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Figure 1: We present LDCM, a simple and effective model for depth completion. Without complex
module design, LDCM achieves state-of-the-art performance in zero-shot depth completion and
metric point map estimation. On the leaderboard, larger areas indicate lower relative error (REL).
LDCM ranks first across diverse datasets.

ABSTRACT

This work presents the Large Depth Completion Model (LDCM), a simple, ef-
fective, and robust framework for single-view metric depth estimation with sparse
observations. Without relying on complex architectural designs, LDCM gener-
ates metric-accurate dense depth maps in one large transformer. It outperforms
existing approaches across diverse datasets and sparse observations. We achieve
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this from two key perspectives: (1) maximizing the potential of existing monoc-
ular foundation models to improve sparse observations preprocessing, and (2) re-
formulating training objectives to better capture geometric structure and metric
consistency. Specifically, a Poisson-based depth initialization module is firstly
introduced to generate a uniform coarse dense depth map from diverse sparse ob-
servations, which serves as a strong structural prior for the network. Regarding
the training objective, we replace the conventional depth head with a point map
head that regresses per-pixel 3D coordinates in camera space, enabling the model
to directly learn the underlying 3D scene structure instead of performing pixel-
wise depth map restoration. Moreover, this design eliminates the need for camera
intrinsic parameters, allowing LDCM to naturally produce metric-scaled 3D point
maps. Extensive experiments demonstrate that LDCM consistently outperforms
state-of-the-art methods across multiple benchmarks and varying sparsity priors
in both depth completion and point map estimation, showcasing its effectiveness
and strong generalization to unseen data distributions.

1 INTRODUCTION

Dense depth maps are essential for applications in robotics Lin et al. (2025); Wang et al. (2024c),
autonomous driving An et al. (2022); Li et al. (2023a), and augmented reality Krajancich et al.
(2020); Ren et al. (2025). However, capturing dense and accurate depth data requires expensive
active sensors such as LiDAR or structured light cameras, which are often limited by cost and
hardware constraints. Thus, depth completion, which estimates a dense depth map from low-cost
sparse depth observations and a corresponding RGB image, provides a cost-effective and efficient
alternative.

While prior approaches Cheng et al. (2018; 2019); Yan et al. (2022; 2025a); Park et al. (2020); Yu
et al. (2023); Zhou et al. (2023) perform well on in-domain datasets such as NYUv2 Silberman
et al. (2012) and KITTI Uhrig et al. (2017), they often fail to generalize to unseen environments
and irregular depth maps (e.g., Structure-from-Motion points with non-uniform density and large
missing regions), limiting their real-world applicability. Driven by the success of foundation models
trained on large-scale datasets Yang et al. (2024a;b); Yin et al. (2023); Hu et al. (2024), recent
works Zuo et al. (2024); Wang et al. (2023a; 2025e; 2024a; 2025a) have focused on architectural
innovations and training with larger, more diverse data to improve robustness under domain shifts
and varying sparsity. More recently, inspired by advances in natural language models Achiam et al.
(2023); Yang et al. (2025), prompt-based approaches Lin et al. (2025); Viola et al. (2024); Liu et al.
(2024); Park et al. (2024); Wang et al. (2025e) treat the sparse depth map as a conditioning signal
for transformer-based Yang et al. (2024a;b) or diffusion-based Ke et al. (2024); Viola et al. (2024);
Liu et al. (2024) depth foundation models, guiding the prediction toward metric-scale geometry.
Despite their promising results, these methods fundamentally address depth completion as a depth
restoration task, where the model learns to interpolate or denoise depth values conditioned on the
sparse observation. This paradigm prioritizes local smoothness and texture-aware completion but
lacks explicit 3D geometric reasoning, leading to unsatisfactory performance under severe domain
shifts and highly irregular sparse depth maps.

In this work, we introduce the Large Depth Completion Model (LDCM), which produces dense,
metric-accurate depth maps even from highly sparse and irregular observations. We achieve this
through a series of key improvements to both input preprocessing and training objective. To ad-
dress the challenge of sparse and irregular depth maps, we leverage a monocular depth foundation
model Yang et al. (2024a;b) to enrich the geometric prior. Specifically, we construct a dense gra-
dient field by combining the sparse depth map with relative depth cues predicted by the foundation
model. We demonstrate that this hybrid gradient field serves as an proxy for solving a Poisson-based
optimization problem, enabling the reconstruction of an initial coarse depth map that preserves fine
geometric structures and exhibits metric-consistent depth values. Regarding the training objective,
we replace the conventional depth regression head with a point map regression head, inspired by
recent advances in 3D reconstruction Wang et al. (2024b); Leroy et al. (2024); Wang et al. (2025b);
Fang et al. (2025). This reformulation explicitly encourages the network to predict metric-scale
3D coordinates, rather than focusing on pixel-wise depth map restoration. The final depth map is
obtained by extracting the z-component of the predicted point map, leading to more geometrically
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faithful and globally consistent depth predictions. Moreover, benefiting from this design, LDCM
naturally predicts 3D point maps without requiring camera intrinsics, facilitating robust deployment
in uncalibrated environments.

We perform extensive experiments to evaluate LDCM across six benchmarks, where it surpasses all
previous state-of-the-art methods in both depth completion and point map estimation, achieving top
rankings across all tasks and metrics, as displayed in Fig. 1. Our contribution can be summarized as
follows:

• We propose the Large Depth Completion Model (LDCM), which replaces the conventional
depth regression head with a point map regression head to directly predict metric-scale 3D
coordinates from a monocular image and sparse observations. This formulation enables
more effective learning of metric-consistent 3D structure compared to depth map regres-
sion, leading to superior performance in depth completion.

• We introduce a Poisson-based coarse depth completion strategy that leverages relative
depth cues from a monocular depth foundation model and sparse observations to gener-
ate high-quality initial depth maps, providing a geometrically faithful prior for subsequent
feature learning.

• Extensive experiments show that LDCM outperforms previous state-of-the-art methods in
both depth completion and metric point map estimation across diverse benchmarks and
sparse depth observations, demonstrating strong generalization and robustness.

2 RELATED WORK

Depth Completion. Depth completion aims to infer a dense depth map from a monocular im-
age and a sparse depth map, which can be readily obtained from sources such as Structure-from-
Motion Schops et al. (2017) or low-cost depth cameras Silberman et al. (2012). Recent deep
learning-based approaches have achieved significant progress by proposing numerous spatial prop-
agation network variants Liu et al. (2017); Cheng et al. (2018; 2019); Park et al. (2020); Lin et al.
(2022) or exploiting visual structural guidance from images for guided restoration. To better exploit
the 3D geometric information in sparse inputs, several 2D-3D joint depth completion approaches
have also been proposed Yu et al. (2023); Yan et al. (2024; 2025b); Zhou et al. (2023). Despite
achieving impressive performance on single-domain datasets (e.g., NYUv2 Silberman et al. (2012)
and KITTI Uhrig et al. (2017)), these methods often struggle with cross-domain generalization,
particularly when deployed in unseen environments and varying sparse observations.

Inspired by the success of foundation models Kirillov et al. (2023); Oquab et al. (2023); Yang et al.
(2024a;b); Yin et al. (2023); Hu et al. (2024); Wang et al. (2025a) trained on large-scale datasets,
recent works Zuo et al. (2024); Wang et al. (2023a; 2024a; 2025e) have focused on architectural
innovations and training with larger, more diverse datasets to improve generalization. More re-
cently, drawing inspiration from large language models Achiam et al. (2023); Yang et al. (2025),
prompt-based approaches Lin et al. (2025); Viola et al. (2024); Park et al. (2024); Jeong et al. (2025)
have emerged that treat auxiliary priors as prompts to condition depth foundation models, effec-
tively guiding predictions toward metric-scale outputs. PromptDA Lin et al. (2025) introduces a
compact prompt fusion architecture specifically designed for the DPT head Ranftl et al. (2021),
enabling the integration of low-resolution depth cues. TestPromptDC Jeong et al. (2025) presents
a test-time prompt tuning method that adapts foundation models during inference without modify-
ing their parameters, achieving sensor-specific depth scale adaptation while preserving foundational
knowledge. MarigoldDC Viola et al. (2024) prompts the sparse depth to a diffusion-based Ke et al.
(2024) foundation model. However, these methods fundamentally address depth completion as a
depth restoration task, where the model learns to interpolate or denoise depth values conditioned on
sparse inputs. The performance remains unsatisfactory under severe domain shifts and highly irreg-
ular sparse depth maps. In this work, we introduce a Poisson-based depth initialization module to
effectively maximize the potential of depth foundation models to generate a coarse dense depth map,
which serves as a strong structural prior for the following geometric feature learning. Besides, we
reformulate the training objective as point maps, providing a more structurally faithful supervision
for the network.
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Monocular Depth Estimation. A variety of monocular depth estimation foundation models Yang
et al. (2024a;b); Piccinelli et al. (2024; 2025); Yin et al. (2023); Ke et al. (2024) have been proposed.
These models learn rich, generalizable priors from large-scale data and serve as strong backbones for
downstream tasks such as stereo matching Wen et al. (2025); Jiang et al. (2025a); Cheng et al. (2025),
depth super-resolution Yan et al. (2025c), and depth completion Park et al. (2024); Lin et al. (2025);
Liu et al. (2024); Viola et al. (2024); Wang et al. (2025e). For instance, FoundationStereo Wen et al.
(2025) introduces a side-tuning feature adapter that leverages monocular priors to bridge the sim-to-
real domain gap. DuCos Yan et al. (2025c) treats foundation model outputs as structural priors for
depth super-resolution (DSR) and seamlessly integrates them into a Lagrangian duality framework.
PriorDA Wang et al. (2025e) employs a local weighted linear regression (LWLR) module Xu et al.
(2022) to align the scale of relative depth with sparse observations, where the result is then refined by
a structure-aware network to produce dense depth map. However, this local alignment strategy often
fails under highly sparse observations. In contrast, we propose a novel Poisson-based initializa-
tion strategy to better exploit the potential of foundation models by enforcing gradient consistency
constraints, yielding a significantly more geometrically coherent coarse depth map.

Geometry Estimation Foundation Models. Point map Wang et al. (2024b; 2025b;c); Fang et al.
(2025); Jang et al. (2025) representation has demonstrated strong potential for holistic scene un-
derstanding. Unlike depth maps, which indeedly encode 2.5D geometry tied to camera intrinsics,
point maps explicitly model 3D structure. Several approaches Yin et al. (2021); Piccinelli et al.
(2024; 2025) decouple this task into depth prediction and camera parameter estimation. In contrast,
DUSt3R Wang et al. (2024b) bypasses explicit camera modeling by directly regressing a scale-
invariant point map in an end-to-end fashion, with its successor Mast3R Leroy et al. (2024) enabling
metric-scale reconstruction. VGGT Wang et al. (2025b) introduces a feed-forward neural network
capable of 3D reconstruction from one, a few, or even hundreds of input views of a scene. AnyS-
plat Jiang et al. (2025b) extends VGGT Wang et al. (2025b) to support novel view synthesis from
uncalibrated image collections. To facilitate single-view geometry learning, MoGe Wang et al.
(2025c;d) predicts an affine-invariant point map and recovers metric scale using a global scaling
factor derived from contextual cues. More recently, several approaches Liu et al. (2025); Keetha
et al. (2025); Jang et al. (2025) have introduced additional priors to enhance geometry estimation.
Notably, Pow3R Jang et al. (2025) extends the DUSt3R Wang et al. (2024b) paradigm by incorpo-
rating complementary modalities; however, it remains limited to relative geometry. In this work,
we introduce point map representations for depth completion, enabling the model to directly learn
the underlying 3D scene structure and produce metric quantities. Our concurrent work, MapAny-
thing Keetha et al. (2025), also estimates metric 3D geometry from images and additional priors.

3 METHOD

3.1 OVERALL FRAMEWORK

The framework of the proposed LDCM is illustrated in Fig. 2. Given an RGB image I ∈ RH×W×3

and a sparse depth map S ∈ RH×W , LDCM predicts a metric point map P ∈ RH×W×3 in camera
space, from which the dense depth map is derived by extracting the z-channel component. The
framework consists of two main stages. In the first stage, we harness the power of monocular depth
foundation model to generate an initial coarse depth map C ∈ RH×W via Poisson reconstruction.
In the second stage, a ViT-based Dosovitskiy et al. (2020) depth completion network takes the image
I and the coarse depth C as input to predict the final metric 3D point map P. The details of each
stage are elaborated in the following sections.

3.2 COARSE DEPTH ALIGNMENT

Different types of sparse depth priors exhibit distinct spatial distributions, ranging from random
points and Structure-from-Motion keypoints to LiDAR-like structured sparsity, posing significant
challenges for generalization. A straightforward approach involves direct interpolation of the sparse
depth map Liu et al. (2024); however, it often introduces severe artifacts due to the absence of strong
geometric priors. With the advent of depth foundation models Ranftl et al. (2020; 2021), which
capture scene-level structure from large-scale training, leveraging them to provide robust geometric
guidance has emerged as a promising direction.
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Figure 2: Schematics and detailed architecture of LDCM. Given a single image and sparse depth
map, LDCM begins with a Poisson-based coarse depth alignment strategy. This process leverages a
pretrained depth foundation model to generate an initial coarse depth map through gradient-domain
optimization. This coarse depth, together with the input image, is then fed into the following point
map prediction network to regress a dense, metric-scale 3D point map.

To integrate sparse observations with foundation model predictions, we evaluate several coarse
alignment strategies, including global affine alignment, local weighted linear regression (LWLR),
and Poisson-based optimization. While the former two offer simple parametric alignment, they ex-
hibit critical limitations. Global affine alignment assumes a uniform scale and shift across the entire
image, making it unable to recover per-pixel metric values. LWLR improves spatial adaptivity by
fitting local models, but its performance is highly sensitive to the distribution and density of sparse
depth maps. In contrast, Poisson-based optimization formulates the alignment as a gradient-field
reconstruction problem, demonstrating superior geometric coherence and metric accuracy across di-
verse sparse observations. Therefore, we adopt Poisson reconstruction in the first stage of LDCM to
generate the coarse depth map C.

Specifically, given a sparse depth input S and relative depth cues Dr from a foundation model, we
aim to generate a coarse dense depth map C that aligns with the geometric structure of Dr while
preserving the observed values in S. To achieve this, we formulate the problem as minimizing the
following optimzation function:

C = argmin
D

(∑
i

∥∇ logDi −Gi∥2 + λ
∑
i∈Ω

(Di − Si)
2

)
, (1)

where G is a target log-gradient field that encodes structural fidelity and metric consistency, Ω
denotes the set of valid sparse depth points, and λ balances the two terms. A naive choice is G =
∇ logDr, but this ignores the unknown scale and shift of relative depth and may lead to misaligned
gradients in metric space. Instead, we construct a more informed target by incorporating metric
priors from sparse observations. Let (α, β) be the global affine transformation that best aligns Dr

with S:
(α, β) = arg min

α′,β′

∑
i∈Ω

(Si − α′ · (Dr)i − β′)
2
, (2)

and define γ = β/α. We then set:
G = ∇ log(Dr + γ). (3)

This choice is motivated by the fact that relative depth is typically derived from true depth via an
affine transformation Dr = (D∗ − β)/α. While we do not assume this relationship holds exactly,
shifting Dr by γ helps align its gradient structure with metric space. Empirically, ∇ log(Dr + γ)
serves as a robust proxy for the desired log-gradient field, preserving fine geometric details while
being anchored to absolute scale through sparse inputs. Thus, the final formulation becomes:

C = argmin
D

(∑
i

∥∇ logDi −∇ log(Dr + γ)i∥2 + λ
∑
i∈Ω

(Di − Si)
2

)
, (4)

which can be solved through the conjugate gradient method Hestenes et al. (1952). In this formu-
lation, each sparse point contributes to the global energy, and due to the nature of gradient-domain
reconstruction, its influence propagates across the entire image through the smoothness and structure
encoded in the gradient field.
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3.3 DEPTH COMPLETION NETWORK
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Figure 3: Detailed structure of the image neck.

The architecture is illustrated in Fig. 2(b). We
employ dual encoders to extract features from
the coarse depth map C and the RGB image, re-
spectively. Features are fused at multiple scales
by adding the image encoder outputs to the cor-
responding depth encoder features after spatial
alignment, as shown in Fig. 3. The fused fea-
tures are fed into a DPT-style decoder. For
the final output, instead of regressing a depth
map, we replace the standard depth regression
head with a point map head that directly pre-
dicts per-pixel 3D coordinates P. This enables
the model to learn the underlying 3D scene
structure holistically, rather than performing
pixel-wise depth restoration. Ablation studies
demonstrate that this design leads to better accuracy. Moreover, thanks to this end-to-end formula-
tion, the model naturally produces metric 3D point maps, facilitating robust deployment in uncali-
brated environments.

3.4 TRAINING

Training Losses. We train the LDCM using three complementary losses on the predicted 3D point
map P, with the ground-truth metric point map denoted as P̂.

L = Lglobal + λlocalLlocal + λnormalLnormal, (5)

where the individual terms are defined as follows. The global point map loss enforces overall struc-
tural consistency:

Lglobal =
∑
i∈M

1

D̂i

∥Pi − P̂i∥1, (6)

where M denotes the region of valid ground-truth. The local point map loss captures fine-grained
geometry by operating in 3D neighborhoods. Following Wang et al. (2025c), we sample anchor
points and define spherical regions Sj in 3D space:

Llocal =
∑
j∈Ha

∑
i∈Sj

1

D̂i

∥Pi − P̂i∥1. (7)

This encourages local coherence independent of image perspective. The normal loss promotes sur-
face smoothness and alignment:

Lnormal =
∑
i∈M

arccos

(
N⊤

i N̂i

∥Ni∥∥N̂i∥

)
, (8)

where Ni and N̂i are surface normals estimated from P and P̂, respectively.

Implementation Details. We train the LDCM on 11 public RGB-D datasets Roberts et al. (2021);
Wang et al. (2020; 2019); Zheng et al. (2023); Gómez et al. (2025); Wrenninge & Unger (2018); Li
et al. (2023b); LightwheelAI & contributors (2024); Huang et al. (2018); Ros et al. (2016); Yesh-
wanth et al. (2023), approximately 2.7 million samples. The combined data covers diverse indoor
and outdoor scenes; further details are provided in the suppl. material.

LDCM uses a ViT-B Dosovitskiy et al. (2020) pretrained with DINOv2 Oquab et al. (2023) as
the image encoder, and SPNet-Tiny Wang et al. (2024a) as the depth encoder. For coarse depth
alignment, we use DepthAnythingV2-S Yang et al. (2024b) as the foundation model. Training runs
for 200K iterations using the AdamW optimizer Loshchilov & Hutter (2017) with a cosine learning
rate schedule and linear warmup over the first 5% of iterations. The peak learning rates are 1×10−5

for the encoder and 1×10−4 for all other layers. We use a global batch size of 128, with mini-batches
sampling an approximately equal number of images from each dataset. During training, images are
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Table 1: Quantitative comparison of depth completion methods on benchmark datasets. All
methods are evaluated under zero-shot settings. Methods marked with † produce relative depth, and
metric depth is recovered by optimizing global scale and shift via least squares regression using the
same sparse depth prior. Methods marked with ‡ use dataset-specific configurations for indoor and
outdoor scenes, respectively. The best and second-best results are highlighted.

Method KITTI iBims-1 DIODE Indoor

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 4.149 2.763 0.178 0.731 13.432 0.605 0.503 0.156 0.829 13.750 0.837 0.702 0.193 0.668 14.114

UniDepth V1 3.335 2.010 0.118 0.938 8.636 1.166 1.082 0.370 0.236 16.000 0.939 0.840 0.158 0.779 13.523
UniDepth V2 3.150 1.598 0.090 0.960 6.500 0.446 0.321 0.100 0.935 11.932 0.811 0.678 0.165 0.681 13.023

DepthAnythingV2† 4.007 1.890 0.092 0.916 9.091 0.349 0.179 0.043 0.975 8.295 0.386 0.189 0.045 0.976 7.295
VGGT† 4.219 2.518 0.158 0.783 12.909 0.348 0.194 0.053 0.957 10.318 0.425 0.294 0.096 0.920 10.773

MoGe V1† 3.050 1.821 0.125 0.887 8.568 0.238 0.120 0.035 0.981 6.045 0.272 0.175 0.064 0.950 7.386
MoGe V2 4.617 3.366 0.213 0.458 15.182 0.633 0.540 0.156 0.707 14.500 1.064 0.938 0.235 0.433 15.841

G2-MonoDepth‡ 2.638 0.964 0.054 0.949 5.295 0.227 0.094 0.028 0.973 5.409 0.298 0.198 0.067 0.879 6.341
OMNI-DC 2.302 0.760 0.042 0.963 3.045 0.192 0.063 0.018 0.982 2.932 0.141 0.064 0.022 0.968 2.932
PriorDA 2.364 0.861 0.044 0.971 4.159 0.176 0.065 0.018 0.990 3.477 0.093 0.037 0.012 0.994 3.023
SPNet‡ 2.365 0.757 0.041 0.966 3.000 0.189 0.059 0.016 0.987 2.659 0.157 0.078 0.028 0.954 3.273

PromptDA 3.040 1.261 0.067 0.946 6.545 0.249 0.116 0.033 0.975 6.091 0.203 0.115 0.037 0.965 6.068
WorldMirror† 4.439 2.432 0.142 0.824 11.818 0.352 0.192 0.051 0.963 9.205 0.386 0.243 0.084 0.941 9.364
MapAnything 12.974 6.784 0.350 0.588 15.750 0.968 0.374 0.104 0.909 13.295 0.909 0.458 0.104 0.899 11.000

Pow3R† 3.515 2.096 0.141 0.832 10.750 0.338 0.183 0.049 0.965 9.091 0.353 0.240 0.078 0.943 9.000

LDCM (Ours) 1.911 0.537 0.026 0.983 1.068 0.161 0.044 0.012 0.991 1.659 0.084 0.025 0.008 0.993 1.545

Method DIODE Outdoor ETH3D Average

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 9.539 7.635 0.403 0.177 14.636 3.199 2.562 0.302 0.477 15.023 3.666 2.833 0.246 0.576 14.191

UniDepth V1 5.782 3.841 0.189 0.661 11.795 3.482 3.170 0.579 0.116 15.728 2.941 2.189 0.283 0.546 13.136
UniDepth V2 11.145 8.936 0.515 0.526 15.250 1.630 1.169 0.200 0.726 13.387 3.436 2.540 0.214 0.766 12.018

DepthAnythingV2† 5.940 2.777 0.124 0.869 8.659 2.091 0.424 0.049 0.979 9.477 2.555 1.092 0.071 0.943 8.563
VGGT† 4.898 2.893 0.237 0.772 10.591 0.540 0.317 0.060 0.949 9.103 2.086 1.243 0.121 0.876 10.739

MoGe V1† 10.576 8.340 0.406 0.599 14.250 1.651 0.550 0.082 0.943 8.750 3.157 2.201 0.142 0.872 9.000
MoGe V2 4.807 3.352 0.182 0.680 10.477 0.847 0.619 0.114 0.839 11.784 2.394 1.763 0.180 0.623 13.557

G2-MonoDepth‡ 2.393 0.875 0.062 0.938 4.682 0.428 0.177 0.034 0.969 5.603 1.197 0.462 0.049 0.942 5.466
OMNI-DC 2.322 0.726 0.049 0.955 3.341 0.290 0.100 0.016 0.987 2.932 1.049 0.343 0.029 0.971 3.036
PriorDA 2.310 0.858 0.051 0.957 3.932 0.274 0.105 0.017 0.990 3.443 1.043 0.385 0.028 0.980 3.607
SPNet‡ 2.111 0.658 0.048 0.959 2.114 0.419 0.119 0.019 0.986 3.625 1.048 0.334 0.030 0.970 2.934

PromptDA 3.604 1.561 0.087 0.912 6.182 0.644 0.276 0.041 0.967 7.102 1.548 0.666 0.053 0.953 6.398
WorldMirror† 4.464 2.317 0.151 0.828 8.045 0.524 0.302 0.051 0.962 7.761 2.033 1.097 0.096 0.904 9.239
MapAnything 7.675 3.891 0.219 0.731 11.318 1.952 0.711 0.108 0.904 12.523 4.896 2.444 0.177 0.806 12.777

Pow3R† 3.682 2.068 0.169 0.840 7.568 0.480 0.273 0.048 0.964 7.545 1.674 0.972 0.097 0.909 8.791

LDCM (Ours) 1.969 0.529 0.031 0.970 1.568 0.187 0.048 0.008 0.997 1.148 0.862 0.237 0.017 0.987 1.398

resized such that their aspect ratios range uniformly from 1 : 2 to 2 : 1, and total pixel counts fall
between 250K and 500K. Data augmentation includes random cropping, color jittering, Gaussian
blur, JPEG compression-decompression, and perspective-aware cropping to align the principal point
with the image center. Sparse depth inputs are synthetically generated by subsampling dense ground-
truth depth maps with varying patterns, following the protocol of OMNI-DC Zuo et al. (2024). The
training is conducted on 16 H20 GPUs and takes approximately six days to complete.

4 EXPERIMENTS

4.1 QUANTITATIVE EVALUATIONS

We evaluate the zero-shot performance of LDCM and compare it with several state-of-the-art ap-
proaches for depth completion Wang et al. (2023a); Zuo et al. (2024); Wang et al. (2024a); Lin et al.
(2025); Wang et al. (2025e), monocular depth estimation Yang et al. (2024a;b); Wang et al. (2025b);
Bochkovskiy et al. (2025), and monocular point map estimation Piccinelli et al. (2024; 2025); Wang
et al. (2025c;d); Liu et al. (2025); Jang et al. (2025); Keetha et al. (2025). Additional details on the
compared approaches and evaluation protocols are provided in the suppl. material. As demonstrated
in the experiments, LDCM achieves superior performance across multiple benchmarks.

Depth completion. We evaluate depth completion on KITTI Uhrig et al. (2017), ETH3D Schops
et al. (2017), iBims-1 Koch et al. (2018), and DIODE Vasiljevic et al. (2019), covering both indoor
and outdoor scenarios. To assess robustness under diverse sparse sampling patterns, we synthesize
sparse depth inputs using the following strategies:

• Noisy random sampling: uniformly sampled points at varying densities (e.g., 1%, 3%,
5%, 10%), with mild noise simulation;

• Keypoint-based sampling: depth values extracted at SIFT or ORB keypoints;
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• LiDAR-simulated sampling: synthetic LiDAR scans with varying numbers of vertical
beams (e.g., 64, 32, 16 lines).

On KITTI, the simulation is applied to raw single-frame LiDAR measurements Zuo et al. (2024);
Wang et al. (2023b). For all other datasets, they are generated from dense ground-truth depth maps.
We evaluate the predicted depth maps using standard metrics: Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Relative Error (REL), and the accuracy threshold δ1. For methods
that produce relative depth maps Wang et al. (2025b); Yang et al. (2024b); Wang et al. (2025c), we
recover the global scale and shift via least squares regression using the sparse depth prior. Table 1
reports the average RMSE, MAE, REL, and δ1 across all synthetic patterns per dataset, along with
the mean ranking over competing methods. As shown in the table, LDCM achieves state-of-the-art
performance. Notably, it maintains high accuracy even under extreme sparsity, demonstrating strong
robustness and generalization across diverse sparse input configurations.

Table 2: Quantitative comparison of point map estimation methods on benchmark datasets. All
methods are evaluated under zero-shot settings. The best and second-best results are highlighted.

Method KITTI iBims-1 DIODE Indoor

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 2.207 3.540 0.120 0.954 6.773 1.154 1.239 0.370 0.239 9.000 0.911 1.017 0.159 0.779 7.318
UniDepth V2 1.813 3.540 0.096 0.961 5.409 0.365 0.489 0.107 0.932 6.909 0.730 0.872 0.164 0.694 7.273

MoGe V2 3.536 4.899 0.208 0.484 9.000 0.574 0.667 0.156 0.740 8.000 1.048 1.185 0.242 0.410 8.955
G2-MonoDepth 1.669 3.118 0.098 0.946 4.841 0.186 0.287 0.052 0.972 4.750 0.305 0.401 0.087 0.875 4.841

OMNI-DC 1.542 2.828 0.092 0.960 3.409 0.164 0.256 0.046 0.980 3.341 0.174 0.241 0.045 0.967 2.977
PriorDA 1.573 2.836 0.091 0.965 4.341 0.159 0.240 0.043 0.989 3.500 0.140 0.190 0.034 0.994 2.909
SPNet 1.507 2.881 0.089 0.964 3.068 0.152 0.239 0.042 0.988 2.455 0.172 0.236 0.046 0.963 2.636

PromptDA 1.933 3.612 0.110 0.938 6.659 0.199 0.309 0.054 0.975 5.545 0.204 0.301 0.056 0.963 5.523

‘ LDCM (Ours) 1.027 2.308 0.055 0.982 1.045 0.092 0.194 0.026 0.992 1.000 0.127 0.179 0.027 0.992 1.159

Method DIODE Outdoor ETH3D Average

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 4.653 5.100 0.461 0.145 9.000 3.541 3.875 0.551 0.106 9.000 2.493 2.954 0.332 0.445 8.218
UniDepth V2 1.879 2.844 0.216 0.712 8.000 1.252 1.785 0.191 0.769 8.000 1.208 1.906 0.155 0.814 7.118

MoGe V2 0.931 1.206 0.115 0.890 5.977 0.716 0.913 0.119 0.865 6.409 1.361 1.774 0.168 0.678 7.668
G2-MonoDepth 0.794 1.129 0.109 0.891 4.864 0.603 0.826 0.105 0.911 5.160 0.711 1.152 0.090 0.919 4.891

OMNI-DC 0.714 0.946 0.095 0.915 2.795 0.550 0.710 0.095 0.929 3.284 0.629 0.996 0.075 0.950 3.161
PriorDA 0.698 0.908 0.095 0.919 3.295 0.538 0.682 0.094 0.936 3.352 0.622 0.971 0.071 0.961 3.479
SPNet 0.733 1.243 0.100 0.914 3.932 0.557 0.859 0.096 0.931 3.796 0.624 1.092 0.075 0.952 3.177

PromptDA 0.824 1.422 0.100 0.911 5.591 0.592 0.950 0.093 0.932 4.159 0.750 1.319 0.083 0.944 5.495

LDCM (Ours) 0.427 0.580 0.044 0.995 1.000 0.347 0.456 0.058 0.996 1.000 0.404 0.743 0.042 0.991 1.041

Point map estimation. We adopt the same benchmarks used for depth completion to evaluate
monocular point map estimation. The predicted point maps are evaluated using point-wise metrics:
RMSEp, MAEp, RELp and δp1 . Table 2 reports the average performance across all synthetic patterns
per dataset for each metric. For depth completion methods, we use the camera intrinsics from
UniDepth V2 Piccinelli et al. (2025) to back-project the completed depth maps into 3D point maps.
As shown in the table, LDCM consistently outperforms all competing methods, achieving the best
results across all datasets and metrics.

Affine-invariant point map estimation. We adopt the same benchmarks to evaluate monocular
affine-invariant point map estimation. Following MoGe Wang et al. (2025c), we resolve the scale
and shift of the predicted point map using the proposed ROE solver to align it with the ground truth.
Table 3 reports the average performance in terms of RELp and δp1 . As shown in the table, our method
achieves superior performance compared to baseline approaches and outperforms state-of-the-art
relative geometry estimation methods, including VGGT Wang et al. (2025b) and WorldMirror Liu
et al. (2025). This demonstrates that our model preserves—rather than compromises—the accuracy
of relative geometry estimation.

4.2 ABLATION STUDY

We conduct ablation studies to evaluate the effectiveness of the Poisson-based coarse depth align-
ment strategy and the training objectives. For simplicity, we adopt LiDAR-simulated sparse patterns
(64, 32, 16, and 8 lines) on outdoor datasets, and keypoint-based sampling on indoor datasets.

Coarse Depth Alignment Strategy. We ablate various coarse depth alignment strategies for robust
geometric guidance. First, we assess the accuracy of the generated coarse depth maps. As shown on
the left side of Table 4, Poisson-based alignment achieves the best performance, demonstrating its
effectiveness. Notably, global alignment is essential—its omission leads to a significant performance
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Table 3: Quantitative comparison of affine-invariant point map estimation methods on bench-
mark datasets. All methods are evaluated under zero-shot settings. The best and second-best
results are highlighted.

Method KITTI iBims-1 DIODE Indoor

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓
VGGT 0.147 0.823 4.500 0.048 0.967 3.909 0.107 0.926 4.636

MoGe V2 0.056 0.968 1.909 0.046 0.972 2.455 0.052 0.972 1.955
WorldMirror 0.108 0.886 3.136 0.044 0.965 2.864 0.073 0.953 3.091
MapAnything 0.366 0.344 6.000 0.233 0.611 6.000 0.172 0.758 6.000

Pow3R 0.152 0.850 4.318 0.064 0.965 4.318 0.108 0.947 4.273

LDCM (Ours) 0.039 0.983 1.091 0.017 0.992 1.000 0.014 0.995 1.000

Method DIODE Outdoor ETH3D Average

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓
VGGT 0.215 0.700 5.000 0.053 0.978 3.591 0.114 0.879 4.327

MoGe V2 0.124 0.841 2.000 0.044 0.980 2.637 0.064 0.947 2.191
WorldMirror 0.155 0.788 3.045 0.049 0.976 3.023 0.086 0.914 3.032
MapAnything 0.302 0.501 6.000 0.265 0.549 6.000 0.268 0.553 6.000

Pow3R 0.197 0.750 3.955 0.074 0.982 3.796 0.119 0.899 4.132

LDCM (Ours) 0.077 0.949 1.000 0.039 0.994 1.728 0.037 0.983 1.164

Table 4: ablation study on the coarse depth alignment strategy. We report the relative error (REL)
for coarse depth and final prediction. The best and second-best results are highlighted.

Configuration Corse Depth (REL ↓) Estimated Depth (REL ↓)

KITTI iBims-1 DIODE ETH3D Average KITTI iBims-1 DIODE ETH3D Average

Sparse - - - - - 0.021 0.029 0.040 0.026 0.029
Global alignment 0.095 0.075 0.102 0.078 0.087 0.020 0.019 0.035 0.023 0.024

LWLR 0.078 0.108 0.108 0.061 0.088 0.019 0.022 0.036 0.021 0.025

Poisson w/o global alignment 0.069 0.208 0.174 0.138 0.147 - - - - -
Poisson 0.033 0.073 0.088 0.044 0.059 0.019 0.018 0.033 0.019 0.022

drop. By comparison, LWLR performs worse than even simple global alignment under extreme
sparsity, highlighting its sensitivity to sparse and irregular inputs. A qualitative ablation example is
provided in Fig. 4, where the Poisson-based method not only achieves the highest accuracy but also
best preserves geometric structure. On the right side of Table 4, we use these coarse depth maps as
inputs to our completion model; again, the Poisson-based variant yields the best results.

Table 5: Ablation study on the output representation. We report the relative error (REL) for depth
completion and RELp for point map estimation. The best and second-best results are highlighted.

Configuration Depth Completion (REL ↓) Point Map Estimation (RELp ↓)

KITTI iBims-1 DIODE ETH3D Average KITTI iBims-1 DIODE ETH3D Average

SI-Log Depth 0.023 0.023 0.037 0.021 0.026 - - - - -
SI-Log Depth + Ray map 0.022 0.022 0.038 0.021 0.026 0.073 0.050 0.084 0.097 0.067

Point Map 0.019 0.018 0.033 0.019 0.022 0.047 0.032 0.070 0.059 0.045

Output Representation. We ablate the output representation by replacing the point map with either
a conventional depth map or the concatenation of depth and dense ray maps (depth + ray map). As
shown in Table 5, both alternatives lead to performance degradation, demonstrating that the point
map provides more effective 3D structural guidance than depth-based representations.
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Figure 4: Qualitative comparison between three coarse alignment stragies. We report the relative
error for each result.

4.3 DEPTH COMPLETION RESULTS ON STANDARD BENCHMARKS

Table 6: Quantitative comparison of depth completion methods on real-pattern benchmark
datasets. All methods are evaluated under zero-shot settings. Methods marked with † produce
relative depth, and metric depth is recovered by optimizing global scale and shift via least squares
regression using the same sparse depth prior. Methods marked with ‡ use dataset-specific con-
figurations for indoor and outdoor scenes, respectively. The best and second-best results are
highlighted.

Method NYUv2 VOID ETH3D

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 0.332 0.253 0.096 0.929 15.000 0.759 0.396 0.189 0.726 14.833 3.199 2.562 0.302 0.477 14.750

UniDepth V1 0.213 0.148 0.056 0.981 10.375 0.651 0.267 0.107 0.902 12.083 3.482 3.170 0.579 0.116 15.625
UniDepth V2 0.293 0.218 0.085 0.948 14.000 0.651 0.269 0.115 0.900 13.000 1.630 1.169 0.200 0.726 13.000

DepthAnythingV2† 0.220 0.128 0.045 0.977 11.250 0.605 0.214 0.063 0.958 8.250 1.915 0.493 0.063 0.963 6.500
VGGT† 0.168 0.087 0.033 0.985 7.000 0.572 0.196 0.064 0.952 6.750 0.650 0.432 0.095 0.906 6.375

MoGe V1† 0.180 0.093 0.037 0.979 8.750 0.577 0.200 0.064 0.952 7.500 2.877 0.450 0.108 0.924 6.500
MoGe V2 0.261 0.186 0.070 0.963 13.000 0.779 0.421 0.202 0.557 15.833 0.847 0.619 0.114 0.839 9.375

G2-MonoDepth‡ 0.166 0.071 0.026 0.985 7.125 0.607 0.195 0.055 0.942 7.500 1.425 0.525 0.136 0.886 10.375
OMNI-DC 0.147 0.053 0.020 0.987 4.375 0.574 0.168 0.040 0.962 4.167 0.822 0.317 0.079 0.925 4.625
PriorDA 0.122 0.047 0.017 0.993 2.750 0.571 0.171 0.039 0.968 3.333 0.671 0.260 0.061 0.962 2.500
SPNet‡ 0.127 0.047 0.017 0.992 2.500 0.578 0.178 0.054 0.959 5.250 1.299 0.372 0.092 0.943 6.625

PromptDA 0.162 0.079 0.028 0.989 6.000 0.565 0.182 0.049 0.965 4.000 0.911 0.483 0.090 0.896 6.875
WorldMirror† 0.217 0.121 0.042 0.979 10.125 0.596 0.208 0.067 0.946 9.833 0.898 0.668 0.153 0.836 9.250
MapAnything 0.724 0.327 0.132 0.885 16.000 0.782 0.282 0.110 0.900 13.750 2.283 0.874 0.150 0.863 12.375

Pow3R† 0.155 0.081 0.031 0.988 5.625 0.571 0.196 0.067 0.949 7.333 0.881 0.656 0.154 0.833 9.875

LDCM (Ours) 0.113 0.037 0.013 0.994 1.000 0.536 0.145 0.028 0.977 1.000 0.445 0.154 0.035 0.978 1.250

To further evaluate zero-shot depth completion under real-world sparse patterns, we follow prior
work in evaluating methods on the NYUv2 Silberman et al. (2012), VOID Wong et al. (2020), and
ETH3D Schops et al. (2017) datasets. For NYUv2, we adopt the sampling protocol from OMNI-
DC Zuo et al. (2024), extracting 500 and 100 sparse depth points per image, respectively. For VOID,
we use the provided sparse depth maps derived from a visual-inertial odometry system, which come
in three sparsity levels: 1500, 500, and 150 points per frame. For ETH3D, we project the sparse
3D points from COLMAP SfM reconstructions into the image plane to generate sparse depth maps.
Table 6 reports the quantitative results on each dataset. As shown in the table, LDCM significantly
outperforms all comparison methods, ranking first on all the datasets.

5 CONCLUSION

We have presented the Large Depth Completion Model (LDCM), a simple yet powerful framework
for metric depth estimation from sparse observations. LDCM is both effective and robust, leverag-
ing a Poisson-based alignment strategy to maximize the potential of existing monocular foundation
models by preprocessing input sparse observations into strong geometric priors for subsequent fea-
ture learning. Furthermore, LDCM replaces the conventional depth map representation with a point
map representation, enabling direct learning of the underlying 3D structure rather than per-pixel
depth restoration. Our method achieves superior zero-shot performance across multiple bench-
marks, demonstrating robustness under varying sparse observation patterns. Moreover, the point
map design allows LDCM to naturally output metric-scaled 3D geometry without requiring camera
intrinsics, facilitating reliable deployment in uncalibrated environments. We believe LDCM marks
a significant advancement in depth completion and can serve as a robust foundational model for
downstream 3D vision tasks.
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APPENDIX

A DATASETS

A.1 TRAINING DATASETS

We collected 11 open-source RGB-D datasets to train LDCM, comprising 10 synthetic and 1 real-
world dataset. An overview of the training datasets is provided in Table 7, spanning four distinct
domains: indoor, outdoor, in-the-wild, and driving scenarios. The combined training set contains
approximately 2.6 million images. The number of RGB-D pairs in each dataset may slightly differ
from the originally released versions, as we manually excluded some invalid frames.

Table 7: An overview of the training datasets.

Dataset Domain Statistic Type

Hypersim Roberts et al. (2021) Indoor 75K Synthetic
TartanAir Wang et al. (2020) In-the-wild 306K Synthetic

IRS Wang et al. (2019) Indoor 101K Synthetic
PointOdyssey Zheng et al. (2023) Indoor 303K Synthetic

UrbanSyn Gómez et al. (2025) Outdoor/Driving 7K Synthetic
Synscapes Wrenninge & Unger (2018) Outdoor/Driving 25K Synthetic

MatrixCity Li et al. (2023b) Outdoor/Driving 424K Synthetic
LightwheelOcc LightwheelAI & contributors (2024) Outdoor/Driving 204K Synthetic

MVS-Synth Huang et al. (2018) Outdoor/Driving 12K Synthetic
Synthia Ros et al. (2016) Outdoor/Driving 140K Synthetic

ScanNet++ Yeshwanth et al. (2023) Indoor 1M Real

Total - 2.6M -

A.2 EVALUATION DATASETS

We use six datasets that are excluded from the training set for to compare the performance between
LDCM and previous state-of-the-art methods. Below, we provide details for each dataset.

NYUv2 Dataset. The NYUv2 dataset Silberman et al. (2012) is an indoor dataset captured using a
Microsoft Kinect sensor, containing RGB and depth sequences from 464 indoor scenes. The official
test split contains 654 samples. Following Marigold Ke et al. (2024), we crop the images to a
resolution of 426 × 560 for consistent input dimensions.

KITTI Dataset. The KITTI Depth dataset Geiger et al. (2012); Uhrig et al. (2017) is a large-
scale outdoor dataset collected from a moving vehicle. The official validation split consists of 1,000
samples. Depth maps are acquired using an HDL-64 LiDAR sensor, with raw depth maps containing
fewer than 6% valid pixels. The provided ground truth is generated by fusing multiple consecutive
LiDAR scans, resulting in a denser depth map with approximately 14% valid pixels. For depth
completion, input images are center-cropped to the bottom region of 252 × 1216 to exclude the sky
and regions with unreliable depth due to the limited vertical field of view of the LiDAR.

DIODE Dataset. The DIODE dataset Vasiljevic et al. (2019) contains thousands of high-resolution
RGB images with accurate, dense, and long-range depth measurements, captured using a FARO
Focus S350 laser scanner. The official validation split includes 3 indoor and 3 outdoor scenes,
comprising 325 and 446 samples, respectively. To reduce noise at occlusion boundaries, we filter out
depth values where the maximum relative difference to any neighboring pixel exceeds 5% (indoor)
and 15% (outdoor). Input images are resized to 480 × 640.

iBims-1 Dataset. The iBims-1 dataset Koch et al. (2018) is an indoor benchmark captured in diverse
environments, providing high-resolution RGB images and highly accurate depth maps derived from
laser scans. The official evaluation split contains 100 samples, with images at a native resolution of
480 × 640.
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VOID Dataset. The VOID dataset Wong et al. (2020) is an indoor dataset captured using the Intel
RealSense D435i camera. The official validation split consists of 800 samples, each paired with
sparse depth maps at three sparsity levels (approximately 1500, 500, and 150 valid pixels) and RGB
images at a resolution of 480 × 640. These varying sparsity levels allow for robust evaluation under
different input conditions.

ETH3D Dataset. The ETH3D dataset Schops et al. (2017) consists of multi-view stereo images
and dense depth maps captured using a high-precision laser scanner and DSLR cameras, covering
diverse viewpoints and scene types. The official validation set contains 13 scenes with a total of 454
image pairs. The original image resolution is 4032 × 6048. Input images are resized to 480 × 640.

B EVALUATION DETAILS

B.1 COMPARISON METHODS

We compare LDCM against a comprehensive set of state-of-the-art approaches: Depth-
Pro1 Bochkovskiy et al. (2025), UniDepth V1 & V22 Piccinelli et al. (2024; 2025), Depth Anything
V23 Yang et al. (2024b), VGGT4 Wang et al. (2025b), MoGe V1 & V25 Wang et al. (2025c;d),
G2-MonoDepth6 Wang et al. (2023a), OMNI-DC7 Zuo et al. (2024), PriorDA8 Wang et al. (2025e),
SPNet9 Wang et al. (2024a), PromptDA10 Lin et al. (2025), Marigold-DC11 Viola et al. (2024),
DepthLab12 Liu et al. (2024), Pow3R13 Jang et al. (2025), MapAnything14 Keetha et al. (2025),
WorldMirror15 Liu et al. (2025), spanning the key tasks of monocular depth estimation, monocular
geometry estimation, depth completion. All methods are evaluated using their publicly available
implementations and pre-trained checkpoints. Notably, G2-MonoDepth Wang et al. (2023a) and
SPNet Wang et al. (2024a) employ different configurations for indoor and outdoor scenarios, while
LDCM and the remaining methods do not use scenario-specific hyperparameters. PromptDA Lin
et al. (2025) is specifically designed to leverage dense, low-resolution priors; therefore, we apply
Poisson surface reconstruction to the input sparse depth map to obtain a dense prior before inference.
Pow3R Jang et al. (2025) and WorldMirror Liu et al. (2025) produce relative geometry, even when
sparse depth priors are provided.

B.2 EVALUATION PROTOOL

To clarity the notations in this section:

• P and P̂ are the predicted and ground truth points, respectively.

• D and D̂ are the predicted and ground truth depths, which are the z-coordinate of corre-
sponding points.

• M is the mask of valid ground truth.

Depth Completion. In the manuscript, we use four standard metrics for depth completion evalua-
tion, including RMSE, MAE, REL, δ1. Formally, they are defined as follows:

1https://github.com/apple/ml-depth-pro.
2https://github.com/lpiccinelli-eth/UniDepth.
3https://github.com/DepthAnything/Depth-Anything-V2.
4https://github.com/facebookresearch/vggt.
5https://github.com/microsoft/MoGe.
6https://github.com/Wang-xjtu/G2-MonoDepth.
7https://github.com/princeton-vl/OMNI-DC.
8https://github.com/SpatialVision/Prior-Depth-Anything.
9https://github.com/Wang-xjtu/SPNet.

10https://github.com/DepthAnything/PromptDA.
11https://github.com/prs-eth/Marigold-DC.
12https://github.com/ant-research/DepthLab.
13https://github.com/naver/pow3r.
14https://github.com/facebookresearch/map-anything.
15https://github.com/Tencent-Hunyuan/HunyuanWorld-Mirror.
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• Root mean square error (RMSE) (RMSE):√
1

|M|
∑
i∈M

(D̂i −Di)2 (9)

• Mean absolute error (MAE):
1

|M|
∑
i∈M

∣∣∣D̂i −Di

∣∣∣ (10)

• Mean relative error (REL):

1

|M|
∑
i∈M

∣∣∣D̂i −Di

∣∣∣
D̂i

(11)

• Thresholded accuracy (δ1):

1

|M|
∑
i∈M

max

(
D̂i

Di
,
Di

D̂i

)
< 1.25 (12)

For models that produce relative depth maps Dr , we first follow Equation 2 to compute (α, β), and
then the metric depth maps are recoverd by:

D = α ·Dr + β. (13)

Point Map Estimation. For evaluating the reconstructed 3D point map, we adopt analogous met-
rics based on Euclidean distances between predicted and ground truth points. The metrics include
RMSEp, MAEp, RELp, and δp1 , defined as:

• Point-wise Root Mean Square Error (RMSEp):√
1

|M|
∑
i∈M

∥∥∥P̂i −Pi

∥∥∥2 (14)

• Point-wise Mean Absolute Error (MAEp):
1

|M|
∑
i∈M

∥∥∥P̂i −Pi

∥∥∥ (15)

• Point-wise Mean Relative Error (RELp):

1

|M|
∑
i∈M

∥∥∥P̂i −Pi

∥∥∥
∥Pi∥

(16)

• Point-wise Thresholded Accuracy (δp1 ):
1

|M|
∑
i∈M

∥∥∥P̂i −Pi

∥∥∥ < 0.25 ·min
(
∥Pi∥, ∥P̂i∥

)
(17)

Affine-invariant Point Map Estimation. To evaluate the affine-invariant point, we first compute
the scale αp and shift βp using the following equation, which recovers the affine transformation
applied to the predicted point map. This equation can be solved efficiently using the ROE solver
proposed by MoGe Wang et al. (2025c).

(αp, βp) = arg min
αp,βp

∑
i∈M

(
P̂i − αp ·Pi − βp

)2
, (18)

C MORE QUANTITATIVE RESULTS

From Table 12 to Table 29, we provide detailed quantitative results under different types of sparse
observations.
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Table 8: Quantitative comparison of depth completion with diffusion-based methods on bench-
mark datasets. The best results are in bold.

Method VOID-1500-Points VOID-500-Points VOID-150-Points

RMSE↓ MAE↓ REL↓ δ1 ↑ RMSE↓ MAE↓ REL↓ δ1 ↑ RMSE↓ MAE↓ REL↓ δ1 ↑
DepthLab 0.577 0.162 0.034 0.969 0.572 0.183 0.053 0.941 0.688 0.249 0.083 0.901

Marigold-DC 0.553 0.154 0.031 0.975 0.536 0.162 0.043 0.965 0.626 0.199 0.053 0.955

LDCM (Ours) 0.528 0.135 0.021 0.981 0.501 0.134 0.027 0.978 0.580 0.167 0.035 0.972

Method NYUv2-500-Points NYUv2-100-Points KITTI-64-Lines

RMSE↓ MAE↓ REL↓ δ1 ↑ RMSE↓ MAE↓ REL↓ δ1 ↑ RMSE↓ MAE↓ REL↓ δ1 ↑
DepthLab 0.118 0.041 0.015 0.993 0.213 0.100 0.037 0.976 2.032 0.828 0.061 0.962

Marigold-DC 0.116 0.040 0.014 0.993 0.157 0.061 0.022 0.988 1.931 0.818 0.054 0.971

LDCM (Ours) 0.094 0.028 0.009 0.996 0.131 0.045 0.016 0.992 1.240 0.292 0.016 0.993

Method KITTI-32-Lines KITTI-16-Lines AVERAGE

RMSE↓ MAE↓ REL↓ δ1 ↑ RMSE↓ MAE↓ REL↓ δ1 ↑ RMSE↓ MAE↓ REL↓ δ1 ↑
DepthLab 2.250 0.893 0.064 0.959 2.748 0.932 0.066 0.953 1.150 0.424 0.052 0.957

Marigold-DC 2.155 0.875 0.057 0.968 2.546 0.981 0.062 0.963 1.078 0.411 0.042 0.972

LDCM (Ours) 1.416 0.332 0.018 0.991 1.603 0.393 0.020 0.990 0.762 0.191 0.020 0.987

D MORE COMPARISON RESULTS WITH DIFFUSION-BASED METHODS

Here, we present additional comparisons with diffusion-based models—Marigold-DC Viola et al.
(2024) and DepthLab Liu et al. (2024). Due to their prohibitively long inference times, we evaluate
these methods primarily on three benchmarks with varying levels of sparse input: NYUv2 Silberman
et al. (2012) (500 and 100 points), VOID Wong et al. (2020) (150, 500, and 1500 points), and
KITTI Geiger et al. (2012) (64, 32, and 16 scan lines). As shown in Table 8, LDCM consistently
outperforms both Marigold-DC and DepthLab across all settings.

Table 9: Ablation study on the training data. We report the relative error (REL) for depth completion.

Configuration Depth Completion (REL ↓)

KITTI iBims-1 DIODE ETH3D Average

w/ more real data 0.020 0.017 0.035 0.018 0.022
Ours 0.019 0.018 0.033 0.019 0.022

Figure 5: Qualitative comparison between the results from models using different training datasets.

E ABLATION ON THE TRAINING DATA

Training Data. We perform an ablation study on the training data used to train the LDCM. In
addition to the original datasets, we introduce an extra dataset: DrivingStereo Yang et al. (2019).
The quantitative results are presented in Table 9. As shown, the inclusion of this additional data
does not significantly affect metric performance. However, as illustrated in Fig. 5, incorporating
more real-world data leads to visually less sharp predictions, likely due to imperfect supervision
signals in the added dataset.
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Table 10: Quantitative comparison of depth completion methods on benchmark datasets. All
methods are evaluated under zero-shot settings. Methods marked with † produce relative depth, and
metric depth is recovered by optimizing global scale and shift via least squares regression using the
same sparse depth prior. The best and second-best results are highlighted.

Method KITTI iBims-1 DIODE Indoor

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓

DepthAnythingV2† 4.007 1.890 0.092 0.916 5.318 0.349 0.179 0.043 0.975 5.614 0.386 0.189 0.045 0.976 4.909
DepthAnythingV2 w/ Poisson 2.448 0.953 0.051 0.959 2.955 0.231 0.098 0.027 0.976 3.136 0.195 0.091 0.026 0.967 2.795

VGGT† 4.219 2.518 0.158 0.783 6.955 0.348 0.194 0.053 0.957 6.727 0.425 0.294 0.096 0.920 6.750
VGGT w/ Poisson 2.627 1.112 0.065 0.937 4.205 0.241 0.104 0.028 0.975 4.318 0.217 0.111 0.037 0.957 4.341

MoGe V1† 3.050 1.821 0.125 0.887 5.341 0.238 0.120 0.035 0.981 4.159 0.272 0.175 0.064 0.950 5.250
MoGe V1 w/ Poisson 2.179 0.865 0.050 0.959 2.136 0.214 0.089 0.025 0.977 2.409 0.177 0.085 0.028 0.965 2.614

LDCM 1.911 0.537 0.026 0.983 1.023 0.161 0.044 0.012 0.991 1.227 0.084 0.025 0.008 0.993 1.000

Method DIODE Outdoor ETH3D Average

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthAnythingV2† 5.940 2.777 0.124 0.869 5.114 2.091 0.424 0.049 0.979 5.864 2.555 1.092 0.071 0.943 5.364

DepthAnythingV2 w/ Poisson 3.285 1.182 0.064 0.941 3.455 0.662 0.168 0.025 0.983 3.966 1.364 0.498 0.039 0.965 3.261
VGGT† 4.898 2.893 0.237 0.772 5.705 0.540 0.317 0.060 0.949 5.818 2.086 1.243 0.121 0.876 6.391

VGGT w/ Poisson 2.910 1.262 0.081 0.917 3.750 0.339 0.140 0.024 0.980 3.262 1.267 0.546 0.047 0.953 3.975
MoGe V1† 10.576 8.340 0.406 0.599 6.932 1.651 0.550 0.082 0.943 5.455 3.157 2.201 0.142 0.872 5.427

MoGe V1 w/ Poisson 2.340 0.910 0.053 0.950 2.000 0.319 0.118 0.021 0.986 2.262 1.046 0.413 0.035 0.967 2.284

LDCM 1.969 0.529 0.031 0.970 1.000 0.187 0.048 0.008 0.997 1.000 0.862 0.237 0.017 0.987 1.050

F APPLYING POISSON-BASED ALIGNMENT STRATEGY TO MONOCULAR
ESTIMATORS

In Table 10, we apply the Poisson alignment strategy to relative geometry estimators to obtain dense
depth maps. As shown in the table, this strategy effectively improves the metric accuracy of these
approaches, demonstrating its effectiveness. Moreover, our LDCM maintains state-of-the-art per-
formance.

G INFERENCE TIME

We report the per-stage inference times of our method, measured at a resolution of 480×640 on
an NVIDIA L20 GPU. Our pipeline comprises four stages: Depth Anything Small (0.006 s), global
alignment (0.006 s), Poisson-based alignment (0.020 s), and the subsequent refinement model (0.040
s), resulting in a total runtime of 0.072 s. For comparison, LWLR runs in 0.010 s under the same con-
ditions. A detailed comparison with the inference times of several competing methods is provided
in Table 11.

Table 11: Inference time (in seconds) of different methods at 480 × 640 resolution on an NVIDIA
L20 GPU, with all inference performed in FP32 precision.

Method OMNI-DC PriorDA DepthPro VGGT MoGe V2 DepthAnythingV2 LDCM (Ours)

Inference Time (s) 0.128 0.064 0.554 0.196 0.220 0.019 0.072

H MORE QUALITATIVE RESULTS

Fig. 7 and Fig. 8 presents a qualitative comparison between LDCM and state-of-the-art methods.
Notably, LDCM produces sharper geometric structures and more accurate depth distributions, par-
ticularly in regions with complex geometry or extreme sparsity. The predictions from LDCM exhibit
significantly clearer boundaries and finer details, demonstrating the effectiveness of our coarse-to-
fine framework and structural prior integration. In Fig. 9, we provide more visualization results for
depth map and point map.
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Image Result Ground Truth

Figure 6: Example of two failure cases.

OMNI-DCRGB Sparse PriorDA PromptDA LDCM Ground Truth

Figure 7: Visualization comparion with state-of-the-art methods.

I NOISE ANALYSIS

Fig. 10 presents an example with noisy input. When the sparse prior contains noise, the Poisson
alignment strategy is adversely affected. However, the subsequent network effectively mitigates this
issue and produces a high-quality result.

J LIMTATION AND FUTURE WORK

Although LDCM achieves superior performance, accurately reconstructing transparent objects and
reflective surfaces remains challenging, as illustrated by two failure cases in Fig. 6. This limitation
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RGB Sparse SPNet G2-MonoDepth WorldMirror LDCM Ground Truth

Figure 8: Visualization comparion with state-of-the-art methods.

RGB Sparse Depth Pred Ground Truth Point Pred

Figure 9: More visualization results for depth map and point map.

stems from the lack of large-scale datasets containing such materials, which are difficult to capture
and annotate. In the future, we plan to investigate synthetic data simulation to augment training
and improve robustness on these challenging scenarios. Additionally, while monocular video recon-
struction is a promising application, achieving temporal consistency poses substantial challenges.
Extending LDCM to process video sequences for consistent 3D geometry estimation over time is an
important direction for future exploration.
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Figure 10: An example for noise input

K STATEMENT ON THE USE OF LLMS

Large language models (LLMs) were used only for linguistic refinement, such as improving gram-
mar and phrasing. They played no role in shaping research concepts, designing experiments, or
interpreting data. The authors authored all content, verified its accuracy and originality, and assume
full responsibility for the manuscript.
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Table 12: Quantitative comparison of depth completion with baseline methods on the KITTI
dataset Geiger et al. (2012); Uhrig et al. (2017). Methods marked with † produce relative depth
maps, where the metric depth is recovered by optimizing global scale and shift via least squares
regression using the sparse depth prior. Methods marked with ‡ use scenario-specific configurations
for indoor and outdoor scenes, respectively.The best and the second best results are highlighted.

method Lidar-64-Lines Lidar-32-Lines Lidar-16-Lines

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 4.149 2.763 0.178 0.731 14.000 4.149 2.763 0.178 0.731 14.000 4.149 2.763 0.178 0.731 13.750

UniDepth V1 3.335 2.010 0.118 0.938 9.000 3.335 2.010 0.118 0.938 9.500 3.335 2.010 0.118 0.938 9.500
UniDepth V2 3.150 1.598 0.090 0.960 7.500 3.150 1.598 0.090 0.960 7.250 3.150 1.598 0.090 0.960 7.500

DepthAnythingV2† 3.902 1.826 0.088 0.923 9.250 3.903 1.824 0.088 0.923 8.750 3.902 1.824 0.088 0.923 9.000
VGGT† 4.122 2.417 0.148 0.804 12.000 4.126 2.415 0.147 0.806 13.000 4.134 2.431 0.149 0.802 12.500

MoGe V1† 3.822 2.450 0.159 0.869 11.500 3.299 1.997 0.131 0.899 10.250 2.977 1.720 0.113 0.915 8.500
MoGe V2 4.617 3.366 0.213 0.458 15.250 4.617 3.366 0.213 0.458 15.250 4.617 3.366 0.213 0.458 15.000

G2-MonoDepth‡ 1.609 0.378 0.024 0.986 4.000 1.801 0.454 0.028 0.984 4.000 2.187 0.652 0.036 0.981 4.250
OMNI-DC 1.184 0.274 0.015 0.993 1.000 1.424 0.354 0.019 0.990 2.000 1.710 0.460 0.024 0.986 2.000
PriorDA 1.776 0.561 0.029 0.985 5.000 1.912 0.645 0.034 0.983 5.000 2.124 0.773 0.041 0.979 4.750
SPNet‡ 1.547 0.369 0.023 0.987 3.000 1.774 0.418 0.026 0.985 3.000 2.069 0.531 0.031 0.982 3.000

PromptDA 2.409 0.857 0.043 0.973 6.000 2.490 0.886 0.043 0.972 6.000 2.682 0.993 0.050 0.966 6.000
WorldMirror† 3.740 2.245 0.159 0.793 11.500 4.076 2.078 0.121 0.883 11.250 5.017 2.543 0.134 0.832 13.000
MapAnything 12.431 6.241 0.318 0.621 15.750 12.621 6.357 0.322 0.616 15.750 12.856 6.551 0.331 0.606 15.750

Pow3R† 3.027 1.797 0.122 0.865 9.000 3.254 1.920 0.128 0.853 10.000 3.352 1.944 0.127 0.855 10.500

LDCM (Ours) 1.240 0.292 0.016 0.993 1.750 1.416 0.332 0.018 0.991 1.000 1.603 0.393 0.020 0.990 1.000

method Lidar-8-Lines Lidar-4-Lines 10%

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 4.149 2.763 0.178 0.731 13.250 4.149 2.763 0.178 0.731 13.250 4.149 2.763 0.178 0.731 14.000

UniDepth V1 3.335 2.010 0.118 0.938 9.500 3.335 2.010 0.118 0.938 8.500 3.335 2.010 0.118 0.938 9.250
UniDepth V2 3.150 1.598 0.090 0.960 7.500 3.150 1.598 0.090 0.960 5.000 3.150 1.598 0.090 0.960 7.500

DepthAnythingV2† 3.927 1.838 0.089 0.922 9.000 4.070 1.904 0.091 0.917 9.500 3.919 1.833 0.088 0.923 9.250
VGGT† 4.158 2.410 0.147 0.809 12.250 4.284 2.400 0.147 0.811 12.250 4.129 2.421 0.148 0.803 13.000

MoGe V1† 2.828 1.587 0.105 0.918 8.000 2.796 1.508 0.098 0.926 6.250 2.932 1.688 0.112 0.914 8.500
MoGe V2 4.617 3.366 0.213 0.458 15.000 4.617 3.366 0.213 0.458 15.000 4.617 3.366 0.213 0.458 15.250

G2-MonoDepth‡ 2.658 0.877 0.046 0.972 4.500 3.847 1.572 0.077 0.930 7.500 1.849 0.490 0.028 0.985 3.750
OMNI-DC 2.116 0.629 0.031 0.981 2.000 3.305 1.114 0.050 0.958 3.000 1.759 0.443 0.025 0.985 2.250
PriorDA 2.404 0.936 0.049 0.973 4.500 3.300 1.320 0.063 0.954 4.250 1.980 0.640 0.032 0.982 5.000
SPNet‡ 2.379 0.716 0.037 0.978 3.000 3.516 1.219 0.055 0.958 4.000 1.776 0.459 0.026 0.986 2.750

PromptDA 2.908 1.098 0.054 0.960 6.250 3.686 1.526 0.078 0.939 6.750 2.591 0.964 0.048 0.966 6.000
WorldMirror† 5.776 2.941 0.148 0.794 13.750 6.412 3.235 0.159 0.765 13.750 3.848 2.192 0.133 0.859 11.500
MapAnything 13.057 6.717 0.339 0.598 15.750 13.166 6.883 0.351 0.579 15.750 12.926 6.684 0.344 0.593 15.750

Pow3R† 3.448 1.977 0.128 0.854 10.500 3.648 1.961 0.123 0.864 10.000 3.491 2.043 0.132 0.855 11.000

LDCM (Ours) 1.878 0.494 0.023 0.987 1.000 2.592 0.767 0.031 0.978 1.000 1.565 0.373 0.019 0.990 1.000

method 5% 3% 1%

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 4.149 2.763 0.178 0.731 14.000 4.149 2.763 0.178 0.731 14.000 4.149 2.763 0.178 0.731 13.750

UniDepth V1 3.335 2.010 0.118 0.938 9.250 3.335 2.010 0.118 0.938 9.250 3.335 2.010 0.118 0.938 9.250
UniDepth V2 3.150 1.598 0.090 0.960 7.750 3.150 1.598 0.090 0.960 7.500 3.150 1.598 0.090 0.960 7.000

DepthAnythingV2† 3.924 1.835 0.088 0.922 9.250 3.940 1.843 0.089 0.922 9.500 3.996 1.866 0.090 0.920 9.500
VGGT† 4.136 2.428 0.149 0.802 13.000 4.146 2.435 0.150 0.801 13.000 4.185 2.458 0.151 0.797 13.250

MoGe V1† 2.803 1.569 0.104 0.922 8.000 2.748 1.517 0.100 0.925 7.750 2.757 1.512 0.099 0.922 7.500
MoGe V2 4.617 3.366 0.213 0.458 15.250 4.617 3.366 0.213 0.458 15.250 4.617 3.366 0.213 0.458 15.250

G2-MonoDepth‡ 2.035 0.573 0.031 0.983 3.750 2.244 0.672 0.035 0.980 4.000 2.930 1.040 0.051 0.966 5.250
OMNI-DC 1.951 0.516 0.028 0.983 3.000 2.124 0.589 0.031 0.980 3.000 2.677 0.840 0.042 0.969 3.500
PriorDA 2.099 0.690 0.034 0.980 5.000 2.210 0.738 0.036 0.978 4.750 2.524 0.880 0.042 0.972 3.000
SPNet‡ 1.897 0.513 0.027 0.986 2.000 2.053 0.577 0.029 0.984 2.000 2.534 0.773 0.037 0.977 2.250

PromptDA 2.762 1.070 0.055 0.961 6.000 2.874 1.117 0.056 0.959 6.500 3.245 1.341 0.068 0.946 6.750
WorldMirror† 3.820 2.123 0.125 0.868 11.250 3.835 2.128 0.125 0.867 11.250 3.903 2.160 0.127 0.860 11.250
MapAnything 12.980 6.726 0.345 0.594 15.750 13.106 6.986 0.368 0.573 15.750 13.334 7.326 0.388 0.550 15.750

Pow3R† 3.472 2.020 0.131 0.850 11.250 3.472 2.010 0.130 0.853 11.000 3.544 2.047 0.132 0.850 11.250

LDCM (Ours) 1.691 0.420 0.021 0.989 1.000 1.821 0.468 0.022 0.988 1.000 2.160 0.610 0.027 0.983 1.000

method SIFT ORB Average

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 4.149 2.763 0.178 0.731 12.000 4.149 2.763 0.178 0.731 11.750 4.149 2.763 0.178 0.731 13.432

UniDepth V1 3.335 2.010 0.118 0.938 5.750 3.335 2.010 0.118 0.938 6.250 3.335 2.010 0.118 0.938 8.636
UniDepth V2 3.150 1.598 0.090 0.960 3.250 3.150 1.598 0.090 0.960 3.750 3.150 1.598 0.090 0.960 6.500

DepthAnythingV2† 4.295 2.080 0.102 0.896 8.000 4.299 2.116 0.108 0.886 9.000 4.007 1.890 0.092 0.916 9.091
VGGT† 4.516 2.949 0.199 0.691 14.000 4.473 2.933 0.204 0.682 13.750 4.219 2.518 0.158 0.783 12.909

MoGe V1† 3.274 2.194 0.170 0.792 8.500 3.315 2.289 0.184 0.760 9.500 3.050 1.821 0.125 0.887 8.568
MoGe V2 4.617 3.366 0.213 0.458 15.250 4.617 3.366 0.213 0.458 15.250 4.617 3.366 0.213 0.458 15.182

G2-MonoDepth‡ 4.238 2.212 0.133 0.800 10.000 3.617 1.680 0.101 0.869 7.250 2.638 0.964 0.054 0.949 5.295
OMNI-DC 3.630 1.632 0.099 0.884 6.250 3.443 1.514 0.097 0.889 5.500 2.302 0.760 0.042 0.963 3.045
PriorDA 2.904 1.174 0.061 0.948 2.250 2.769 1.118 0.061 0.949 2.250 2.364 0.861 0.044 0.971 4.159
SPNet‡ 3.358 1.482 0.085 0.891 4.500 3.107 1.265 0.075 0.911 3.500 2.365 0.757 0.041 0.966 3.000

PromptDA 3.882 1.990 0.120 0.887 7.250 3.909 2.027 0.126 0.872 8.500 3.040 1.261 0.067 0.946 6.545
WorldMirror† 4.166 2.558 0.165 0.769 10.750 4.239 2.551 0.166 0.770 10.750 4.439 2.432 0.142 0.824 11.818
MapAnything 13.101 7.111 0.374 0.561 15.750 13.133 7.046 0.372 0.577 15.750 12.974 6.784 0.350 0.588 15.750

Pow3R† 3.981 2.646 0.197 0.735 11.500 3.973 2.694 0.206 0.719 12.250 3.515 2.096 0.141 0.832 10.750

LDCM (Ours) 2.579 0.910 0.043 0.963 1.000 2.478 0.846 0.042 0.962 1.000 1.911 0.537 0.026 0.983 1.068
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Table 13: Quantitative comparison of depth completion with baseline methods on the indoor
scenes of the DIODE dataset Vasiljevic et al. (2019). Methods marked with † produce relative
depth maps, where the metric depth is recovered by optimizing global scale and shift via least
squares regression using the sparse depth prior. Methods marked with ‡ use scenario-specific con-
figurations for indoor and outdoor scenes, respectively. The best and the second best results are
highlighted.

Method 10% Noise 5% 3%

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 0.837 0.702 0.193 0.668 14.500 0.837 0.702 0.193 0.668 14.500 0.837 0.702 0.193 0.668 14.500

UniDepth V1 0.939 0.840 0.158 0.779 14.000 0.939 0.840 0.158 0.779 14.000 0.939 0.840 0.158 0.779 14.000
UniDepth V2 0.811 0.678 0.165 0.681 13.500 0.811 0.678 0.165 0.681 0.811 0.678 0.165 0.681 13.500

DepthAnythingV2† 0.383 0.185 0.041 0.979 8.500 0.387 0.181 0.040 0.979 8.750 0.388 0.181 0.040 0.979 8.750
VGGT† 0.392 0.262 0.078 0.928 11.750 0.391 0.261 0.078 0.929 11.750 0.391 0.261 0.078 0.929 11.750

MoGe V1† 0.243 0.144 0.045 0.956 8.750 0.239 0.140 0.043 0.958 8.250 0.239 0.140 0.043 0.958 8.000
MoGe V2 1.064 0.938 0.235 0.433 16.000 1.064 0.938 0.235 0.433 16.000 1.064 0.938 0.235 0.433 16.000

G2-MonoDepth‡ 0.020 0.004 0.001 1.000 1.500 0.021 0.005 0.001 1.000 2.250 0.026 0.005 0.001 1.000 2.250
OMNI-DC 0.066 0.009 0.002 0.999 4.000 0.022 0.002 0.000 1.000 1.500 0.026 0.002 0.000 1.000 1.250
PriorDA 0.077 0.029 0.006 0.999 4.750 0.050 0.016 0.004 1.000 4.000 0.051 0.016 0.004 0.999 5.000
SPNet‡ 0.019 0.003 0.001 1.000 1.000 0.018 0.003 0.001 1.000 1.500 0.021 0.003 0.001 1.000 1.500

PromptDA 0.099 0.049 0.014 0.998 6.000 0.092 0.047 0.013 0.997 6.000 0.095 0.047 0.013 0.998 6.000
WorldMirror† 0.323 0.195 0.062 0.958 10.250 0.380 0.231 0.069 0.946 10.500 0.376 0.220 0.066 0.948 10.500
MapAnything 0.535 0.129 0.030 0.977 8.500 0.508 0.133 0.027 0.984 8.250 0.552 0.156 0.031 0.982 8.500

Pow3R† 0.260 0.186 0.056 0.976 9.250 0.296 0.207 0.063 0.954 9.500 0.310 0.211 0.063 0.951 9.500

LDCM (Ours) 0.023 0.005 0.001 1.000 2.000 0.025 0.004 0.001 1.000 2.500 0.028 0.004 0.001 1.000 2.500

Method 1% 500 100

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 0.837 0.702 0.193 0.668 14.500 0.837 0.702 0.193 0.668 14.250 0.837 0.702 0.193 0.668 13.750

UniDepth V1 0.939 0.840 0.158 0.779 14.000 0.939 0.840 0.158 0.779 13.750 0.939 0.840 0.158 0.779 13.250
UniDepth V2 0.811 0.678 0.165 0.681 13.500 0.811 0.678 0.165 0.681 13.250 0.811 0.678 0.165 0.681 12.500

DepthAnythingV2† 0.391 0.182 0.040 0.979 8.000 0.410 0.189 0.041 0.978 8.500 0.428 0.193 0.041 0.978 7.500
VGGT† 0.391 0.261 0.078 0.928 11.500 0.392 0.262 0.078 0.928 10.750 0.399 0.261 0.078 0.931 9.750

MoGe V1† 0.239 0.140 0.043 0.958 7.750 0.240 0.141 0.044 0.956 7.750 0.244 0.141 0.043 0.959 6.250
MoGe V2 1.064 0.938 0.235 0.433 16.000 1.064 0.938 0.235 0.433 15.750 1.064 0.938 0.235 0.433 15.750

G2-MonoDepth‡ 0.043 0.009 0.002 1.000 3.250 0.136 0.045 0.011 0.997 5.000 0.732 0.550 0.179 0.622 12.750
OMNI-DC 0.036 0.003 0.001 1.000 1.250 0.088 0.016 0.004 0.998 2.500 0.185 0.059 0.014 0.992 3.000
PriorDA 0.057 0.016 0.004 0.999 5.000 0.081 0.022 0.005 0.999 2.750 0.124 0.039 0.009 0.996 1.500
SPNet‡ 0.034 0.005 0.001 1.000 1.250 0.101 0.020 0.004 0.998 3.000 0.200 0.067 0.016 0.992 3.750

PromptDA 0.105 0.051 0.014 0.997 6.000 0.166 0.077 0.022 0.991 6.000 0.246 0.115 0.031 0.982 5.250
WorldMirror† 0.343 0.193 0.057 0.954 9.750 0.326 0.183 0.054 0.955 8.750 0.330 0.180 0.052 0.957 7.500
MapAnything 0.635 0.224 0.045 0.974 10.000 1.149 0.609 0.135 0.879 13.000 1.248 0.771 0.153 0.791 13.000

Pow3R† 0.321 0.207 0.061 0.956 9.750 0.337 0.210 0.060 0.958 9.250 0.349 0.215 0.062 0.953 8.750

LDCM (Ours) 0.038 0.005 0.001 1.000 1.750 0.079 0.012 0.002 0.999 1.000 0.154 0.034 0.006 0.996 1.250

Method SIFT ORB Virtual-Lidar-32-Lines

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 0.837 0.702 0.193 0.668 13.500 0.837 0.702 0.193 0.668 13.000 0.837 0.702 0.193 0.668 14.250

UniDepth V1 0.939 0.840 0.158 0.779 12.250 0.939 0.840 0.158 0.779 12.250 0.939 0.840 0.158 0.779 13.750
UniDepth V2 0.811 0.678 0.165 0.681 12.000 0.811 0.678 0.165 0.681 11.750 0.811 0.678 0.165 0.681 13.250

DepthAnythingV2† 0.365 0.221 0.072 0.961 3.250 0.343 0.205 0.060 0.961 3.000 0.388 0.181 0.040 0.979 8.000
VGGT† 0.571 0.447 0.183 0.881 9.750 0.577 0.438 0.174 0.877 8.500 0.391 0.261 0.078 0.928 11.000

MoGe V1† 0.411 0.329 0.161 0.919 6.750 0.413 0.328 0.155 0.913 5.250 0.240 0.140 0.043 0.957 7.500
MoGe V2 1.064 0.938 0.235 0.433 15.500 1.064 0.938 0.235 0.433 15.750 1.064 0.938 0.235 0.433 16.000

G2-MonoDepth‡ 0.894 0.670 0.241 0.554 13.750 0.996 0.755 0.261 0.513 14.750 0.081 0.020 0.005 0.999 4.000
OMNI-DC 0.353 0.223 0.083 0.870 5.000 0.492 0.330 0.119 0.800 5.750 0.056 0.007 0.002 0.999 1.500
PriorDA 0.145 0.081 0.032 0.975 1.500 0.197 0.115 0.049 0.967 1.500 0.063 0.018 0.004 0.999 3.000
SPNet‡ 0.473 0.318 0.125 0.768 7.750 0.552 0.375 0.140 0.746 7.500 0.071 0.011 0.002 0.999 2.500

PromptDA 0.365 0.252 0.095 0.877 5.500 0.608 0.419 0.149 0.795 8.500 0.124 0.058 0.018 0.995 6.000
WorldMirror† 0.532 0.411 0.187 0.897 9.000 0.648 0.502 0.214 0.874 10.000 0.330 0.185 0.054 0.954 9.000
MapAnything 1.105 0.670 0.157 0.812 11.250 1.032 0.578 0.140 0.854 9.750 1.057 0.560 0.147 0.879 12.750

Pow3R† 0.499 0.388 0.156 0.884 7.250 0.499 0.386 0.154 0.872 7.000 0.331 0.208 0.060 0.956 9.500

LDCM (Ours) 0.149 0.072 0.027 0.973 1.500 0.208 0.104 0.037 0.963 1.500 0.053 0.007 0.001 0.999 1.000

Method Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines Average

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 0.837 0.702 0.193 0.668 14.250 0.837 0.702 0.193 0.668 14.250 0.837 0.702 0.193 0.668 14.114

UniDepth V1 0.939 0.840 0.158 0.779 13.750 0.939 0.840 0.158 0.779 13.750 0.939 0.840 0.158 0.779 13.523
UniDepth V2 0.811 0.678 0.165 0.681 13.250 0.811 0.678 0.165 0.681 13.250 0.811 0.678 0.165 0.681 13.023

DepthAnythingV2† 0.382 0.180 0.040 0.979 8.000 0.382 0.179 0.039 0.979 8.000 0.386 0.189 0.045 0.976 7.295
VGGT† 0.392 0.261 0.078 0.928 11.000 0.393 0.264 0.079 0.928 11.000 0.425 0.294 0.096 0.920 10.773

MoGe V1† 0.240 0.140 0.043 0.957 7.500 0.241 0.142 0.044 0.954 7.500 0.272 0.175 0.064 0.950 7.386
MoGe V2 1.064 0.938 0.235 0.433 15.750 1.064 0.938 0.235 0.433 15.750 1.064 0.938 0.235 0.433 15.841

G2-MonoDepth‡ 0.121 0.033 0.008 0.997 5.000 0.211 0.086 0.023 0.988 5.250 0.298 0.198 0.067 0.879 6.341
OMNI-DC 0.080 0.014 0.003 0.998 2.500 0.144 0.042 0.010 0.995 4.000 0.141 0.064 0.022 0.968 2.932
PriorDA 0.078 0.022 0.005 0.999 2.750 0.104 0.034 0.008 0.998 1.500 0.093 0.037 0.012 0.994 3.023
SPNet‡ 0.094 0.017 0.004 0.998 3.250 0.143 0.038 0.009 0.996 3.000 0.157 0.078 0.028 0.954 3.273

PromptDA 0.146 0.066 0.018 0.994 6.000 0.190 0.087 0.024 0.988 5.500 0.203 0.115 0.037 0.965 6.068
WorldMirror† 0.327 0.182 0.053 0.956 8.750 0.331 0.188 0.056 0.951 9.000 0.386 0.243 0.084 0.941 9.364
MapAnything 1.077 0.606 0.149 0.870 13.000 1.099 0.600 0.126 0.890 13.000 0.909 0.458 0.104 0.899 11.000

Pow3R† 0.337 0.211 0.061 0.955 9.750 0.341 0.216 0.063 0.953 9.500 0.353 0.240 0.078 0.943 9.000

LDCM (Ours) 0.067 0.011 0.002 0.999 1.000 0.104 0.022 0.005 0.998 1.000 0.084 0.025 0.008 0.993 1.545
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Table 14: Quantitative comparison of depth completion with baseline methods on the outdoor
scenes of the DIODE dataset Vasiljevic et al. (2019). Methods marked with † produce relative
depth maps, where the metric depth is recovered by optimizing global scale and shift via least
squares regression using the sparse depth prior. Methods marked with ‡ use scenario-specific con-
figurations for indoor and outdoor scenes, respectively. The best and the second best results are
highlighted.

Method Virtual-Lidar-64-Lines Virtual-Lidar-32-Lines Virtual-Lidar-16-Lines

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 9.539 7.635 0.403 0.177 14.750 9.539 7.635 0.403 0.177 15.250 9.539 7.635 0.403 0.177 15.000

UniDepth V1 5.782 3.841 0.189 0.661 12.000 5.782 3.841 0.189 0.661 11.750 5.782 3.841 0.189 0.661 11.750
UniDepth V2 11.145 8.936 0.515 0.526 15.750 11.145 8.936 0.515 0.526 15.750 11.145 8.936 0.515 0.526 15.750

DepthAnythingV2† 5.786 2.626 0.118 0.882 8.750 5.829 2.649 0.118 0.880 8.750 5.881 2.670 0.121 0.879 8.750
VGGT† 4.739 2.748 0.227 0.779 10.750 4.743 2.761 0.230 0.779 10.250 4.765 2.758 0.228 0.780 10.250

MoGe V1† 10.329 8.351 0.396 0.603 14.500 9.455 7.366 0.354 0.648 14.000 9.034 6.809 0.317 0.685 12.750
MoGe V2 4.807 3.352 0.182 0.680 10.750 4.807 3.352 0.182 0.680 10.500 4.807 3.352 0.182 0.680 10.750

G2-MonoDepth‡ 1.938 0.489 0.039 0.975 4.000 2.275 0.629 0.052 0.967 4.500 2.719 0.882 0.069 0.950 5.000
OMNI-DC 1.899 0.424 0.033 0.977 3.000 2.196 0.532 0.042 0.970 3.250 2.659 0.738 0.056 0.960 3.750
PriorDA 1.970 0.674 0.041 0.969 5.000 2.097 0.716 0.044 0.966 4.000 2.278 0.796 0.050 0.961 2.500
SPNet‡ 1.809 0.419 0.032 0.978 1.750 2.100 0.518 0.039 0.972 2.250 2.536 0.715 0.054 0.962 2.500

PromptDA 3.142 1.239 0.071 0.939 6.000 3.316 1.336 0.077 0.931 6.000 3.579 1.470 0.082 0.925 6.000
WorldMirror† 4.103 2.166 0.147 0.836 7.750 4.224 2.248 0.151 0.832 8.250 4.214 2.214 0.147 0.835 8.000
MapAnything 7.393 3.444 0.203 0.822 11.750 8.873 4.927 0.299 0.673 12.750 9.705 5.717 0.318 0.560 14.000

Pow3R† 3.859 2.169 0.179 0.834 8.250 3.910 2.193 0.179 0.835 7.750 3.957 2.193 0.178 0.835 7.750

LDCM (Ours) 1.795 0.404 0.024 0.978 1.000 2.010 0.476 0.029 0.974 1.000 2.280 0.603 0.036 0.967 1.250

Method Virtual-Lidar-8-Lines Virtual-Lidar-4-Lines 10% Noise

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 9.539 7.635 0.403 0.177 15.000 9.539 7.635 0.403 0.177 15.000 9.539 7.635 0.403 0.177 14.500

UniDepth V1 5.782 3.841 0.189 0.661 11.750 5.782 3.841 0.189 0.661 11.000 5.782 3.841 0.189 0.661 12.500
UniDepth V2 11.145 8.936 0.515 0.526 15.500 11.145 8.936 0.515 0.526 15.500 11.145 8.936 0.515 0.526 15.000

DepthAnythingV2† 5.911 2.746 0.123 0.875 8.750 6.421 2.974 0.138 0.855 6.250 5.778 2.655 0.119 0.881 9.500
VGGT† 4.836 2.792 0.227 0.780 10.500 5.463 3.182 0.263 0.773 10.000 4.741 2.753 0.225 0.789 11.000

MoGe V1† 7.903 5.351 0.270 0.744 12.500 7.833 4.104 0.241 0.798 11.500 12.694 10.609 0.512 0.488 15.500
MoGe V2 4.807 3.352 0.182 0.680 10.500 4.807 3.352 0.182 0.680 9.250 4.807 3.352 0.182 0.680 11.250

G2-MonoDepth‡ 3.611 1.467 0.099 0.909 5.250 5.910 3.230 0.204 0.698 10.750 0.876 0.206 0.016 0.992 2.250
OMNI-DC 3.536 1.228 0.075 0.935 3.750 5.361 2.572 0.158 0.801 6.000 1.058 0.222 0.017 0.991 3.750
PriorDA 2.744 1.019 0.059 0.949 2.000 4.068 1.731 0.106 0.877 2.000 1.957 0.769 0.041 0.971 5.000
SPNet‡ 3.286 1.148 0.079 0.939 3.250 4.652 2.188 0.168 0.813 5.000 0.850 0.192 0.014 0.993 1.000

PromptDA 4.106 1.780 0.096 0.908 6.000 5.690 3.010 0.167 0.788 8.000 2.933 1.207 0.068 0.939 6.000
WorldMirror† 4.360 2.294 0.150 0.830 8.250 4.724 2.444 0.151 0.829 4.250 3.049 1.525 0.112 0.891 7.250
MapAnything 10.595 6.288 0.308 0.520 14.500 10.993 6.991 0.346 0.343 14.500 5.845 2.077 0.122 0.884 9.750

Pow3R† 4.045 2.239 0.174 0.835 7.500 4.616 2.587 0.197 0.821 6.000 2.976 1.723 0.144 0.861 8.750

LDCM (Ours) 2.679 0.823 0.045 0.954 1.000 3.418 1.300 0.072 0.913 1.000 1.052 0.222 0.014 0.992 2.250

Method 5% 3% 1%

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 9.539 7.635 0.403 0.177 14.500 9.539 7.635 0.403 0.177 14.500 9.539 7.635 0.403 0.177 13.500

UniDepth V1 5.782 3.841 0.189 0.661 12.250 5.782 3.841 0.189 0.661 12.250 5.782 3.841 0.189 0.661 11.250
UniDepth V2 11.145 8.936 0.515 0.526 15.000 11.145 8.936 0.515 0.526 15.000 11.145 8.936 0.515 0.526 14.250

DepthAnythingV2† 5.891 2.667 0.119 0.881 9.750 5.896 2.666 0.119 0.881 9.250 5.924 2.680 0.119 0.881 8.250
VGGT† 4.732 2.756 0.228 0.781 11.000 4.732 2.759 0.229 0.781 11.000 4.734 2.758 0.229 0.781 10.000

MoGe V1† 12.548 10.462 0.502 0.496 15.500 12.131 10.042 0.480 0.519 15.500 11.346 9.323 0.441 0.558 14.250
MoGe V2 4.807 3.352 0.182 0.680 11.250 4.807 3.352 0.182 0.680 11.000 4.807 3.352 0.182 0.680 10.250

G2-MonoDepth‡ 1.076 0.247 0.020 0.989 2.750 1.245 0.285 0.023 0.986 3.250 1.680 0.402 0.032 0.980 4.000
OMNI-DC 1.110 0.224 0.018 0.989 2.250 1.270 0.260 0.020 0.987 2.250 1.649 0.356 0.027 0.981 2.250
PriorDA 1.785 0.645 0.037 0.974 5.000 1.805 0.645 0.038 0.973 5.000 1.895 0.666 0.040 0.970 5.000
SPNet‡ 1.029 0.227 0.017 0.990 1.500 1.187 0.258 0.020 0.988 1.250 1.566 0.349 0.027 0.982 1.250

PromptDA 2.941 1.210 0.070 0.937 6.000 2.981 1.206 0.070 0.938 6.000 3.090 1.233 0.073 0.935 6.000
WorldMirror† 3.510 1.836 0.127 0.860 8.250 3.844 2.047 0.141 0.840 8.250 6.659 2.731 0.159 0.860 9.250
MapAnything 5.868 2.073 0.116 0.895 8.750 6.099 2.226 0.125 0.888 9.250 3.796 2.152 0.180 0.833 8.000

Pow3R† 3.365 1.997 0.174 0.823 8.750 3.586 2.105 0.183 0.822 9.000 1.645 0.360 0.022 0.981 2.000

LDCM (Ours) 1.209 0.255 0.016 0.989 2.750 1.348 0.285 0.018 0.987 2.500 1.645 0.360 0.022 0.981 2.000

Method SIFT ORB Average

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 9.539 7.635 0.403 0.177 14.500 9.539 7.635 0.403 0.177 14.500 9.539 7.635 0.403 0.177 14.636

UniDepth V1 5.782 3.841 0.189 0.661 11.750 5.782 3.841 0.189 0.661 11.500 5.782 3.841 0.189 0.661 11.795
UniDepth V2 11.145 8.936 0.515 0.526 15.250 11.145 8.936 0.515 0.526 15.000 11.145 8.936 0.515 0.526 15.250

DepthAnythingV2† 5.948 3.043 0.133 0.836 8.750 6.079 3.170 0.136 0.827 8.500 5.940 2.777 0.124 0.869 8.659
VGGT 5.102 3.192 0.256 0.739 11.000 5.296 3.368 0.267 0.728 10.750 4.898 2.893 0.237 0.772 10.591

MoGe V1† 11.377 9.519 0.472 0.535 15.250 11.684 9.807 0.485 0.518 15.500 10.576 8.340 0.406 0.599 14.250
MoGe V2 4.807 3.352 0.182 0.680 10.250 4.807 3.352 0.182 0.680 9.500 4.807 3.352 0.182 0.680 10.477

G2-MonoDepth‡ 2.335 0.800 0.060 0.945 4.750 2.659 0.984 0.068 0.927 5.000 2.393 0.875 0.062 0.938 4.682
OMNI-DC 2.201 0.608 0.040 0.966 3.000 2.606 0.824 0.049 0.951 3.500 2.322 0.726 0.049 0.955 3.341
PriorDA 2.220 0.803 0.046 0.964 4.250 2.587 0.979 0.054 0.952 3.500 2.310 0.858 0.051 0.957 3.932
SPNet‡ 1.983 0.549 0.038 0.970 1.750 2.223 0.678 0.044 0.961 1.750 2.111 0.658 0.048 0.959 2.114

PromptDA 3.705 1.572 0.083 0.915 6.000 4.159 1.911 0.102 0.882 6.000 3.604 1.561 0.087 0.912 6.182
WorldMirror† 4.426 2.477 0.166 0.802 7.750 5.995 3.501 0.209 0.696 11.250 4.464 2.317 0.151 0.828 8.045
MapAnything 7.718 3.593 0.208 0.797 11.500 7.540 3.316 0.183 0.821 9.750 7.675 3.891 0.219 0.731 11.318

Pow3R† 4.236 2.551 0.214 0.802 8.750 4.308 2.634 0.213 0.792 8.750 3.682 2.068 0.169 0.840 7.568

LDCM (Ours) 1.984 0.491 0.028 0.974 1.250 2.234 0.603 0.034 0.965 1.250 1.969 0.529 0.031 0.970 1.568
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Table 15: Quantitative comparison of depth completion with baseline methods on the iBims-1
dataset Koch et al. (2018). Methods marked with † produce relative depth maps, where the metric
depth is recovered by optimizing global scale and shift via least squares regression using the sparse
depth prior. Methods marked with ‡ use scenario-specific configurations for indoor and outdoor
scenes, respectively. The best and the second best results are highlighted.

Method 10% Noise 5% 3%

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 0.605 0.503 0.156 0.829 13.750 0.605 0.503 0.156 0.829 13.750 0.605 0.503 0.156 0.829 13.750

UniDepth V1 1.166 1.082 0.370 0.236 16.000 1.166 1.082 0.370 0.236 16.000 1.166 1.082 0.370 0.236 16.000
UniDepth V2 0.446 0.321 0.100 0.935 12.500 0.446 0.321 0.100 0.935 12.500 0.446 0.321 0.100 0.935 12.500

DepthAnythingV2† 0.332 0.169 0.041 0.980 8.750 0.347 0.172 0.041 0.978 9.250 0.348 0.172 0.041 0.978 9.250
VGGT† 0.339 0.178 0.048 0.965 10.750 0.337 0.176 0.047 0.964 10.500 0.337 0.176 0.047 0.964 10.750

MoGe V1† 0.234 0.117 0.034 0.985 7.000 0.231 0.110 0.031 0.985 7.000 0.231 0.110 0.031 0.985 7.000
MoGe V2 0.633 0.540 0.156 0.707 14.500 0.633 0.540 0.156 0.707 14.500 0.633 0.540 0.156 0.707 14.500

G2-MonoDepth‡ 0.106 0.023 0.006 0.996 2.000 0.118 0.026 0.007 0.995 3.500 0.131 0.029 0.008 0.995 3.250
OMNI-DC 0.142 0.031 0.008 0.994 4.000 0.111 0.020 0.005 0.996 1.000 0.124 0.023 0.006 0.995 1.000
PriorDA 0.151 0.052 0.014 0.993 5.000 0.142 0.043 0.011 0.993 5.000 0.146 0.044 0.012 0.993 5.000
SPNet‡ 0.102 0.020 0.005 0.996 1.000 0.112 0.022 0.006 0.996 1.750 0.126 0.025 0.006 0.995 1.750

PromptDA 0.191 0.077 0.022 0.988 6.000 0.192 0.076 0.021 0.988 6.000 0.196 0.079 0.022 0.987 6.000
WorldMirror† 0.285 0.174 0.052 0.976 10.000 0.298 0.169 0.047 0.978 9.000 0.305 0.160 0.043 0.975 8.500
MapAnything 0.934 0.317 0.086 0.917 13.000 0.921 0.303 0.080 0.925 13.000 0.925 0.312 0.082 0.925 13.000

Pow3R† 0.272 0.156 0.044 0.977 8.500 0.292 0.157 0.043 0.972 8.750 0.310 0.161 0.043 0.972 9.250

LDCM (Ours) 0.113 0.022 0.006 0.996 2.000 0.120 0.023 0.006 0.995 3.000 0.127 0.024 0.006 0.995 1.750

Method 1% 500 100

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 0.605 0.503 0.156 0.829 13.750 0.605 0.503 0.156 0.829 13.750 0.605 0.503 0.156 0.829 13.750

UniDepth V1 1.166 1.082 0.370 0.236 16.000 1.166 1.082 0.370 0.236 16.000 1.166 1.082 0.370 0.236 16.000
UniDepth V2 0.446 0.321 0.100 0.935 12.500 0.446 0.321 0.100 0.935 12.000 0.446 0.321 0.100 0.935 12.000

DepthAnythingV2† 0.352 0.173 0.041 0.978 9.250 0.381 0.179 0.042 0.978 9.250 0.381 0.183 0.042 0.976 8.500
VGGT† 0.337 0.177 0.047 0.964 10.750 0.338 0.181 0.048 0.961 10.250 0.341 0.183 0.049 0.959 9.500

MoGe V1† 0.231 0.110 0.031 0.985 7.000 0.232 0.111 0.032 0.985 6.500 0.236 0.112 0.032 0.984 4.000
MoGe V2 0.633 0.540 0.156 0.707 14.500 0.633 0.540 0.156 0.707 14.500 0.633 0.540 0.156 0.707 14.500

G2-MonoDepth‡ 0.160 0.040 0.010 0.992 4.250 0.232 0.073 0.019 0.986 5.000 0.357 0.178 0.053 0.960 10.000
OMNI-DC 0.148 0.030 0.008 0.993 2.000 0.188 0.050 0.013 0.989 2.500 0.265 0.096 0.025 0.979 4.250
PriorDA 0.156 0.047 0.013 0.992 4.250 0.179 0.057 0.015 0.991 2.750 0.211 0.077 0.020 0.988 1.750
SPNet‡ 0.156 0.034 0.008 0.993 2.500 0.211 0.055 0.014 0.988 3.500 0.270 0.092 0.023 0.981 3.750

PromptDA 0.205 0.084 0.023 0.988 6.000 0.237 0.101 0.027 0.986 6.000 0.338 0.153 0.040 0.975 6.250
WorldMirror† 0.326 0.160 0.042 0.971 8.750 0.342 0.168 0.043 0.971 9.250 0.347 0.172 0.044 0.968 8.750
MapAnything 0.923 0.317 0.083 0.924 13.000 0.992 0.407 0.123 0.893 13.500 1.057 0.454 0.125 0.900 13.500

Pow3R† 0.332 0.164 0.042 0.972 9.000 0.343 0.166 0.043 0.972 9.000 0.346 0.167 0.042 0.969 7.500

LDCM (Ours) 0.142 0.029 0.007 0.994 1.000 0.169 0.041 0.011 0.991 1.000 0.202 0.061 0.015 0.988 1.000

Method SIFT ORB Virtual-Lidar-32-Lines

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 0.605 0.503 0.156 0.829 13.750 0.605 0.503 0.156 0.829 13.750 0.605 0.503 0.156 0.829 13.750

UniDepth V1 1.166 1.082 0.370 0.236 16.000 1.166 1.082 0.370 0.236 16.000 1.166 1.082 0.370 0.236 16.000
UniDepth V2 0.446 0.321 0.100 0.935 11.250 0.446 0.321 0.100 0.935 9.750 0.446 0.321 0.100 0.935 12.250

DepthAnythingV2† 0.321 0.185 0.048 0.972 5.750 0.334 0.198 0.052 0.963 4.750 0.373 0.206 0.049 0.969 10.500
VGGT† 0.388 0.256 0.073 0.933 10.750 0.399 0.270 0.077 0.930 8.750 0.337 0.178 0.048 0.963 10.250

MoGe V1† 0.257 0.151 0.048 0.967 4.750 0.270 0.165 0.053 0.957 4.500 0.231 0.110 0.031 0.985 6.500
MoGe V2 0.633 0.540 0.156 0.707 14.500 0.633 0.540 0.156 0.707 14.500 0.633 0.540 0.156 0.707 14.500

G2-MonoDepth‡ 0.338 0.197 0.065 0.923 9.000 0.376 0.230 0.076 0.903 8.000 0.193 0.057 0.015 0.990 3.000
OMNI-DC 0.260 0.119 0.036 0.960 4.750 0.313 0.166 0.054 0.925 6.250 0.160 0.036 0.010 0.992 1.000
PriorDA 0.180 0.076 0.022 0.989 2.000 0.216 0.103 0.032 0.982 2.000 0.201 0.088 0.021 0.983 5.500
SPNet‡ 0.224 0.096 0.028 0.981 3.000 0.264 0.129 0.041 0.961 3.250 0.173 0.040 0.010 0.992 1.500

PromptDA 0.317 0.182 0.053 0.948 6.500 0.394 0.244 0.072 0.903 8.250 0.209 0.086 0.024 0.986 5.250
WorldMirror† 0.382 0.236 0.066 0.940 8.750 0.567 0.380 0.103 0.897 12.000 0.336 0.161 0.041 0.972 8.000
MapAnything 0.977 0.408 0.115 0.901 13.500 1.002 0.427 0.122 0.896 13.500 0.973 0.365 0.098 0.912 13.250

Pow3R† 0.394 0.254 0.069 0.934 10.250 0.411 0.274 0.078 0.935 9.000 0.336 0.170 0.044 0.969 8.750

LDCM (Ours) 0.170 0.053 0.015 0.991 1.000 0.186 0.067 0.020 0.989 1.000 0.196 0.076 0.018 0.983 4.500

Method Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines Average

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 0.605 0.503 0.156 0.829 13.750 0.605 0.503 0.156 0.829 13.750 0.605 0.503 0.156 0.829 13.750

UniDepth V1 1.166 1.082 0.370 0.236 16.000 1.166 1.082 0.370 0.236 16.000 1.166 1.082 0.370 0.236 16.000
UniDepth V2 0.446 0.321 0.100 0.935 12.000 0.446 0.321 0.100 0.935 12.000 0.446 0.321 0.100 0.935 11.932

DepthAnythingV2† 0.333 0.166 0.040 0.978 8.250 0.336 0.166 0.040 0.979 7.750 0.349 0.179 0.043 0.975 8.295
VGGT† 0.338 0.179 0.048 0.963 10.750 0.339 0.180 0.048 0.962 10.500 0.348 0.194 0.053 0.957 10.318

MoGe V1† 0.232 0.111 0.032 0.985 7.000 0.233 0.111 0.032 0.984 5.250 0.238 0.120 0.035 0.981 6.045
MoGe V2 0.633 0.540 0.156 0.707 14.500 0.633 0.540 0.156 0.707 14.500 0.633 0.540 0.156 0.707 14.500

G2-MonoDepth‡ 0.216 0.070 0.018 0.987 5.250 0.273 0.109 0.029 0.978 6.250 0.227 0.094 0.028 0.973 5.409
OMNI-DC 0.176 0.046 0.012 0.990 2.500 0.225 0.075 0.021 0.984 3.000 0.192 0.063 0.018 0.982 2.932
PriorDA 0.169 0.056 0.015 0.991 3.000 0.187 0.070 0.019 0.990 2.000 0.176 0.065 0.018 0.990 3.477
SPNet‡ 0.198 0.052 0.013 0.989 3.500 0.241 0.080 0.021 0.984 3.750 0.189 0.059 0.016 0.987 2.659

PromptDA 0.217 0.090 0.025 0.988 5.750 0.242 0.109 0.030 0.984 5.000 0.249 0.116 0.033 0.975 6.091
WorldMirror† 0.337 0.162 0.042 0.971 8.750 0.342 0.168 0.043 0.970 9.500 0.352 0.192 0.051 0.963 9.205
MapAnything 0.972 0.394 0.113 0.901 13.500 0.975 0.410 0.117 0.910 13.500 0.968 0.374 0.104 0.909 13.295

Pow3R† 0.342 0.169 0.043 0.971 10.000 0.343 0.170 0.044 0.971 10.000 0.338 0.183 0.049 0.965 9.091

LDCM (Ours) 0.165 0.039 0.010 0.992 1.000 0.181 0.050 0.013 0.991 1.000 0.161 0.044 0.012 0.991 1.659
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Table 16: Quantitative comparison of depth completion with baseline methods on the indoor
scenes of the ETH3D dataset Schops et al. (2017). Methods marked with † produce relative depth
maps, where the metric depth is recovered by optimizing global scale and shift via least squares
regression using the sparse depth prior. Methods marked with ‡ use scenario-specific configurations
for indoor and outdoor scenes, respectively. The best and the second best results are highlighted.

Method 10% Noise 5% 3%

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 0.831 0.670 0.192 0.705 14.750 0.831 0.670 0.192 0.705 14.500 0.831 0.670 0.192 0.705 14.500

UniDepth V1 2.549 2.330 0.695 0.071 16.000 2.549 2.330 0.695 0.071 16.000 2.549 2.330 0.695 0.071 16.000
UniDepth V2 0.660 0.562 0.169 0.799 13.250 0.660 0.562 0.169 0.799 13.250 0.660 0.562 0.169 0.799 13.250

DepthAnythingV2† 0.808 0.203 0.037 0.989 10.000 1.017 0.220 0.038 0.988 10.500 1.002 0.220 0.038 0.988 10.750
VGGT† 0.391 0.199 0.049 0.966 10.250 0.386 0.201 0.050 0.959 11.000 0.386 0.202 0.050 0.959 10.500

MoGe V1† 0.214 0.122 0.031 0.995 7.000 0.204 0.114 0.028 0.995 7.000 0.204 0.114 0.028 0.994 7.000
MoGe V2 0.542 0.419 0.117 0.784 12.750 0.542 0.419 0.117 0.784 12.750 0.542 0.419 0.117 0.784 12.750

G2-MonoDepth‡ 0.055 0.011 0.002 1.000 2.000 0.062 0.012 0.002 1.000 2.750 0.076 0.014 0.003 1.000 3.000
OMNI-DC 0.116 0.017 0.003 0.999 4.250 0.052 0.006 0.001 1.000 1.250 0.063 0.008 0.002 1.000 1.250
PriorDA 0.110 0.040 0.008 0.999 4.500 0.090 0.026 0.006 0.999 5.000 0.093 0.027 0.006 0.999 4.750
SPNet‡ 0.076 0.010 0.001 1.000 1.750 0.080 0.010 0.001 1.000 2.250 0.101 0.013 0.002 1.000 2.500

PromptDA 0.173 0.076 0.018 0.996 6.000 0.148 0.067 0.017 0.996 6.000 0.159 0.071 0.019 0.995 6.000
WorldMirror† 0.328 0.197 0.050 0.984 9.500 0.280 0.154 0.038 0.992 8.000 0.261 0.141 0.035 0.991 8.000
MapAnything 1.076 0.272 0.055 0.951 12.750 1.039 0.248 0.046 0.962 12.250 1.083 0.271 0.051 0.958 12.750

Pow3R† 0.323 0.192 0.044 0.980 8.750 0.309 0.180 0.043 0.975 9.500 0.286 0.159 0.038 0.980 9.250

LDCM (Ours) 0.046 0.009 0.002 1.000 1.250 0.051 0.009 0.002 1.000 1.750 0.058 0.009 0.002 1.000 1.250

Method 1% 500 100

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 0.831 0.670 0.192 0.705 14.500 0.831 0.670 0.192 0.705 14.500 0.831 0.670 0.192 0.705 14.250

UniDepth V1 2.549 2.330 0.695 0.071 16.000 2.549 2.330 0.695 0.071 16.000 2.549 2.330 0.695 0.071 16.000
UniDepth V2 0.660 0.562 0.169 0.799 13.250 0.660 0.562 0.169 0.799 13.250 0.660 0.562 0.169 0.799 13.000

DepthAnythingV2† 1.016 0.221 0.038 0.987 11.000 1.016 0.220 0.038 0.987 11.000 1.006 0.222 0.038 0.987 10.250
VGGT† 0.387 0.203 0.050 0.959 10.500 0.389 0.200 0.050 0.962 10.500 0.398 0.198 0.048 0.965 10.250

MoGe V1† 0.205 0.114 0.028 0.994 7.000 0.206 0.114 0.028 0.995 6.000 0.214 0.118 0.029 0.995 3.750
MoGe V2 0.542 0.419 0.117 0.784 12.750 0.542 0.419 0.117 0.784 12.250 0.542 0.419 0.117 0.784 12.250

G2-MonoDepth‡ 0.118 0.024 0.005 0.999 3.250 0.215 0.061 0.012 0.997 5.000 0.443 0.190 0.045 0.972 9.750
OMNI-DC 0.089 0.012 0.002 0.999 1.250 0.153 0.031 0.006 0.998 2.500 0.309 0.089 0.017 0.992 4.750
PriorDA 0.103 0.029 0.006 0.999 3.500 0.133 0.037 0.007 0.999 2.500 0.222 0.064 0.012 0.997 2.250
SPNet‡ 0.145 0.020 0.003 0.999 3.000 0.223 0.039 0.006 0.998 3.750 0.323 0.085 0.015 0.994 4.250

PromptDA 0.188 0.078 0.019 0.995 6.000 0.268 0.106 0.025 0.990 7.000 0.396 0.154 0.033 0.987 7.500
WorldMirror† 0.241 0.125 0.031 0.992 8.000 0.234 0.121 0.029 0.992 7.500 0.246 0.127 0.031 0.992 5.250
MapAnything 1.162 0.333 0.068 0.945 12.750 1.390 0.549 0.144 0.873 13.250 1.676 0.702 0.149 0.876 13.750

Pow3R† 0.279 0.146 0.034 0.984 9.250 0.287 0.145 0.034 0.985 9.250 0.298 0.150 0.035 0.982 7.250

LDCM (Ours) 0.074 0.012 0.002 0.999 1.000 0.106 0.021 0.004 0.999 1.000 0.157 0.041 0.008 0.998 1.000

Method SIFT ORB Virtual-Lidar-32-Lines

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 0.831 0.670 0.192 0.705 14.750 0.831 0.670 0.192 0.705 14.750 0.831 0.670 0.192 0.705 14.500

UniDepth V1 2.549 2.330 0.695 0.071 16.000 2.549 2.330 0.695 0.071 16.000 2.549 2.330 0.695 0.071 16.000
UniDepth V2 0.660 0.562 0.169 0.799 13.500 0.660 0.562 0.169 0.799 13.500 0.660 0.562 0.169 0.799 13.250

DepthAnythingV2† 0.436 0.179 0.040 0.990 6.500 0.396 0.183 0.042 0.990 5.000 0.918 0.206 0.037 0.989 10.750
VGGT† 0.416 0.242 0.068 0.937 10.000 0.441 0.277 0.084 0.911 10.500 0.387 0.209 0.053 0.953 10.750

MoGe V1† 0.228 0.141 0.040 0.978 4.500 0.250 0.164 0.048 0.965 4.750 0.205 0.115 0.029 0.993 7.000
MoGe V2 0.542 0.419 0.117 0.784 12.500 0.542 0.419 0.117 0.784 12.750 0.542 0.419 0.117 0.784 12.500

G2-MonoDepth‡ 0.435 0.234 0.076 0.910 10.500 0.440 0.237 0.077 0.914 9.250 0.158 0.048 0.009 0.998 4.750
OMNI-DC 0.248 0.114 0.035 0.966 5.000 0.284 0.144 0.045 0.954 5.000 0.107 0.017 0.003 0.999 1.500
PriorDA 0.189 0.084 0.028 0.984 2.250 0.227 0.108 0.033 0.980 2.250 0.111 0.030 0.006 0.999 3.000
SPNet‡ 0.287 0.108 0.031 0.981 4.000 0.308 0.127 0.036 0.974 3.750 0.164 0.026 0.004 0.999 3.000

PromptDA 0.352 0.205 0.055 0.951 8.750 0.367 0.221 0.061 0.938 7.750 0.182 0.076 0.018 0.997 6.000
WorldMirror† 0.279 0.171 0.046 0.978 6.000 0.494 0.319 0.081 0.936 10.250 0.233 0.122 0.030 0.992 8.000
MapAnything 1.427 0.545 0.129 0.889 13.250 1.353 0.485 0.114 0.907 13.000 1.330 0.460 0.108 0.910 13.000

Pow3R† 0.311 0.174 0.045 0.975 7.000 0.341 0.209 0.055 0.961 6.500 0.283 0.151 0.036 0.979 9.250

LDCM (Ours) 0.127 0.045 0.012 0.995 1.000 0.139 0.056 0.016 0.996 1.000 0.087 0.014 0.003 0.999 1.000

Method Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines Average

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 0.831 0.670 0.192 0.705 14.500 0.831 0.670 0.192 0.705 14.500 0.831 0.670 0.192 0.705 14.545

UniDepth V1 2.549 2.330 0.695 0.071 16.000 2.549 2.330 0.695 0.071 16.000 2.549 2.330 0.695 0.071 16.000
UniDepth V2 0.660 0.562 0.169 0.799 13.250 0.660 0.562 0.169 0.799 13.250 0.660 0.562 0.169 0.799 13.273

DepthAnythingV2† 0.924 0.206 0.037 0.989 10.750 0.889 0.203 0.037 0.988 10.500 0.857 0.208 0.038 0.988 9.727
VGGT† 0.387 0.207 0.053 0.954 10.750 0.393 0.218 0.056 0.949 10.750 0.396 0.214 0.056 0.952 10.523

MoGe V1† 0.206 0.117 0.029 0.993 6.750 0.209 0.121 0.030 0.990 5.250 0.213 0.123 0.032 0.990 6.000
MoGe V2 0.542 0.419 0.117 0.784 12.250 0.542 0.419 0.117 0.784 12.500 0.542 0.419 0.117 0.784 12.545

G2-MonoDepth‡ 0.202 0.060 0.012 0.997 4.750 0.315 0.126 0.027 0.990 6.500 0.229 0.092 0.025 0.980 5.591
OMNI-DC 0.139 0.028 0.006 0.998 2.500 0.223 0.061 0.013 0.995 3.000 0.162 0.048 0.012 0.991 2.932
PriorDA 0.129 0.039 0.008 0.999 2.500 0.166 0.059 0.013 0.997 2.000 0.143 0.049 0.012 0.996 3.136
SPNet‡ 0.202 0.041 0.007 0.998 3.500 0.285 0.094 0.019 0.994 4.500 0.199 0.052 0.011 0.994 3.295

PromptDA 0.233 0.090 0.021 0.994 6.250 0.289 0.120 0.028 0.990 5.750 0.250 0.115 0.029 0.984 6.636
WorldMirror† 0.234 0.122 0.030 0.992 8.000 0.242 0.131 0.032 0.988 7.250 0.279 0.157 0.039 0.984 7.795
MapAnything 1.323 0.520 0.133 0.890 13.250 1.325 0.487 0.115 0.908 13.000 1.289 0.443 0.101 0.915 13.000

Pow3R† 0.291 0.148 0.034 0.982 9.250 0.289 0.156 0.036 0.978 8.750 0.300 0.165 0.039 0.978 8.545

LDCM (Ours) 0.104 0.020 0.004 0.999 1.000 0.136 0.034 0.007 0.998 1.000 0.099 0.025 0.006 0.998 1.114
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Table 17: Quantitative comparison of depth completion with baseline methods on the outdoor
scenes of the ETH3D dataset Schops et al. (2017). Methods marked with † produce relative depth
maps, where the metric depth is recovered by optimizing global scale and shift via least squares
regression using the sparse depth prior. Methods marked with ‡ use scenario-specific configurations
for indoor and outdoor scenes, respectively. The best and the second best results are highlighted.

Method Virtual-Lidar-64-Lines Virtual-Lidar-32-Lines Virtual-Lidar-16-Lines

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 5.567 4.454 0.411 0.248 15.500 5.567 4.454 0.411 0.248 15.500 5.567 4.454 0.411 0.248 15.500

UniDepth V1 4.414 4.009 0.463 0.160 15.500 4.414 4.009 0.463 0.160 15.500 4.414 4.009 0.463 0.160 15.500
UniDepth V2 2.600 1.775 0.230 0.652 13.500 2.600 1.775 0.230 0.652 13.500 2.600 1.775 0.230 0.652 13.250

DepthAnythingV2† 3.443 0.648 0.058 0.972 10.000 3.361 0.641 0.057 0.973 10.000 3.757 0.673 0.059 0.972 10.000
VGGT† 0.650 0.383 0.056 0.957 9.000 0.651 0.382 0.056 0.957 9.000 0.653 0.384 0.056 0.957 8.500

MoGe V1† 2.554 1.190 0.143 0.876 12.500 2.561 0.801 0.124 0.899 11.250 3.301 0.752 0.111 0.921 11.500
MoGe V2 1.152 0.819 0.111 0.893 11.250 1.152 0.819 0.111 0.893 11.250 1.152 0.819 0.111 0.893 11.250

G2-MonoDepth‡ 0.308 0.068 0.011 0.996 4.500 0.442 0.111 0.017 0.992 4.750 0.610 0.175 0.027 0.985 4.750
OMNI-DC 0.234 0.035 0.004 0.997 2.000 0.281 0.050 0.006 0.997 2.000 0.354 0.085 0.010 0.995 2.250
PriorDA 0.267 0.083 0.010 0.996 4.000 0.291 0.090 0.011 0.996 3.500 0.334 0.111 0.014 0.995 2.500
SPNet‡ 0.289 0.042 0.005 0.998 2.750 0.474 0.070 0.008 0.996 3.500 0.671 0.123 0.015 0.993 5.000

PromptDA 0.935 0.355 0.044 0.964 7.250 0.972 0.365 0.045 0.961 7.750 1.030 0.371 0.041 0.970 7.500
WorldMirror† 0.584 0.327 0.048 0.963 6.750 0.631 0.352 0.050 0.958 7.250 0.647 0.362 0.052 0.955 7.750
MapAnything 2.781 0.994 0.109 0.897 11.750 2.804 1.092 0.126 0.885 13.000 2.814 1.191 0.148 0.865 12.750

Pow3R† 0.637 0.361 0.053 0.958 8.000 0.636 0.344 0.050 0.964 6.750 0.634 0.337 0.050 0.962 6.500

LDCM (Ours) 0.204 0.033 0.004 0.998 1.000 0.246 0.042 0.005 0.998 1.000 0.294 0.059 0.007 0.997 1.000

Method Virtual-Lidar-8-Lines Virtual-Lidar-4-Lines 10% Noise

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 5.567 4.454 0.411 0.248 15.500 5.567 4.454 0.411 0.248 15.500 5.567 4.454 0.411 0.248 15.500

UniDepth V1 4.414 4.009 0.463 0.160 15.500 4.414 4.009 0.463 0.160 15.250 4.414 4.009 0.463 0.160 15.500
UniDepth V2 2.600 1.775 0.230 0.652 13.250 2.600 1.775 0.230 0.652 13.250 2.600 1.775 0.230 0.652 13.750

DepthAnythingV2† 3.392 0.642 0.059 0.971 9.250 3.319 0.608 0.063 0.963 6.000 3.052 0.620 0.057 0.972 10.000
VGGT† 0.670 0.393 0.058 0.953 7.000 0.742 0.463 0.074 0.926 4.500 0.661 0.387 0.054 0.965 7.000

MoGe V1† 3.993 0.707 0.097 0.941 11.500 4.979 0.539 0.097 0.948 8.000 2.184 1.702 0.183 0.838 12.500
MoGe V2 1.152 0.819 0.111 0.893 11.250 1.152 0.819 0.111 0.893 8.750 1.152 0.819 0.111 0.893 11.500

G2-MonoDepth‡ 1.005 0.409 0.057 0.954 7.000 1.862 1.117 0.171 0.774 11.750 0.128 0.031 0.004 0.999 3.250
OMNI-DC 0.594 0.221 0.025 0.983 3.000 1.282 0.751 0.095 0.888 8.500 0.177 0.028 0.003 0.999 3.000
PriorDA 0.489 0.181 0.022 0.989 2.000 1.071 0.559 0.090 0.896 6.250 0.280 0.113 0.012 0.997 5.000
SPNet‡ 1.104 0.327 0.045 0.970 5.250 2.088 0.898 0.134 0.856 11.000 0.110 0.019 0.002 1.000 1.000

PromptDA 1.311 0.492 0.057 0.952 8.500 1.372 0.749 0.092 0.902 7.500 0.912 0.423 0.049 0.962 8.250
WorldMirror† 0.715 0.406 0.057 0.941 7.250 0.732 0.436 0.071 0.919 4.000 0.694 0.404 0.056 0.972 7.250
MapAnything 2.917 1.231 0.145 0.867 12.750 3.036 1.401 0.153 0.866 12.000 2.189 0.653 0.079 0.921 11.250

Pow3R† 0.645 0.333 0.050 0.962 5.000 0.712 0.390 0.063 0.933 2.500 0.658 0.415 0.056 0.960 8.000

LDCM (Ours) 0.420 0.107 0.012 0.994 1.000 0.551 0.229 0.029 0.986 1.000 0.116 0.023 0.002 0.999 1.750

Method 5% 3% 1%

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 5.567 4.454 0.411 0.248 15.500 5.567 4.454 0.411 0.248 15.500 5.567 4.454 0.411 0.248 15.500

UniDepth V1 4.414 4.009 0.463 0.160 15.500 4.414 4.009 0.463 0.160 15.500 4.414 4.009 0.463 0.160 15.500
UniDepth V2 2.600 1.775 0.230 0.652 13.750 2.600 1.775 0.230 0.652 13.750 2.600 1.775 0.230 0.652 13.750

DepthAnythingV2† 3.707 0.672 0.059 0.971 10.250 3.746 0.673 0.060 0.971 10.250 3.769 0.668 0.060 0.971 10.000
VGGT† 0.649 0.382 0.056 0.959 7.750 0.649 0.382 0.056 0.959 7.250 0.650 0.382 0.055 0.959 8.250

MoGe V1† 2.057 1.574 0.177 0.838 12.500 2.151 1.342 0.157 0.858 12.500 2.139 0.940 0.134 0.884 12.500
MoGe V2 1.152 0.819 0.111 0.893 11.500 1.152 0.819 0.111 0.893 11.500 1.152 0.819 0.111 0.893 11.500

G2-MonoDepth‡ 0.156 0.036 0.005 0.999 3.250 0.202 0.044 0.006 0.998 3.750 0.367 0.079 0.012 0.995 4.500
OMNI-DC 0.155 0.020 0.002 0.999 1.500 0.190 0.025 0.003 0.998 2.000 0.255 0.041 0.005 0.997 2.000
PriorDA 0.242 0.079 0.009 0.997 5.000 0.253 0.080 0.009 0.997 5.000 0.281 0.086 0.010 0.996 4.000
SPNet‡ 0.143 0.022 0.003 0.999 1.500 0.182 0.028 0.003 0.999 1.750 0.383 0.052 0.006 0.997 3.250

PromptDA 0.817 0.307 0.038 0.966 7.000 0.837 0.311 0.039 0.968 7.000 0.956 0.344 0.043 0.966 7.000
WorldMirror† 0.773 0.415 0.055 0.962 8.000 0.761 0.418 0.056 0.953 8.750 0.699 0.386 0.053 0.953 8.750
MapAnything 2.116 0.593 0.067 0.934 11.000 2.243 0.661 0.074 0.927 11.000 2.451 0.817 0.094 0.911 11.250

Pow3R† 0.644 0.391 0.056 0.955 8.000 0.650 0.383 0.054 0.958 7.750 0.634 0.346 0.051 0.963 7.000

LDCM (Ours) 0.146 0.025 0.003 0.999 2.000 0.168 0.027 0.003 0.999 1.250 0.225 0.037 0.004 0.998 1.000

Method SIFT ORB Average

RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓ RMSE↓ MAE↓ REL↓ δ1 ↑ Rk.↓
DepthPro 5.567 4.454 0.411 0.248 15.500 5.567 4.454 0.411 0.248 15.500 5.567 4.454 0.411 0.248 15.500

UniDepth V1 4.414 4.009 0.463 0.160 15.250 4.414 4.009 0.463 0.160 15.500 4.414 4.009 0.463 0.160 15.455
UniDepth V2 2.600 1.775 0.230 0.652 13.250 2.600 1.775 0.230 0.652 13.500 2.600 1.775 0.230 0.652 13.500

DepthAnythingV2† 2.613 0.597 0.060 0.964 8.250 2.415 0.603 0.062 0.954 7.500 3.325 0.640 0.059 0.969 9.227
VGGT† 0.727 0.486 0.080 0.913 8.500 0.823 0.582 0.101 0.897 7.750 0.684 0.419 0.064 0.946 7.682

MoGe V1† 4.949 0.572 0.106 0.946 10.500 3.109 0.622 0.116 0.894 11.250 3.089 0.976 0.131 0.895 11.500
MoGe V2 1.152 0.819 0.111 0.893 11.500 1.152 0.819 0.111 0.893 10.000 1.152 0.819 0.111 0.893 11.023

G2-MonoDepth‡ 0.924 0.398 0.077 0.918 8.000 0.885 0.404 0.077 0.920 6.250 0.626 0.261 0.042 0.957 5.614
OMNI-DC 0.487 0.177 0.026 0.978 2.750 0.594 0.232 0.033 0.968 3.250 0.418 0.151 0.019 0.982 2.932
PriorDA 0.421 0.172 0.026 0.980 2.000 0.510 0.218 0.033 0.975 2.000 0.404 0.161 0.022 0.983 3.750
SPNet‡ 0.826 0.221 0.034 0.974 4.750 0.761 0.231 0.037 0.971 3.750 0.639 0.185 0.027 0.978 3.955

PromptDA 1.076 0.492 0.062 0.938 7.750 1.184 0.583 0.076 0.905 7.750 1.037 0.436 0.053 0.950 7.568
WorldMirror† 0.730 0.460 0.072 0.920 7.500 1.491 0.935 0.123 0.836 11.750 0.769 0.446 0.063 0.939 7.727
MapAnything 2.796 1.145 0.143 0.869 13.000 2.617 0.989 0.124 0.884 12.750 2.615 0.979 0.115 0.893 12.045

Pow3R† 0.686 0.414 0.068 0.933 6.250 0.727 0.474 0.080 0.906 6.250 0.660 0.381 0.057 0.950 6.545

LDCM (Ours) 0.316 0.089 0.012 0.995 1.000 0.333 0.101 0.013 0.992 1.000 0.274 0.070 0.009 0.996 1.182
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Table 18: Quantitative comparison of point map estimation with baseline methods on the
KITTI dataset Geiger et al. (2012); Uhrig et al. (2017). Methods marked with ‡ use scenario-
specific configurations for indoor and outdoor scenes, respectively. The best and the second-best
results are highlighted.

Method Lidar-64-Lines Lidar-32-Lines Lidar-16-Lines

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 2.207 3.540 0.120 0.954 7.750 2.207 3.540 0.120 0.954 7.750 2.207 3.540 0.120 0.954 7.750
UniDepth V2 1.813 3.540 0.096 0.961 7.000 1.813 3.540 0.096 0.961 7.000 1.813 3.540 0.096 0.961 7.000

MoGe V2 3.536 4.899 0.208 0.484 9.000 3.536 4.899 0.208 0.484 9.000 3.536 4.899 0.208 0.484 9.000
G2-MonoDepth‡ 1.224 2.183 0.079 0.984 4.000 1.267 2.346 0.080 0.983 3.750 1.386 2.665 0.083 0.979 4.000

OMNI-DC 1.134 1.777 0.071 0.992 2.000 1.198 1.983 0.074 0.988 2.000 1.278 2.231 0.078 0.984 2.000
PriorDA 1.333 2.285 0.080 0.982 5.000 1.394 2.409 0.083 0.979 5.000 1.495 2.607 0.088 0.974 4.750
SPNet‡ 1.200 2.113 0.077 0.986 3.000 1.253 2.332 0.080 0.984 3.000 1.341 2.597 0.083 0.980 3.000

PromptDA 1.537 2.826 0.088 0.972 6.000 1.559 2.910 0.088 0.970 6.000 1.659 3.148 0.094 0.963 6.000

LDCM (ours) 0.851 1.656 0.049 0.993 1.000 0.881 1.812 0.051 0.991 1.000 0.934 2.017 0.052 0.989 1.000

Method Lidar-8-Lines Lidar-4-Lines 10%

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓

UniDepth V1 2.207 3.540 0.120 0.954 7.750 2.207 3.540 0.120 0.954 5.500 2.207 3.540 0.120 0.954 7.750
UniDepth V2 1.813 3.540 0.096 0.961 6.500 1.813 3.540 0.096 0.961 2.000 1.813 3.540 0.096 0.961 6.750

MoGe V2 3.536 4.899 0.208 0.484 9.000 3.536 4.899 0.208 0.484 9.000 3.536 4.899 0.208 0.484 9.000
G2-MonoDepth‡ 1.599 3.125 0.092 0.969 4.250 2.195 4.272 0.116 0.922 7.000 1.283 2.366 0.079 0.983 3.500

OMNI-DC 1.408 2.592 0.083 0.978 2.000 1.821 3.760 0.096 0.953 3.750 1.274 2.298 0.079 0.983 2.750
PriorDA 1.623 2.867 0.094 0.966 4.750 1.936 3.706 0.103 0.945 5.000 1.398 2.472 0.083 0.978 5.000
SPNet‡ 1.465 2.857 0.086 0.977 3.000 1.878 3.946 0.097 0.955 4.250 1.256 2.309 0.078 0.985 2.250

PromptDA 1.744 3.413 0.096 0.956 6.250 2.187 4.467 0.118 0.932 7.000 1.660 3.133 0.094 0.960 6.250

LDCM (ours) 1.022 2.301 0.054 0.987 1.000 1.309 3.212 0.062 0.974 1.000 0.917 1.953 0.052 0.990 1.000

Method 5% 3% 1%

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 2.207 3.540 0.120 0.954 7.750 2.207 3.540 0.120 0.954 7.500 2.207 3.540 0.120 0.954 7.250
UniDepth V2 1.813 3.540 0.096 0.961 6.500 1.813 3.540 0.096 0.961 6.500 1.813 3.540 0.096 0.961 6.000

MoGe V2 3.536 4.899 0.208 0.484 9.000 3.536 4.899 0.208 0.484 9.000 3.536 4.899 0.208 0.484 9.000
G2-MonoDepth‡ 1.333 2.519 0.080 0.982 3.500 1.401 2.712 0.082 0.978 3.750 1.679 3.352 0.092 0.963 4.750

OMNI-DC 1.329 2.464 0.081 0.981 3.500 1.388 2.638 0.083 0.978 3.250 1.603 3.196 0.092 0.965 4.000
PriorDA 1.436 2.575 0.084 0.976 5.000 1.476 2.677 0.085 0.974 4.750 1.594 2.998 0.090 0.967 2.750
SPNet‡ 1.304 2.454 0.079 0.984 2.000 1.353 2.596 0.081 0.982 2.000 1.512 3.015 0.086 0.975 2.250

PromptDA 1.779 3.312 0.102 0.956 6.500 1.806 3.424 0.102 0.953 6.750 2.082 4.041 0.117 0.934 7.500

LDCM (ours) 0.958 2.088 0.053 0.988 1.000 0.881 2.129 0.047 0.987 1.000 1.007 2.483 0.051 0.983 1.000

Method SIFT ORB Average

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 2.207 3.540 0.120 0.954 3.750 2.207 3.540 0.120 0.954 4.000 2.207 3.540 0.120 0.954 6.773
UniDepth V2 1.813 3.540 0.096 0.961 2.000 1.813 3.540 0.096 0.961 2.250 1.813 3.540 0.096 0.961 5.409

MoGe V2 3.536 4.899 0.208 0.484 9.000 3.536 4.899 0.208 0.484 9.000 3.536 4.899 0.208 0.484 9.000
G2-MonoDepth‡ 2.736 4.677 0.158 0.795 8.000 2.261 4.085 0.133 0.864 6.750 1.669 3.118 0.098 0.946 4.841

OMNI-DC 2.316 4.173 0.139 0.875 6.000 2.210 4.001 0.136 0.882 6.250 1.542 2.828 0.092 0.960 3.409
PriorDA 1.830 3.358 0.103 0.938 3.000 1.792 3.245 0.104 0.935 2.750 1.573 2.836 0.091 0.965 4.341
SPNet‡ 2.096 3.845 0.120 0.888 4.500 1.921 3.631 0.113 0.908 4.500 1.507 2.881 0.089 0.964 3.068

PromptDA 2.609 4.581 0.154 0.868 7.000 2.642 4.475 0.159 0.852 8.000 1.933 3.612 0.110 0.938 6.659

LDCM (ours) 1.290 2.918 0.064 0.959 1.250 1.247 2.820 0.065 0.956 1.250 1.027 2.308 0.055 0.982 1.045
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Table 19: Quantitative comparison of point map estimation with baseline methods on the in-
door scenes of the DIODE dataset Vasiljevic et al. (2019). Methods marked with ‡ use scenario-
specific configurations for indoor and outdoor scenes, respectively. The best and the second-best
results are highlighted.

Method 10% Noise 5% 3%

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 0.911 1.017 0.159 0.779 7.500 0.911 1.017 0.159 0.779 7.500 0.911 1.017 0.159 0.779 7.500
UniDepth V2 0.730 0.872 0.164 0.694 7.500 0.730 0.872 0.164 0.694 7.500 0.730 0.872 0.164 0.694 7.500

MoGe V2 1.048 1.185 0.242 0.410 9.000 1.048 1.185 0.242 0.410 9.000 1.048 1.185 0.242 0.410 9.000
G2-MonoDepth‡ 0.118 0.136 0.027 1.000 1.750 0.118 0.137 0.027 1.000 2.250 0.118 0.140 0.028 1.000 2.750

OMNI-DC 0.122 0.163 0.028 0.999 4.000 0.118 0.137 0.027 1.000 2.250 0.118 0.139 0.027 1.000 2.000
PriorDA 0.132 0.179 0.029 0.999 4.750 0.123 0.155 0.028 0.999 5.000 0.123 0.156 0.028 0.999 4.750
SPNet‡ 0.118 0.138 0.027 1.000 2.000 0.117 0.135 0.027 1.000 1.750 0.118 0.136 0.027 1.000 1.750

PromptDA 0.138 0.189 0.033 0.997 6.000 0.133 0.180 0.032 0.996 6.000 0.133 0.183 0.031 0.997 6.000

LDCM (ours) 0.107 0.127 0.021 1.000 1.000 0.107 0.128 0.021 1.000 1.000 0.107 0.130 0.021 1.000 1.000

Method 1% 500 100

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 0.911 1.017 0.159 0.779 7.500 0.911 1.017 0.159 0.779 7.500 0.911 1.017 0.159 0.779 7.000
UniDepth V2 0.730 0.872 0.164 0.694 7.500 0.730 0.872 0.164 0.694 7.500 0.730 0.872 0.164 0.694 7.000

MoGe V2 1.048 1.185 0.242 0.410 9.000 1.048 1.185 0.242 0.410 9.000 1.048 1.185 0.242 0.410 9.000
G2-MonoDepth‡ 0.120 0.149 0.028 0.999 3.250 0.144 0.220 0.034 0.996 5.000 0.651 0.843 0.191 0.598 7.000

OMNI-DC 0.118 0.145 0.028 0.999 2.500 0.127 0.184 0.029 0.998 2.500 0.161 0.275 0.036 0.991 4.000
PriorDA 0.123 0.159 0.028 0.999 3.750 0.128 0.179 0.029 0.999 2.250 0.140 0.217 0.031 0.996 1.500
SPNet‡ 0.118 0.140 0.027 0.999 2.000 0.127 0.187 0.029 0.998 2.750 0.156 0.268 0.035 0.992 3.000

PromptDA 0.136 0.191 0.032 0.995 6.000 0.167 0.263 0.042 0.989 6.000 0.228 0.428 0.061 0.978 5.000

LDCM (ours) 0.107 0.134 0.021 1.000 1.000 0.111 0.167 0.022 0.999 1.000 0.128 0.235 0.024 0.996 1.250

Method SIFT ORB Virtual-Lidar-32-Lines

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 0.911 1.017 0.159 0.779 7.000 0.911 1.017 0.159 0.779 6.500 0.911 1.017 0.159 0.779 7.500
UniDepth V2 0.730 0.872 0.164 0.694 6.500 0.730 0.872 0.164 0.694 6.500 0.730 0.872 0.164 0.694 7.500

MoGe V2 1.048 1.185 0.242 0.410 8.750 1.048 1.185 0.242 0.410 8.750 1.048 1.185 0.242 0.410 9.000
G2-MonoDepth‡ 0.777 1.000 0.251 0.545 7.750 0.866 1.111 0.270 0.504 8.000 0.127 0.178 0.029 0.998 4.750

OMNI-DC 0.313 0.429 0.099 0.867 3.250 0.448 0.616 0.135 0.790 4.250 0.121 0.158 0.028 0.999 1.750
PriorDA 0.174 0.232 0.050 0.975 1.500 0.205 0.280 0.066 0.967 1.500 0.124 0.164 0.029 0.999 3.250
SPNet‡ 0.350 0.478 0.117 0.818 5.000 0.398 0.554 0.132 0.794 3.000 0.121 0.163 0.028 0.999 2.000

PromptDA 0.336 0.448 0.108 0.874 3.750 0.511 0.708 0.160 0.791 5.000 0.144 0.211 0.036 0.993 6.000

LDCM (ours) 0.172 0.243 0.045 0.964 1.500 0.201 0.300 0.053 0.952 1.500 0.108 0.144 0.021 0.999 1.000

Method Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines Average

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 0.911 1.017 0.159 0.779 7.500 0.911 1.017 0.159 0.779 7.500 0.911 1.017 0.159 0.779 7.318
UniDepth V2 0.730 0.872 0.164 0.694 7.500 0.730 0.872 0.164 0.694 7.500 0.730 0.872 0.164 0.694 7.273

MoGe V2 1.048 1.185 0.242 0.410 9.000 1.048 1.185 0.242 0.410 9.000 1.048 1.185 0.242 0.410 8.955
G2-MonoDepth‡ 0.136 0.211 0.031 0.997 5.000 0.175 0.285 0.042 0.987 5.750 0.305 0.401 0.087 0.875 4.841

OMNI-DC 0.126 0.176 0.029 0.998 2.250 0.145 0.229 0.034 0.994 4.000 0.174 0.241 0.045 0.967 2.977
PriorDA 0.127 0.177 0.029 0.999 2.500 0.136 0.197 0.031 0.998 1.250 0.140 0.190 0.034 0.994 2.909
SPNet‡ 0.126 0.182 0.029 0.998 2.750 0.139 0.220 0.032 0.996 3.000 0.172 0.236 0.046 0.963 2.636

PromptDA 0.150 0.232 0.036 0.993 6.000 0.170 0.275 0.041 0.987 5.000 0.204 0.301 0.056 0.963 5.523

LDCM (ours) 0.110 0.155 0.021 0.999 1.000 0.137 0.202 0.028 0.998 1.500 0.127 0.179 0.027 0.992 1.159
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Table 20: Quantitative comparison of point map estimation with baseline methods on the out-
door scenes of the DIODE dataset Vasiljevic et al. (2019). Methods marked with ‡ use scenario-
specific configurations for indoor and outdoor scenes, respectively. The best and the second-best
results are highlighted.

Method Virtual-Lidar-64-Lines Virtual-Lidar-32-Lines Virtual-Lidar-16-Lines

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 4.280 6.372 0.196 0.644 7.500 4.280 6.372 0.196 0.644 7.500 4.280 6.372 0.196 0.644 7.500
UniDepth V2 9.686 12.049 0.521 0.505 9.000 9.686 12.049 0.521 0.505 9.000 9.686 12.049 0.521 0.505 9.000

MoGe V2 4.041 5.505 0.205 0.626 7.500 4.041 5.505 0.205 0.626 7.500 4.041 5.505 0.205 0.626 7.500
G2-MonoDepth 1.867 3.009 0.105 0.962 4.250 1.983 3.309 0.116 0.953 4.500 2.188 3.726 0.130 0.933 5.000

OMNI-DC 1.838 2.970 0.101 0.965 3.000 1.927 3.230 0.108 0.958 3.500 2.102 3.673 0.120 0.946 3.750
PriorDA 1.980 3.071 0.104 0.953 4.750 2.018 3.184 0.106 0.950 4.000 2.087 3.349 0.111 0.944 2.750
SPNet 1.806 2.857 0.099 0.966 2.000 1.885 3.113 0.105 0.960 2.000 2.052 3.547 0.117 0.950 2.500

PromptDA 2.392 4.186 0.123 0.923 6.000 2.484 4.427 0.128 0.916 6.000 2.607 4.638 0.133 0.907 6.000

LDCM (ours) 1.508 2.581 0.084 0.977 1.000 1.563 2.755 0.088 0.973 1.000 1.667 3.022 0.093 0.965 1.000

Method Virtual-Lidar-8-Lines Virtual-Lidar-4-Lines 10% Noise

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 4.280 6.372 0.196 0.644 7.500 4.280 6.372 0.196 0.644 6.250 4.280 6.372 0.196 0.644 7.500
UniDepth V2 9.686 12.049 0.521 0.505 9.000 9.686 12.049 0.521 0.505 9.000 9.686 12.049 0.521 0.505 9.000

MoGe V2 4.041 5.505 0.205 0.626 7.500 4.041 5.505 0.205 0.626 5.750 4.041 5.505 0.205 0.626 7.500
G2-MonoDepth 2.659 4.565 0.152 0.887 5.250 4.215 6.818 0.237 0.658 7.000 1.645 2.195 0.087 0.980 2.750

OMNI-DC 2.503 4.513 0.133 0.916 3.750 3.689 6.325 0.200 0.769 4.500 1.661 2.301 0.087 0.980 3.500
PriorDA 2.272 3.798 0.118 0.929 2.000 2.921 5.112 0.155 0.857 2.000 2.035 3.117 0.102 0.951 5.000
SPNet 2.359 4.143 0.134 0.923 3.250 3.125 5.372 0.194 0.827 3.000 1.638 2.207 0.085 0.981 2.250

PromptDA 2.896 5.216 0.144 0.886 5.750 4.086 6.913 0.208 0.762 6.500 2.385 3.954 0.119 0.920 6.000

LDCM (ours) 1.850 3.456 0.099 0.953 1.000 2.313 4.361 0.119 0.905 1.000 1.345 2.032 0.076 0.991 1.000

Method 5% 3% 1%

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 4.280 6.372 0.196 0.644 7.500 4.280 6.372 0.196 0.644 7.500 4.280 6.372 0.196 0.644 7.500
UniDepth V2 9.686 12.049 0.521 0.505 9.000 9.686 12.049 0.521 0.505 9.000 9.686 12.049 0.521 0.505 9.000

MoGe V2 4.041 5.505 0.205 0.626 7.500 4.041 5.505 0.205 0.626 7.500 4.041 5.505 0.205 0.626 7.500
G2-MonoDepth 1.671 2.313 0.089 0.977 3.750 1.702 2.437 0.092 0.975 3.750 1.798 2.796 0.099 0.967 4.000

OMNI-DC 1.670 2.335 0.088 0.978 3.250 1.698 2.450 0.091 0.976 3.250 1.777 2.754 0.096 0.969 3.000
PriorDA 1.950 2.933 0.101 0.955 5.000 1.951 2.947 0.101 0.955 5.000 1.973 3.029 0.103 0.953 5.000
SPNet 1.655 2.265 0.087 0.979 2.000 1.679 2.362 0.089 0.977 2.000 1.750 2.650 0.095 0.971 2.000

PromptDA 2.336 3.900 0.119 0.923 6.000 2.356 3.962 0.120 0.923 6.000 2.444 4.183 0.127 0.919 6.000

LDCM (ours) 1.366 2.098 0.077 0.988 1.000 1.394 2.202 0.079 0.986 1.000 1.462 2.436 0.082 0.980 1.000

Method SIFT ORB Average

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 4.280 6.372 0.196 0.644 7.500 4.280 6.372 0.196 0.644 7.500 4.280 6.372 0.196 0.644 7.386
UniDepth V2 9.686 12.049 0.521 0.505 9.000 9.686 12.049 0.521 0.505 9.000 9.686 12.049 0.521 0.505 9.000

MoGe V2 4.041 5.505 0.205 0.626 7.500 4.041 5.505 0.205 0.626 7.500 4.041 5.505 0.205 0.626 7.341
G2-MonoDepth 2.120 3.399 0.121 0.924 5.000 2.291 3.734 0.126 0.903 5.000 2.194 3.482 0.123 0.920 4.568

OMNI-DC 1.971 3.284 0.104 0.952 3.000 2.146 3.692 0.110 0.933 3.000 2.089 3.412 0.113 0.940 3.409
PriorDA 2.078 3.326 0.106 0.944 4.000 2.232 3.698 0.113 0.927 4.000 2.136 3.415 0.111 0.938 3.955
SPNet 1.883 2.993 0.102 0.956 2.000 1.962 3.215 0.104 0.946 2.000 1.981 3.157 0.110 0.949 2.273

PromptDA 2.699 4.737 0.132 0.894 6.000 3.043 5.181 0.150 0.856 6.000 2.703 4.663 0.137 0.894 6.023

LDCM (ours) 1.551 2.734 0.086 0.974 1.000 1.642 2.996 0.090 0.962 1.000 1.606 2.788 0.088 0.969 1.000
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Table 21: Quantitative comparison of point map estimation with baseline methods on the
iBims-1 dataset Koch et al. (2018). Methods marked with ‡ use scenario-specific configurations
for indoor and outdoor scenes, respectively. The best and the second-best results are highlighted.

Method 10% Noise 5% 3%

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 1.154 1.239 0.370 0.239 9.000 1.154 1.239 0.370 0.239 9.000 1.154 1.239 0.370 0.239 9.000
UniDepth V2 0.365 0.489 0.107 0.932 7.000 0.365 0.489 0.107 0.932 7.000 0.365 0.489 0.107 0.932 7.000

MoGe V2 0.574 0.667 0.156 0.740 8.000 0.574 0.667 0.156 0.740 8.000 0.574 0.667 0.156 0.740 8.000
G2-MonoDepth‡ 0.131 0.181 0.036 0.995 3.000 0.133 0.191 0.036 0.994 3.500 0.136 0.201 0.037 0.994 3.500

OMNI-DC 0.137 0.209 0.037 0.993 4.000 0.131 0.186 0.036 0.995 2.250 0.133 0.197 0.037 0.994 3.000
PriorDA 0.145 0.213 0.040 0.993 4.750 0.142 0.210 0.039 0.992 5.000 0.143 0.213 0.039 0.992 5.000
SPNet‡ 0.128 0.175 0.035 0.996 1.750 0.130 0.181 0.036 0.995 1.750 0.132 0.189 0.036 0.995 1.750

PromptDA 0.163 0.257 0.045 0.988 6.000 0.165 0.261 0.045 0.987 6.000 0.166 0.263 0.045 0.988 6.000

LDCM (ours) 0.075 0.151 0.021 0.996 1.000 0.076 0.158 0.022 0.995 1.000 0.078 0.164 0.022 0.995 1.000

Method 1% 500 100

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 1.154 1.239 0.370 0.239 9.000 1.154 1.239 0.370 0.239 9.000 1.154 1.239 0.370 0.239 9.000
UniDepth V2 0.365 0.489 0.107 0.932 7.000 0.365 0.489 0.107 0.932 7.000 0.365 0.489 0.107 0.932 7.000

MoGe V2 0.574 0.667 0.156 0.740 8.000 0.574 0.667 0.156 0.740 8.000 0.574 0.667 0.156 0.740 8.000
G2-MonoDepth‡ 0.143 0.226 0.039 0.991 4.250 0.166 0.274 0.044 0.985 5.000 0.249 0.392 0.069 0.958 6.000

OMNI-DC 0.138 0.214 0.038 0.992 2.500 0.152 0.247 0.042 0.988 3.000 0.187 0.310 0.051 0.977 4.000
PriorDA 0.146 0.221 0.040 0.991 4.500 0.153 0.236 0.042 0.990 2.750 0.168 0.281 0.045 0.987 2.000
SPNet‡ 0.138 0.213 0.037 0.992 2.000 0.151 0.253 0.041 0.988 2.750 0.176 0.311 0.046 0.982 3.250

PromptDA 0.172 0.275 0.046 0.987 6.000 0.186 0.300 0.049 0.985 5.750 0.216 0.352 0.057 0.980 4.750

LDCM (ours) 0.082 0.177 0.023 0.994 1.000 0.094 0.204 0.026 0.991 1.000 0.112 0.241 0.030 0.988 1.000

Method SIFT ORB Virtual-Lidar-32-Lines

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 1.154 1.239 0.370 0.239 9.000 1.154 1.239 0.370 0.239 9.000 1.154 1.239 0.370 0.239 9.000
UniDepth V2 0.365 0.489 0.107 0.932 6.750 0.365 0.489 0.107 0.932 6.250 0.365 0.489 0.107 0.932 7.000

MoGe V2 0.574 0.667 0.156 0.740 8.000 0.574 0.667 0.156 0.740 8.000 0.574 0.667 0.156 0.740 8.000
G2-MonoDepth‡ 0.273 0.396 0.082 0.920 6.250 0.303 0.432 0.092 0.900 5.750 0.154 0.255 0.041 0.989 4.000

OMNI-DC 0.210 0.324 0.059 0.958 4.000 0.251 0.375 0.074 0.925 4.250 0.143 0.227 0.039 0.991 2.750
PriorDA 0.164 0.242 0.046 0.988 2.000 0.184 0.273 0.053 0.981 2.000 0.188 0.270 0.048 0.982 5.750
SPNet‡ 0.170 0.259 0.048 0.985 3.000 0.192 0.290 0.056 0.971 3.000 0.142 0.226 0.038 0.991 2.000

PromptDA 0.258 0.378 0.072 0.947 5.000 0.315 0.453 0.088 0.903 5.750 0.174 0.277 0.047 0.986 5.250

LDCM (ours) 0.103 0.208 0.029 0.990 1.000 0.119 0.230 0.034 0.986 1.000 0.085 0.185 0.024 0.993 1.000

Method Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines Average

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 1.154 1.239 0.370 0.239 9.000 1.154 1.239 0.370 0.239 9.000 1.154 1.239 0.370 0.239 9.000
UniDepth V2 0.365 0.489 0.107 0.932 7.000 0.365 0.489 0.107 0.932 7.000 0.365 0.489 0.107 0.932 6.909

MoGe V2 0.574 0.667 0.156 0.740 8.000 0.574 0.667 0.156 0.740 8.000 0.574 0.667 0.156 0.740 8.000
G2-MonoDepth‡ 0.165 0.277 0.044 0.986 5.250 0.197 0.328 0.052 0.977 5.750 0.186 0.287 0.052 0.972 4.750

OMNI-DC 0.150 0.240 0.041 0.989 2.750 0.173 0.284 0.048 0.982 4.250 0.164 0.256 0.046 0.980 3.341
PriorDA 0.152 0.233 0.041 0.990 2.750 0.162 0.248 0.044 0.988 2.000 0.159 0.240 0.043 0.989 3.500
SPNet‡ 0.150 0.248 0.040 0.989 2.750 0.168 0.280 0.045 0.985 3.000 0.152 0.239 0.042 0.988 2.455

PromptDA 0.177 0.282 0.047 0.987 5.750 0.193 0.305 0.052 0.983 4.750 0.199 0.309 0.054 0.975 5.545

LDCM (ours) 0.091 0.198 0.025 0.992 1.000 0.101 0.215 0.028 0.990 1.000 0.092 0.194 0.026 0.992 1.000
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Table 22: Quantitative comparison of point map estimation with baseline methods on the in-
door scenes of the ETH3D dataset Schops et al. (2017). Methods marked with ‡ use scenario-
specific configurations for indoor and outdoor scenes, respectively. The best and the second-best
results are highlighted.

Method 10% Noise 5% 3%

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 2.429 2.649 0.641 0.066 9.000 2.429 2.649 0.641 0.066 9.000 2.429 2.649 0.641 0.066 9.000
UniDepth V2 0.624 0.726 0.166 0.825 8.000 0.624 0.726 0.166 0.825 8.000 0.624 0.726 0.166 0.825 8.000

MoGe V2 0.500 0.620 0.123 0.839 7.000 0.500 0.620 0.123 0.839 7.000 0.500 0.620 0.123 0.839 7.000
G2-MonoDepth‡ 0.361 0.412 0.088 0.956 2.750 0.362 0.416 0.088 0.956 4.000 0.363 0.421 0.089 0.956 4.500

OMNI-DC 0.367 0.436 0.089 0.954 5.250 0.361 0.413 0.088 0.956 3.000 0.361 0.417 0.088 0.956 3.000
PriorDA 0.371 0.438 0.089 0.956 5.000 0.365 0.427 0.089 0.956 5.250 0.365 0.429 0.089 0.956 5.000
SPNet‡ 0.361 0.414 0.088 0.956 3.000 0.361 0.413 0.088 0.956 3.000 0.361 0.419 0.088 0.956 3.250

PromptDA 0.331 0.417 0.078 0.968 2.500 0.319 0.397 0.078 0.967 2.000 0.321 0.404 0.078 0.967 2.000

LDCM (ours) 0.256 0.300 0.070 0.999 1.000 0.255 0.300 0.070 0.999 1.000 0.255 0.302 0.070 0.999 1.000

Method 1% 500 100

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 2.429 2.649 0.641 0.066 9.000 2.429 2.649 0.641 0.066 9.000 2.429 2.649 0.641 0.066 9.000
UniDepth V2 0.624 0.726 0.166 0.825 8.000 0.624 0.726 0.166 0.825 8.000 0.624 0.726 0.166 0.825 8.000

MoGe V2 0.500 0.620 0.123 0.839 7.000 0.500 0.620 0.123 0.839 7.000 0.500 0.620 0.123 0.839 6.750
G2-MonoDepth‡ 0.367 0.440 0.089 0.955 5.000 0.388 0.511 0.092 0.952 6.000 0.468 0.662 0.109 0.915 6.250

OMNI-DC 0.363 0.428 0.089 0.956 3.000 0.372 0.460 0.090 0.954 3.500 0.407 0.566 0.095 0.947 4.750
PriorDA 0.367 0.435 0.089 0.956 3.750 0.371 0.449 0.090 0.955 2.750 0.385 0.486 0.092 0.952 2.500
SPNet‡ 0.365 0.439 0.089 0.956 3.750 0.375 0.484 0.090 0.954 4.000 0.399 0.559 0.093 0.950 3.750

PromptDA 0.328 0.423 0.079 0.966 2.000 0.348 0.485 0.082 0.963 2.750 0.396 0.608 0.088 0.955 3.000

LDCM (ours) 0.257 0.311 0.070 0.998 1.000 0.263 0.334 0.071 0.998 1.000 0.279 0.382 0.073 0.996 1.000

Method SIFT ORB Virtual-Lidar-32-Lines

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 2.429 2.649 0.641 0.066 9.000 2.429 2.649 0.641 0.066 9.000 2.429 2.649 0.641 0.066 9.000
UniDepth V2 0.624 0.726 0.166 0.825 8.000 0.624 0.726 0.166 0.825 8.000 0.624 0.726 0.166 0.825 8.000

MoGe V2 0.500 0.620 0.123 0.839 6.250 0.500 0.620 0.123 0.839 6.250 0.500 0.620 0.123 0.839 7.000
G2-MonoDepth‡ 0.517 0.675 0.136 0.844 6.750 0.520 0.695 0.135 0.853 6.750 0.376 0.460 0.091 0.953 6.000

OMNI-DC 0.429 0.532 0.107 0.904 4.500 0.447 0.567 0.112 0.890 4.250 0.365 0.437 0.089 0.955 3.250
PriorDA 0.394 0.477 0.099 0.939 2.000 0.408 0.511 0.101 0.936 2.000 0.367 0.438 0.089 0.956 3.500
SPNet‡ 0.408 0.515 0.100 0.924 3.000 0.419 0.539 0.102 0.922 3.000 0.367 0.450 0.089 0.955 4.000

PromptDA 0.436 0.557 0.106 0.909 4.500 0.455 0.582 0.112 0.893 4.500 0.326 0.420 0.078 0.968 2.000

LDCM (ours) 0.279 0.350 0.075 0.991 1.000 0.285 0.360 0.077 0.986 1.000 0.258 0.319 0.070 0.998 1.000

Method Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines Average

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 2.429 2.649 0.641 0.066 9.000 2.429 2.649 0.641 0.066 9.000 2.429 2.649 0.641 0.066 9.000
UniDepth V2 0.624 0.726 0.166 0.825 8.000 0.624 0.726 0.166 0.825 8.000 0.624 0.726 0.166 0.825 8.000

MoGe V2 0.500 0.620 0.123 0.839 7.000 0.500 0.620 0.123 0.839 7.000 0.500 0.620 0.123 0.839 6.841
G2-MonoDepth‡ 0.383 0.487 0.092 0.952 6.000 0.421 0.563 0.098 0.943 6.000 0.411 0.522 0.101 0.930 5.455

OMNI-DC 0.370 0.451 0.090 0.955 3.000 0.389 0.505 0.093 0.950 4.000 0.385 0.474 0.094 0.943 3.773
PriorDA 0.371 0.447 0.090 0.955 3.000 0.379 0.465 0.091 0.952 2.750 0.377 0.455 0.092 0.952 3.409
SPNet‡ 0.373 0.469 0.090 0.954 4.500 0.399 0.523 0.094 0.948 5.000 0.381 0.475 0.092 0.948 3.659

PromptDA 0.338 0.459 0.080 0.965 2.500 0.360 0.500 0.085 0.959 2.250 0.360 0.477 0.086 0.953 2.727

LDCM (ours) 0.263 0.332 0.071 0.998 1.000 0.272 0.354 0.072 0.996 1.000 0.266 0.331 0.072 0.996 1.000
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Table 23: Quantitative comparison of point map estimation with baseline methods on the out-
door scenes of the ETH3D dataset Schops et al. (2017). Methods marked with ‡ use scenario-
specific configurations for indoor and outdoor scenes, respectively. The best and the second-best
results are highlighted.

Method Virtual-Lidar-64-Lines Virtual-Lidar-32-Lines Virtual-Lidar-16-Lines

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 4.653 5.100 0.461 0.145 9.000 4.653 5.100 0.461 0.145 9.000 4.653 5.100 0.461 0.145 9.000
UniDepth V2 1.879 2.844 0.216 0.712 8.000 1.879 2.844 0.216 0.712 8.000 1.879 2.844 0.216 0.712 8.000

MoGe V2 0.931 1.206 0.115 0.890 6.750 0.931 1.206 0.115 0.890 6.750 0.931 1.206 0.115 0.890 6.500
G2-MonoDepth‡ 0.638 0.843 0.088 0.929 4.250 0.665 0.943 0.092 0.924 4.750 0.713 1.091 0.098 0.916 5.250

OMNI-DC 0.626 0.793 0.086 0.931 2.000 0.634 0.823 0.087 0.930 2.250 0.655 0.871 0.089 0.927 2.250
PriorDA 0.641 0.804 0.087 0.929 3.750 0.646 0.818 0.088 0.929 2.750 0.657 0.846 0.089 0.927 2.250
SPNet‡ 0.631 0.893 0.087 0.931 3.250 0.653 1.069 0.089 0.929 4.000 0.704 1.354 0.096 0.925 5.000

PromptDA 0.756 1.329 0.094 0.923 6.250 0.762 1.365 0.094 0.921 6.250 0.772 1.431 0.092 0.927 4.750

LDCM (ours) 0.393 0.510 0.041 0.998 1.000 0.402 0.539 0.042 0.998 1.000 0.414 0.572 0.043 0.997 1.000

Method Virtual-Lidar-8-Lines Virtual-Lidar-4-Lines 10% Noise

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 4.653 5.100 0.461 0.145 9.000 4.653 5.100 0.461 0.145 9.000 4.653 5.100 0.461 0.145 9.000
UniDepth V2 1.879 2.844 0.216 0.712 8.000 1.879 2.844 0.216 0.712 8.000 1.879 2.844 0.216 0.712 8.000

MoGe V2 0.931 1.206 0.115 0.890 5.500 0.931 1.206 0.115 0.890 2.000 0.931 1.206 0.115 0.890 7.000
G2-MonoDepth‡ 0.907 1.448 0.118 0.876 6.250 1.541 2.283 0.201 0.724 6.750 0.618 0.732 0.085 0.932 3.000

OMNI-DC 0.757 1.067 0.098 0.913 3.000 1.209 1.726 0.143 0.820 5.000 0.623 0.758 0.085 0.931 3.750
PriorDA 0.705 0.957 0.093 0.921 2.000 1.030 1.479 0.140 0.850 3.500 0.657 0.817 0.088 0.930 5.000
SPNet‡ 0.858 1.816 0.116 0.902 5.500 1.222 2.483 0.160 0.823 6.000 0.613 0.725 0.084 0.933 2.000

PromptDA 0.872 1.711 0.103 0.913 4.500 1.137 1.783 0.131 0.863 3.750 0.715 1.180 0.088 0.929 5.750

LDCM (ours) 0.451 0.676 0.046 0.994 1.000 0.552 0.821 0.058 0.982 1.000 0.394 0.476 0.040 0.999 1.000

Method 5% 3% 1%

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 4.653 5.100 0.461 0.145 9.000 4.653 5.100 0.461 0.145 9.000 4.653 5.100 0.461 0.145 9.000
UniDepth V2 1.879 2.844 0.216 0.712 8.000 1.879 2.844 0.216 0.712 8.000 1.879 2.844 0.216 0.712 8.000

MoGe V2 0.931 1.206 0.115 0.890 7.000 0.931 1.206 0.115 0.890 6.750 0.931 1.206 0.115 0.890 6.750
G2-MonoDepth‡ 0.621 0.748 0.085 0.932 2.750 0.626 0.776 0.086 0.931 3.750 0.648 0.894 0.089 0.927 4.500

OMNI-DC 0.617 0.746 0.085 0.932 2.000 0.619 0.761 0.085 0.932 2.000 0.629 0.805 0.086 0.930 2.000
PriorDA 0.638 0.789 0.087 0.930 5.000 0.639 0.795 0.087 0.930 4.750 0.644 0.814 0.088 0.929 3.250
SPNet‡ 0.617 0.760 0.085 0.932 2.500 0.621 0.801 0.085 0.932 3.000 0.644 0.994 0.089 0.930 3.500

PromptDA 0.707 1.202 0.089 0.929 6.000 0.733 1.253 0.091 0.926 6.250 0.771 1.358 0.095 0.921 6.250

LDCM (ours) 0.394 0.486 0.040 0.999 1.000 0.396 0.498 0.040 0.999 1.000 0.405 0.539 0.041 0.998 1.000

Method SIFT ORB Average

MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓ MAEp ↓ RMSEp ↓ RELp ↓ δp1 ↑ Rk.↓
UniDepth V1 4.653 5.100 0.461 0.145 9.000 4.653 5.100 0.461 0.145 9.000 4.653 5.100 0.461 0.145 9.000
UniDepth V2 1.879 2.844 0.216 0.712 8.000 1.879 2.844 0.216 0.712 8.000 1.879 2.844 0.216 0.712 8.000

MoGe V2 0.931 1.206 0.115 0.890 5.750 0.931 1.206 0.115 0.890 5.000 0.931 1.206 0.115 0.890 5.977
G2-MonoDepth‡ 0.876 1.346 0.129 0.848 6.250 0.885 1.318 0.130 0.857 6.000 0.794 1.129 0.109 0.891 4.864

OMNI-DC 0.717 0.973 0.097 0.914 3.000 0.765 1.080 0.101 0.902 3.500 0.714 0.946 0.095 0.915 2.795
PriorDA 0.688 0.890 0.094 0.920 2.000 0.730 0.979 0.099 0.912 2.000 0.698 0.908 0.095 0.919 3.295
SPNet‡ 0.754 1.453 0.106 0.909 4.500 0.743 1.321 0.102 0.910 4.000 0.733 1.243 0.100 0.914 3.932

PromptDA 0.871 1.454 0.106 0.899 5.250 0.963 1.576 0.119 0.865 6.500 0.824 1.422 0.100 0.911 5.591

LDCM (ours) 0.444 0.615 0.046 0.993 1.000 0.454 0.644 0.047 0.990 1.000 0.427 0.580 0.044 0.995 1.000
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Table 24: Quantitative comparison of affine-invariant point map estimation with baseline
methods on the KITTI dataset Geiger et al. (2012); Uhrig et al. (2017). The best and the
second-best results are highlighted.

Method Lidar-64-Lines Lidar-32-Lines Lidar-16-Lines Lidar-8-Lines

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓
VGGT 0.147 0.823 5.000 0.147 0.823 4.500 0.147 0.823 4.500 0.147 0.823 4.500

MoGe V2 0.056 0.968 2.000 0.056 0.968 2.000 0.056 0.968 2.000 0.056 0.968 2.000
WorldMirror 0.095 0.920 3.000 0.103 0.900 3.000 0.118 0.865 3.000 0.129 0.838 3.500
MapAnything 0.362 0.347 6.000 0.364 0.345 6.000 0.364 0.346 6.000 0.366 0.345 6.000

Pow3R 0.140 0.886 4.000 0.147 0.870 4.000 0.151 0.858 4.500 0.153 0.848 4.000

LDCM 0.031 0.993 1.000 0.033 0.991 1.000 0.034 0.989 1.000 0.036 0.987 1.000

Method Lidar-4-Lines 10% 5% 3%

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓
VGGT 0.147 0.823 4.000 0.147 0.823 4.500 0.147 0.823 4.500 0.147 0.823 4.500

MoGe V2 0.056 0.968 2.000 0.056 0.968 2.000 0.056 0.968 2.000 0.056 0.968 2.000
WorldMirror 0.136 0.821 4.000 0.102 0.900 3.000 0.100 0.901 3.000 0.100 0.902 3.000
MapAnything 0.367 0.344 6.000 0.365 0.345 6.000 0.365 0.345 6.000 0.367 0.341 6.000

Pow3R 0.154 0.844 4.000 0.154 0.847 4.500 0.155 0.843 4.500 0.155 0.841 4.500

LDCM 0.043 0.976 1.000 0.034 0.990 1.000 0.035 0.989 1.000 0.036 0.987 1.000

Method 1% SIFT ORB Average

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓
VGGT 0.147 0.823 4.500 0.147 0.823 4.500 0.147 0.823 4.500 0.147 0.823 4.500

MoGe V2 0.056 0.968 2.000 0.056 0.968 1.500 0.056 0.968 1.500 0.056 0.968 1.909
WorldMirror 0.100 0.902 3.000 0.100 0.902 3.000 0.102 0.897 3.000 0.108 0.886 3.136
MapAnything 0.370 0.338 6.000 0.367 0.344 6.000 0.367 0.343 6.000 0.366 0.344 6.000

Pow3R 0.155 0.839 4.500 0.155 0.839 4.500 0.155 0.840 4.500 0.152 0.850 4.318

LDCM 0.040 0.983 1.000 0.054 0.961 1.500 0.051 0.963 1.500 0.039 0.983 1.091

Table 25: Quantitative comparison of affine-invariant point map estimation with baseline
methods on the indoor scenes of the DIODE dataset Vasiljevic et al. (2019). The best and
the second-best results are highlighted.

Method 10% Noise 5% 3% 1%

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓
VGGT 0.107 0.926 5.000 0.107 0.926 5.000 0.107 0.926 5.000 0.107 0.926 4.500

MoGe V2 0.052 0.972 2.000 0.052 0.972 2.000 0.052 0.972 2.000 0.052 0.972 2.000
WorldMirror 0.079 0.951 3.500 0.072 0.952 3.500 0.070 0.953 3.000 0.071 0.953 3.000
MapAnything 0.169 0.762 6.000 0.168 0.762 6.000 0.168 0.762 6.000 0.169 0.763 6.000

Pow3R 0.099 0.960 3.500 0.104 0.954 3.500 0.106 0.951 4.000 0.108 0.946 4.500

LDCM 0.009 1.000 1.000 0.009 1.000 1.000 0.009 1.000 1.000 0.009 0.999 1.000

Method 500 100 SIFT ORB

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓
VGGT 0.107 0.926 4.500 0.107 0.926 4.500 0.107 0.926 4.500 0.107 0.926 4.500

MoGe V2 0.052 0.972 2.000 0.052 0.972 2.000 0.052 0.972 2.000 0.052 0.972 1.500
WorldMirror 0.072 0.955 3.000 0.073 0.955 3.000 0.073 0.956 3.000 0.078 0.945 3.000
MapAnything 0.175 0.753 6.000 0.173 0.758 6.000 0.176 0.753 6.000 0.175 0.758 6.000

Pow3R 0.110 0.944 4.500 0.110 0.943 4.500 0.109 0.944 4.500 0.109 0.944 4.500

LDCM 0.010 0.999 1.000 0.012 0.996 1.000 0.029 0.979 1.000 0.036 0.972 1.000

Method Virtual-Lidar-32-Lines Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines Average

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓
VGGT 0.107 0.926 4.500 0.107 0.926 4.500 0.107 0.926 4.500 0.107 0.926 4.636

MoGe V2 0.052 0.972 2.000 0.052 0.972 2.000 0.052 0.972 2.000 0.052 0.972 1.955
WorldMirror 0.072 0.955 3.000 0.072 0.955 3.000 0.073 0.955 3.000 0.073 0.953 3.091
MapAnything 0.175 0.753 6.000 0.173 0.758 6.000 0.173 0.759 6.000 0.172 0.758 6.000

Pow3R 0.109 0.945 4.500 0.109 0.943 4.500 0.110 0.944 4.500 0.108 0.947 4.273

LDCM 0.010 0.999 1.000 0.010 0.999 1.000 0.011 0.997 1.000 0.014 0.995 1.000
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Table 26: Quantitative comparison of affine-invariant point map estimation with baseline
methods on the outdoor scenes of the DIODE dataset Vasiljevic et al. (2019). The best and
the second-best results are highlighted.

Method Virtual-Lidar-64-Lines Virtual-Lidar-32-Lines Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓
VGGT 0.215 0.700 5.000 0.215 0.700 5.000 0.215 0.700 5.000 0.215 0.700 5.000

MoGe V2 0.124 0.841 2.000 0.124 0.841 2.000 0.124 0.841 2.000 0.124 0.841 2.000
WorldMirror 0.156 0.786 3.000 0.156 0.788 3.000 0.154 0.792 3.000 0.155 0.792 3.000
MapAnything 0.299 0.506 6.000 0.310 0.481 6.000 0.309 0.489 6.000 0.317 0.487 6.000

Pow3R 0.200 0.745 4.000 0.200 0.747 4.000 0.201 0.743 4.000 0.201 0.745 4.000

LDCM 0.072 0.965 1.000 0.079 0.950 1.000 0.090 0.920 1.000 0.097 0.903 1.000

Method Virtual-Lidar-4-Lines 10% Noise 5% 3%

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓
VGGT 0.215 0.700 5.000 0.215 0.700 5.000 0.215 0.700 5.000 0.215 0.700 5.000

MoGe V2 0.124 0.841 2.000 0.124 0.841 2.000 0.124 0.841 2.000 0.124 0.841 2.000
WorldMirror 0.154 0.793 3.000 0.140 0.822 3.000 0.151 0.799 3.000 0.157 0.782 3.000
MapAnything 0.311 0.500 6.000 0.296 0.500 6.000 0.291 0.510 6.000 0.291 0.517 6.000

Pow3R 0.201 0.745 4.000 0.181 0.770 4.000 0.190 0.756 4.000 0.194 0.752 4.000

LDCM 0.117 0.856 1.000 0.059 0.988 1.000 0.061 0.985 1.000 0.063 0.981 1.000

Method 1% SIFT ORB Average

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓
VGGT 0.215 0.700 5.000 0.215 0.700 5.000 0.215 0.700 5.000 0.215 0.700 5.000

MoGe V2 0.124 0.841 2.000 0.124 0.841 2.000 0.124 0.841 2.000 0.124 0.841 2.000
WorldMirror 0.158 0.781 3.000 0.157 0.784 3.000 0.170 0.750 3.500 0.155 0.788 3.045
MapAnything 0.293 0.515 6.000 0.301 0.505 6.000 0.302 0.505 6.000 0.302 0.501 6.000

Pow3R 0.199 0.747 4.000 0.200 0.748 4.000 0.197 0.751 3.500 0.197 0.750 3.955

LDCM 0.068 0.971 1.000 0.071 0.966 1.000 0.073 0.957 1.000 0.077 0.949 1.000

Table 27: Quantitative comparison of affine-invariant point map estimation with baseline
methods on the iBims dataset Koch et al. (2018). The best and the second-best results are
highlighted.

Method 10% Noise 5% 3% 1%

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓
VGGT 0.048 0.967 4.000 0.048 0.967 4.000 0.048 0.967 3.500 0.048 0.967 3.500

MoGe V2 0.046 0.972 2.500 0.046 0.972 2.500 0.046 0.972 2.500 0.046 0.972 2.500
WorldMirror 0.044 0.972 2.000 0.043 0.968 2.500 0.043 0.965 3.000 0.042 0.963 3.500
MapAnything 0.233 0.612 6.000 0.231 0.616 6.000 0.231 0.614 6.000 0.230 0.618 6.000

Pow3R 0.077 0.952 5.000 0.068 0.962 5.000 0.064 0.965 4.500 0.061 0.967 4.000

LDCM 0.013 0.996 1.000 0.013 0.995 1.000 0.014 0.995 1.000 0.015 0.994 1.000

Method 500 100 SIFT ORB

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓
VGGT 0.048 0.967 4.500 0.048 0.967 4.500 0.048 0.967 4.000 0.048 0.967 3.000

MoGe V2 0.046 0.972 2.500 0.046 0.972 2.500 0.046 0.972 2.500 0.046 0.972 2.000
WorldMirror 0.042 0.968 2.500 0.042 0.968 2.500 0.042 0.967 3.000 0.060 0.946 4.500
MapAnything 0.235 0.597 6.000 0.234 0.602 6.000 0.232 0.614 6.000 0.234 0.613 6.000

Pow3R 0.061 0.968 4.000 0.061 0.968 4.000 0.062 0.968 4.000 0.062 0.967 4.000

LDCM 0.018 0.991 1.000 0.022 0.987 1.000 0.020 0.990 1.000 0.024 0.989 1.000

Method Virtual-Lidar-32-Lines Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines Average

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓
VGGT 0.048 0.967 3.500 0.048 0.967 4.000 0.048 0.967 4.500 0.048 0.967 3.909

MoGe V2 0.046 0.972 2.500 0.046 0.972 2.500 0.046 0.972 2.500 0.046 0.972 2.455
WorldMirror 0.042 0.967 2.500 0.042 0.967 3.000 0.042 0.968 2.500 0.044 0.965 2.864
MapAnything 0.233 0.610 6.000 0.233 0.609 6.000 0.232 0.613 6.000 0.233 0.611 6.000

Pow3R 0.062 0.966 5.000 0.061 0.968 4.000 0.061 0.968 4.000 0.064 0.965 4.318

LDCM 0.015 0.993 1.000 0.017 0.991 1.000 0.020 0.990 1.000 0.017 0.992 1.000
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Table 28: Quantitative comparison of affine-invariant point map estimation with baseline
methods on the indoor scenes of the ETH3D dataset Schops et al. (2017). The best and the
second-best results are highlighted.

Method 10% Noise 5% 3% 1%

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓

VGGT 0.045 0.988 2.000 0.045 0.988 3.500 0.045 0.988 3.500 0.045 0.988 3.500
MoGe V2 0.041 0.986 2.500 0.041 0.986 3.000 0.041 0.986 3.500 0.041 0.986 3.000

WorldMirror 0.048 0.986 4.000 0.042 0.989 2.500 0.040 0.990 1.500 0.041 0.992 1.500
MapAnything 0.255 0.559 6.000 0.252 0.562 6.000 0.252 0.562 6.000 0.254 0.560 6.000

Pow3R 0.070 0.987 4.000 0.068 0.990 3.500 0.069 0.990 3.500 0.070 0.990 4.000

LDCM 0.047 0.994 2.000 0.047 0.994 2.500 0.047 0.994 2.500 0.047 0.994 2.500

Method 500 100 SIFT ORB

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓

VGGT 0.045 0.988 3.000 0.045 0.988 3.000 0.045 0.988 3.000 0.045 0.988 2.500
MoGe V2 0.041 0.986 3.000 0.041 0.986 3.000 0.041 0.986 3.000 0.041 0.986 2.500

WorldMirror 0.043 0.991 2.000 0.043 0.990 2.000 0.043 0.990 2.000 0.048 0.980 4.000
MapAnything 0.261 0.545 6.000 0.259 0.549 6.000 0.258 0.549 6.000 0.257 0.554 6.000

Pow3R 0.073 0.988 4.000 0.073 0.988 4.000 0.073 0.988 4.000 0.073 0.989 3.500

LDCM 0.047 0.993 2.500 0.048 0.992 2.500 0.049 0.993 2.500 0.050 0.992 2.500

Method Virtual-Lidar-32-Lines Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines Average

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓

VGGT 0.045 0.988 3.500 0.045 0.988 3.000 0.045 0.988 3.500 0.045 0.988 3.091
MoGe V2 0.041 0.986 3.000 0.041 0.986 3.000 0.041 0.986 3.000 0.041 0.986 2.955

WorldMirror 0.041 0.991 1.500 0.042 0.991 2.000 0.043 0.990 2.000 0.043 0.989 2.273
MapAnything 0.259 0.551 6.000 0.257 0.554 6.000 0.256 0.552 6.000 0.256 0.554 6.000

Pow3R 0.071 0.989 4.000 0.072 0.988 4.000 0.073 0.989 4.000 0.071 0.989 3.864

LDCM 0.047 0.994 2.500 0.047 0.993 2.500 0.048 0.992 2.500 0.048 0.993 2.455

Table 29: Quantitative comparison of affine-invariant point map estimation with baseline
methods on the outdoor scenes of the ETH3D dataset Schops et al. (2017). The best and
the second-best results are highlighted.

Method Virtual-Lidar-64-Lines Virtual-Lidar-32-Lines Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓
VGGT 0.061 0.967 4.500 0.061 0.967 4.500 0.061 0.967 4.500 0.061 0.967 4.500

MoGe V2 0.046 0.974 2.500 0.046 0.974 2.500 0.046 0.974 2.500 0.046 0.974 2.500
WorldMirror 0.048 0.970 3.500 0.048 0.969 3.500 0.048 0.971 3.500 0.050 0.969 3.500
MapAnything 0.273 0.542 6.000 0.277 0.535 6.000 0.276 0.540 6.000 0.275 0.543 6.000

Pow3R 0.076 0.977 3.500 0.075 0.978 3.500 0.075 0.978 3.500 0.075 0.980 3.500
LDCM 0.027 0.997 1.000 0.028 0.997 1.000 0.029 0.996 1.000 0.032 0.993 1.000

Method Virtual-Lidar-4-Lines 10% Noise 5% 3%

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓
VGGT 0.061 0.967 4.500 0.061 0.967 3.500 0.061 0.967 3.500 0.061 0.967 3.500

MoGe V2 0.046 0.974 2.500 0.046 0.974 2.000 0.046 0.974 2.000 0.046 0.974 2.000
WorldMirror 0.048 0.973 3.500 0.058 0.961 3.500 0.061 0.953 4.000 0.063 0.951 4.500
MapAnything 0.276 0.546 6.000 0.271 0.545 6.000 0.268 0.549 6.000 0.268 0.553 6.000

Pow3R 0.075 0.980 3.500 0.082 0.960 5.000 0.079 0.969 4.000 0.078 0.972 4.000
LDCM 0.040 0.985 1.000 0.026 0.998 1.000 0.027 0.998 1.000 0.027 0.998 1.000

Method 1% SIFT ORB Average

RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓ RELp ↓ δp1 ↑ Rk.↓
VGGT 0.061 0.967 4.000 0.061 0.967 4.500 0.061 0.967 3.500 0.061 0.967 4.091

MoGe V2 0.046 0.974 2.500 0.046 0.974 2.500 0.046 0.974 2.000 0.046 0.974 2.318
WorldMirror 0.054 0.961 4.000 0.050 0.969 3.500 0.077 0.931 4.500 0.055 0.962 3.773
MapAnything 0.271 0.548 6.000 0.276 0.543 6.000 0.275 0.545 6.000 0.273 0.544 6.000

Pow3R 0.076 0.975 3.500 0.076 0.977 3.500 0.077 0.973 3.500 0.077 0.974 3.727
LDCM 0.027 0.997 1.000 0.031 0.994 1.000 0.030 0.994 1.000 0.029 0.995 1.000
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