding strategies and
methods for detecting key facts in the input.

5.4.1 Role of Different Components in
CONFACTCHECK

Recall that there are two main steps in
CONFACTCHECK - fact alignment and uniform
distribution check. The fact alignment step at-

tempts to regenerate the key facts in the generated
output by querying the LLM with targeted ques-
tions. The regenerated facts are then compared with
the original output for consistency. The subsequent
uniform distribution check acts as another verifi-
cation layer by relying on the model’s confidence
in the generation of regenerated key facts. Table 4
summarizes the hallucination detection accuracy
achieved by just the fact-alignment step the im-
provements achieved by performing the subsequent
uniform distribution check (the complete pipeline).
We note from the table that the uniform distribution
step plays a crucial role in the overall performance
of CONFACTCHECK with gains ranging from 16
to 38%.

Component LLM NQ Open HotpotQA WebQA
Fact Alignment Mistral 0.59 0.60 0.50
+ Distribution Check  Mistral 0.75 0.73 0.69
% gain 27% 21% 38%
Fact Alignment LLaMA2 0.72 0.75 0.60
+ Distribution Check LLaMA?2 0.86 0.87 0.77
% gain 19% 16% 28%

Table 4: Accuracies achieved by the two major com-
ponents of CONFACTCHECK. A uniform distribution
check after the fact alignment step leads to significant
performance gains.

5.4.2 Tagging of key-facts

Identifying of key facts in the generated text is a
crucial step in CONFACTCHECK as they are used
to probe the LLM in a targeted fashion. Hence,
the choice of method used for identifying key facts
in the generated text can have significant impact
on the overall performance. Kai et al. (2024) sug-
gests that factual information in a sentence can be
identified using POS tagging, specifically "NNP’
or 'NNPS’. Building on this, we selected the tags
"NNP’, ’NNPS’, ’CD’, and 'RB’ to be considered
key facts. As an alternative, we also evaluated us-
ing NER tagging and considering identified named
entities as key facts. We used Stanford’s Stanza (Qi
et al., 2020) library for NER and POS tagging. Ad-
ditionally, we also sampled random tokens from the
sentence and used them as key facts, ensuring that
the number of sampled tokens equaled the number
of NER tags present. This setting provides a lower
bound for key fact identification accuracy. Table 5
summarizes the results for the three strategies and
reveals that NER significantly outperforms both
POS tagging and random token sampling to iden-
tify which tokens contribute to the factuality of a



sentence or paragraph.

Tagging NQ Open HotpotQA WebQA
Mistral LLaMA2 Mistral LLaMA2 Mistral LLaMA2
Random 0.58 0.62 0.56 0.59 0.49 0.63
POS 0.62 0.62 0.52 0.54 0.61 0.59
NER 0.67 0.63 0.56 0.57 0.67 0.61

Table 5: The Accuracy scores while using different
tagging strategies on Mistral-7B and LLaMA2-7B for
identifying key facts in the sentence. NER is observed
to perform better in more cases over these three QA
datasets.

5.4.3 Effect of Decoding Strategies

Model NQ Open HotpotQA WebQA  WikiBio
Mistral (Greedy) 0.69 0.69 0.58 0.69
Mistral (Beam) 0.75 0.73 0.69 0.72
LLaMAZ2 (Greedy) 0.83 0.84 0.73 0.69
LLaMA2 (Beam) 0.86 0.87 0.77 0.71

Table 6: The Accuracy scores of CONFACTCHECK
with Mistral-7b and LLaMA2-7b models using differ-
ent decoding strategies for fact regeneration on the four
datasets. Beam decoding (beam size = 5) outperforms
Greedy Decoding in all of the settings.

After identifying the key facts in the generated
output, the next important step in the pipeline is
regenerating these key facts by targeted probing
of the LLM. To generate answers to the key fact-
oriented questions, we experimented with greedy
and beam decoding strategies. Since greedy decod-
ing involves selecting the token from the vocabu-
lary with the highest conditional probability at each
step, this strategy prioritizes key facts (as answers)
for which the model has the highest immediate
confidence. Beam decoding, on the other hand, ex-
plores multiple possible generation paths (number
of paths determined by the beam_size parameter),
and can thus generate key facts with the overall
highest probabilities. Table 6 reports the results
obtained by using the two decoding strategies, and
we note that for all four datasets and the two LLM
backbones, beam decoding outperforms greedy de-
coding. This outperformance can be attributed to
the exploration of multiple possible answer paths
before selecting the most likely one by beam de-
coding. As a result, when regenerating key facts,
beam decoding ensures a more informed selection
of entities, leading to a reduction in the likelihood
of factual errors and ensuring better regeneration of
facts. However, we do note that this decoding strat-
egy does involve a trade-off with computational

efficiency compared to greedy decoding as it now
needs to evaluate multiple generation paths.

5.5 Key Strengths of CONFACTCHECK

We now discuss the major strengths of
CONFACTCHECK which are summarized as
follows.

Training-Free Operation: Our generic approach
requires only the LLM-generated output and does
not necessitate dataset- or task-specific training.
The number of generated questions is determined
by the factual content within the generated sen-
tence, avoiding heuristic selection.

Ease of Implementation: CONFACTCHECK does
not require access to model weights or underlying
training data. Requiring only the model’s output
and the LLM used for response generation, our
method can be deployed on the same device as
the response generation process, whether through
a web interface, API, or a locally executed model.

Consistent Sample Scoring: Unlike previ-
ous stochastic hallucination detection methods,
such as SelfCheckGPT (Manakul et al., 2023),
CONFACTCHECK does not rely on multiple LLM
outputs. This ensures score consistency across re-
peated evaluations of the same sample. Further-
more, by avoiding multiple LLLM calls for a sin-
gle query, CONFACTCHECK reduces the compu-
tational overhead compared to methods requiring
multiple LLM generations.

Interpretability: CONFACTCHECK provides key-
fact-level scoring, enabling users to identify spe-
cific hallucinated facts. Operating on fine-grained
facts rather than entire sentences, our pipeline of-
fers a greater degree of explainability than previous
approaches like SAC (Zhang et al., 2023a), clarify-
ing the rationale behind a hallucination classifica-
tion.

6 Conclusions

We presented CONFACTCHECK, a novel fact-
based hallucination detection pipeline that does
not rely on access to model weights or external
knowledge sources. Empirical evaluations reveal
that despite being less computationally expensive
and not requiring any training, CONFACTCHECK
outperforms baseline methods for both QA as well
as free-form text generation tasks.



7 Limitations

Despite the high performance, ease of use, and
efficiency offered by CONFACTCHECK, it is not
without limitations. We analyze and present rep-
resentative examples of failure cases to highlight
its shortcomings and possible future areas of im-
provement. Consider the following question from
HotpotQA: Which of the office buildings used to
staff the White House used to be known as the State,
War, and Navy Building? For this question, the
answer provided by Mistral-7B-Instruct is the fol-
lowing. The office building used to staff the White
House that was once known as the State, War, and
Navy Building is now known as the Eisenhower
Executive Office Building. This building was con-
structed in 1952 and was named after President
Dwight D. Eisenhower. Although Eisenhower Ex-
ecutive Office Building is factually correct, our
pipeline categorizes the paragraph as hallucinated.
This discrepancy arises because our model iden-
tifies the fact ‘1952’ as hallucinated because of
the building’s actual construction period between
1871 and 1888. This contrasts with the golden
output from HotpotQA, which does not flag the an-
swer as hallucinated. However, due to the presence
of other hallucinated facts, our pipeline assigns a
hallucinated tag to the paragraph. Moreover, we
have observed that oftentimes, the generated ques-
tions may be vague, such as “Who was the building
named after?” This ambiguity can result in inac-
curacies when regenerating facts. The first error
can be mitigated if the relevant fact to examine is
known a priori. As for the second, developing an
improved reverse question-answering system can
help mitigate such errors.

In addition, we also note that the proposed
CONFACTCHECK has only been tested for English
language and LLMs trained mostly on English data.
Hence, while theoretically, the framework should
work for non-English and low-resource languages,
this needs to be empirically validated. Further,
the performance of CONFACTCHECK depends cru-
cially on intermediate steps requiring NER and
POS tagging, which may not always be available
for low-resource languages.
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A Models and Implementations

Al  SelfCheckGPT (Manakul et al., 2023)

One of the first works addressing zero-resource hal-
lucination detection, SelfCheckGPT is included in
our comparison, with its MQAG scores presented
in Table 1. We set the number of questions per
sentence to 5, using the Bayes scoring method with
Alpha. Both 3; and 5> were set to 0.95.

A.2 SAC3 (Zhang et al., 2023a)

As discussed earlier, we include SAC? as one of
our baselines and evaluate it using the instruction
fine-tuned version of Mistral-7B. We compute the
question-level consistency score (SAC3-Q), which
is defined in the original study as a measure of
cross-check consistency between two types of QA
pairs: i) the original question paired with its gener-
ated answer, and ii) multiple semantically similar
generated questions paired with their respective
answers. To align with our computational con-
straints, we experiment with two perturbed QA
pairs. While this number can be adjusted for fur-
ther comparisons, Zhang et al. (2023a) suggest that
using between 2 to 5 perturbed questions per data
sample produces comparable quantitative results.

A.3 HaDeS (Liu et al., 2022)

HaDeS is a novel token-free hallucination detec-
tion dataset designed for free-form text generation.
The dataset is constructed by perturbing raw web
text using an out-of-the-box BERT model. Human
annotators are then employed to assess whether the
perturbed text spans constitute hallucinations based
on the original text. The final model is a binary clas-
sifier that distinguishes between hallucinated and
non-hallucinated text.

A4 INSIDE

(Chen et al., 2024) INSIDE is a hallucination de-
tection method which deals with the interal states
of LLMs during generation to detect for hallucina-
tions in outputs. Their approach utilizes the layer
of sentence embedding outputs and exploits the
eigenvalues of the covariance matrix of outputs to
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Figure 3: Precision values at varying thresholds of hallucination classification by Mistral-7B, for each of our
CONFACTCHECK-based experiments. We observe that the Fact Alignment Greedy significantly outperforms others

across all thresholds.

measure consistency in the dense embedding space.
Specifically, the authors define a score called Eigen-
Score, computed as the logarithmic determinant of
the covariance matrix formed from the sentence
embeddings of a set of K outputs, thereby quan-
tifying the consistency among these embeddings.
Using it as a baseline, we implement it with our
settings with Mistral-7b and LLaMA?2-7b as the
LLMs on the 3 QA datasets and calculate the accu-
racy scores.

B Effects of Changing Precision
Threshold

For further evaluation, we perform a threshold-
based analysis on the averaged scores of each sam-
ple. Specifically, for various thresholds between
0 and 1, an output is classified as hallucinated if
its score exceeds the threshold. We then plot preci-
sion values (see Figure 3) for the different settings
of our approach. The results show a gradual in-
crease in precision across all three datasets as the
threshold rises. Notably, Fact Alignment consis-
tently outperforms the other settings, suggesting
that alignment without a probability check is more
effective in detecting hallucinations.

C Percentage of Key Facts in Original
Outputs

We also analyze the three QA datasets to determine
the proportion of textual content in the original gen-
erated answers that is represented by key facts, i.e
the factual information identified by NER tags in
our pipeline. These results are summarized in the
table below, providing insight into the representa-
tion of key facts in the outputs.
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Model Name % Atomic Facts/Output

NQ-Open HotpotQA ‘Web Questions
Mistral-7B 27.53% 13.10% 21.61%
LLaMA2-7B 10.23% 10.22% 8.4%

Table 7: Percentage of Key Facts/Output for different
models across the Question-Answering datasets.

D Usage of CONFACTCHECK on
Datasets

D.1 Open-Domain Question Answering

For this task, we evaluate CONFACTCHECK on
three datasets. CONFACTCHECK is applied to the
original outputs generated for each question to de-
termine if the LLMs have produced any hallucina-
tions. The process operates at the sentence level:
outputs are segmented into individual sentences,
key facts are extracted from each sentence, and
CONFACTCHECK then assesses the factual consis-
tency of these extracted facts.

D.2 Text-Based Summarization

For text-based summarization, we use the Wik-
iBio dataset, which includes summaries of indi-
viduals from Wikipedia alongside synthetic sum-
maries generated by GPT-3. CONFACTCHECK is
employed as a sentence-level detector on the syn-
thetic summaries, where each sentence is annotated
with a hallucination label provided by the dataset.
We obtain sentence-level hallucination scores and
compare them against the gold-standard annota-
tions. For passage-level evaluation, the overall
hallucination score is computed by averaging the
sentence-level scores.



E Pseudocode for the algorithm proposed

For an originally generated LLM output, we first
split it into sentences Si, So,...,Sy. Then for
each sentence, we use NER (POS can also be used)
to extract named entities which act as the key facts
ai; from each sentence (¢ and j represent the ith
sentence and ;' entity of that sentence respec-
tively).

We then proceed with the Fact Alignment Check,
where the LLM M’ is prompted with the T5 model-
based entity-specific questions to regenerate the
key facts as f;;. Then f;; and a;; are compared
by F1-score similarity to check if they align or not.
If they are aligned we tag a;; as O (i.e consistent
or a non-hallucination). Then we implement the
second probability-based check (i.e the Uniform
Distribution Check), where each aligned fact from
the first check is rechecked using the KS test as
described in Section 3. Following this, we obtain a
set of scores for each of the j key facts within the
it sentence. These are then averaged to provide a
final score for the particular output sentence.
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Algorithm 1 Hallucination detection score
1: procedure CALCULATESCORE(A, M)
2: Perform coreferencing on A and break it
into sentences 51,52, ..., SN

3 Set Score(S;) to0fori € {1,---,N}.
4: for i < 1to N do
5: Tag each sentence S; with NER entities

to extract atomic facts a;; for j entities
for all Q5 in Sz do
aij = Q(ai;]5:)
fij = M'(gij)
if align(fij, aij) then
Tag a;; as O (consistent)
for token wj;;, in f;; do

sijk = logitScore(w ;i |vocab(M”))

where:
* [sijk| = [vocab(M')]
* w;j € vocab(M’).
¢ logitScores : vocab(M’) — R

Compute
probabilities of top-5 tokens:

13: normalized-

eSijk
p(wijk) = T fork=1,2,...,5
14: if p; ;1. ~ Uniform then
15: Tag a;j as 1
16: break
17: end if
18: end for
19: else
20: Tag a;; as 1 (hallucinated)
21: end if
22: Score(a;j) < Tag of a;; (0 or 1)
23: Score(S;) <« Score(S;) +
Score(a;j)
24: end for
25: Score(S;) % >
Normalize score by number of entities
26: end for
27: return [Score(S1), Score(S2), . .., Score(Sn)]

28: end procedure
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