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Figure 1: We present LDCM, a simple and effective model for depth completion. Without complex
module design, LDCM achieves state-of-the-art performance in zero-shot depth completion and
metric point map estimation. On the leaderboard, larger areas indicate lower relative error (REL).
LDCM ranks first across diverse datasets.

ABSTRACT

This work presents the Large Depth Completion Model (LDCM), a simple, ef-
fective, and robust framework for single-view metric depth estimation with sparse
observations. Without relying on complex architectural designs, LDCM gener-
ates metric-accurate dense depth maps in one large transformer. It outperforms
existing approaches across diverse datasets and sparse observations. We achieve



this from two key perspectives: (1) maximizing the potential of existing monoc-
ular foundation models to improve sparse observations preprocessing, and (2) re-
formulating training objectives to better capture geometric structure and metric
consistency. Specifically, a Poisson-based depth initialization module is firstly
introduced to generate a uniform coarse dense depth map from diverse sparse ob-
servations, which serves as a strong structural prior for the network. Regarding
the training objective, we replace the conventional depth head with a point map
head that regresses per-pixel 3D coordinates in camera space, enabling the model
to directly learn the underlying 3D scene structure instead of performing pixel-
wise depth map restoration. Moreover, this design eliminates the need for camera
intrinsic parameters, allowing LDCM to naturally produce metric-scaled 3D point
maps. Extensive experiments demonstrate that LDCM consistently outperforms
state-of-the-art methods across multiple benchmarks and varying sparsity priors
in both depth completion and point map estimation, showcasing its effectiveness
and strong generalization to unseen data distributions.

1 INTRODUCTION

Dense depth maps are essential for applications in robotics |Lin et al.[ (2025); |[Wang et al.| (2024c),
autonomous driving |An et al.| (2022); [Li et al.| (2023a)), and augmented reality [Krajancich et al.
(2020); Ren et al.| (2025). However, capturing dense and accurate depth data requires expensive
active sensors such as LiDAR or structured light cameras, which are often limited by cost and
hardware constraints. Thus, depth completion, which estimates a dense depth map from low-cost
sparse depth observations and a corresponding RGB image, provides a cost-effective and efficient
alternative.

While prior approaches |Cheng et al.| (2018; 2019); |Yan et al.| (2022} [2025a); [Park et al.| (2020); [Yu
et al. (2023); Zhou et al. (2023) perform well on in-domain datasets such as NYUv2 |Silberman
et al.| (2012) and KITTI |Uhrig et al.| (2017), they often fail to generalize to unseen environments
and irregular depth maps (e.g., Structure-from-Motion points with non-uniform density and large
missing regions), limiting their real-world applicability. Driven by the success of foundation models
trained on large-scale datasets |Yang et al.| (2024aib); Yin et al.| (2023); Hu et al.| (2024), recent
works [Zuo et al.| (2024); Wang et al.| (2023a}, 2025¢} 2024a}, 2025a) have focused on architectural
innovations and training with larger, more diverse data to improve robustness under domain shifts
and varying sparsity. More recently, inspired by advances in natural language models |Achiam et al.
(2023); |Yang et al.| (2025)), prompt-based approaches |Lin et al.|(2025); [Viola et al.[(2024)); Liu et al.
(2024); Park et al.[(2024)); [Wang et al.[(2025¢)) treat the sparse depth map as a conditioning signal
for transformer-based |Yang et al.| (2024a:b)) or diffusion-based Ke et al.[(2024); |Viola et al.| (2024));
Liu et al.|(2024) depth foundation models, guiding the prediction toward metric-scale geometry.
Despite their promising results, these methods fundamentally address depth completion as a depth
restoration task, where the model learns to interpolate or denoise depth values conditioned on the
sparse observation. This paradigm prioritizes local smoothness and texture-aware completion but
lacks explicit 3D geometric reasoning, leading to unsatisfactory performance under severe domain
shifts and highly irregular sparse depth maps.

In this work, we introduce the Large Depth Completion Model (LDCM), which produces dense,
metric-accurate depth maps even from highly sparse and irregular observations. We achieve this
through a series of key improvements to both input preprocessing and training objective. To ad-
dress the challenge of sparse and irregular depth maps, we leverage a monocular depth foundation
model |Yang et al.| (2024azb) to enrich the geometric prior. Specifically, we construct a dense gra-
dient field by combining the sparse depth map with relative depth cues predicted by the foundation
model. We demonstrate that this hybrid gradient field serves as an proxy for solving a Poisson-based
optimization problem, enabling the reconstruction of an initial coarse depth map that preserves fine
geometric structures and exhibits metric-consistent depth values. Regarding the training objective,
we replace the conventional depth regression head with a point map regression head, inspired by
recent advances in 3D reconstruction |[Wang et al.| (2024b)); Leroy et al.| (2024); Wang et al.| (2025b);
Fang et al.| (2025). This reformulation explicitly encourages the network to predict metric-scale
3D coordinates, rather than focusing on pixel-wise depth map restoration. The final depth map is
obtained by extracting the z-component of the predicted point map, leading to more geometrically



faithful and globally consistent depth predictions. Moreover, benefiting from this design, LDCM
naturally predicts 3D point maps without requiring camera intrinsics, facilitating robust deployment
in uncalibrated environments.

We perform extensive experiments to evaluate LDCM across six benchmarks, where it surpasses all
previous state-of-the-art methods in both depth completion and point map estimation, achieving top
rankings across all tasks and metrics, as displayed in Fig.[T} Our contribution can be summarized as
follows:

* We propose the Large Depth Completion Model (LDCM), which replaces the conventional
depth regression head with a point map regression head to directly predict metric-scale 3D
coordinates from a monocular image and sparse observations. This formulation enables
more effective learning of metric-consistent 3D structure compared to depth map regres-
sion, leading to superior performance in depth completion.

* We introduce a Poisson-based coarse depth completion strategy that leverages relative
depth cues from a monocular depth foundation model and sparse observations to gener-
ate high-quality initial depth maps, providing a geometrically faithful prior for subsequent
feature learning.

» Extensive experiments show that LDCM outperforms previous state-of-the-art methods in
both depth completion and metric point map estimation across diverse benchmarks and
sparse depth observations, demonstrating strong generalization and robustness.

2 RELATED WORK

Depth Completion. Depth completion aims to infer a dense depth map from a monocular im-
age and a sparse depth map, which can be readily obtained from sources such as Structure-from-
Motion |Schops et al.| (2017) or low-cost depth cameras |Silberman et al.| (2012). Recent deep
learning-based approaches have achieved significant progress by proposing numerous spatial prop-
agation network variants [Liu et al.| (2017); (Cheng et al.| (2018; [2019); |Park et al.| (2020); [Lin et al.
(2022) or exploiting visual structural guidance from images for guided restoration. To better exploit
the 3D geometric information in sparse inputs, several 2D-3D joint depth completion approaches
have also been proposed |Yu et al.[ (2023); Yan et al.| (2024} [2025b); Zhou et al.| (2023). Despite
achieving impressive performance on single-domain datasets (e.g., NYUv2 Silberman et al.[(2012)
and KITTI [Uhrig et al.| (2017)), these methods often struggle with cross-domain generalization,
particularly when deployed in unseen environments and varying sparse observations.

Inspired by the success of foundation models Kirillov et al.| (2023)); (Oquab et al.| (2023)); |Yang et al.
(2024azb)); [Yin et al.| (2023); Hu et al.| (2024); Wang et al.| (2025a)) trained on large-scale datasets,
recent works [Zuo et al.| (2024); [Wang et al.| (2023a}; 20244} [2025¢)) have focused on architectural
innovations and training with larger, more diverse datasets to improve generalization. More re-
cently, drawing inspiration from large language models |Achiam et al.| (2023); |Yang et al.| (2025),
prompt-based approaches|Lin et al.|(2025));|Viola et al.[(2024); Park et al.|(2024); Jeong et al.| (2025)
have emerged that treat auxiliary priors as prompts to condition depth foundation models, effec-
tively guiding predictions toward metric-scale outputs. PromptDA [Lin et al.| (2025) introduces a
compact prompt fusion architecture specifically designed for the DPT head Ranftl et al.| (2021)),
enabling the integration of low-resolution depth cues. TestPromptDC Jeong et al|(2025) presents
a test-time prompt tuning method that adapts foundation models during inference without modify-
ing their parameters, achieving sensor-specific depth scale adaptation while preserving foundational
knowledge. MarigoldDC |Viola et al|(2024) prompts the sparse depth to a diffusion-based Ke et al.
(2024) foundation model. However, these methods fundamentally address depth completion as a
depth restoration task, where the model learns to interpolate or denoise depth values conditioned on
sparse inputs. The performance remains unsatisfactory under severe domain shifts and highly irreg-
ular sparse depth maps. In this work, we introduce a Poisson-based depth initialization module to
effectively maximize the potential of depth foundation models to generate a coarse dense depth map,
which serves as a strong structural prior for the following geometric feature learning. Besides, we
reformulate the training objective as point maps, providing a more structurally faithful supervision
for the network.



Monocular Depth Estimation. A variety of monocular depth estimation foundation models

et al.|(2024a:b)); [Piccinelli et al.| (2024} [2025); [Yin et al.| (2023)); [Ke et al.| (2024)) have been proposed.

These models learn rich, generalizable priors from large-scale data and serve as strong backbones for

downstream tasks such as stereo matching[Wen et al.|(2025)); Jiang et al.|(20254);[Cheng et al.|(2025),
depth super-resolution |Yan et al.| (2025c¢), and depth completion [Park et al.|(2024); [Lin et al.| (2025));

(2024); [Viola et al.|(2024); Wang et al.|(2025¢). For instance, FoundationStereo|Wen et al.
(2025) introduces a side-tuning feature adapter that leverages monocular priors to bridge the sim-to-
real domain gap. DuCos (2025¢) treats foundation model outputs as structural priors for
depth super-resolution (DSR) and seamlessly integrates them into a Lagrangian duality framework.
PriorDA [Wang et al.| (2025¢€) employs a local weighted linear regression (LWLR) module
to align the scale of relative depth with sparse observations, where the result is then refined by
a structure-aware network to produce dense depth map. However, this local alignment strategy often
fails under highly sparse observations. In contrast, we propose a novel Poisson-based initializa-
tion strategy to better exploit the potential of foundation models by enforcing gradient consistency
constraints, yielding a significantly more geometrically coherent coarse depth map.

Geometry Estimation Foundation Models. Point map [Wang et al| (2024b; [2025bjc); [Fang et al.
(2025); Jang et al.| (2025) representation has demonstrated strong potential for holistic scene un-
derstanding. Unlike depth maps, which indeedly encode 2.5D geometry tied to camera intrinsics,
point maps explicitly model 3D structure. Several approaches [Yin et al.| (2021)); [Piccinelli et al.|
decouple this task into depth prediction and camera parameter estimation. In contrast,
DUS3R (Wang et al.| (2024b) bypasses explicit camera modeling by directly regressing a scale-
invariant point map in an end-to-end fashion, with its successor Mast3R [Leroy et al| (2024) enabling
metric-scale reconstruction. VGGT |Wang et al|(2025b)) introduces a feed-forward neural network
capable of 3D reconstruction from one, a few, or even hundreds of input views of a scene. AnyS-
plat [Jiang et al| (2025b) extends VGGT [Wang et al] (2025b) to support novel view synthesis from
uncalibrated image collections. To facilitate single-view geometry learning, MoGe [Wang et al/
predicts an affine-invariant point map and recovers metric scale using a global scaling
factor derived from contextual cues. More recently, several approaches [Liu et al| (2023)); [Keetha
et al] (2025); [Jang et al| (2025)) have introduced additional priors to enhance geometry estimation.
Notably, Pow3R [Jang et al. extends the DUSt3R [Wang et al.| (2024b)) paradigm by incorpo-
rating complementary modalities; however, it remains limited to relative geometry. In this work,
we introduce point map representations for depth completion, enabling the model to directly learn
the underlying 3D scene structure and produce metric quantities. Our concurrent work, MapAny-
thing |Keetha et al.| (2025)), also estimates metric 3D geometry from images and additional priors.

3 METHOD

3.1 OVERALL FRAMEWORK

The framework of the proposed LDCM is illustrated in Fig.[2} Given an RGB image I € R7*Wx3
and a sparse depth map S € R”*W LDCM predicts a metric point map P € R¥*W >3 in camera
space, from which the dense depth map is derived by extracting the z-channel component. The
framework consists of two main stages. In the first stage, we harness the power of monocular depth
foundation model to generate an initial coarse depth map C € R¥*W via Poisson reconstruction.
In the second stage, a ViT-based |Dosovitskiy et al.[(2020) depth completion network takes the image
I and the coarse depth C as input to predict the final metric 3D point map P. The details of each
stage are elaborated in the following sections.

3.2 COARSE DEPTH ALIGNMENT

Different types of sparse depth priors exhibit distinct spatial distributions, ranging from random
points and Structure-from-Motion keypoints to LiDAR-like structured sparsity, posing significant
challenges for generalization. A straightforward approach involves direct interpolation of the sparse
depth map|Liu et al.|(2024); however, it often introduces severe artifacts due to the absence of strong
geometric priors. With the advent of depth foundation models Ranftl et al.| (2020; [2021), which
capture scene-level structure from large-scale training, leveraging them to provide robust geometric
guidance has emerged as a promising direction.
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Figure 2: Schematics and detailed architecture of LDCM. Given a single image and sparse depth
map, LDCM begins with a Poisson-based coarse depth alignment strategy. This process leverages a
pretrained depth foundation model to generate an initial coarse depth map through gradient-domain
optimization. This coarse depth, together with the input image, is then fed into the following point
map prediction network to regress a dense, metric-scale 3D point map.

To integrate sparse observations with foundation model predictions, we evaluate several coarse
alignment strategies, including global affine alignment, local weighted linear regression (LWLR),
and Poisson-based optimization. While the former two offer simple parametric alignment, they ex-
hibit critical limitations. Global affine alignment assumes a uniform scale and shift across the entire
image, making it unable to recover per-pixel metric values. LWLR improves spatial adaptivity by
fitting local models, but its performance is highly sensitive to the distribution and density of sparse
depth maps. In contrast, Poisson-based optimization formulates the alignment as a gradient-field
reconstruction problem, demonstrating superior geometric coherence and metric accuracy across di-
verse sparse observations. Therefore, we adopt Poisson reconstruction in the first stage of LDCM to
generate the coarse depth map C.

Specifically, given a sparse depth input S and relative depth cues D, from a foundation model, we
aim to generate a coarse dense depth map C that aligns with the geometric structure of D,. while
preserving the observed values in S. To achieve this, we formulate the problem as minimizing the
following optimzation function:

= i logD; — G4|? D; — S;)? 1
C argn]lzl)n (Z [ViegD; — G| +>‘§( i —Si) > ) (D
where G is a target log-gradient field that encodes structural fidelity and metric consistency, {2
denotes the set of valid sparse depth points, and A balances the two terms. A naive choice is G =
V log D,., but this ignores the unknown scale and shift of relative depth and may lead to misaligned
gradients in metric space. Instead, we construct a more informed target by incorporating metric
priors from sparse observations. Let («, 3) be the global affine transformation that best aligns D,
with S:
. 2
(a,8) = argmin » (S;—a'-(D,); — )", 2

op i€Q
and define v = 3/a. We then set:

G = Vlog(D, + 7). 3)

This choice is motivated by the fact that relative depth is typically derived from true depth via an
affine transformation D,. = (D* — 3)/«. While we do not assume this relationship holds exactly,
shifting D,. by  helps align its gradient structure with metric space. Empirically, V log(D,. + 7)
serves as a robust proxy for the desired log-gradient field, preserving fine geometric details while
being anchored to absolute scale through sparse inputs. Thus, the final formulation becomes:

= i log D; — Vlog(D |12 D, - S;)? 4
C argngn (Z”V ogD; — Vlog(D, + )il +A€ZQ< i —Si) )a “)
K] 1
which can be solved through the conjugate gradient method Hestenes et al.| (1952). In this formu-
lation, each sparse point contributes to the global energy, and due to the nature of gradient-domain
reconstruction, its influence propagates across the entire image through the smoothness and structure

encoded in the gradient field.



3.3 DEPTH COMPLETION NETWORK

The architecture is illustrated in Fig. 2(b). We

employ dual encoders to extract features from

the coarse depth map C and the RGB image, re- ~ ™*™e(5)  fsaeion FosdFeere e
spectively. Features are fused at multiple scales ~ **"e(ei)  reasicon i

by adding the image encoder outputs to the COr- [image reature (2.) | - Ressuatcon 6 Fused eature (4.2
responding depth encoder features after spatial | oepmreawe(2) | restuel con .

alignment, as shown in Fig. 3] The fused fea-

tures are fed into a DPT-style decoder. For mereeeCi)) - memacn Fisotfesere (1)
the final output, instead of regressing a depth ~ °wfewe(d) | resamcon 1

map, we replace the standard depth regression | e e ) R o (2xaUmare ) | Fused Feature (2.
head with a point map head that directly pre- oo reaue (2
dicts per-pixel 3D coordinates P. This enables

the model to learn the underlying 3D scene  pigyre 3: Detailed structure of the image neck.
structure holistically, rather than performing

pixel-wise depth restoration. Ablation studies

demonstrate that this design leads to better accuracy. Moreover, thanks to this end-to-end formula-
tion, the model naturally produces metric 3D point maps, facilitating robust deployment in uncali-
brated environments.

Residual Conv +

3.4 TRAINING

Training Losses. We train the LDCM using three complementary losses on the predicted 3D point
map P, with the ground-truth metric point map denoted as P.

L= L:globa] + )\local»clocal + Anormalﬁnormala (5)

where the individual terms are defined as follows. The global point map loss enforces overall struc-
tural consistency:

1 A
Looba = Y = |Pi = Py1, 6)
ieM i
where M denotes the region of valid ground-truth. The local point map loss captures fine-grained

geometry by operating in 3D neighborhoods. Following (Wang et al.| (2025c), we sample anchor
points and define spherical regions S; in 3D space:

Elocal = Z Z ];

JEH ’iESj ?

|P; — Pyl (7)

This encourages local coherence independent of image perspective. The normal loss promotes sur-
face smoothness and alignment:

N'N;,
Loormal = E arccos <1AZ> , ®)
[N (NG |

ieM
where N; and N; are surface normals estimated from P and P, respectively.

Implementation Details. We train the LDCM on 11 public RGB-D datasets Roberts et al.| (2021);
Wang et al.| (20205 2019); Zheng et al.[(2023)); |Gomez et al.| (2025); Wrenninge & Unger| (2018); |L1
et al.[ (2023b); |[Lightwheel Al & contributors| (2024); Huang et al.| (2018); Ros et al.[ (2016); Yesh-
wanth et al.[(2023), approximately 2.7 million samples. The combined data covers diverse indoor
and outdoor scenes; further details are provided in the suppl. material.

LDCM uses a ViT-B |Dosovitskiy et al.| (2020) pretrained with DINOv2 |Oquab et al.| (2023) as
the image encoder, and SPNet-Tiny Wang et al.| (2024a) as the depth encoder. For coarse depth
alignment, we use DepthAnythingV2-S [Yang et al.| (2024b) as the foundation model. Training runs
for 200 K iterations using the AdamW optimizer |Loshchilov & Hutter| (2017) with a cosine learning
rate schedule and linear warmup over the first 5% of iterations. The peak learning rates are 1 x 10~°
for the encoder and 1 x 10~ for all other layers. We use a global batch size of 128, with mini-batches
sampling an approximately equal number of images from each dataset. During training, images are



Table 1: Quantitative comparison of depth completion methods on benchmark datasets. All
methods are evaluated under zero-shot settings. Methods marked with { produce relative depth, and
metric depth is recovered by optimizing global scale and shift via least squares regression using the
same sparse depth prior. Methods marked with I use dataset-specific configurations for indoor and

outdoor scenes, respectively. The best and second-best results are highlighted.

Method KITTI iBims-1 DIODE Indoor
RMSE| MAE| REL| o T Rk.] RMSE| MAE| REL] ot Rk.] RMSE| MAE| REL] 6 T Rk.]
DepthPro 4.149 2.763 0.178 0.731 13432 0.605 0.503 0.156  0.829 13.750  0.837 0.702  0.193 0.668  14.114
UniDepth V1 3.335 2.010  0.118 0.938 8.636 1.166 1.082 0370 0236 16.000  0.939 0.840  0.158 0.779  13.523
UniDepth V2 3.150 1.598 0.090  0.960  6.500 0.446 0.321 0.100 0935 11.932 0811 0.678 0.165 0.681  13.023
DepthAnythingV2f  4.007 1.890  0.092 0916  9.091 0.349 0.179  0.043 0.975 8.295 0.386 0.189  0.045 0976  7.295
4219 2.518 0.158 0.783  12.909  0.348 0.194  0.053 0.957 10318  0.425 0.294  0.096 0920 10.773
MoGe V1t 3.050 1.821 0.125 0.887 8.568 0.238 0.120  0.035 0.981 6.045 0.272 0.175 0.064 0950  7.386
MoGe V2 4.617 3.366 0.213 0.458 15182  0.633 0.540  0.156  0.707  14.500 1.064 0.938 0.235 0.433 15841
G2-MonoDepthi 2.638 0964  0.054 0949 5295 0.227 0.094  0.028  0.973 5.409 0.298 0.198 0.067  0.879 6.341
OMNI-DC 2.302 0.760  0.042  0.963 3.045 0.192 0.063 0.018  0.982 2.932 0.141 0.064  0.022 0968 2932
PriorDA 2.364 0.861 0.044  0.971 4.159 0.176 0.065 0.018  0.990  3.477 0.093 0.037 0.012  0.994 3.023
SPNet} 2.365 0.757  0.041 0.966 3.000 0.189 0.059 0.016  0.987 2.659 0.157 0.078 0.028 0.954 3.273
PromptDA 3.040 1.261 0.067 0.946  6.545 0.249 0.116  0.033 0.975 6.091 0.203 0.115 0.037 0.965 6.068

WorldMirrort 4.439 2432 0.142  0.824 11.818 0.352 0.192  0.051 0.963 9.205 0.386 0.243 0.084 0941 9.364
MapAnything 12974  6.784 0350  0.588 15750  0.968 0374 0.104 0909 13295  0.909 0.458 0.104  0.899  11.000

Pow3R{ 3515 2.096  0.141 0.832  10.750  0.338 0.183  0.049 0965  9.091 0.353 0.240 0078 0943  9.000
LDCM (Ours) 1.911 0.537  0.026  0.983 1.068 0.161 0.044 0012  0.991 1.659 0.084 0.025  0.008  0.993 1.545
Method DIODE Outdoor ETH3D Average
RMSE| MAE| REL| o0t Rk., RMSE| MAE| REL| o T Rk., RMSE| MAE| REL| ot Rk.|
DepthPro 9.539 7.635 0403 0177 14636  3.199 2562 0302 0477 15.023  3.666 2.833 0246 0576  14.191
UniDepth V1 5.782 3.841 0.189  0.661 11.795  3.482 3.170 0579  0.116 15728  2.941 2.189 0283 0546  13.136
UniDepth V2 11.145 8936 0515 0526 15250  1.630 1.169 0200 0.726 13387  3.436 2540 0214 0766 12018
DepthAnythingV2{  5.940 2777 0.124 0869  8.659 2.091 0424 0049 0979 9477 2.555 1.092  0.071 0943 8.563
VGGTt 4.898 2.893 0237  0.772  10.591  0.540 0317  0.060 0949  9.103 2.086 1.243  0.121 0.876  10.739
MoGe VI 10.576 8340 0406 0599 14250  1.651 0.550  0.082 0943 8750 3.157 2.201 0.142 0872 9.000
MoGe V2 4.807 3352 0182  0.680 10.477  0.847 0.619  0.114 0839 11.784 2394 1.763  0.180  0.623  13.557
G2-MonoDepthi 2.393 0.875  0.062 0938  4.682 0.428 0.177  0.034 0969  5.603 1.197 0462 0049 0942 5466
OMNI-DC 2.322 0.726  0.049 0955 3341 0.290 0.100 0016 0987 2932 1.049 0343 0.029 0971 3.036
PriorDA 2.310 0.858  0.051 0957  3.932 0.274 0.105  0.017 0990  3.443 1.043 0385 0.028 0980  3.607
SPNet} 2.111 0.658  0.048 0959 2114 0.419 0.119 0019 0986  3.625 1.048 0.334  0.030 0970 2934
PromptDA 3.604 1.561 0.087 0912  6.182 0.644 0.276  0.041 0967  7.102 1.548 0.666  0.053 0953 6398
WorldMirror{ 4.464 2317 0.151 0.828  8.045 0.524 0302  0.051 0962  7.761 2.033 1.097  0.096 0904  9.239
MapAnything 7.675 3.891 0219 0731 11.318  1.952 0.711 0.108 0904 12523  4.896 2444 0177 0806 12777
Pow3R{ 3.682 2068 0.169 0.840  7.568 0.480 0273 0.048 0964  7.545 1.674 0972 0.097 0909 8791

LDCM (Ours) 1.969 0.529  0.031 0.970 1.568 0.187 0.048  0.008  0.997 1.148 0.862 0.237 0.017  0.987 1.398

resized such that their aspect ratios range uniformly from 1 : 2 to 2 : 1, and total pixel counts fall
between 250 K and 500 K. Data augmentation includes random cropping, color jittering, Gaussian
blur, JPEG compression-decompression, and perspective-aware cropping to align the principal point
with the image center. Sparse depth inputs are synthetically generated by subsampling dense ground-
truth depth maps with varying patterns, following the protocol of OMNI-DC Zuo et al.|(2024). The
training is conducted on 16 H20 GPUs and takes approximately six days to complete.

4 EXPERIMENTS

4.1 QUANTITATIVE EVALUATIONS

We evaluate the zero-shot performance of LDCM and compare it with several state-of-the-art ap-
proaches for depth completion|Wang et al.|(2023a)); [Zuo et al.|(2024); Wang et al.|(2024a); |Lin et al.
(2025);|Wang et al.[(2025¢), monocular depth estimation|Yang et al.|(2024a;b); /Wang et al.|(2025b));
Bochkovskiy et al.[(2025)), and monocular point map estimation |Piccinelli et al.| (2024} 2025)); Wang
et al. (2025cid); [Liu et al. (2025); Jang et al.| (2025); Keetha et al.| (2025). Additional details on the
compared approaches and evaluation protocols are provided in the suppl. material. As demonstrated
in the experiments, LDCM achieves superior performance across multiple benchmarks.

Depth completion. We evaluate depth completion on KITTI [Uhrig et al.[(2017), ETH3D |Schops
et al.[(2017), iBims-1 [Koch et al.|(2018)), and DIODE |Vasiljevic et al|(2019), covering both indoor
and outdoor scenarios. To assess robustness under diverse sparse sampling patterns, we synthesize
sparse depth inputs using the following strategies:

* Noisy random sampling: uniformly sampled points at varying densities (e.g., 1%, 3%,
5%, 10%), with mild noise simulation;

* Keypoint-based sampling: depth values extracted at SIFT or ORB keypoints;



* LiDAR-simulated sampling: synthetic LiDAR scans with varying numbers of vertical
beams (e.g., 64, 32, 16 lines).

On KITTI, the simulation is applied to raw single-frame LiDAR measurements [Zuo et al.| (2024);
Wang et al.|(2023b)). For all other datasets, they are generated from dense ground-truth depth maps.
We evaluate the predicted depth maps using standard metrics: Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Relative Error (REL), and the accuracy threshold ¢;. For methods
that produce relative depth maps Wang et al.| (2025b)); Yang et al.| (2024b); [Wang et al.| (2025c), we
recover the global scale and shift via least squares regression using the sparse depth prior. Table|[T]
reports the average RMSE, MAE, REL, and d; across all synthetic patterns per dataset, along with
the mean ranking over competing methods. As shown in the table, LDCM achieves state-of-the-art
performance. Notably, it maintains high accuracy even under extreme sparsity, demonstrating strong
robustness and generalization across diverse sparse input configurations.

Table 2: Quantitative comparison of point map estimation methods on benchmark datasets. All
methods are evaluated under zero-shot settings. The best and second-best results are highlighted.

Method KITTI iBims-1 DIODE Indoor
MAE’ | RMSE| REL’| &'t Rk MAE’| RMSE’| REL’| &1 Rk) MAE’| RMSE’| REL’| 4’1 Rkl
UniDepth V1 2.207 3.540 0.120 0954 6773 1.154 1.239 0370 0239 9.000 0.911 1.017 0.159 0779 7318
UniDepth V2 1.813 3.540 0.096 0.961 5.409 0.365 0.489 0.107 0.932 6.909 0.730 0.872 0.164 0.694 7273
MoGe V2 3.536 4.899 0208 0484  9.000 0.574 0.667 0.156  0.740  8.000 1.048 1.185 0242 0410 8955
G2-MonoDepth 1.669 3.118 0.098 0.946 4.841 0.186 0.287 0.052 0.972 4.750 0.305 0.401 0.087 0.875 4.841
OMNI-DC 1.542 2.828 0.092 0.960 3.409 0.164 0.256 0.046 0.980 3.341 0.174 0.241 0.045 0.967 2977
PriorDA 1.573 2.836 0.091 0.965 4.341 0.159 0.240 0.043 0.989 3.500 0.140 0.190 0.034 0.994 2.909
SPNet 1.507 2.881 0.089 0.964 3.068 0.152 0.239 0.042 0.988 2455 0.172 0.236 0.046 0.963 2.636
PromptDA 1.933 3.612 0.110 0938  6.659 0.199 0.309 0054 0975  5.545 0.204 0.301 0056 0963 5523
“LDCM (Ours)  1.027 2.308 0.055 0982  1.045 0.092 0.194 0.026  0.992  1.000 0.127 0.179 0.027 0992 1159

Method DIODE Outdoor ETH3D Average

MAE” | RMSE| REL’| 4"t Rk] MAE’| RMSE’| REL’| &+ Rk] MAE’| RMSE’| REL’| 4’1 Rkl
UniDepth V1 4.653 5.100 0.461 0.145  9.000 3.541 3.875 0.551 0.106  9.000 2493 2.954 0332 0445 8218
UniDepth V2 1.879 2.844 0.216 0.712 8.000 1252 1.785 0.191 0.769 8.000 1.208 1.906 0.155 0.814 7.118
MoGe V2 0.931 1.206 0.115 0.890 59771 0.716 0.913 0.119 0.865 6.409 1.361 1.774 0.168 0.678 7.668
G2-MonoDepth 0.794 1.129 0.109 0.891 4.864 0.603 0.826 0.105 0.911 5.160 0.711 1.152 0.090 0.919 4.891
OMNI-DC 0.714 0.946 0.095 0.915 2795 0.550 0.710 0.095 0.929 3.284 0.629 0.996 0.075 0.950 3.161
PriorDA 0.698 0.908 0.095 0.919 3.295 0.538 0.682 0.094 0.936 3.352 0.622 0.971 0.071 0.961 3.479
SPNet 0.733 1.243 0.100 0914  3.932 0.557 0.859 0.096 0931  3.796 0.624 1.092 0075 0952 3.177
PromptDA 0.824 1.422 0.100 0911 5591 0.592 0.950 0093 0932  4.159 0.750 1.319 0.083 0944 5495

LDCM (Ours) 0.427 0.580 0.044 0.995  1.000 0.347 0.456 0.058 0.996  1.000 0.404 0.743 0.042 0.991  1.041

Point map estimation. We adopt the same benchmarks used for depth completion to evaluate
monocular point map estimation. The predicted point maps are evaluated using point-wise metrics:
RMSE?, MAE?, REL? and 7. Table eports the average performance across all synthetic patterns
per dataset for each metric. For depth completion methods, we use the camera intrinsics from
UniDepth V2 Piccinelli et al.| (2025)) to back-project the completed depth maps into 3D point maps.
As shown in the table, LDCM consistently outperforms all competing methods, achieving the best
results across all datasets and metrics.

Affine-invariant point map estimation. We adopt the same benchmarks to evaluate monocular
affine-invariant point map estimation. Following MoGe |Wang et al.| (2025c¢)), we resolve the scale
and shift of the predicted point map using the proposed ROE solver to align it with the ground truth.
Tablereports the average performance in terms of REL? and 67. As shown in the table, our method
achieves superior performance compared to baseline approaches and outperforms state-of-the-art
relative geometry estimation methods, including VGGT [Wang et al.| (2025b) and WorldMirror |Liu
et al.| (2025)). This demonstrates that our model preserves—rather than compromises—the accuracy
of relative geometry estimation.

4.2 ABLATION STUDY

We conduct ablation studies to evaluate the effectiveness of the Poisson-based coarse depth align-
ment strategy and the training objectives. For simplicity, we adopt LiIDAR-simulated sparse patterns
(64, 32, 16, and 8 lines) on outdoor datasets, and keypoint-based sampling on indoor datasets.

Coarse Depth Alignment Strategy. We ablate various coarse depth alignment strategies for robust
geometric guidance. First, we assess the accuracy of the generated coarse depth maps. As shown on
the left side of Table [] Poisson-based alignment achieves the best performance, demonstrating its
effectiveness. Notably, global alignment is essential—its omission leads to a significant performance



Table 3: Quantitative comparison of affine-invariant point map estimation methods on bench-

mark datasets. All methods are evaluated under zero-shot settings. The best and second-best
results are highlighted.

Method KITTI iBims-1 DIODE Indoor
REL? | &1 Rk.] REL? | o Rk.] REL? | o Rk.}
VGGT 0.147 0.823 4.500 0.048 0.967 3.909 0.107 0.926 4.636

MoGe V2 0.056 0.968 1.909 0.046 0972 2455 0.052 0.972 1.955

WorldMirror 0.108 0.886  3.136 0.044 0.965 2.864 0.073 0.953 3.091
MapAnything  0.366 0.344  6.000 0.233 0.611 6.000 0.172 0.758 6.000

Pow3R 0.152 0.850 4318 0.064 0965 4318 0.108 0947 4273

LDCM (Ours)  0.039 0.983 1.091 0.017 0.992 1.000 0.014 0.995 1.000
Method DIODE Outdoor ETH3D Average

REL? | 677 Rk.) REL?| 71 Rk., REL"| V7 Rk.{

VGGT 0.215 0.700  5.000 0.053 0978  3.591 0.114 0.879  4.327

MoGe V2 0.124 0.841 2.000 0.044 0980  2.637 0.064 0947  2.191
WorldMirror 0.155 0.788 3.045 0.049 0976  3.023 0.086 0914  3.032
MapAnything ~ 0.302 0.501 6.000 0.265 0.549  6.000 0.268 0.553 6.000

Pow3R 0.197 0.750  3.955 0.074 0982  3.796 0.119 0.899  4.132
LDCM (Ours)  0.077 0.949 1.000 0.039 0.994 1.728 0.037 0.983 1.164

Table 4: ablation study on the coarse depth alignment strategy. We report the relative error (REL)
for coarse depth and final prediction. The best and second-best results are highlighted.

Corse Depth (REL |) Estimated Depth (REL )
KITTI iBims-1 DIODE ETH3D Average KITTI iBims-1 DIODE ETH3D Average

Configuration

Sparse - - - - - 0.021 0.029 0.040 0.026 0.029
Global alignment 0.095 0.075 0.102 0.078 0.087 0.020 0.019 0.035 0.023 0.024
LWLR 0.078 0.108 0.108 0.061 0.088 0.019 0.022 0.036 0.021 0.025

Poisson w/o global alignment  0.069 0.208 0.174 0.138 0.147 - - - - -
Poisson 0.033 0.073 0.088 0.044 0.059 0.019 0.018 0.033 0.019 0.022

drop. By comparison, LWLR performs worse than even simple global alignment under extreme
sparsity, highlighting its sensitivity to sparse and irregular inputs. A qualitative ablation example is
provided in Fig. |4} where the Poisson-based method not only achieves the highest accuracy but also
best preserves geometric structure. On the right side of Table ] we use these coarse depth maps as
inputs to our completion model; again, the Poisson-based variant yields the best results.

Table 5: Ablation study on the output representation. We report the relative error (REL) for depth
completion and REL? for point map estimation. The best and second-best results are highlighted.

Depth Completion (REL |) Point Map Estimation (REL? |)
KITTI iBims-1 DIODE ETH3D Average KITTI iBims-1 DIODE ETH3D Average

Configuration

SI-Log Depth 0.023 0.023 0.037 0.021 0.026 - - - -
SI-Log Depth + Ray map ~ 0.022 0.022 0.038 0.021 0.026 0.073 0.050 0.084 0.097 0.067
Point Map 0.019 0.018 0.033 0.019 0.022 0.047 0.032 0.070 0.059 0.045

Output Representation. We ablate the output representation by replacing the point map with either
a conventional depth map or the concatenation of depth and dense ray maps (depth + ray map). As
shown in Table [5] both alternatives lead to performance degradation, demonstrating that the point
map provides more effective 3D structural guidance than depth-based representations.
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Figure 4: Qualitative comparison between three coarse alignment stragies. We report the relative
error for each result.

4.3 DEPTH COMPLETION RESULTS ON STANDARD BENCHMARKS

Table 6: Quantitative comparison of depth completion methods on real-pattern benchmark
datasets. All methods are evaluated under zero-shot settings. Methods marked with | produce
relative depth, and metric depth is recovered by optimizing global scale and shift via least squares
regression using the same sparse depth prior. Methods marked with { use dataset-specific con-
figurations for indoor and outdoor scenes, respectively. The best and second-best results are
highlighted.

Method NYUv2 VOID ETH3D
RMSE, MAE|, REL, 0,1 Rk) RMSE| MAE| REL, &1 Rkl RMSE| MAE|, REL| &1 RkJ
DepthPro 0332 0253 0096 0929 15000 075 0396 01890 0726 14833 3.099 2562 0302 0477 14750
UniDepth V1 0213 0148 0056 0981 10375 0651 0267 0.107 0902 12083 3482 3170 0579 0116 15625
UniDepth V2 0293 0218 0085 0948 14000 0651 0269 0115 0900 13000 1630 1169 0200 0726 13.000
DepthAnythingV2i 0220 0.128  0.045 0977 11250 0605 0214 0063 0958 8250 1915 0493 0063 0963 6500
VGGT{ 0.168 0087 0033 0985 7.000 0572 0196 0064 0952 6750 0650 0432 0095 0906 6375
MoGe V1§ 0180 0093 0037 0979 8750 0577 0200 0064 0952 7500 2877 0450 0.108 0924  6.500
MoGe V2 0261 0.8 0070 0963 13000 0779 0421 0202 0557 15833 0847 0619 0.114 0839 9375
G2-MonoDepthf ~ 0.166  0.071 0026 0985  7.125 0607  0.195 0055 0942 7.500 1425 0525 0.136 088 10.375
OMNI-DC 0.147 0053 0020 0987 4375 0574 0168 0040 0962 4167 0822 0317 0079 0925 4625
PriorDA 0122 0047 0017 0993 2750 0571 0171 0039 0968 3333 0671 0260 0061 0962  2.500
SPNett 0127 0047 0017 0992 2500 0578 0178 0054 095 5250 1299 0372 0092 0943  6.625
PromptDA 0162 0079 0028 0989 6000 0565 0.82 0049 0965 4000 0911 0483 009 089  6.875
WorldMirrort 0217 0021 0042 0979 10125 059 0208 0067 0946 9.833 0898  0.668 0.153 0836  9.250
MapAnything 0724 0327 0.132 0885 16000 0782 0282 0110 0900 13750 2283 0874 0.150 0863 12375
Pow3Rf 0155 0081 0031 0988 5625 0571 0.9 0067 0949 7333 0881 0656 0.154 0833 9875
LDCM (Ours) 0.113 0037 0013 0994 1.000 0536 0145 0.028 0977 1000 0445 0.154 0035 0978  1.250

To further evaluate zero-shot depth completion under real-world sparse patterns, we follow prior
work in evaluating methods on the NYUv2 [Silberman et al.| (2012)), VOID |Wong et al.|(2020), and
ETH3D [Schops et al.[| (2017) datasets. For NYUv2, we adopt the sampling protocol from OMNI-
DC|Zuo et al.| (2024)), extracting 500 and 100 sparse depth points per image, respectively. For VOID,
we use the provided sparse depth maps derived from a visual-inertial odometry system, which come
in three sparsity levels: 1500, 500, and 150 points per frame. For ETH3D, we project the sparse
3D points from COLMAP SfM reconstructions into the image plane to generate sparse depth maps.
Table [f reports the quantitative results on each dataset. As shown in the table, LDCM significantly
outperforms all comparison methods, ranking first on all the datasets.

5 CONCLUSION

We have presented the Large Depth Completion Model (LDCM), a simple yet powerful framework
for metric depth estimation from sparse observations. LDCM is both effective and robust, leverag-
ing a Poisson-based alignment strategy to maximize the potential of existing monocular foundation
models by preprocessing input sparse observations into strong geometric priors for subsequent fea-
ture learning. Furthermore, LDCM replaces the conventional depth map representation with a point
map representation, enabling direct learning of the underlying 3D structure rather than per-pixel
depth restoration. Our method achieves superior zero-shot performance across multiple bench-
marks, demonstrating robustness under varying sparse observation patterns. Moreover, the point
map design allows LDCM to naturally output metric-scaled 3D geometry without requiring camera
intrinsics, facilitating reliable deployment in uncalibrated environments. We believe LDCM marks
a significant advancement in depth completion and can serve as a robust foundational model for
downstream 3D vision tasks.
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APPENDIX

A  DATASETS

A.1 TRAINING DATASETS

We collected 11 open-source RGB-D datasets to train LDCM, comprising 10 synthetic and 1 real-
world dataset. An overview of the training datasets is provided in Table [/} spanning four distinct
domains: indoor, outdoor, in-the-wild, and driving scenarios. The combined training set contains
approximately 2.6 million images. The number of RGB-D pairs in each dataset may slightly differ
from the originally released versions, as we manually excluded some invalid frames.

Table 7: An overview of the training datasets.

Dataset Domain Statistic Type
Hypersim |Roberts et al.|{(2021) Indoor 75K Synthetic
TartanAir |Wang et al.|(2020) In-the-wild 306K  Synthetic
IRS |Wang et al.|(2019) Indoor 101K Synthetic
PointOdyssey |Zheng et al.|(2023) Indoor 303K Synthetic
UrbanSyn |Gomez et al.|(2025) Outdoor/Driving 7K Synthetic
Synscapes |[Wrenninge & Unger|(2018) Outdoor/Driving 25K Synthetic
MatrixCity [L1 et al.[(2023b) Outdoor/Driving 424K Synthetic
LightwheelOcc |[Lightwheel Al & contributors|(2024)  Outdoor/Driving 204K Synthetic
MVS-Synth|Huang et al.|(2018) Outdoor/Driving 12K Synthetic
Synthia Ros et al.|(2016) Outdoor/Driving 140K Synthetic
ScanNet++ Yeshwanth et al.|(2023) Indoor 1M Real
Total - 2.6M -

A.2 EVALUATION DATASETS

We use six datasets that are excluded from the training set for to compare the performance between
LDCM and previous state-of-the-art methods. Below, we provide details for each dataset.

NYUv2 Dataset. The NYUv2 dataset|Silberman et al.|(2012)) is an indoor dataset captured using a
Microsoft Kinect sensor, containing RGB and depth sequences from 464 indoor scenes. The official
test split contains 654 samples. Following Marigold [Ke et al.| (2024), we crop the images to a
resolution of 426 x 560 for consistent input dimensions.

KITTI Dataset. The KITTI Depth dataset |Geiger et al.| (2012); Uhrig et al.| (2017) is a large-
scale outdoor dataset collected from a moving vehicle. The official validation split consists of 1,000
samples. Depth maps are acquired using an HDL-64 LiDAR sensor, with raw depth maps containing
fewer than 6% valid pixels. The provided ground truth is generated by fusing multiple consecutive
LiDAR scans, resulting in a denser depth map with approximately 14% valid pixels. For depth
completion, input images are center-cropped to the bottom region of 252 x 1216 to exclude the sky
and regions with unreliable depth due to the limited vertical field of view of the LiDAR.

DIODE Dataset. The DIODE dataset|Vasiljevic et al.| (2019) contains thousands of high-resolution
RGB images with accurate, dense, and long-range depth measurements, captured using a FARO
Focus S350 laser scanner. The official validation split includes 3 indoor and 3 outdoor scenes,
comprising 325 and 446 samples, respectively. To reduce noise at occlusion boundaries, we filter out
depth values where the maximum relative difference to any neighboring pixel exceeds 5% (indoor)
and 15% (outdoor). Input images are resized to 480 x 640.

iBims-1 Dataset. The iBims-1 dataset|Koch et al.|(2018)) is an indoor benchmark captured in diverse
environments, providing high-resolution RGB images and highly accurate depth maps derived from
laser scans. The official evaluation split contains 100 samples, with images at a native resolution of
480 x 640.
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VOID Dataset. The VOID dataset[Wong et al.| (2020) is an indoor dataset captured using the Intel
RealSense D435i camera. The official validation split consists of 800 samples, each paired with
sparse depth maps at three sparsity levels (approximately 1500, 500, and 150 valid pixels) and RGB
images at a resolution of 480 x 640. These varying sparsity levels allow for robust evaluation under
different input conditions.

ETH3D Dataset. The ETH3D dataset |Schops et al.| (2017)) consists of multi-view stereo images
and dense depth maps captured using a high-precision laser scanner and DSLR cameras, covering
diverse viewpoints and scene types. The official validation set contains 13 scenes with a total of 454
image pairs. The original image resolution is 4032 x 6048. Input images are resized to 480 x 640.

B EVALUATION DETAILS

B.1 COMPARISON METHODS

We compare LDCM against a comprehensive set of state-of-the-art approaches: Depth-
Prqg’|Bochkovskiy et al.|(2025), UniDepth V1 & V2F| Piccinelli et al.|(2024;2025), Depth Anything
V2°|Yang et al.|(2024b), VGGTH Wang et al. (2025b), MoGe V1 & VZE] Wang et al. (2025cid),
G2—M0n0Deptlﬁ Wang et al.| (2023al), OMNI—DdZ] Zuo et al.| (2024), PriorDAP[Wang et al. (2025¢),
SPNef’| Wang et al.] (2024a), PromptDA|[Lin et al. (2025), Marigold-DJ'T[[Viola et al.| (2024),
DepthLai | ILiu et al.[ (2024), Pow3R|Jang et al. (2025), MapAnything™“[[Keetha et al. (2025),
WorldMirro Liu et al|(2025), spanning the key tasks of monocular depth estimation, monocular
geometry estimation, depth completion. All methods are evaluated using their publicly available
implementations and pre-trained checkpoints. Notably, G2-MonoDepth Wang et al.| (2023a) and
SPNet|(Wang et al.| (2024a)) employ different configurations for indoor and outdoor scenarios, while
LDCM and the remaining methods do not use scenario-specific hyperparameters. PromptDA |Lin
et al. (2025) is specifically designed to leverage dense, low-resolution priors; therefore, we apply
Poisson surface reconstruction to the input sparse depth map to obtain a dense prior before inference.
Pow3R [Jang et al.| (2025)) and WorldMirror |Liu et al.| (2025)) produce relative geometry, even when
sparse depth priors are provided.

B.2 EVALUATION PROTOOL

To clarity the notations in this section:

* P and P are the predicted and ground truth points, respectively.

« D and D are the predicted and ground truth depths, which are the z-coordinate of corre-
sponding points.

e M is the mask of valid ground truth.

Depth Completion. In the manuscript, we use four standard metrics for depth completion evalua-
tion, including RMSE, MAE, REL, 4;. Formally, they are defined as follows:

'https://github.com/apple/ml-depth-pro.
https://github.com/lpiccinelli-eth/UniDepthl
*https://github.com/DepthAnything/Depth-Anything-v2|
*nttps://github.com/facebookresearch/vggt)
Shttps://github.com/microsoft/MoGe
®https://github.com/Wang-xjtu/G2-MonoDepth
"nttps://github.com/princeton-v1/OMNI-DC.
$https://github.com/SpatialVision/Prior-Depth-Anything
https://github.com/Wang-xjtu/SPNet,
Yhttps://github.com/DepthAnything/PromptDA.
Uhttps://github.com/prs-eth/Marigold-DC
“https://github.com/ant-research/DepthLabl
Bhttps://github.com/naver/pow3r
Yhttps://github.com/facebookresearch/map-anything
Bhttps://github.com/Tencent—-Hunyuan/HunyuanWorld-Mirror,
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* Root mean square error (RMSE) (RMSE):

1 N
—_— (D; — D;)? &)
\Gp>

¢ Mean absolute error (MAE):

Wlli; D; - D; (10)
¢ Mean relative error (REL):
) D - D
M b "
* Thresholded accuracy (d):
ﬁ ;:A max (B g) <1.25 (12)

For models that produce relative depth maps D,. , we first follow Equationto compute (o, 3), and
then the metric depth maps are recoverd by:

D=a-D,+p. (13)

Point Map Estimation. For evaluating the reconstructed 3D point map, we adopt analogous met-
rics based on Euclidean distances between predicted and ground truth points. The metrics include
RMSE?, MAEP, REL?, and 67, defined as:

* Point-wise Root Mean Square Error (RMSEP):

1 N 2
— 3 |B, - P, ‘ (14)
\/W i
 Point-wise Mean Absolute Error (MAE?):
1 ’ .
o O |Pi P (15)
M
* Point-wise Mean Relative Error (RELP):
) ’ P, - P,
— > (16)
M 2P
* Point-wise Thresholded Accuracy (67):
1 . ) .
o O |[Pi = Pef| < 0.25 - min (P4, 1241 (17)
M

Affine-invariant Point Map Estimation. To evaluate the affine-invariant point, we first compute
the scale oy, and shift 3, using the following equation, which recovers the affine transformation
applied to the predicted point map. This equation can be solved efficiently using the ROE solver

proposed by MoGe [Wang et al (2025¢).

~ 2
(o, By) =arg mip 3 (Pi—ap - Pi=5,) (18)

C MORE QUANTITATIVE RESULTS

From Table [T2]to Table 29] we provide detailed quantitative results under different types of sparse
observations.
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Table 8: Quantitative comparison of depth completion with diffusion-based methods on bench-
mark datasets. The best results are in bold.

VOID-1500-Points VOID-500-Points VOID-150-Points
RMSE, MAE| REL| 6;17 RMSE| MAE| REL| 4;17 RMSE| MAE| REL| ;%

DepthLab 0.577 0.162 0.034 0969  0.572 0.183 0.053 0.941  0.688 0.249  0.083 0.901
Marigold-DC 0.553 0.154 0.031 0975 0.536 0.162  0.043 0.965 0.626 0.199  0.053 0.955

LDCM (Ours)  0.528 0.135 0.021 0.981 0.501 0.134  0.027 0.978  0.580 0.167 0.035 0.972
NYUv2-500-Points NYUv2-100-Points KITTI-64-Lines
RMSE, MAE| REL| 4,1 RMSE| MAE| REL] 6,1 RMSEl, MAE| REL| & 1

DepthLab 0.118 0.041 0.015 0.993 0213 0.100  0.037 0976  2.032 0.828  0.061 0.962
Marigold-DC ~ 0.116 0.040 0.014 0.993  0.157 0.061 0.022 0.988  1.931 0.818  0.054 0.971

LDCM (Ours) 0.094  0.028 0.009 0996 0131 0.045 0016 0992 1240 0292 0.016 0.993
KITTI-32-Lines KITTI-16-Lines AVERAGE
RMSE, MAE| REL| 4;1 RMSE| MAE| REL| 6,7 RMSE, MAE| REL| & 1

DepthLab 2.250 0.893  0.064 0.959 2.748 0932 0.066 0.953 1.150 0.424  0.052 0.957
Marigold-DC 2.155 0.875 0.057 0.968  2.546 0981 0.062 0.963 1.078 0411 0.042 0.972

LDCM (Ours)  1.416 0.332  0.018 0.991 1.603 0.393  0.020 0.990 0.762 0.191  0.020 0.987

Method

Method

Method

D MORE COMPARISON RESULTS WITH DIFFUSION-BASED METHODS

Here, we present additional comparisons with diffusion-based models—Marigold-DC
(2024) and DepthLab (2024). Due to their prohibitively long inference times, we evaluate
these methods primarily on three benchmarks with varying levels of sparse input: NYUv2[Silberman|
et al| (2012) (500 and 100 points), VOID [Wong et al| (2020) (150, 500, and 1500 points), and
KITTI |Geiger et al (2012) (64, 32, and 16 scan lines). As shown in Table@ LDCM consistently
outperforms both Marigold-DC and DepthLab across all settings.

Table 9: Ablation study on the training data. We report the relative error (REL) for depth completion.

Depth Completion (REL |)
KITTI iBims-1 DIODE ETH3D Average
w/ more real data  0.020 0.017 0.035 0.018 0.022
Ours 0.019 0.018 0.033 0.019 0.022

Configuration

Input Image Sparse Prior w/ more real data result

Figure 5: Qualitative comparison between the results from models using different training datasets.

E ABLATION ON THE TRAINING DATA

Training Data. We perform an ablation study on the training data used to train the LDCM. In
addition to the original datasets, we introduce an extra dataset: DrivingStereo [Yang et al] (2019).
The quantitative results are presented in Table 0] As shown, the inclusion of this additional data
does not significantly affect metric performance. However, as illustrated in Fig. [}] incorporating
more real-world data leads to visually less sharp predictions, likely due to imperfect supervision
signals in the added dataset.

20



Table 10: Quantitative comparison of depth completion methods on benchmark datasets. All
methods are evaluated under zero-shot settings. Methods marked with { produce relative depth, and
metric depth is recovered by optimizing global scale and shift via least squares regression using the

same sparse depth prior. The best and second-best results are highlighted.

Method KITTI iBims-1 DIODE Indoor
RMSE| MAE| REL| 4 1 Rk., RMSE| MAE| REL| & 1 Rk., RMSE| MAE| REL| 4 1 Rk.|
DepthAnythingV2{ 4.007 1.890  0.092 0916 5318 0.349 0.179  0.043 0975 5614 0.386 0.189  0.045 0976  4.909
DepthAnythingV2 w/ Poisson ~ 2.448 0953 0051 0959 2955 0.231 0.098  0.027 0976  3.136 0.195 0.091 0026 0967  2.795
VGGT} 4.219 2518  0.158  0.783  6.955 0.348 0.194  0.053 0957  6.727 0.425 0294  0.096 0920 6.750
VGGT w/ Poisson 2.627 1112 0.065 0937  4.205 0.241 0.104 0028 0975 4318 0.217 0.111 0.037 0957  4.341
MoGe V17 3.050 1.821  0.125  0.887  5.341 0.238 0.120  0.035 0981  4.159 0.272 0.175  0.064 0950  5.250
MoGe V1 w/ Poisson 2.179 0.865  0.050 0959  2.136 0.214 0.089  0.025 0977  2.409 0.177 0.085  0.028 0965 2.614
LDCM 1911 0537  0.026 0983  1.023 0.161 0.044 0012 0991  1.227 0.084 0.025  0.008 0993  1.000

Method DIODE Outdoor ETH3D Average

RMSE| MAE| REL| o T Rk., RMSE| MAE| REL| o T Rk., RMSE| MAE| REL| o 1T Rk.|
DepthAnythingV2{ 5.940 2.777  0.124 0869  5.114 2.091 0424  0.049 0979  5.864 2.555 1.092  0.071 0943 5364
DepthAnythingV2 w/ Poisson  3.285 1.182  0.064  0.941 3455 0.662 0.168  0.025 0983  3.966 1.364 0498 0039 0965  3.261
VGGTf 4.898 2893 0237 0772 5705 0.540 0317  0.060 0949 5818 2.086 1.243  0.121 0876  6.391
VGGT w/ Poisson 2910 1262 0.081 0917  3.750 0.339 0.140  0.024 0980  3.262 1.267 0.546  0.047 0953  3.975
MoGe V1t 10.576  8.340 0406 0599  6.932 1.651 0550  0.082 0943 5455 3.157 2201  0.142 0872 5427
MoGe V1 w/ Poisson 2.340 0910  0.053 0950  2.000 0.319 0.118  0.021 098  2.262 1.046 0413 0035 0967 2.284
LDCM 1.969 0.529  0.031 0970  1.000 0.187 0.048  0.008 0997  1.000 0.862 0.237  0.017 0987  1.050

F APPLYING POISSON-BASED ALIGNMENT STRATEGY TO MONOCULAR
ESTIMATORS

In Table[I0} we apply the Poisson alignment strategy to relative geometry estimators to obtain dense
depth maps. As shown in the table, this strategy effectively improves the metric accuracy of these
approaches, demonstrating its effectiveness. Moreover, our LDCM maintains state-of-the-art per-
formance.

G INFERENCE TIME

We report the per-stage inference times of our method, measured at a resolution of 480640 on
an NVIDIA L20 GPU. Our pipeline comprises four stages: Depth Anything Small (0.006 s), global
alignment (0.006 s), Poisson-based alignment (0.020 s), and the subsequent refinement model (0.040
s), resulting in a total runtime of 0.072 s. For comparison, LWLR runs in 0.010 s under the same con-
ditions. A detailed comparison with the inference times of several competing methods is provided
in Table[T1]

Table 11: Inference time (in seconds) of different methods at 480 x 640 resolution on an NVIDIA
L20 GPU, with all inference performed in FP32 precision.

Method OMNI-DC PriorDA DepthPro VGGT MoGe V2 DepthAnythingV2 LDCM (Ours)
Inference Time (s) 0.128 0.064 0.554 0.196 0.220 0.019 0.072

H MORE QUALITATIVE RESULTS

Fig. [7) and Fig. [§] presents a qualitative comparison between LDCM and state-of-the-art methods.
Notably, LDCM produces sharper geometric structures and more accurate depth distributions, par-
ticularly in regions with complex geometry or extreme sparsity. The predictions from LDCM exhibit
significantly clearer boundaries and finer details, demonstrating the effectiveness of our coarse-to-
fine framework and structural prior integration. In Fig.[9] we provide more visualization results for
depth map and point map.
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Image Result Ground Truth

Figure 6: Example of two failure cases.

RGB Sparse OMNI-DC PriorDA PromptDA LDCM Ground Truth

Figure 7: Visualization comparion with state-of-the-art methods.

I NOISE ANALYSIS

Fig. [I0] presents an example with noisy input. When the sparse prior contains noise, the Poisson
alignment strategy is adversely affected. However, the subsequent network effectively mitigates this
issue and produces a high-quality result.

J  LIMTATION AND FUTURE WORK

Although LDCM achieves superior performance, accurately reconstructing transparent objects and
reflective surfaces remains challenging, as illustrated by two failure cases in Fig.[6] This limitation
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.

RGB Sparse SPNet G2-MonoDepth ~ WorldMirror LDCM Ground Truth

Figure 8: Visualization comparion with state-of-the-art methods.

RGB Sparse Depth Pred Ground Truth Point Pred

Figure 9: More visualization results for depth map and point map.

stems from the lack of large-scale datasets containing such materials, which are difficult to capture
and annotate. In the future, we plan to investigate synthetic data simulation to augment training
and improve robustness on these challenging scenarios. Additionally, while monocular video recon-
struction is a promising application, achieving temporal consistency poses substantial challenges.
Extending LDCM to process video sequences for consistent 3D geometry estimation over time is an
important direction for future exploration.
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Input Image Sparse Prior Poisson Result Depth

Figure 10: An example for noise input

K STATEMENT ON THE USE OF LLMSs

Large language models (LLMs) were used only for linguistic refinement, such as improving gram-
mar and phrasing. They played no role in shaping research concepts, designing experiments, or
interpreting data. The authors authored all content, verified its accuracy and originality, and assume
full responsibility for the manuscript.
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Table 12: Quantitative comparison of depth completion with baseline methods on the KITTI
dataset (Geiger et al. (2012); Uhrig et al. (2017). Methods marked with { produce relative depth
maps, where the metric depth is recovered by optimizing global scale and shift via least squares
regression using the sparse depth prior. Methods marked with I use scenario-specific configurations

for indoor and outdoor scenes, respectively.The best and the second best results are highlighted.

method Lidar-64-Lines Lidar-32-Lines Lidar-16-Lines
RMSE| MAE| REL| o0 T Rk., RMSE| MAE| REL| o T Rk., RMSE| MAE| REL| ot Rk.|
DepthPro 4.149 2.763  0.178  0.731  14.000  4.149 2763 0178  0.731  14.000  4.149 27763 0.178  0.731 13750
UniDepth V1 3.335 2010 0.118 0938  9.000 3.335 2.010 0.118 0938  9.500 3335 2,010 0.118 0938  9.500
UniDepth V2 3.150 1.598  0.090  0.960  7.500 3.150 1.598  0.090 0960  7.250 3.150 1.598  0.090 0960  7.500
DepthAnythingV2{  3.902 1.826  0.088 0923  9.250 3.903 1.824  0.08 0923  8.750 3.902 1.824  0.088 0923  9.000
VGGTt 4.122 2417 0.148  0.804 12.000 4.126 2415 0.147  0.806  13.000  4.134 2.431 0.149  0.802  12.500
MoGe V1t 3.822 2450 0159  0.869 11500  3.299 1.997  0.131 0.899 10250  2.977 1720 0.113 0915  8.500
MoGe V2 4.617 3366 0213 0458 15250  4.617 3366 0213 0458 15250  4.617 3366 0213 0458  15.000
G2-MonoDepth{ 1.609 0378  0.024 0986  4.000 1.801 0454 0.028 0984  4.000 2.187 0.652  0.036  0.981 4.250
OMNI-DC 1.184 0274  0.015 0993 1.000 1.424 0.354 0019 099  2.000 1.710 0460  0.024 0986  2.000
PriorDA 1.776 0.561 0.029 0985  5.000 1.912 0.645  0.034 0983  5.000 2.124 0.773  0.041 0.979 4750
SPNet} 1.547 0369  0.023 0987  3.000 1.774 0418  0.026 0985  3.000 2.069 0.531 0.031 0.982  3.000
PromptDA 2.409 0.857  0.043 0973  6.000 2.490 0.886  0.043 0972  6.000 2.682 0.993  0.050 0966  6.000
WorldMirrort 3.740 2245 0159 0793 11500  4.076 2.078 0.121 0883 11250  5.017 2543 0.134  0.832  13.000
MapAnything 12431 6.241 0318  0.621 15750 12.621 6357 0322 0.616 15750 12.856  6.551 0.331 0.606  15.750
Pow3Rt 3.027 1.797  0.122  0.865  9.000 3.254 1920  0.128  0.853 10.000  3.352 1.944 0127  0.855 10.500
LDCM (Ours) 1.240 0.292 0016 0993 1750 1.416 0.332 0018 0991  1.000 1.603 0.393  0.020  0.990  1.000
Lidar-8-Lines Lidar-4-Lines 10%
method
RMSE| MAE| REL| o0t Rk., RMSE| MAE| REL| o T Rk., RMSE| MAE| REL| o T Rk.|
DepthPro 4.149 2763 0178 0731 13250  4.149 27763 0.178  0.731 13250  4.149 2763 0.178  0.731  14.000
UniDepth V1 3.335 2010 0118 0938  9.500 3.335 2.010 0.118 0938  8.500 3.335 2.010 0.118 0938  9.250
UniDepth V2 3.150 1.598  0.090 0960  7.500 3.150 1.598  0.090 0.960  5.000 3.150 1.598  0.090 0960  7.500
DepthAnythingV2{  3.927 1.838  0.089 0922  9.000 4.070 1.904  0.091 0917 9.500 3.919 1.833  0.088 0923  9.250
VGGTY 4.158 2410  0.147 0809 12250  4.284 2400  0.147  0.811 12250  4.129 2.421 0.148  0.803  13.000
MoGe VI 2.828 1.587  0.105 0918  8.000 2.796 1.508  0.098 0926  6.250 2.932 1.688  0.112 0914  8.500
MoGe V2 4.617 3366 0213 0458 15000 4.617 3366 0213 0458 15000  4.617 3366 0213 0458 15250
G2-MonoDepth{ 2.658 0.877  0.046 0972  4.500 3.847 1.572 0.077 0930  7.500 1.849 0490  0.028 0985  3.750
OMNI-DC 2.116 0.629  0.031 0.981 2.000 3.305 1.114 0050 0958  3.000 1.759 0443  0.025 0985 2250
PriorDA 2.404 0936  0.049 0973 4500 3.300 1320 0.063 0954 4250 1.980 0.640  0.032 0982  5.000
SPNet} 2.379 0716 0.037 0978  3.000 3516 1.219  0.055 0958  4.000 1.776 0459  0.026 0986  2.750
PromptDA 2.908 1.098  0.054 0960  6.250 3.686 1.526 0078 0939  6.750 2.591 0964  0.048 0966  6.000
WorldMirror{ 5.776 2.941 0.148  0.794 13750  6.412 3235 0.159 0765 13750  3.848 2192 0133 0859 11.500
MapAnything 13.057 6717 0339  0.598 15750 13.166  6.883  0.351 0579 15750 12926  6.684 0344  0.593 15750
Pow3R{ 3.448 1977 0128 0.854 10500 3.648 1.961 0.123  0.864 10.000  3.491 2.043  0.132 0855 11.000
LDCM (Ours) 1.878 0494  0.023 0987  1.000 2.592 0.767  0.031 0978  1.000 1.565 0.373 0019 0990  1.000
method 5% 3% 1%
RMSE| MAE| REL| 6 1 Rk., RMSE| MAE| REL| 6 1 Rk, RMSE| MAE| REL| 4,7 Rk.|
DepthPro 4.149 2763 0.178  0.731  14.000  4.149 2763 0.178  0.731  14.000  4.149 2763 0178 0731 13750
UniDepth V1 3.335 2.010 0.118 0938  9.250 3.335 2010 0.118 0938 9250 3.335 2.010 0.118 0938  9.250
UniDepth V2 3.150 1.598  0.090 0960  7.750 3.150 1.598  0.090 0960  7.500 3.150 1.598  0.090 0960  7.000
DepthAnythingV2}  3.924 1.835  0.088 0922  9.250 3.940 1.843  0.089 0922  9.500 3.996 1.866  0.090 0920  9.500
VGGTt 4.136 2428  0.149  0.802 13.000  4.146 2435  0.150  0.801 13.000 4.185 2458  0.151 0.797  13.250
MoGe VI 2.803 1.569  0.104 0922  8.000 2.748 1.517  0.100 0925  7.750 2.757 1512 0.099 0922  7.500
MoGe V2 4.617 3366 0213 0458 15250  4.617 3366 0213 0458 15250  4.617 3366 0213 0458 15250
G2-MonoDepthi 2.035 0573 0.031 0.983  3.750 2.244 0.672  0.035 0980  4.000 2.930 1.040  0.051 0.966 5250
OMNI-DC 1.951 0516  0.028  0.983  3.000 2.124 0.589  0.031 0.980  3.000 2.677 0.840  0.042 0969  3.500
PriorDA 2.099 0.690  0.034 0980  5.000 2.210 0.738  0.036 0978  4.750 2.524 0.880  0.042 0972  3.000
SPNet} 1.897 0513 0.027 0986  2.000 2.053 0.577  0.029 0984  2.000 2.534 0.773 0037 0977 2250
PromptDA 2.762 1.070  0.055  0.961 6.000 2.874 1.117 0056 0959  6.500 3.245 1.341 0.068 0946  6.750
WorldMirrort 3.820 2,123 0.125 0868 11250  3.835 2128  0.125 0.867 11.250  3.903 2.160  0.127  0.860 11.250
MapAnything 12980 6726 0345 0594 15750 13.106 6986 0368 0.573 15750 13.334 7326  0.388  0.550  15.750
Pow3R{ 3.472 2.020  0.131 0.850 11250  3.472 2.010  0.130  0.853 11.000  3.544 2.047 0132 0850 11.250
LDCM (Ours) 1.691 0.420 0.021 0989  1.000 1.821 0.468  0.022 0988  1.000 2.160 0.610  0.027 0.983  1.000
method SIFT ORB Average
RMSE| MAE| REL| o T Rk., RMSE| MAE| REL| o T Rk., RMSE| MAE| REL| o T Rk.|
DepthPro 4.149 2.763  0.178  0.731  12.000  4.149 2763 0178  0.731 11750  4.149 2763  0.178  0.731  13.432
UniDepth V1 3.335 2010 0118 0938 5750 3.335 2.010 0.118 0938 6250 3335 2010 0.118 0938  8.636
UniDepth V2 3.150 1.598  0.090 0.960  3.250 3.150 1.598  0.090 0960  3.750 3.150 1.598  0.090 0960  6.500
DepthAnythingV2{  4.295 2080 0.102 0.896  8.000 4.299 2.116  0.108  0.886  9.000 4.007 1.890  0.092 0916  9.091
4.516 2949  0.199  0.691 14.000  4.473 2933 0204 0.682 13.750 4219 2518 0158 0783 12.909
MoGe VIt 3.274 2.194  0.170  0.792  8.500 3.315 2289  0.184  0.760  9.500 3.050 1.821 0.125  0.887  8.568
MoGe V2 4.617 3366 0213 0458 15250  4.617 3366 0213 0458 15250  4.617 3366 0213 0458 15182
G2-MonoDepth{ 4.238 2212 0.133  0.800 10.000  3.617 1.680  0.101 0.869  7.250 2.638 0.964 0054 0949 5295
OMNI-DC 3.630 1.632 0.099 0.884  6.250 3.443 1.514  0.097 0.889  5.500 2.302 0.760  0.042 0963  3.045
PriorDA 2.904 1.174  0.061 0.948 2250 2.769 1118 0.061 0.949 2250 2.364 0.861 0.044 0971 4.159
SPNet} 3.358 1482  0.085  0.891 4.500 3.107 1.265  0.075 0911 3.500 2365 0.757 0.041 0966  3.000
PromptDA 3.882 1.990  0.120  0.887  7.250 3.909 2.027 0.126 0872  8.500 3.040 1.261 0.067 0946  6.545
WorldMirror{ 4.166 2558  0.165 0769  10.750  4.239 2.551 0.166  0.770  10.750  4.439 2432 0.142 0824 11818
MapAnything 13.101  7.111 0.374 0561 15750 13.133  7.046 0372 0.577 15750 12974 6.784 0350  0.588  15.750
Pow3Rf 3.981 2,646  0.197  0.735 11.500  3.973 2694 0206 0.719 12250 3515 2.096  0.141 0.832  10.750

LDCM (Ours) 2.579 0910  0.043 0963  1.000 2478 0.846  0.042 0962  1.000 1.911 0.537  0.026 0983  1.068
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Table 13: Quantitative comparison of depth completion with baseline methods on the indoor
scenes of the DIODE dataset Vasiljevic et al. (2019). Methods marked with | produce relative
depth maps, where the metric depth is recovered by optimizing global scale and shift via least
squares regression using the sparse depth prior. Methods marked with I use scenario-specific con-
figurations for indoor and outdoor scenes, respectively. The best and the second best results are
highlighted.

Method 10% Noise 5% 3%
RMSE| MAE| REL| o T Rk.l RMSE| MAE| REL| oy T Rk., RMSE| MAE| REL| o T Rk.|
DepthPro 0.837 0.702  0.193  0.668 14.500  0.837 0702 0.193  0.668 14.500  0.837 0.702  0.193  0.668  14.500
UniDepth V1 0.939 0.840  0.158 0779 14.000  0.939 0.840  0.158  0.779 14.000  0.939 0.840  0.158  0.779  14.000
UniDepth V2 0.811 0.678  0.165  0.681  13.500  0.811 0.678  0.165  0.681 0.811 0.678  0.165  0.681  13.500

DepthAnythingV2f  0.383 0.185 0.041 0.979 8.500 0.387 0.181 0.040 0979 8.750 0.388 0.181 0.040 0979 8.750
0.392 0.262 0.078 0928 11.750  0.391 0.261 0.078 0929 11.750  0.391 0.261 0.078 0.929  11.750

MoGe VIt 0.243 0.144  0.045 0956  8.750 0.239 0.140  0.043 0958  8.250 0.239 0.140  0.043 0958  8.000
MoGe V2 1.064 0938 0235 0433 16.000 1.064 0.938 0235 0433 16.000 1.064 0.938 0235 0433  16.000
G2-MonoDepth{ 0.020 0.004  0.001 1.000 1500 0.021 0.005  0.001 1.000 2250 0.026 0.005  0.001 1.000  2.250
OMNI-DC 0.066 0.009 0.002 0999  4.000 0.022 0.002  0.000 1.000  1.500 0.026 0.002  0.000 1.000 1.250
PriorDA 0.077 0.029  0.006 0999 4750 0.050 0.016  0.004 1.000  4.000 0.051 0.016  0.004 0999  5.000
SPNet} 0.019 0.003  0.001 1.000 1.000 0.018 0.003  0.001 1.000  1.500 0.021 0.003  0.001 1.000 1.500
PromptDA 0.099 0.049  0.014 0998  6.000 0.092 0.047 0013 0997  6.000 0.095 0.047 0013 0998  6.000
WorldMirror{ 0.323 0.195  0.062 0958 10250  0.380 0.231 0.069 0946 10.500  0.376 0220  0.066  0.948  10.500
MapAnything 0.535 0.129  0.030 0977  8.500 0.508 0.133  0.027 0984 8250 0.552 0.156  0.031 0.982  8.500
Pow3R{ 0.260 0.186  0.056 0976  9.250 0.296 0.207  0.063 0954  9.500 0.310 0.211 0.063 0951  9.500
LDCM (Ours) 0.023 0.005  0.001  1.000 2.000 0.025 0.004  0.001 1.000  2.500 0.028 0.004  0.001  1.000 2.500
Method 1% 500 100
RMSE| MAE| REL] o1 T Rk.| RMSE| MAE| REL| o1 Rk.] RMSE| MAE| REL| 6T Rk.}
DepthPro 0.837 0.702  0.193  0.668 14.500  0.837 0702 0.193  0.668 14250  0.837 0702  0.193  0.668  13.750
UniDepth V1 0.939 0.840  0.158  0.779  14.000  0.939 0.840  0.158  0.779  13.750  0.939 0.840  0.158 0779 13250
UniDepth V2 0.811 0.678  0.165  0.681 13.500  0.811 0.678  0.165 0.681 13250 0.811 0.678  0.165  0.681  12.500
DepthAnythingV2{  0.391 0.182  0.040 0979  8.000 0.410 0.189  0.041 0978  8.500 0.428 0.193  0.041 0.978  7.500
VGGTY 0.391 0.261 0.078 0928 11.500  0.392 0262 0078 0928 10.750  0.399 0.261 0.078  0.931 9.750
MoGe VI 0.239 0.140 0043 0958  7.750 0.240 0.141 0044 0956  7.750 0.244 0.141 0.043 0959  6.250
MoGe V2 1.064 0938 0235 0433 16.000 1.064 0938 0235 0433 15750  1.064 0.938 0235 0433 15750
G2-MonoDepth{ 0.043 0.009 0.002 1.000 3.250 0.136 0.045 0011 0997  5.000 0.732 0.550  0.179  0.622 12750
OMNI-DC 0.036 0.003  0.001 1.000  1.250 0.088 0.016  0.004 0.998  2.500 0.185 0.059  0.014 0992  3.000
PriorDA 0.057 0.016  0.004 0999  5.000 0.081 0.022  0.005 0999 2750 0.124 0.039  0.009  0.996 1.500
SPNet} 0.034 0.005  0.001 1.000  1.250 0.101 0.020  0.004 0.998  3.000 0.200 0.067 0016 0992  3.750
PromptDA 0.105 0.051 0.014 0997  6.000 0.166 0.077  0.022  0.991 6.000 0.246 0.115  0.031 0982 5250
WorldMirror{ 0.343 0.193  0.057 0954 9750 0.326 0.183  0.054 0955 8.750 0.330 0.180  0.052 0957  7.500
MapAnything 0.635 0224 0045 0974 10.000 1.149 0.609  0.135 0.879 13.000 1.248 0.771 0.153  0.791  13.000
Pow3R{ 0.321 0.207  0.061 0.956  9.750 0.337 0.210  0.060  0.958  9.250 0.349 0215 0.062 0953 8.750
LDCM (Ours) 0.038 0.005  0.001 1.000 1.750 0.079 0.012  0.002 0.999 1.000 0.154 0.034  0.006 0.996 1.250
Method SIFT ORB Virtual-Lidar-32-Lines
RMSE, MAE| REL| & 1 Rk., RMSE| MAE| REL| 4 1 Rk., RMSE| MAE| REL| 4 1 Rk.|
DepthPro 0.837 0.702  0.193  0.668 13.500  0.837 0702  0.193  0.668 13.000  0.837 0702  0.193  0.668  14.250
UniDepth V1 0.939 0.840  0.158 0779 12250  0.939 0.840  0.158 0779 12250  0.939 0.840  0.158 0779  13.750
UniDepth V2 0.811 0.678  0.165  0.681 12.000  0.811 0.678  0.165  0.681 11.750  0.811 0.678  0.165  0.681  13.250

DepthAnythingV2f  0.365 0.221 0.072  0.961 3.250 0.343 0.205 0.060  0.961 3.000 0.388 0.181 0.040 0979 8.000
0.571 0.447 0.183 0.881 9.750 0.577 0438  0.174  0.877 8.500 0.391 0.261 0.078 0.928  11.000

MoGe VIt 0.411 0329 0.161 0919  6.750 0.413 0328  0.155 0913 5250 0.240 0.140  0.043 0957  7.500
MoGe V2 1.064 0938 0235 0433 15500  1.064 0.938 0235 0433 15750  1.064 0938 0235 0433  16.000
G2-MonoDepth{ 0.894 0.670  0.241 0.554  13.750  0.996 0.755  0.261 0513 14750  0.081 0.020  0.005 0999  4.000
OMNI-DC 0.353 0223  0.083 0.870  5.000 0.492 0330 0.119  0.800  5.750 0.056 0.007  0.002  0.999 1.500
PriorDA 0.145 0.081 0.032 0975 1.500 0.197 0.115  0.049  0.967 1.500 0.063 0.018  0.004 0999  3.000
SPNet} 0.473 0318  0.125 0768  7.750 0.552 0375  0.140  0.746  7.500 0.071 0.011  0.002 0999 2500
PromptDA 0.365 0252 0.095 0877  5.500 0.608 0419  0.149 0795  8.500 0.124 0.058  0.018 0995  6.000
WorldMirror{ 0.532 0.411 0.187  0.897  9.000 0.648 0.502 0214 0874 10.000  0.330 0.185  0.054 0954  9.000
MapAnything 1.105 0.670  0.157  0.812 11.250  1.032 0.578  0.140  0.854  9.750 1.057 0.560  0.147  0.879 12750
Pow3Rf 0.499 0388  0.156  0.884  7.250 0.499 0386  0.154  0.872  7.000 0.331 0.208  0.060 0956  9.500
LDCM (Ours) 0.149 0.072  0.027 0973 1500 0.208 0.104  0.037 0963 1.500 0.053 0.007  0.001  0.999  1.000
Method Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines Average
RMSE| MAE| REL| o0t Rk., RMSE| MAE| REL| oy 1 Rk., RMSE| MAE| REL| ot Rk.|
DepthPro 0.837 0.702  0.193  0.668 14250  0.837 0702 0.193  0.668 14250  0.837 0702  0.193  0.668 14.114
UniDepth V1 0.939 0.840  0.158 0779 13.750  0.939 0.840  0.158  0.779 13.750  0.939 0.840  0.158 0779  13.523
UniDepth V2 0.811 0.678  0.165  0.681 13250  0.811 0.678  0.165 0.681 13250 0811 0.678  0.165  0.681  13.023
DepthAnythingV2{  0.382 0.180  0.040 0979  8.000 0.382 0.179  0.039 0979  8.000 0.386 0.189  0.045 0976  7.295
VGGTY 0.392 0.261 0.078 0928 11.000  0.393 0264  0.079 0928 11.000 0425 0294  0.096 0920 10.773
MoGe VI 0.240 0.140  0.043 0957  7.500 0.241 0.142  0.044 0954  7.500 0.272 0.175  0.064 0950  7.386
MoGe V2 1.064 0938 0235 0433 15750  1.064 0938 0235 0433 15750  1.064 0938 0235 0433 15841
G2-MonoDepth{ 0.121 0.033  0.008 0997  5.000 0.211 0.086  0.023 0988 5250 0.298 0.198  0.067 0.879  6.341
OMNI-DC 0.080 0.014  0.003 0998  2.500 0.144 0.042 0010 0995  4.000 0.141 0.064  0.022 0968 2932
PriorDA 0.078 0.022  0.005 0999 2750 0.104 0.034  0.008  0.998 1.500 0.093 0.037 0.012 0994  3.023
SPNet} 0.094 0.017  0.004 0998 3250 0.143 0.038  0.009 0.99  3.000 0.157 0.078  0.028 0954 3273
PromptDA 0.146 0.066  0.018 0994  6.000 0.190 0.087  0.024 0988 5500 0.203 0.115  0.037 0965  6.068
WorldMirror{ 0.327 0.182  0.053 0956 8750 0.331 0.188  0.056  0.951 9.000 0.386 0.243  0.084 0941 9.364
MapAnything 1.077 0.606  0.149  0.870 13.000  1.099 0.600  0.126  0.890  13.000  0.909 0.458  0.104  0.899  11.000
Pow3R{ 0.337 0.211 0.061 0.955  9.750 0.341 0.216  0.063 0953  9.500 0.353 0.240 0078 0943  9.000

LDCM (Ours) 0.067 0.011  0.002  0.999 1.000 0.104 0.022  0.005  0.998 1.000 0.084 0.025  0.008  0.993 1.545
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Table 14: Quantitative comparison of depth completion with baseline methods on the outdoor
scenes of the DIODE dataset |Vasiljevic et al.| (2019). Methods marked with { produce relative
depth maps, where the metric depth is recovered by optimizing global scale and shift via least
squares regression using the sparse depth prior. Methods marked with { use scenario-specific con-
figurations for indoor and outdoor scenes, respectively. The best and the second best results are
highlighted.

Method Virtual-Lidar-64-Lines Virtual-Lidar-32-Lines Virtual-Lidar-16-Lines
RMSE, MAE| REL| 61 Rk| RMSE| MAE| REL| 4 1 Rk] RMSE| MAE| REL| 4 1 Rk.|
DepthPro 9.539 7.635 0403  0.177 14750  9.539 7.635 0403  0.177 15250  9.539 7.635 0403  0.177  15.000
UniDepth V1 5.782 3.841 0.189  0.661 12.000 5.782 3.841 0.189  0.661 11750  5.782 3.841 0.189  0.661  11.750
UniDepth V2 11.145 8936 0515 0526 15750 11.145 8936 0515 0526 15750 11.145 8936 0515  0.526 15750
DepthAnythingV2}  5.786 2,626  0.118 0882  8.750 5.829 2649  0.118  0.880  8.750 5.881 2.670  0.121 0.879  8.750
VGGTt 4.739 2748 0227 0779 10750  4.743 2.761 0230 0779 10250  4.765 2758 0228 0780 10.250
MoGe VI 10.329  8.351 0396  0.603 14.500  9.455 7.366 0354  0.648  14.000  9.034 6.809 0317  0.685 12750
MoGe V2 4.807 3352 0.182  0.680 10.750  4.807 3352 0182  0.680 10.500  4.807 3352 0.182  0.680 10.750
G2-MonoDepthi 1.938 0489  0.039 0975  4.000 2.275 0.629  0.052 0967  4.500 2719 0.882  0.069 0950  5.000
OMNI-DC 1.899 0424  0.033 0977  3.000 2.196 0532 0.042 0970 3.250 2.659 0.738  0.056 0960  3.750
PriorDA 1.970 0.674  0.041 0.969  5.000 2.097 0.716  0.044  0.966  4.000 2.278 0.796  0.050  0.961 2.500
SPNet} 1.809 0419  0.032 0978 1.750 2.100 0518 0.039 0972 2250 2.536 0.715  0.054 0962  2.500
PromptDA 3.142 1.239  0.071 0.939  6.000 3316 1.336  0.077  0.931 6.000 3.579 1470  0.082 0925  6.000
WorldMirrort 4.103 2.166  0.147 0836  7.750 4.224 2248 0.151 0.832  8.250 4214 2214 0.147 0835  8.000
MapAnything 7.393 3444 0203 0.822 11750  8.873 4927 0299 0673 12750  9.705 5717 0318  0.560  14.000
Pow3R{ 3.859 2,169  0.179  0.834  8.250 3.910 2.193 0179 0835  7.750 3.957 2.193 0178 0.835  7.750
LDCM (Ours) 1.795 0.404  0.024 0978  1.000 2.010 0476  0.029 0974  1.000 2.280 0.603  0.036 0.967 1.250
Method Virtual-Lidar-8-Lines Virtual-Lidar-4-Lines 10% Noise
RMSE| MAE| REL| o0 T Rk., RMSE| MAE| REL| o T Rk., RMSE| MAE| REL| o T Rk.|
DepthPro 9.539 7.635 0403  0.177 15.000  9.539 7.635 0403  0.177  15.000  9.539 7.635 0403  0.177  14.500
UniDepth V1 5.782 3.841 0.189  0.661 11.750  5.782 3.841 0.189  0.661 11.000 5782 3.841 0.189  0.661  12.500
UniDepth V2 11.145 8936 0515 0526 15500 11.145 8936 0515 0.526 15500 11.145 8936  0.515  0.526  15.000
DepthAnythingV2{  5.911 2746 0.123 0875  8.750 6.421 2974  0.138 0855 6250 5778 2,655 0.119 0.881  9.500
VGGTt 4.836 2792 0227 0780 10.500  5.463 3182 0263 0.773  10.000  4.741 27753 0225 0789  11.000
MoGe V1 7.903 5.351 0270  0.744 12500  7.833 4104 0241 0798 11.500 12.694 10.609 0512  0.488 15500
MoGe V2 4.807 3352 0182  0.680 10.500  4.807 3352 0182  0.680  9.250 4.807 3352 0.182  0.680 11.250
G2-MonoDepthi 3.611 1467 0.099 0909  5.250 5910 3230 0204 0.698 10.750  0.876 0206 0.016 0992 2250
OMNI-DC 3.536 1.228  0.075 0935 3750 5.361 2.572  0.158  0.801 6.000 1.058 0222 0.017 0991 3.750
PriorDA 2.744 1.019  0.059 0949  2.000 4.068 1.731 0.106  0.877  2.000 1.957 0.769  0.041 0.971 5.000
SPNet} 3.286 1.148 0079 0939 3250 4.652 2.188  0.168  0.813  5.000 0.850 0.192  0.014  0.993 1.000
PromptDA 4.106 1.780  0.096  0.908  6.000 5.690 3.010 0.167  0.788  8.000 2.933 1207 0.068 0939  6.000
WorldMirror{ 4.360 2294 0150 0.830  8.250 4.724 2444 0151 0829 4250 3.049 1.525  0.112  0.891 7.250
MapAnything 10.595 6288  0.308 0520 14.500 10.993  6.991 0346 0343 14500 5.845 2.077 0122 0884  9.750
Pow3R{ 4.045 2239 0174 0.835  7.500 4.616 2.587  0.197  0.821 6.000 2.976 1723 0.144  0.861 8.750
LDCM (Ours) 2.679 0.823  0.045 0954  1.000 3418 1300  0.072 0913  1.000 1.052 0.222  0.014 0992 2.250
Method 3% 3% 1%
RMSE| MAE| REL| ot Rk., RMSE| MAE| REL| oy 1 Rk., RMSE| MAE| REL| ot Rk.|
DepthPro 9.539 7.635 0403 0177 14500  9.539 7.635 0403  0.177 14500  9.539 7.635 0403  0.177  13.500
UniDepth V1 5.782 3.841 0.189  0.661 12250  5.782 3.841 0.189  0.661 12250 5782 3.841 0.189  0.661  11.250
UniDepth V2 11.145 8936 0515 0526 15000 11.145 8936 0515 0.526 15000 11.145 8936 0515  0.526 14.250
DepthAnythingV2{  5.891 2,667  0.119  0.881 9.750 5.896 2.666  0.119  0.881 9.250 5.924 2.680  0.119  0.881 8.250
VGGTY 4.732 2.756 0228  0.781 11.000  4.732 2759 0229 0781 11.000  4.734 2758 0229  0.781  10.000
MoGe VI 12.548 10462 0.502  0.496 15500 12.131  10.042 0.480  0.519 15500 11.346 9323  0.441 0.558  14.250
MoGe V2 4.807 3352 0182  0.680 11250  4.807 3352 0182  0.680 11.000  4.807 3352 0.182  0.680 10.250
G2-MonoDepth{ 1.076 0.247  0.020 0989 2750 1.245 0.285  0.023 098  3.250 1.680 0402  0.032 0980  4.000
OMNI-DC 1.110 0224 0018 0989 2250 1.270 0.260  0.020 0987 2250 1.649 0.356  0.027  0.981 2.250
PriorDA 1.785 0.645  0.037 0974  5.000 1.805 0.645  0.038 0973  5.000 1.895 0.666  0.040 0970  5.000
SPNet} 1.029 0227  0.017 099 1500 1.187 0.258  0.020  0.988 1.250 1.566 0.349  0.027 0.982 1.250
PromptDA 2.941 1.210  0.070 0937  6.000 2.981 1.206  0.070 0938  6.000 3.090 1233 0.073 0935  6.000
WorldMirror{ 3.510 1.836 0.127  0.860  8.250 3.844 2.047  0.141 0.840  8.250 6.659 2.731 0.159  0.860  9.250
MapAnything 5.868 2.073  0.116 0895  8.750 6.099 2226  0.125 0.888  9.250 3.796 2152 0.180  0.833  8.000
Pow3R{ 3.365 1.997  0.174  0.823 8750 3.586 2105  0.183  0.822  9.000 1.645 0360  0.022  0.981 2.000
LDCM (Ours) 1.209 0255  0.016 0989 2750 1.348 0.285  0.018 0987 2500 1.645 0.360  0.022  0.981  2.000
Method SIFT ORB Average
RMSE| MAE| REL| & 1 Rk] RMSE| MAE| REL, 4,7 RkJ RMSE, MAE| REL| & 1 Rk|
DepthPro 9.539 7.635 0403  0.177 14500  9.539 7.635 0403  0.177 14500  9.539 7.635 0403  0.177 14.636
UniDepth V1 5.782 3.841 0.189  0.661 11.750  5.782 3.841 0.189  0.661 11500  5.782 3.841 0.189  0.661  11.795
UniDepth V2 11.145 8936 0515 0526 15250 11.145 8936 0515 0.526 15000 11.145 8936 0515  0.526 15250
DepthAnythingV2t  5.948 3.043  0.133 0836  8.750 6.079 3.170  0.136  0.827  8.500 5.940 2777  0.124 0869  8.659
VGGT 5.102 3192 0256 0739  11.000 5296 3368 0267  0.728 10.750  4.898 2.893 0237 0772 10.591
MoGe V1t 11377 9519 0472 0535 15250 11.684 9.807 0.485 0.518 15500 10.576 8340  0.406  0.599  14.250
MoGe V2 4.807 3352 0.182  0.680 10250  4.807 3352 0182  0.680  9.500 4.807 3352 0.182  0.680 10477
G2-MonoDepthi 2.335 0.800  0.060 0945 4750 2.659 0.984  0.068 0927  5.000 2.393 0.875  0.062 0938  4.682
OMNI-DC 2.201 0.608  0.040 0966  3.000 2.606 0.824  0.049 0951 3.500 2.322 0726  0.049 0955 3.341
PriorDA 2.220 0.803  0.046 0964 4250 2.587 0.979  0.054 0952  3.500 2310 0.858  0.051 0.957  3.932
SPNet} 1.983 0.549  0.038 0970 1750 2.223 0.678  0.044  0.961 1.750 2.111 0.658  0.048 0959 2114
PromptDA 3.705 1,572 0.083 0915  6.000 4.159 1911  0.102 0.882  6.000 3.604 1.561  0.087 0912  6.182
WorldMirrort 4.426 2477  0.166 0802  7.750 5.995 3.501 0209  0.696 11250  4.464 2317 0.151 0.828  8.045
MapAnything 7.718 3,593 0208 0797 11500  7.540 3316 0.183  0.821 9.750 7.675 3.891 0219 0731 11.318
Pow3R{ 4.236 2.551 0214 0802  8.750 4.308 2.634 0213 0792 8750 3.682 2.068  0.169  0.840  7.568
LDCM (Ours) 1.984 0491  0.028 0974 1.250 2.234 0.603  0.034 0965 1.250 1.969 0.529  0.031 0970 1.568
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Table 15: Quantitative comparison of depth completion with baseline methods on the iBims-1
dataset [Koch et al.|(2018). Methods marked with { produce relative depth maps, where the metric
depth is recovered by optimizing global scale and shift via least squares regression using the sparse
depth prior. Methods marked with I use scenario-specific configurations for indoor and outdoor

scenes, respectively. The best and the second best results are highlighted.

Method 10% Noise 5% 3%
RMSE| MAE| REL] o1 T Rk.| RMSE| MAE| REL| o1 Rk.} RMSE| MAE| REL| 6T Rk.|
DepthPro 0.605 0503  0.156  0.829 13.750  0.605 0.503  0.156  0.829 13.750  0.605 0.503  0.156  0.829  13.750
UniDepth V1 1.166 1.082 0370  0.236  16.000  1.166 1.082 0370 0236 16.000  1.166 1.082 0370 0236  16.000
UniDepth V2 0.446 0.321 0.100 0935 12500  0.446 0.321 0.100 0935 12500  0.446 0.321 0.100  0.935 12.500
DepthAnythingV2{  0.332 0.169  0.041 0.980  8.750 0.347 0.172  0.041 0978  9.250 0.348 0.172  0.041 0978  9.250
VGGTY 0.339 0.178  0.048 0965 10.750  0.337 0.176  0.047 0964 10.500  0.337 0.176  0.047  0.964 10.750
MoGe VI 0.234 0.117  0.034 0985  7.000 0.231 0.110  0.031 0985  7.000 0.231 0.110  0.031 0.985  7.000
MoGe V2 0.633 0.540  0.156  0.707  14.500  0.633 0.540  0.156  0.707  14.500  0.633 0.540  0.156  0.707  14.500
G2-MonoDepth{ 0.106 0.023  0.006 0996  2.000 0.118 0.026  0.007 0995  3.500 0.131 0.029 0.008 0995 3.250
OMNI-DC 0.142 0.031 0.008  0.994  4.000 0.111 0.020  0.005 0.99  1.000 0.124 0.023  0.006  0.995 1.000
PriorDA 0.151 0.052 0014 0993  5.000 0.142 0.043  0.011 0.993  5.000 0.146 0.044 0012 0993  5.000
SPNet} 0.102 0.020  0.005 0996  1.000 0.112 0.022 0006 099  1.750 0.126 0.025  0.006  0.995 1.750
PromptDA 0.191 0.077  0.022 0988  6.000 0.192 0.076  0.021 0988  6.000 0.196 0.079  0.022 0987  6.000
WorldMirror{ 0.285 0.174 0052 0976 10.000  0.298 0.169  0.047 0978  9.000 0.305 0.160  0.043 0975  8.500
MapAnything 0.934 0317  0.086 0917 13.000 0.921 0303  0.080  0.925 13.000  0.925 0312 0.082 0925 13.000
Pow3R{ 0.272 0.156  0.044 0977  8.500 0.292 0.157 0043 0972 8750 0.310 0.161 0.043 0972 9.250
LDCM (Ours) 0.113 0.022  0.006 0.99  2.000 0.120 0.023  0.006 0.995 3.000 0.127 0.024  0.006 0.995 1.750
Method 1% 500 100
RMSE, MAE| REL| & 1 Rk., RMSE| MAE| REL| & 1 Rk., RMSE|, MAE| REL| 4 1 Rk.|
DepthPro 0.605 0503  0.156  0.829 13.750  0.605 0.503  0.156  0.829 13.750  0.605 0.503  0.156  0.829  13.750
UniDepth V1 1.166 1.082 0370 0236 16.000 1.166 1.082 0370 0236 16.000  1.166 1.082 0370 0236  16.000
UniDepth V2 0.446 0.321 0.100 0935 12500  0.446 0321 0.100 0935 12.000 0.446 0.321 0.100  0.935  12.000
DepthAnythingV2}  0.352 0.173  0.041 0978  9.250 0.381 0.179  0.042 0978  9.250 0.381 0.183 0.042 0976  8.500
VGGTt 0.337 0.177  0.047 0964 10.750  0.338 0.181 0.048 0961 10250  0.341 0.183  0.049 0959  9.500
MoGe V1t 0.231 0.110  0.031 0.985  7.000 0.232 0.111 0.032 0985  6.500 0.236 0.112  0.032 0984  4.000
MoGe V2 0.633 0.540  0.156 0707 14.500  0.633 0.540  0.156  0.707 14.500  0.633 0.540  0.156  0.707  14.500
G2-MonoDepthi 0.160 0.040 0010 0992 4250 0.232 0.073  0.019 0986  5.000 0.357 0.178  0.053  0.960  10.000
OMNI-DC 0.148 0.030  0.008 0993  2.000 0.188 0.050  0.013 0989 2500 0.265 0.096  0.025 0979 4250
PriorDA 0.156 0.047 0013 0992 4250 0.179 0.057  0.015  0.991 2.750 0.211 0.077  0.020  0.988 1.750
SPNet} 0.156 0.034  0.008 0993 2500 0.211 0.055  0.014 0988  3.500 0.270 0.092  0.023 0981 3.750
PromptDA 0.205 0.084  0.023 0988  6.000 0.237 0.101  0.027 0986  6.000 0.338 0.153  0.040 0975  6.250
WorldMirror{ 0.326 0.160  0.042 0971 8.750 0.342 0.168  0.043 0971 9.250 0.347 0.172  0.044 0968  8.750
MapAnything 0.923 0317  0.083 0924 13.000 0.992 0407  0.123  0.893 13.500  1.057 0454 0.125 0900 13.500
Pow3Rt 0.332 0.164  0.042 0972  9.000 0.343 0.166 0043 0972 9.000 0.346 0.167  0.042 0969  7.500
LDCM (Ours) 0.142 0.029  0.007 0994 1.000 0.169 0.041  0.011 0991  1.000 0.202 0.061  0.015 0.988  1.000
Method SIFT ORB Virtual-Lidar-32-Lines
RMSE| MAE| REL| ot Rk., RMSE| MAE| REL| o T Rk., RMSE| MAE| REL| ot Rk.|
DepthPro 0.605 0503  0.156  0.829 13.750  0.605 0.503  0.156  0.829 13.750  0.605 0.503  0.156  0.829  13.750
UniDepth V1 1.166 1.082 0370  0.236  16.000  1.166 1.082 0370 0236 16.000  1.166 1.082 0370 0236  16.000
UniDepth V2 0.446 0.321 0.100 0935 11250  0.446 0.321 0.100 0935  9.750 0.446 0.321 0.100 0935 12.250
DepthAnythingV2{  0.321 0.185  0.048 0972 5750 0.334 0.198  0.052 0963  4.750 0.373 0.206  0.049 0969  10.500
VGGTt 0.388 0256 0.073 0933 10.750  0.399 0270 0.077 0930  8.750 0.337 0.178  0.048 0963 10.250
MoGe VI 0.257 0.151 0.048 0967  4.750 0.270 0.165  0.053 0957  4.500 0.231 0.110  0.031 0985  6.500
MoGe V2 0.633 0.540  0.156  0.707  14.500  0.633 0.540  0.156  0.707 14.500  0.633 0.540  0.156  0.707  14.500
G2-MonoDepth{ 0.338 0.197  0.065  0.923  9.000 0.376 0230  0.076  0.903  8.000 0.193 0.057  0.015 0990  3.000
OMNI-DC 0.260 0.119  0.036 0960  4.750 0.313 0.166  0.054 0925 6250 0.160 0.036  0.010  0.992 1.000
PriorDA 0.180 0.076  0.022 0989  2.000 0.216 0.103  0.032 0982  2.000 0.201 0.088  0.021 0983  5.500
SPNet} 0.224 0.096  0.028  0.981 3.000 0.264 0.129  0.041  0.961 3.250 0.173 0.040  0.010  0.992 1.500
PromptDA 0.317 0.182  0.053 0948  6.500 0.394 0244  0.072 0903  8.250 0.209 0.086  0.024 098  5.250
WorldMirror{ 0.382 0236 0.066  0.940 8750 0.567 0380  0.103  0.897 12.000 0.336 0.161 0.041 0.972  8.000
MapAnything 0.977 0.408  0.115 0901  13.500  1.002 0427  0.122  0.896 13.500  0.973 0365  0.098 0912 13250
Pow3R{ 0.394 0254 0.069 0934 10250 0411 0.274  0.078 0935  9.000 0.336 0.170  0.044 0969  8.750
LDCM (Ours) 0.170 0.0s3  0.015 0991 1.000 0.186 0.067  0.020  0.989  1.000 0.196 0.076  0.018  0.983  4.500
Method Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines Average
RMSE| MAE| REL| 6 1 Rk., RMSE| MAE| REL| 4,1 Rk., RMSE| MAE| REL| 4 1 Rk.|
DepthPro 0.605 0503  0.156  0.829 13.750  0.605 0.503  0.156  0.829 13.750  0.605 0.503  0.156  0.829 13.750
UniDepth V1 1.166 1.082 0370 0236 16.000  1.166 1.082 0370 0236 16.000  1.166 1.082 0370 0236  16.000
UniDepth V2 0.446 0.321 0.100 0935 12.000  0.446 0.321 0.100 0935 12.000  0.446 0.321 0.100 0935 11.932
DepthAnythingV2{  0.333 0.166  0.040 0978 8250 0.336 0.166  0.040 0979  7.750 0.349 0.179  0.043 0975 8295
VGGTt 0.338 0.179  0.048 0963 10.750  0.339 0.180  0.048 0962 10.500  0.348 0.194  0.053 0957 10318
MoGe VI 0.232 0.111 0.032 0985  7.000 0.233 0.111 0.032 0984 5250 0.238 0.120  0.035  0.981 6.045
MoGe V2 0.633 0540  0.156 0707  14.500  0.633 0.540  0.156  0.707 14.500  0.633 0.540  0.156  0.707  14.500
G2-MonoDepth{ 0.216 0.070  0.018 0987 5250 0.273 0.109  0.029 0978  6.250 0.227 0.094  0.028 0973 5409
OMNI-DC 0.176 0.046  0.012 099  2.500 0.225 0.075  0.021 0.984  3.000 0.192 0.063  0.018 0982 2932
PriorDA 0.169 0.056  0.015 0991  3.000 0.187 0.070  0.019  0.990  2.000 0.176 0.065  0.018 0990  3.477
SPNet} 0.198 0.052 0013 0989  3.500 0.241 0.080  0.021 0984  3.750 0.189 0.059 0016 0987  2.659
PromptDA 0.217 0.090 0.025 0988 5750 0.242 0.109  0.030 0984  5.000 0.249 0.116 0033 0975  6.091
WorldMirror{ 0.337 0.162  0.042 0971 8.750 0.342 0.168  0.043 0970  9.500 0.352 0.192  0.051 0.963  9.205
MapAnything 0.972 0394  0.113 0901 13.500  0.975 0410  0.117 0910 13.500  0.968 0.374  0.104 0909 13295
Pow3R{ 0.342 0.169  0.043 0971 10.000  0.343 0.170  0.044 0971  10.000  0.338 0.183  0.049 0965  9.091
LDCM (Ours) 0.165 0.039 0.010 0992 1.000 0.181 0.050 0.013 0991  1.000 0.161 0.044  0.012 0991 1.659
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Table 16: Quantitative comparison of depth completion with baseline methods on the indoor
scenes of the ETH3D dataset Schops et al.| (2017). Methods marked with  produce relative depth
maps, where the metric depth is recovered by optimizing global scale and shift via least squares
regression using the sparse depth prior. Methods marked with { use scenario-specific configurations

for indoor and outdoor scenes, respectively. The best and the second best results are highlighted.

Method 10% Noise 5% 3%
RMSE, MAE| REL| & 1 Rk., RMSE| MAE| REL| & 1 Rk., RMSE|, MAE| REL| 4 1 Rk.|
DepthPro 0.831 0.670  0.192  0.705 14.750  0.831 0.670  0.192  0.705  14.500  0.831 0.670  0.192  0.705  14.500
UniDepth V1 2.549 2330  0.695 0.071 16.000  2.549 2330 0.695 0.071 16.000  2.549 2330  0.695 0.071 16.000
UniDepth V2 0.660 0562  0.169 0799 13250  0.660 0562 0.169  0.799 13250  0.660 0562  0.169 0799  13.250
DepthAnythingV2{  0.808 0203 0.037 0989 10.000 1.017 0.220  0.038 0988 10.500  1.002 0220  0.038 0988 10.750
VGGTt 0.391 0.199 0049 0966 10250  0.386 0.201 0.050 0959 11.000  0.386 0.202  0.050 0959 10.500
MoGe V1 0.214 0.122  0.031 0.995  7.000 0.204 0.114  0.028 0995  7.000 0.204 0.114  0.028 0994  7.000
MoGe V2 0.542 0419  0.117 0784 12750  0.542 0419  0.117 0784 12750  0.542 0419 0117 0784 12750
G2-MonoDepthi 0.055 0.011 0.002  1.000  2.000 0.062 0.012  0.002 1.000  2.750 0.076 0.014  0.003 1.000  3.000
OMNI-DC 0.116 0.017  0.003 0999 4250 0.052 0.006  0.001 1.000  1.250 0.063 0.008  0.002 1.000 1.250
PriorDA 0.110 0.040  0.008  0.999  4.500 0.090 0.026  0.006  0.999  5.000 0.093 0.027  0.006 0999 4750
SPNet} 0.076 0.010  0.001 1.000  1.750 0.080 0.010  0.001 1.000 2250 0.101 0.013  0.002 1.000  2.500
PromptDA 0.173 0.076  0.018 0996  6.000 0.148 0.067  0.017 099  6.000 0.159 0.071 0.019 0995  6.000
WorldMirrort 0.328 0.197  0.050 0984  9.500 0.280 0.154  0.038 0992  8.000 0.261 0.141 0.035  0.991 8.000
MapAnything 1.076 0272 0055 0951 12750  1.039 0.248  0.046 0962 12250  1.083 0.271 0.051 0.958  12.750
Pow3Rt 0.323 0.192  0.044 0980 8750 0.309 0.180  0.043 0975  9.500 0.286 0.159  0.038 0980 9250
LDCM (Ours) 0.046 0.009  0.002 1.000 1.250 0.051 0.009  0.002 1.000 1.750 0.058 0.009  0.002 1.000 1.250
Method 1% 500 100
RMSE| MAE| REL| o0t Rk., RMSE| MAE| REL| o T Rk., RMSE| MAE| REL| ot Rk.|
DepthPro 0.831 0.670  0.192 0705 14.500  0.831 0.670  0.192  0.705 14.500  0.831 0.670  0.192  0.705  14.250
UniDepth V1 2.549 2330  0.695 0071 16.000  2.549 2330  0.695  0.071 16.000  2.549 2330  0.695  0.071  16.000
UniDepth V2 0.660 0562  0.169 0799 13250  0.660 0562 0.169 0799 13250  0.660 0562  0.169  0.799  13.000
DepthAnythingV2{  1.016 0.221 0.038 0987 11.000  1.016 0.220  0.038 0987 11.000  1.006 0222 0.038 0987 10.250
VGGTt 0.387 0203  0.050 0959 10.500  0.389 0.200  0.050 0962 10.500  0.398 0.198  0.048 0965 10.250
MoGe VI 0.205 0.114  0.028 0994  7.000 0.206 0.114  0.028 0995  6.000 0.214 0.118  0.029 0995  3.750
MoGe V2 0.542 0419  0.117 0784 12750  0.542 0419  0.117  0.784 12250  0.542 0419 0117 0784 12250
G2-MonoDepth{ 0.118 0.024  0.005 0999 3250 0215 0.061 0.012 0997  5.000 0.443 0.190  0.045 0972  9.750
OMNI-DC 0.089 0.012 0002 0999 1250 0.153 0.031  0.006  0.998  2.500 0.309 0.089  0.017 0992 4750
PriorDA 0.103 0.029  0.006 0999  3.500 0.133 0.037  0.007 0999 2500 0.222 0.064 0012 0997 2250
SPNet} 0.145 0.020 0.003 0999  3.000 0.223 0.039 0006 0.998  3.750 0.323 0.085  0.015 099 4250
PromptDA 0.188 0.078  0.019 0995  6.000 0.268 0.106  0.025 0990  7.000 0.396 0.154  0.033 0987  7.500
WorldMirror{ 0.241 0.125  0.031 0.992  8.000 0.234 0.121 0.029 0992  7.500 0.246 0.127  0.031 0.992 5250
MapAnything 1.162 0333 0.068 0945 12750  1.390 0.549  0.144 0873 13250 1.676 0702 0.149 0876 13.750
Pow3R{ 0.279 0.146  0.034 0984 9250 0.287 0.145  0.034 0985 9250 0.298 0.150  0.035 0982 7250
LDCM (Ours) 0.074 0.012  0.002 0999 1.000 0.106 0.021  0.004 0999 1.000 0.157 0.041  0.008 0.998 1.000
Method SIFT ORB Virtual-Lidar-32-Lines
RMSE, MAE| REL| & 1 Rk., RMSE, MAE| REL| 4 1 Rk, RMSE| MAE| REL| 4,1 Rk.}
DepthPro 0.831 0.670  0.192 0705 14.750  0.831 0.670  0.192  0.705 14.750  0.831 0.670  0.192  0.705  14.500
UniDepth V1 2.549 2330  0.695 0.071 16.000  2.549 2330 0.695 0.071 16.000  2.549 2330  0.695 0071 16.000
UniDepth V2 0.660 0562  0.169  0.799  13.500  0.660 0562  0.169  0.799  13.500  0.660 0562 0.169 0799 13250
DepthAnythingV2t  0.436 0.179  0.040 0990  6.500 0.396 0.183  0.042 0990  5.000 0.918 0206  0.037 0989 10.750
VGGTt 0.416 0242 0.068 0937 10.000 0.441 0.277  0.084 0911 10.500  0.387 0.209  0.053 0953 10.750
MoGe V1t 0.228 0.141 0.040 0978  4.500 0.250 0.164  0.048 0965  4.750 0.205 0.115  0.029 0993  7.000
MoGe V2 0.542 0419  0.117 0784 12500  0.542 0419  0.117 0784 12750  0.542 0419  0.117 0784  12.500
G2-MonoDepthi 0.435 0234 0076 0910 10.500  0.440 0.237 0077 0914 9250 0.158 0.048  0.009 0998 4750
OMNI-DC 0.248 0.114  0.035 0966  5.000 0.284 0.144 0045 0954  5.000 0.107 0.017  0.003  0.999 1.500
PriorDA 0.189 0.084  0.028 0984 2250 0.227 0.108 0.033 0980 2250 0.111 0.030  0.006 0999  3.000
SPNet} 0.287 0.108  0.031 0.981 4.000 0.308 0.127 0036 0974  3.750 0.164 0.026  0.004 0999  3.000
PromptDA 0.352 0205  0.055 0951 8.750 0.367 0.221 0061 0938  7.750 0.182 0.076  0.018 0997  6.000
WorldMirrort 0.279 0.171 0.046 0978  6.000 0.494 0.319  0.081 0936 10250  0.233 0.122  0.030 0992  8.000
MapAnything 1.427 0545  0.129 0.889 13250 1353 0485  0.114 0907 13.000 1330 0460  0.108 0910 13.000
Pow3Rt 0.311 0.174  0.045 0975  7.000 0.341 0.209  0.055  0.961 6.500 0.283 0.151 0.036 0979  9.250
LDCM (Ours) 0.127 0.045  0.012 0995 1.000 0.139 0.056 0.016 0.996  1.000 0.087 0.014  0.003 0.999  1.000
Method Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines Average
RMSE| MAE| REL| ot Rk., RMSE| MAE| REL| o T Rk., RMSE| MAE| REL| ot Rk.|
DepthPro 0.831 0.670  0.192 0705 14.500  0.831 0.670  0.192  0.705 14.500  0.831 0.670  0.192  0.705  14.545
UniDepth V1 2.549 2330  0.695 0071 16.000  2.549 2330  0.695  0.071 16.000  2.549 2330  0.695  0.071  16.000
UniDepth V2 0.660 0562  0.169 0799 13250  0.660 0562 0.169 0799 13250  0.660 0562 0.169 0799 13273
DepthAnythingV2{  0.924 0206  0.037 0989 10.750  0.889 0.203  0.037 0988 10.500  0.857 0.208  0.038 0988  9.727
VGGTt 0.387 0207  0.053 0954 10.750  0.393 0.218  0.056 0949 10.750  0.396 0214 0056 0952 10.523
MoGe VI 0.206 0.117 0029 0993  6.750 0.209 0.121  0.030 0990 5250 0.213 0.123  0.032 0990  6.000
MoGe V2 0.542 0419  0.117 0784 12250  0.542 0419  0.117  0.784 12500  0.542 0419 0117 0784 12545
G2-MonoDepthi 0.202 0.060 0012 0997 4750 0.315 0.126  0.027 0990  6.500 0.229 0.092  0.025 0980 5591
OMNI-DC 0.139 0.028  0.006 0998  2.500 0.223 0.061 0.013  0.995  3.000 0.162 0.048  0.012  0.991 2.932
PriorDA 0.129 0.039  0.008 0.999 2500 0.166 0.059  0.013  0.997  2.000 0.143 0.049  0.012 099  3.136
SPNet} 0.202 0.041 0.007 0998  3.500 0.285 0.094 0019 099  4.500 0.199 0.052 0011 099  3.295
PromptDA 0.233 0.090  0.021 0.994 6250 0.289 0.120  0.028 0990  5.750 0.250 0.115  0.029 0984  6.636
WorldMirror{ 0.234 0.122  0.030 0992  8.000 0.242 0.131  0.032 0988 7250 0.279 0.157  0.039 0984  7.795
MapAnything 1.323 0520 0.133  0.890 13250  1.325 0487  0.115 0908 13.000  1.289 0443 0.101 0.915  13.000
Pow3R{ 0.291 0.148  0.034 0982 9250 0.289 0.156  0.036 0978  8.750 0.300 0.165  0.039 0978  8.545

LDCM (Ours) 0.104 0.020  0.004 0999 1.000 0.136 0.034  0.007 0.998 1.000 0.099 0.025  0.006 0.998 1.114
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Table 17: Quantitative comparison of depth completion with baseline methods on the outdoor
scenes of the ETH3D dataset Schops et al. (2017). Methods marked with  produce relative depth
maps, where the metric depth is recovered by optimizing global scale and shift via least squares
regression using the sparse depth prior. Methods marked with 1 use scenario-specific configurations

for indoor and outdoor scenes, respectively. The best and the second best results are highlighted.

Method Virtual-Lidar-64-Lines Virtual-Lidar-32-Lines Virtual-Lidar-16-Lines
RMSE| MAE| REL] o1 T Rk.| RMSE| MAE| REL| o1 Rk.} RMSE| MAE| REL| 6T Rk.|
DepthPro 5.567 4454 0411 0.248 15500  5.567 4454 0411 0248 15500  5.567 4454 0411 0248  15.500
UniDepth V1 4.414 4.009 0463  0.160 15500 4.414 4.009 0463  0.160 15500 4414 4.009 0463  0.160  15.500
UniDepth V2 2.600 1775 0230  0.652  13.500  2.600 1.775 0230  0.652 13.500  2.600 1775 0230  0.652  13.250
DepthAnythingV2{  3.443 0.648  0.058 0972 10.000  3.361 0.641 0057 0973 10.000  3.757 0.673  0.059 0972  10.000
VGGTY 0.650 0383 0.056  0.957  9.000 0.651 0382  0.056  0.957  9.000 0.653 0384  0.056 0957  8.500
MoGe VI 2.554 1.190  0.143  0.876 12500  2.561 0.801 0.124 0899 11250  3.301 0752 0.111 0.921  11.500
MoGe V2 1.152 0.819 0.111 0.893 11.250 1.152 0.819 0.111 0.893 11.250 1.152 0.819 0.111 0.893 11.250
G2-MonoDepth{ 0.308 0.068  0.011 0.996  4.500 0.442 0.111 0.017 0992  4.750 0.610 0.175  0.027 0985 4750
OMNI-DC 0.234 0.035  0.004 0997  2.000 0.281 0.050  0.006  0.997  2.000 0.354 0.085  0.010 0995 2250
PriorDA 0.267 0.083  0.010  0.996  4.000 0.291 0.090  0.0I11 099  3.500 0.334 0.111  0.014 0995 2500
SPNet} 0.289 0.042  0.005 0998 2750 0.474 0.070  0.008  0.996  3.500 0.671 0.123 0015 0993  5.000
PromptDA 0.935 0355  0.044 0964 7250 0.972 0365  0.045  0.961 7.750 1.030 0.371 0.041 0.970  7.500
WorldMirror{ 0.584 0327  0.048 0963  6.750 0.631 0352 0.050 0958 7250 0.647 0362  0.052 0955 7.750
MapAnything 2.781 0994 0109 0.897 11.750  2.804 1.092  0.126  0.885 13.000 2814 1.191 0.148  0.865 12.750
Pow3R{ 0.637 0.361 0.053 0958  8.000 0.636 0.344 0050 0964  6.750 0.634 0.337  0.050 0962  6.500
LDCM (Ours) 0.204 0.033  0.004 0.998  1.000 0.246 0.042  0.005 0.998  1.000 0.294 0.059  0.007 0.997 1.000

Method Virtual-Lidar-8-Lines Virtual-Lidar-4-Lines 10% Noise

RMSE, MAE| REL| & 1 Rk., RMSE| MAE| REL| 4 1 Rk, RMSE| MAE| REL| 4,7 Rk.}
DepthPro 5.567 4454 0411 0.248 15500  5.567 4454 0411 0248 15500  5.567 4.454 0411 0.248  15.500
UniDepth V1 4414 4.009 0463 0160 15500 4414 4.009 0463 0160 15250 4414 4.009 0463  0.160  15.500
UniDepth V2 2.600 1.775 0230  0.652 13250  2.600 1.775 0230  0.652 13250  2.600 1.775 0230  0.652  13.750

DepthAnythingV2}  3.392 0.642 0.059 0.971 9.250 3.319 0.608 0.063  0.963 6.000 3.052 0.620  0.057 0972 10.000
0.670 0.393 0.058 0.953 7.000 0.742 0.463 0.074 0926  4.500 0.661 0.387 0.054  0.965 7.000

MoGe V1t 3.993 0.707 0.097 0.941 11.500  4.979 0.539  0.097  0.948 8.000 2.184 1702 0.183 0.838  12.500
MoGe V2 1.152 0.819 0.111 0.893  11.250 1.152 0.819  0.111 0.893 8.750 1.152 0.819  0.111 0.893  11.500
G2-MonoDepthi 1.005 0.409 0.057 0.954  7.000 1.862 1117 0.171 0.774 11750 0.128 0.031 0.004  0.999 3.250
OMNI-DC 0.594 0.221 0.025 0.983 3.000 1.282 0.751 0.095 0.888 8.500 0.177 0.028 0.003 0.999 3.000
PriorDA 0.489 0.181 0.022 0989  2.000 1.071 0.559  0.090 0.896  6.250 0.280 0.113 0.012  0.997 5.000
SPNet} 1.104 0.327 0.045 0970  5.250 2.088 0.898  0.134  0.856 11.000  0.110 0.019  0.002 1.000 1.000
PromptDA 1.311 0.492 0.057 0.952 8.500 1.372 0.749  0.092  0.902 7.500 0.912 0.423 0.049  0.962 8.250
WorldMirror{ 0.715 0.406 0.057 0.941 7.250 0.732 0.436  0.071 0919  4.000 0.694 0.404  0.056 0972  7.250
MapAnything 2917 1.231 0.145 0.867 12.750  3.036 1.401 0.153 0.866  12.000  2.189 0.653 0.079 0921 11.250
Pow3Rt 0.645 0.333 0.050 0962  5.000 0.712 0.390 0.063  0.933 2.500 0.658 0.415 0.056  0.960 8.000
LDCM (Ours) 0.420 0.107  0.012  0.994 1.000 0.551 0.229  0.029  0.986 1.000 0.116 0.023  0.002  0.999 1.750
Method 5% 3% 1%
RMSE| MAE| REL| o0t Rk.] RMSE| MAE| REL] o T Rk.] RMSE| MAE| REL] o T Rk.|
DepthPro 5.567 4454 0411 0.248 15500  5.567 4454 0411 0248 15500  5.567 4454 0411 0.248  15.500
UniDepth V1 4.414 4.009 0.463 0.160 15500  4.414 4.009  0.463 0.160 15500  4.414 4.009 0463 0.160  15.500
UniDepth V2 2.600 1.775 0230  0.652  13.750  2.600 1.775 0230  0.652 13.750  2.600 1.775 0230  0.652  13.750
DepthAnythingV2{  3.707 0.672 0.059 0971 10250  3.746 0.673 0.060 0971 10.250  3.769 0.668 0.060  0.971  10.000
VGGT} 0.649 0.382 0.056 0959  7.750 0.649 0382 0.056  0.959 7.250 0.650 0.382  0.055 0.959 8.250
MoGe VI 2.057 1.574  0.177 0.838 12500  2.151 1342 0.157 0858 12500  2.139 0.940  0.134  0.884  12.500
MoGe V2 1.152 0.819 0.111 0.893  11.500 1.152 0.819  0.111 0.893  11.500 1.152 0.819  0.111 0.893  11.500
G2-MonoDepth{ 0.156 0.036 0.005 0.999 3.250 0.202 0.044  0.006 0.998 3.750 0.367 0.079  0.012  0.995 4.500
OMNI-DC 0.155 0.020  0.002  0.999 1.500 0.190 0.025 0.003  0.998 2.000 0.255 0.041 0.005 0.997 2.000
PriorDA 0.242 0.079 0.009 0.997 5.000 0.253 0.080  0.009  0.997 5.000 0.281 0.086  0.010  0.996  4.000
SPNet} 0.143 0.022  0.003 0.999 1.500 0.182 0.028  0.003  0.999 1.750 0.383 0.052 0.006  0.997 3.250
PromptDA 0.817 0.307 0.038 0.966  7.000 0.837 0.311 0.039  0.968 7.000 0.956 0344  0.043 0.966  7.000
WorldMirror{ 0.773 0.415 0.055 0.962 8.000 0.761 0.418  0.056  0.953 8.750 0.699 0.386  0.053 0.953 8.750
MapAnything 2.116 0.593 0.067 0934  11.000  2.243 0.661 0.074 0927 11.000 2451 0.817 0.094 0911 11.250
Pow3R{ 0.644 0.391 0.056  0.955 8.000 0.650 0.383 0.054 0958 7.750 0.634 0.346  0.051 0.963 7.000
LDCM (Ours) 0.146 0.025  0.003 0.999  2.000 0.168 0.027  0.003  0.999 1.250 0.225 0.037  0.004  0.998 1.000
Method SIFT ORB Average
RMSE| MAE| REL| o1 T Rk.] RMSE| MAE| REL| ot Rk.] RMSE| MAE| REL] 61T Rk.|
DepthPro 5.567 4454 0411 0.248 15500  5.567 4.454 0411 0248 15500  5.567 4454 0411 0.248  15.500
UniDepth V1 4.414 4.009 0.463 0.160 15250 4.414 4.009  0.463 0.160 15500  4.414 4.009  0.463 0.160 15455
UniDepth V2 2.600 1.775 0.230  0.652 13250  2.600 1.775 0230  0.652  13.500  2.600 1.775 0230  0.652  13.500
DepthAnythingV2f  2.613 0.597 0.060  0.964 8.250 2415 0.603 0.062 0954  7.500 3.325 0.640  0.059 0969  9.227
VGGTt 0.727 0.486 0.080 0913 8.500 0.823 0.582  0.101 0.897 7.750 0.684 0.419  0.064 0946  7.682
MoGe VI 4.949 0.572 0.106 0946  10.500  3.109 0.622  0.116  0.894 11250  3.089 0.976  0.131 0.895  11.500
MoGe V2 1.152 0.819 0.111 0.893  11.500 1.152 0819  0.111 0.893  10.000 1.152 0.819  0.111 0.893  11.023
G2-MonoDepthi 0.924 0.398 0.077 0.918 8.000 0.885 0.404  0.077 0920  6.250 0.626 0.261 0.042  0.957 5.614
OMNI-DC 0.487 0.177  0.026  0.978 2.750 0.594 0232 0.033  0.968 3.250 0.418 0.151 0.019 0982 2932
PriorDA 0.421 0.172  0.026  0.980  2.000 0.510 0218  0.033 0975 2.000 0.404 0.161 0.022  0.983 3.750
SPNet} 0.826 0.221 0.034 0974 4750 0.761 0.231 0.037 0971 3.750 0.639 0.185 0.027 0.978 3.955
PromptDA 1.076 0.492 0.062 0.938 7.750 1.184 0.583 0.076  0.905 7.750 1.037 0.436  0.053 0950  7.568
WorldMirror{ 0.730 0460  0.072 0920  7.500 1.491 0.935 0.123 0.836 11750  0.769 0.446  0.063 0939  7.727
MapAnything 2.796 1.145 0.143 0.869  13.000 2.617 0989  0.124  0.884 12.750  2.615 0979  0.115 0.893  12.045
Pow3R{ 0.686 0414 0.068 0.933 6.250 0.727 0.474  0.080  0.906  6.250 0.660 0.381 0.057 0.950 6.545
LDCM (Ours) 0.316 0.089  0.012  0.995 1.000 0.333 0.101 0.013  0.992 1.000 0.274 0.070  0.009  0.996 1.182
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Table 18: Quantitative comparison of point map estimation with baseline methods on the
KITTI dataset (Geiger et al.| (2012); [Uhrig et al. (2017). Methods marked with I use scenario-
specific configurations for indoor and outdoor scenes, respectively. The best and the second-best
results are highlighted.

Method Lidar-64-Lines Lidar-32-Lines Lidar-16-Lines
MAE’| RMSE’| REL’| 4’1 Rk) MAE’| RMSE’| REL’| &'t Rk), MAE’| RMSE’| REL’| &1 Rkl
UniDepth V1 2.207 3.540 0.120 0954 7750 2207 3.540 0.120 0954 7750 2207 3.540 0.120 0954 7750
UniDepth V2 1.813 3.540 0.096 0961  7.000 1.813 3.540 0.096 0961  7.000 1.813 3.540 0.096 0961  7.000
MoGe V2 3.536 4.899 0208 0484  9.000  3.536 4.899 0208 0484  9.000  3.536 4.899 0208 0484  9.000
G2-MonoDepthf 1.224 2.183 0.079 0.984 4.000 1.267 2.346 0.080 0.983 3.750 1.386 2.665 0.083 0.979 4.000
OMNI-DC 1.134 1777 0.071 0.992 2.000 1.198 1.983 0.074 0.988 2.000 1.278 2.231 0.078 0.984 2.000
PriorDA 1.333 2.285 0.080 0.982 5.000 1.394 2.409 0.083 0.979 5.000 1.495 2.607 0.088 0.974 4.750
SPNetf 1.200 2.113 0.077 0.986  3.000 1.253 2332 0.080  0.984  3.000 1.341 2.597 0.083 0.980  3.000
PromptDA 1.537 2.826 0.088 0.972 6.000 1.559 2910 0.088 0.970 6.000 1.659 3.148 0.094 0.963 6.000
LDCM (ours) 0.851 1.656 0.049 0993  1.000 0.881 1.812 0.051 0.991  1.000 0.934 2.017 0.052 0989  1.000
Method Lidar-8-Lines Lidar-4-Lines 10%
MAE? | RMSE”| REL?| &1 Rk MAE’| RMSE| RELF| 401 Rk, MAE’| RMSE| RELF| 401 RK.|
UniDepth V1 2.207 3.540 0.120 0954 7.750 2.207 3.540 0.120 0954  5.500 2.207 3.540 0.120 0954  7.750
UniDepth V2 1.813 3.540 0.096 0961  6.500 1.813 3.540 0.096 0961  2.000 1.813 3.540 0.096 0961  6.750
MoGe V2 3.536 4.899 0.208 0.484 9.000 3.536 4.899 0.208 0.484 9.000 3.536 4.899 0.208 0.484 9.000
G2-MonoDepthf 1.599 3.125 0.092 0.969 4.250 2.195 4272 0.116 0.922 7.000 1.283 2.366 0.079 0.983 3.500
OMNI-DC 1.408 2.592 0.083 0.978 2.000 1.821 3.760 0.096 0.953 3.750 1.274 2.298 0.079 0.983 2750
PriorDA 1.623 2.867 0.094 0.966 4.750 1.936 3.706 0.103 0.945 5.000 1.398 2.472 0.083 0.978 5.000
SPNetf 1.465 2.857 0.086 0.977 3.000 1.878 3.946 0.097 0.955 4.250 1.256 2.309 0.078 0.985 2250
PromptDA 1.744 3.413 0.096 0.956 6.250 2.187 4.467 0.118 0.932 7.000 1.660 3.133 0.094 0.960 6.250
LDCM (ours) 1.022 2.301 0.054 0987  1.000 1.309 3212 0.062 0974  1.000 0.917 1.953 0.052  0.990  1.000
Method % 3% 1%
MAE’ | RMSE’| REL’| 4’1 Rk] MAE’| RMSE’| REL’| &'t Rk) MAE’| RMSE’| REL’| &1 Rkl
UniDepth V1 2.207 3.540 0.120 0954 7.750 2.207 3.540 0.120 0954 7.500 2.207 3.540 0.120 0954  7.250
UniDepth V2 1.813 3.540 0.096 0.961 6.500 1.813 3.540 0.096 0.961 6.500 1.813 3.540 0.096 0.961 6.000
MoGe V2 3.536 4.899 0.208 0.484 9.000 3.536 4.899 0.208 0.484 9.000 3.536 4.899 0.208 0.484 9.000
G2-MonoDepthi 1.333 2.519 0.080 0.982 3.500 1.401 2712 0.082 0.978 3.750 1.679 3.352 0.092 0.963 4.750
OMNI-DC 1.329 2.464 0.081 0.981 3.500 1.388 2.638 0.083 0978 3250 1.603 3.196 0.092 0.965  4.000
PriorDA 1.436 2.575 0.084 0976  5.000 1.476 2.677 0.085 0974 4750 1.594 2.998 0.090 0967 2750
SPNetf 1.304 2454 0.079 0984  2.000 1.353 2.596 0.081 0.982  2.000 1.512 3.015 0.086 0975  2.250
PromptDA 1.779 3.312 0.102 0.956 6.500 1.806 3.424 0.102 0.953 6.750 2.082 4.041 0.117 0.934 7.500
LDCM (ours) 0.958 2.088 0.053 0988  1.000 0.881 2.129 0.047 0987  1.000 1.007 2.483 0.051 0.983  1.000
Method SIFT ORB Average
MAE? | RMSE”| REL?| &1 Rk MAE’| RMSE| REL?| 401 Rk, MAE’| RMSE’| RELF| 401 RK.|
UniDepth V1 2.207 3.540 0.120 0.954 3.750 2207 3.540 0.120 0.954 4.000 2207 3.540 0.120 0.954 6.773
UniDepth V2 1.813 3.540 0.096 0.961 2.000 1.813 3.540 0.096 0.961 2.250 1.813 3.540 0.096 0.961 5.409
MoGe V2 3.536 4.899 0.208 0.484 9.000 3.536 4.899 0.208 0.484 9.000 3.536 4.899 0.208 0.484 9.000
G2-MonoDepthi 2.736 4.677 0.158 0.795 8.000 2.261 4.085 0.133 0.864 6.750 1.669 3.118 0.098 0.946 4.841
OMNI-DC 2.316 4.173 0.139 0.875 6.000 2.210 4.001 0.136 0.882 6.250 1.542 2.828 0.092 0.960 3.409
PriorDA 1.830 3.358 0.103 0.938 3.000 1.792 3.245 0.104 0.935 2750 1.573 2.836 0.091 0.965 4.341
SPNetf 2.096 3.845 0.120 0.888 4.500 1.921 3.631 0.113 0.908 4.500 1.507 2.881 0.089 0.964 3.068
PromptDA 2.609 4.581 0.154 0.868 7.000 2.642 4.475 0.159 0.852 8.000 1.933 3.612 0.110 0.938 6.659

LDCM (ours) 1.290 2918 0.064 0.959  1.250 1.247 2.820 0.065 0.956  1.250 1.027 2.308 0.055 0.982  1.045
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Table 19: Quantitative comparison of point map estimation with baseline methods on the in-
door scenes of the DIODE dataset Vasiljevic et al.|(2019). Methods marked with i use scenario-
specific configurations for indoor and outdoor scenes, respectively. The best and the second-best
results are highlighted.

Method 10% Noise 5% 3%
MAE” | RMSE’ | REL”| 401 Rk, MAE’| RMSE’| REL’| 401 Rk, MAE’| RMSE’| REL’| oV% Rk.|
UniDepth V1 0.911 1.017 0.159 0.779  7.500 0.911 1.017 0.159 0.779  7.500 0.911 1.017 0.159 0.779  7.500
UniDepth V2 0.730 0.872 0.164 0.694  7.500 0.730 0.872 0.164 0.694  7.500 0.730 0.872 0.164 0.694  7.500
MoGe V2 1.048 1.185 0.242 0410 9.000 1.048 1.185 0.242 0410 9.000 1.048 1.185 0.242 0410 9.000
G2-MonoDepthf ~ 0.118 0.136 0.027 1.000 1750 0.118 0.137 0.027 1.000 2250 0.118 0.140 0.028 1.000 2750
OMNI-DC 0.122 0.163 0.028 0.999  4.000 0.118 0.137 0.027 1.000  2.250 0.118 0.139 0.027 1.000  2.000
PriorDA 0.132 0.179 0.029 0.999 4750 0.123 0.155 0.028 0.999  5.000 0.123 0.156 0.028 0999  4.750
SPNetf 0.118 0.138 0.027 1.000  2.000 0.117 0.135 0.027 1.000 1.750 0.118 0.136 0.027 1.000  1.750
PromptDA 0.138 0.189 0.033 0.997  6.000 0.133 0.180 0.032 0.996  6.000 0.133 0.183 0.031 0.997  6.000
LDCM (ours) 0.107 0.127 0.021 1.000  1.000 0.107 0.128 0.021 1.000  1.000 0.107 0.130 0.021 1.000  1.000
Method 1% 500 100
MAE” | RMSE” | REL”| 41 Rk.] MAE?’ | RMSE’| REL”| &)1 Rk., MAE”| RMSE’| REL’| &1 Rk.|
UniDepth V1 0.911 1.017 0.159 0.779  7.500 0.911 1.017 0.159 0.779  7.500 0.911 1.017 0.159 0.779  7.000
UniDepth V2 0.730 0.872 0.164 0.694  7.500 0.730 0.872 0.164 0.694  7.500 0.730 0.872 0.164 0.694  7.000
MoGe V2 1.048 1.185 0.242 0410  9.000 1.048 1.185 0.242 0410 9.000 1.048 1.185 0.242 0410 9.000
G2-MonoDepthf  0.120 0.149 0.028 0.999 3250 0.144 0.220 0.034 0.996  5.000 0.651 0.843 0.191 0.598  7.000
OMNI-DC 0.118 0.145 0.028 0.999 2500 0.127 0.184 0.029 0.998  2.500 0.161 0.275 0.036 0.991 4.000
PriorDA 0.123 0.159 0.028 0.999  3.750 0.128 0.179 0.029 0.999 2250 0.140 0.217 0.031 0.996 1500
SPNetf 0.118 0.140 0.027 0.999  2.000 0.127 0.187 0.029 0.998  2.750 0.156 0.268 0.035 0.992  3.000
PromptDA 0.136 0.191 0.032 0.995  6.000 0.167 0.263 0.042 0.989  6.000 0.228 0.428 0.061 0978  5.000
LDCM (ours) 0.107 0.134 0.021 1.000  1.000 0.111 0.167 0.022 0.999  1.000 0.128 0.235 0.024 0.996  1.250
Method SIFT ORB Virtual-Lidar-32-Lincs
MAE” | RMSE”| REL”| 471 Rk., MAE”| RMSE’| REL"| &1 Rk., MAE”| RMSE’| REL’| &1 Rk.|
UniDepth V1 0.911 1.017 0.159 0.779  7.000 0.911 1.017 0.159 0.779  6.500 0.911 1.017 0.159 0.779  7.500
UniDepth V2 0.730 0.872 0.164 0.694  6.500 0.730 0.872 0.164 0.694  6.500 0.730 0.872 0.164 0.694 7500
MoGe V2 1.048 1.185 0.242 0410 8750 1.048 1.185 0.242 0410 8750 1.048 1.185 0.242 0410 9.000
G2-MonoDepthf  0.777 1.000 0.251 0.545 7750 0.866 1111 0.270 0.504  8.000 0.127 0.178 0.029 0.998  4.750
OMNI-DC 0.313 0.429 0.099 0.867 3250 0.448 0.616 0.135 0.790  4.250 0.121 0.158 0.028 0.999  1.750
PriorDA 0.174 0.232 0.050 0.975 1.500 0.205 0.280 0.066 0.967 1500 0.124 0.164 0.029 0.999  3.250
SPNetf 0.350 0.478 0.117 0.818  5.000 0.398 0.554 0.132 0.794  3.000 0.121 0.163 0.028 0.999  2.000
PromptDA 0.336 0.448 0.108 0.874  3.750 0.511 0.708 0.160 0.791 5.000 0.144 0.211 0.036 0.993  6.000
LDCM (ours) 0.172 0.243 0.045 0.964 1500 0.201 0.300 0.053 0952  1.500 0.108 0.144 0.021 0.999  1.000
Method Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines Average
MAE” | RMSE’ | REL”| 401 Rk, MAE’| RMSE’| REL’| 401 Rk, MAE’| RMSE’| REL’| 4V% Rk.|
UniDepth V1 0.911 1.017 0.159 0.779  7.500 0.911 1.017 0.159 0.779  7.500 0.911 1.017 0.159 0779 7318
UniDepth V2 0.730 0.872 0.164 0.694  7.500 0.730 0.872 0.164 0.694  7.500 0.730 0.872 0.164 0.694 7273
MoGe V2 1.048 1.185 0.242 0410 9.000 1.048 1.185 0.242 0410 9.000 1.048 1.185 0.242 0410 8955
G2-MonoDepthf  0.136 0.211 0.031 0.997  5.000 0.175 0.285 0.042 0.987  5.750 0.305 0.401 0.087 0.875  4.841
OMNI-DC 0.126 0.176 0.029 0.998 2250 0.145 0.229 0.034 0.994  4.000 0.174 0.241 0.045 0967 2977
PriorDA 0.127 0.177 0.029 0.999 2500 0.136 0.197 0.031 0.998  1.250 0.140 0.190 0.034 0.994  2.909
SPNetf 0.126 0.182 0.029 0.998 2750 0.139 0.220 0.032 0.996  3.000 0.172 0.236 0.046 0963  2.636
PromptDA 0.150 0.232 0.036 0.993  6.000 0.170 0.275 0.041 0.987  5.000 0.204 0.301 0.056 0963  5.523

LDCM (ours) 0.110 0.155 0.021 0.999  1.000 0.137 0.202 0.028 0.998 1500 0.127 0.179 0.027 0992  1.159
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Table 20: Quantitative comparison of point map estimation with baseline methods on the out-
door scenes of the DIODE dataset Vasiljevic et al.|(2019). Methods marked with { use scenario-
specific configurations for indoor and outdoor scenes, respectively. The best and the second-best
results are highlighted.

Method Virtual-Lidar-64-Lines Virtual-Lidar-32-Lines Virtual-Lidar-16-Lines
MAE” | RMSE? | REL?| o't Rk, MAE’| RMSE’| REL’| 6’1t Rk] MAE’]| RMSE’| REL”| &'t  Rk|
UniDepth V1 4.280 6.372 0.196 0.644  7.500 4.280 6.372 0.196 0.644  7.500 4.280 6.372 0.196 0.644  7.500
UniDepth V2 9.686 12.049 0.521 0.505  9.000 9.686 12.049 0.521 0.505  9.000 9.686 12.049 0.521 0.505  9.000
MoGe V2 4.041 5.505 0.205 0.626  7.500 4.041 5.505 0.205 0.626  7.500 4.041 5.505 0.205 0.626  7.500
G2-MonoDepth 1.867 3.009 0.105 0962  4.250 1.983 3.309 0.116 0.953  4.500 2.188 3.726 0.130 0.933  5.000
OMNI-DC 1.838 2.970 0.101 0.965  3.000 1.927 3.230 0.108 0.958  3.500 2.102 3.673 0.120 0.946  3.750
PriorDA 1.980 3.071 0.104 0.953 4750 2.018 3.184 0.106 0.950  4.000 2.087 3.349 0.111 0.944 2750
SPNet 1.806 2.857 0.099 0.966  2.000 1.885 3.113 0.105 0.960  2.000 2.052 3.547 0.117 0.950  2.500
PromptDA 2.392 4.186 0.123 0.923  6.000 2.484 4.427 0.128 0.916  6.000 2.607 4.638 0.133 0.907  6.000
LDCM (ours) 1.508 2.581 0.084 0.977  1.000 1.563 2.755 0.088 0.973  1.000 1.667 3.022 0.093 0.965  1.000

Virtual-Lidar-8-Lines Virtual-Lidar-4-Lines 10% Noise
Method

MAE’ | RMSE’| REL”| 4}t Rk., MAE”| RMSE”| REL”| 4} 1 Rk., MAE’| RMSE’| REL”| 4} 1 Rk.|
UniDepth V1 4.280 6.372 0.196 0.644  7.500 4.280 6.372 0.196 0.644  6.250 4.280 6.372 0.196 0.644  7.500

UniDepth V2 9.686 12049 0521 0505 9000 9686 12049 0521 0505 9.000 9.686 12049 0521 0505  9.000
MoGe V2 4041 5505 0205 0626 7500 4041 5505 0205 0.626 5750 4041 5505 0205 0626  7.500
G2-MonoDepth ~ 2.659 4565 0152 0887 5250 4215 6818 0237 0658 7000 1645 2095 0087 0980 2750
OMNIDC 2503 4513 0133 0916 3750 3689 6325 0200 0769 4500 1661 2301  0.087 0980  3.500
PriorDA 2272 3798 0018 0929 2000 2921 5112 (0155 0857 2000 2035 3117 0002 0951 5000
SPNet 2350 4043 034 0923 3250 3125 5372 019 0827 3000 1638 2207 0085 0981 2250
PompDA 2896 5216  0.144 0886 5750 4086 6913 0208 0762 6500 2385 395 0119 0920 6000
LDCM (ours) 1850 3456  0.099 0953 1000 2313 4361  0.19 0905 1000 1345 2032 0076 0991  1.000
Method % 3% %

MAE” | RMSE’ | REL”| 4}t Rk., MAE”| RMSE”| REL”| 41 Rk., MAE”| RMSE”| REL”| 41 Rk.|
UniDepth V1 4.280 6.372 0.196 0.644  7.500 4.280 6.372 0.196 0.644  7.500 4.280 6.372 0.196 0.644  7.500

UniDepth V2 9.686 12.049 0.521 0.505  9.000 9.686 12.049 0.521 0.505  9.000 9.686 12.049 0.521 0.505  9.000
MoGe V2 4.041 5.505 0.205 0.626  7.500 4.041 5.505 0.205 0.626  7.500 4.041 5.505 0.205 0.626  7.500
G2-MonoDepth 1.671 2313 0.089 0.977  3.750 1.702 2437 0.092 0.975  3.750 1.798 2.796 0.099 0.967  4.000
OMNI-DC 1.670 2.335 0.088 0.978  3.250 1.698 2.450 0.091 0.976  3.250 1.777 2.754 0.096 0.969  3.000
PriorDA 1.950 2.933 0.101 0.955  5.000 1.951 2.947 0.101 0.955  5.000 1.973 3.029 0.103 0.953  5.000
SPNet 1.655 2.265 0.087 0.979  2.000 1.679 2.362 0.089 0.977  2.000 1.750 2.650 0.095 0.971 2.000
PromptDA 2.336 3.900 0.119 0.923  6.000 2.356 3.962 0.120 0.923  6.000 2.444 4.183 0.127 0919 6.000
LDCM (ours) 1.366 2.098 0.077 0.988  1.000 1.394 2.202 0.079 0.986  1.000 1.462 2.436 0.082 0.980  1.000
Method SIFT ORB Average
MAE” | RMSEP | REL?| 471 Rk.] MAE’| RMSE”| REL’| &1t Rk.l MAE’| RMSE”| REL’| 01 Rk.|
UniDepth V1 4.280 6.372 0.196 0.644  7.500 4.280 6.372 0.196 0.644  7.500 4.280 6.372 0.196 0.644  7.386
UniDepth V2 9.686 12.049 0.521 0.505  9.000 9.686 12.049 0.521 0.505  9.000 9.686 12.049 0.521 0.505  9.000
MoGe V2 4.041 5.505 0.205 0.626  7.500 4.041 5.505 0.205 0.626  7.500 4.041 5.505 0.205 0.626  7.341
G2-MonoDepth ~ 2.120 3.399 0.121 0.924  5.000 2.291 3.734 0.126 0.903  5.000 2.194 3.482 0.123 0.920  4.568
OMNI-DC 1.971 3.284 0.104 0.952  3.000 2.146 3.692 0.110 0.933  3.000 2.089 3412 0.113 0.940  3.409
PriorDA 2.078 3.326 0.106 0.944  4.000 2.232 3.698 0.113 0.927  4.000 2.136 3.415 0.111 0.938  3.955
SPNet 1.883 2.993 0.102 0.956  2.000 1.962 3215 0.104 0.946  2.000 1.981 3.157 0.110 0.949 2273
PromptDA 2.699 4.737 0.132 0.894  6.000 3.043 5.181 0.150 0.856  6.000 2.703 4.663 0.137 0.894  6.023

LDCM (ours) 1.551 2.734 0.086 0.974  1.000 1.642 2.996 0.090 0.962  1.000 1.606 2.788 0.088 0.969  1.000
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Table 21: Quantitative comparison of point map estimation with baseline methods on the
iBims-1 dataset Koch et al.[ (2018). Methods marked with I use scenario-specific configurations

for indoor and outdoor scenes, respectively. The best and the second-best results are highlighted.

Method 10% Noise 5% 3%
MAE’| RMSE’| REL’| 4’1 Rk] MAE’| RMSE’| REL’| &'t Rk), MAE’| RMSE’| REL’| &1 Rkl
UniDepth V1 1.154 1.239 0.370 0.239 9.000 1.154 1.239 0.370 0.239 9.000 1.154 1.239 0.370 0.239 9.000
UniDepth V2 0.365 0.489 0.107 0932 7.000 0.365 0.489 0.107 0932 7.000 0.365 0.489 0.107 0932 7.000
MoGe V2 0.574 0.667 0.156 0.740 8.000 0.574 0.667 0.156 0.740 8.000 0.574 0.667 0.156 0.740 8.000
G2-MonoDepth{ 0.131 0.181 0.036 0.995 3.000 0.133 0.191 0.036 0.994 3.500 0.136 0.201 0.037 0.994 3.500
OMNI-DC 0.137 0.209 0.037 0.993 4.000 0.131 0.186 0.036 0.995 2250 0.133 0.197 0.037 0.994 3.000
PriorDA 0.145 0.213 0.040 0.993 4.750 0.142 0.210 0.039 0.992 5.000 0.143 0.213 0.039 0.992 5.000
SPNet} 0.128 0.175 0.035 0.996 1.750 0.130 0.181 0.036 0.995 1.750 0.132 0.189 0.036 0.995 1.750
PromptDA 0.163 0.257 0.045 0.988 6.000 0.165 0.261 0.045 0.987 6.000 0.166 0.263 0.045 0.988 6.000
LDCM (ours) 0.075 0.151 0.021  0.996  1.000 0.076 0.158 0.022 0995  1.000 0.078 0.164 0.022 0995  1.000
Method 1% 500 100
MAE’| RMSE’| REL’| 4’1 Rk) MAE’| RMSE’| REL’| &'t Rk) MAE’| RMSE’| REL’| &1 Rkl
UniDepth V1 1.154 1.239 0.370 0.239 9.000 1.154 1.239 0.370 0.239 9.000 1.154 1.239 0.370 0.239 9.000
UniDepth V2 0.365 0.489 0.107 0932 7.000 0.365 0.489 0.107 0932 7.000 0.365 0.489 0.107 0932 7.000
MoGe V2 0.574 0.667 0.156 0.740 8.000 0.574 0.667 0.156 0.740 8.000 0.574 0.667 0.156 0.740 8.000
G2-MonoDepthi 0.143 0.226 0.039 0.991 4.250 0.166 0.274 0.044 0.985 5.000 0.249 0.392 0.069 0.958 6.000
OMNI-DC 0.138 0.214 0.038 0.992 2.500 0.152 0.247 0.042 0.988 3.000 0.187 0.310 0.051 0.977 4.000
PriorDA 0.146 0.221 0.040 0.991 4.500 0.153 0.236 0.042 0.990 2750 0.168 0.281 0.045 0.987 2.000
SPNet} 0.138 0.213 0.037 0.992 2.000 0.151 0.253 0.041 0.988 2750 0.176 0.311 0.046 0.982 3.250
PromptDA 0.172 0.275 0.046 0.987 6.000 0.186 0.300 0.049 0.985 5.750 0.216 0.352 0.057 0.980 4.750
LDCM (ours) 0.082 0.177 0.023 0994  1.000 0.094 0.204 0.026 0991  1.000 0.112 0.241 0.030  0.988  1.000
Method SIFT ORB Virtual-Lidar-32-Lines
MAE’| RMSE’| REL’| 4’1 Rk) MAE’| RMSE’| REL’| &'t Rk, MAE’| RMSE’| REL’| &1 Rkl
UniDepth V1 1.154 1.239 0.370 0.239 9.000 1.154 1.239 0.370 0.239 9.000 1.154 1.239 0.370 0.239 9.000
UniDepth V2 0.365 0.489 0.107 0932  6.750 0.365 0.489 0.107 0932  6.250 0.365 0.489 0.107 0932 7.000
MoGe V2 0.574 0.667 0.156 0.740 8.000 0.574 0.667 0.156 0.740 8.000 0.574 0.667 0.156 0.740 8.000
G2-MonoDepthi 0.273 0.396 0.082 0.920 6.250 0.303 0.432 0.092 0.900 5.750 0.154 0.255 0.041 0.989 4.000
OMNI-DC 0.210 0.324 0.059 0.958 4.000 0.251 0.375 0.074 0.925 4.250 0.143 0.227 0.039 0.991 2750
PriorDA 0.164 0.242 0.046 0.988 2.000 0.184 0.273 0.053 0.981 2.000 0.188 0.270 0.048 0.982 5.750
SPNet} 0.170 0.259 0.048 0.985 3.000 0.192 0.290 0.056 0.971 3.000 0.142 0.226 0.038 0.991 2.000
PromptDA 0.258 0.378 0.072 0.947 5.000 0.315 0.453 0.088 0.903 5.750 0.174 0.277 0.047 0.986 5.250
LDCM (ours) 0.103 0.208 0.029  0.990  1.000 0.119 0.230 0.034 0986  1.000 0.085 0.185 0.024 0993  1.000
Method Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines Average
MAE’| RMSE’| REL’| 4’1 Rk) MAE’| RMSE’| REL’| &'t Rk) MAE’| RMSE’| REL’| &1 Rkl
UniDepth V1 1.154 1.239 0.370 0.239 9.000 1.154 1.239 0.370 0.239 9.000 1.154 1.239 0.370 0.239 9.000
UniDepth V2 0.365 0.489 0.107 0932 7.000 0.365 0.489 0.107 0932 7.000 0.365 0.489 0.107 0932 6.909
MoGe V2 0.574 0.667 0.156 0.740 8.000 0.574 0.667 0.156 0.740 8.000 0.574 0.667 0.156 0.740 8.000
G2-MonoDepthf 0.165 0.277 0.044 0.986 5.250 0.197 0.328 0.052 0.977 5.750 0.186 0.287 0.052 0.972 4.750
OMNI-DC 0.150 0.240 0.041 0.989 2750 0.173 0.284 0.048 0.982 4.250 0.164 0.256 0.046 0.980 3.341
PriorDA 0.152 0.233 0.041 0.990 2750 0.162 0.248 0.044 0.988 2.000 0.159 0.240 0.043 0.989 3.500
SPNet} 0.150 0.248 0.040 0.989 2750 0.168 0.280 0.045 0.985 3.000 0.152 0.239 0.042 0.988 2455
PromptDA 0.177 0.282 0.047 0.987 5.750 0.193 0.305 0.052 0.983 4.750 0.199 0.309 0.054 0.975 5.545

LDCM (ours) 0.091 0.198 0.025 0.992 1.000 0.101 0.215 0.028 0.990 1.000 0.092 0.194 0.026 0.992 1.000
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Table 22: Quantitative comparison of point map estimation with baseline methods on the in-
door scenes of the ETH3D dataset [Schops et al.| (2017). Methods marked with I use scenario-
specific configurations for indoor and outdoor scenes, respectively. The best and the second-best
results are highlighted.

Method 10% Noise 5% 3%
MAE” | RMSE”| REL”| 471 Rk., MAE”| RMSE’| REL’| &1 Rk., MAE”| RMSE’| REL’| &1 Rk.|
UniDepth V1 2429 2.649 0.641 0.066  9.000 2429 2.649 0.641 0.066  9.000 2.429 2.649 0.641 0.066  9.000
UniDepth V2 0.624 0.726 0.166 0.825  8.000 0.624 0.726 0.166 0.825  8.000 0.624 0.726 0.166 0.825  8.000
MoGe V2 0.500 0.620 0.123 0.839  7.000 0.500 0.620 0.123 0.839  7.000 0.500 0.620 0.123 0.839  7.000
G2-MonoDepthf ~ 0.361 0412 0.088 0.956  2.750 0.362 0416 0.088 0.956  4.000 0.363 0.421 0.089 0.956  4.500
OMNI-DC 0.367 0.436 0.089 0954 5250 0.361 0.413 0.088 0.956  3.000 0.361 0.417 0.088 0.956  3.000
PriorDA 0.371 0.438 0.089 0.956  5.000 0.365 0.427 0.089 0956 5250 0.365 0.429 0.089 0.956  5.000
SPNet} 0.361 0414 0.088 0.956  3.000 0.361 0413 0.088 0.956  3.000 0.361 0419 0.088 0.956  3.250
PromptDA 0.331 0417 0.078 0.968  2.500 0.319 0.397 0.078 0.967  2.000 0.321 0.404 0.078 0.967  2.000
LDCM (ours) 0.256 0.300 0.070 0.999  1.000 0.255 0.300 0.070 0.999  1.000 0.255 0.302 0.070 0.999  1.000
Method 1% 500 100
MAE” | RMSE” | REL”| 41 Rk.] MAE’ | RMSE’| REL”| &)1 Rk.] MAE’ | RMSE’| REL”| &)1 Rk.|
UniDepth V1 2.429 2.649 0.641 0.066  9.000 2429 2.649 0.641 0.066  9.000 2.429 2.649 0.641 0.066  9.000
UniDepth V2 0.624 0.726 0.166 0.825  8.000 0.624 0.726 0.166 0.825  8.000 0.624 0.726 0.166 0.825  8.000
MoGe V2 0.500 0.620 0.123 0.839  7.000 0.500 0.620 0.123 0.839  7.000 0.500 0.620 0.123 0.839  6.750
G2-MonoDepthf ~ 0.367 0.440 0.089 0.955  5.000 0.388 0.511 0.092 0952 6.000 0.468 0.662 0.109 0915 6.250
OMNI-DC 0.363 0.428 0.089 0.956  3.000 0.372 0.460 0.090 0.954  3.500 0.407 0.566 0.095 0.947 4750
PriorDA 0.367 0.435 0.089 0.956  3.750 0.371 0.449 0.090 0955 2750 0.385 0.486 0.092 0952 2.500
SPNetf 0.365 0.439 0.089 0.956  3.750 0.375 0.484 0.090 0.954  4.000 0.399 0.559 0.093 0.950  3.750
PromptDA 0.328 0.423 0.079 0.966  2.000 0.348 0.485 0.082 0.963  2.750 0.396 0.608 0.088 0.955  3.000
LDCM (ours) 0.257 0.311 0.070 0.998  1.000 0.263 0.334 0.071 0.998  1.000 0.279 0.382 0.073 0.996  1.000
Method SIFT ORB Virtual-Lidar-32-Lines
MAE” | RMSE’ | REL”| 401 Rk., MAE’| RMSE’| REL’| 401 Rk, MAE’| RMSE’| REL’| oV% Rk.|
UniDepth V1 2429 2.649 0.641 0.066  9.000 2.429 2.649 0.641 0.066  9.000 2.429 2.649 0.641 0.066  9.000
UniDepth V2 0.624 0.726 0.166 0.825  8.000 0.624 0.726 0.166 0.825  8.000 0.624 0.726 0.166 0.825  8.000
MoGe V2 0.500 0.620 0.123 0.839  6.250 0.500 0.620 0.123 0.839 6250 0.500 0.620 0.123 0.839  7.000
G2-MonoDepthf  0.517 0.675 0.136 0.844 6750 0.520 0.695 0.135 0.853  6.750 0.376 0.460 0.091 0953 6.000
OMNI-DC 0.429 0.532 0.107 0.904  4.500 0.447 0.567 0.112 0.890  4.250 0.365 0.437 0.089 0955 3250
PriorDA 0.394 0.477 0.099 0.939  2.000 0.408 0.511 0.101 0.936  2.000 0.367 0.438 0.089 0.956  3.500
SPNetf 0.408 0.515 0.100 0.924  3.000 0.419 0.539 0.102 0922 3.000 0.367 0.450 0.089 0.955  4.000
PromptDA 0.436 0.557 0.106 0.909  4.500 0.455 0.582 0.112 0.893 4500 0.326 0.420 0.078 0.968  2.000
LDCM (ours) 0.279 0.350 0.075 0.991  1.000 0.285 0.360 0.077 0.986  1.000 0.258 0.319 0.070 0.998  1.000
Method Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines Average
MAE” | RMSE”| REL”| 471 Rk., MAE”| RMSE’| REL’| &1 Rk., MAE”| RMSE’| REL’| &1 Rk.|
UniDepth V1 2429 2.649 0.641 0.066  9.000 2.429 2.649 0.641 0.066  9.000 2.429 2.649 0.641 0.066  9.000
UniDepth V2 0.624 0.726 0.166 0.825  8.000 0.624 0.726 0.166 0.825  8.000 0.624 0.726 0.166 0.825  8.000
MoGe V2 0.500 0.620 0.123 0.839  7.000 0.500 0.620 0.123 0.839  7.000 0.500 0.620 0.123 0.839  6.841
G2-MonoDepthf ~ 0.383 0.487 0.092 0952 6.000 0.421 0.563 0.098 0943 6.000 0.411 0.522 0.101 0930 5455
OMNI-DC 0.370 0.451 0.090 0.955  3.000 0.389 0.505 0.093 0.950  4.000 0.385 0.474 0.094 0943 3773
PriorDA 0.371 0.447 0.090 0.955  3.000 0.379 0.465 0.091 0952 2750 0.377 0.455 0.092 0952 3.409
SPNet} 0.373 0.469 0.090 0.954 4500 0.399 0.523 0.094 0.948  5.000 0.381 0.475 0.092 0.948  3.659
PromptDA 0.338 0.459 0.080 0.965  2.500 0.360 0.500 0.085 0959 2250 0.360 0.477 0.086 0953 2727

LDCM (ours) 0.263 0.332 0.071 0.998  1.000 0.272 0.354 0.072 0.996  1.000 0.266 0.331 0.072 0.996  1.000
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Table 23: Quantitative comparison of point map estimation with baseline methods on the out-
door scenes of the ETH3D dataset [Schops et al.| (2017). Methods marked with I use scenario-
specific configurations for indoor and outdoor scenes, respectively. The best and the second-best
results are highlighted.

Method Virtual-Lidar-64-Lines Virtual-Lidar-32-Lines Virtual-Lidar-16-Lines
MAE” | RMSE’ | REL”| 401 Rk, MAE’| RMSE’| REL’| 401 Rk, MAE’| RMSE’| REL’| 401 Rk.|
UniDepth V1 4.653 5.100 0.461 0.145  9.000 4.653 5.100 0.461 0.145  9.000 4.653 5.100 0.461 0.145  9.000
UniDepth V2 1.879 2.844 0.216 0.712  8.000 1.879 2.844 0.216 0.712  8.000 1.879 2.844 0.216 0712 8.000
MoGe V2 0.931 1.206 0.115 0.890  6.750 0.931 1.206 0.115 0.890  6.750 0.931 1.206 0.115 0.890  6.500
G2-MonoDepthf  0.638 0.843 0.088 0.929 4250 0.665 0.943 0.092 0.924 4750 0.713 1.091 0.098 0916 5250
OMNI-DC 0.626 0.793 0.086 0.931 2.000 0.634 0.823 0.087 0.930 2250 0.655 0.871 0.089 0927 2250
PriorDA 0.641 0.804 0.087 0.929  3.750 0.646 0.818 0.088 0929 2750 0.657 0.846 0.089 0.927 2250
SPNetf 0.631 0.893 0.087 0.931 3.250 0.653 1.069 0.089 0.929  4.000 0.704 1.354 0.096 0.925  5.000
PromptDA 0.756 1.329 0.094 0923 6.250 0.762 1.365 0.094 0.921 6.250 0.772 1.431 0.092 0.927 4750
LDCM (ours) 0.393 0.510 0.041 0.998  1.000 0.402 0.539 0.042 0.998  1.000 0.414 0.572 0.043 0.997  1.000
Method Virtual-Lidar-8-Lines Virtual-Lidar-4-Lines 10% Noise
MAE” | RMSE”| REL?| 471 Rk., MAE”| RMSE’| REL"| &1 Rk., MAE”| RMSE’| REL’| &1 Rk.|
UniDepth V1 4.653 5.100 0.461 0.145  9.000 4.653 5.100 0.461 0.145  9.000 4.653 5.100 0.461 0.145  9.000
UniDepth V2 1.879 2.844 0.216 0.712  8.000 1.879 2.844 0.216 0.712  8.000 1.879 2.844 0.216 0712 8.000
MoGe V2 0.931 1.206 0.115 0.890  5.500 0.931 1.206 0.115 0.890  2.000 0.931 1.206 0.115 0.890  7.000
G2-MonoDepthf  0.907 1.448 0.118 0.876  6.250 1.541 2.283 0.201 0724 6.750 0.618 0.732 0.085 0932 3.000
OMNI-DC 0.757 1.067 0.098 0913 3.000 1.209 1.726 0.143 0.820  5.000 0.623 0.758 0.085 0.931 3.750
PriorDA 0.705 0.957 0.093 0.921  2.000 1.030 1.479 0.140 0.850  3.500 0.657 0.817 0.088 0.930  5.000
SPNetf 0.858 1.816 0.116 0.902  5.500 1.222 2.483 0.160 0.823  6.000 0.613 0.725 0.084 0933 2.000
PromptDA 0.872 1711 0.103 0913 4.500 1.137 1.783 0.131 0.863  3.750 0.715 1.180 0.088 0929 5750
LDCM (ours) 0.451 0.676 0.046 0.994  1.000 0.552 0.821 0.058 0.982  1.000 0.394 0.476 0.040 0.999  1.000
Method 5% 3% 1%
MAE” | RMSE”| REL?| 471 Rk., MAE”| RMSE’| REL"| &1 Rk., MAE”| RMSE’| REL’| &1 Rk.|
UniDepth V1 4.653 5.100 0.461 0.145  9.000 4.653 5.100 0.461 0.145  9.000 4.653 5.100 0.461 0.145  9.000
UniDepth V2 1.879 2.844 0.216 0.712  8.000 1.879 2.844 0.216 0.712  8.000 1.879 2.844 0.216 0712 8.000
MoGe V2 0.931 1.206 0.115 0.890  7.000 0.931 1.206 0.115 0.890  6.750 0.931 1.206 0.115 0.890  6.750
G2-MonoDepthf  0.621 0.748 0.085 0932 2750 0.626 0.776 0.086 0.931 3.750 0.648 0.894 0.089 0.927 4500
OMNI-DC 0.617 0.746 0.085 0932 2.000 0.619 0.761 0.085 0932  2.000 0.629 0.805 0.086 0.930  2.000
PriorDA 0.638 0.789 0.087 0.930  5.000 0.639 0.795 0.087 0.930  4.750 0.644 0.814 0.088 0929 3250
SPNetf 0.617 0.760 0.085 0932 2500 0.621 0.801 0.085 0932 3.000 0.644 0.994 0.089 0.930  3.500
PromptDA 0.707 1.202 0.089 0.929  6.000 0.733 1.253 0.091 0.926  6.250 0.771 1.358 0.095 0.921 6.250
LDCM (ours) 0.394 0.486 0.040 0.999  1.000 0.396 0.498 0.040 0.999  1.000 0.405 0.539 0.041 0.998  1.000
Method SIFT ORB Average
MAE” | RMSE”| REL”| 471 Rk., MAE”| RMSE’| REL’| &1 Rk., MAE”| RMSE’| REL’| &1 Rk.|
UniDepth V1 4.653 5.100 0.461 0.145  9.000 4.653 5.100 0.461 0.145  9.000 4.653 5.100 0.461 0.145  9.000
UniDepth V2 1.879 2.844 0.216 0.712  8.000 1.879 2.844 0.216 0712 8.000 1.879 2.844 0.216 0712 8.000
MoGe V2 0.931 1.206 0.115 0.890  5.750 0.931 1.206 0.115 0.890  5.000 0.931 1.206 0.115 0.890 5977
G2-MonoDepthf  0.876 1.346 0.129 0.848  6.250 0.885 1318 0.130 0.857  6.000 0.794 1.129 0.109 0.891 4.864
OMNI-DC 0.717 0.973 0.097 0914  3.000 0.765 1.080 0.101 0.902  3.500 0.714 0.946 0.095 0915 2795
PriorDA 0.688 0.890 0.094 0.920  2.000 0.730 0.979 0.099 0912 2.000 0.698 0.908 0.095 0919 3295
SPNetf 0.754 1.453 0.106 0.909  4.500 0.743 1.321 0.102 0910  4.000 0.733 1.243 0.100 0914 3932
PromptDA 0.871 1.454 0.106 0.899 5250 0.963 1.576 0.119 0.865  6.500 0.824 1.422 0.100 0911 5.591

LDCM (ours) 0.444 0.615 0.046 0.993  1.000 0.454 0.644 0.047 0.990  1.000 0.427 0.580 0.044 0.995  1.000
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Table 24: Quantitative comparison of affine-invariant point map estimation with baseline
methods on the KITTI dataset [Geiger et al.[ (2012); [Uhrig et al. (2017). The best and the

second-best results are highlighted.

Method Lidar-64-Lines Lidar-32-Lines Lidar-16-Lines Lidar-8-Lines
REL” | &1 Rk., REL?| &1 Rk., REL?| &1 Rk.l REL?] o Rk.}
VGGT 0.147 0.823 5.000 0.147 0.823 4.500 0.147 0.823 4.500 0.147 0.823 4.500

MoGe V2 0.056 0.968 2.000 0.056 0.968 2.000 0.056 0.968 2.000 0.056 0.968 2.000
WorldMirror 0.095 0.920 3.000 0.103 0.900 3.000 0.118 0.865 3.000 0.129 0.838 3.500
MapAnything  0.362 0.347 6.000 0.364 0.345 6.000 0.364 0.346  6.000 0.366 0.345 6.000

Pow3R 0.140 0886 4000 0.147 0870 4000 0.151 0858 4500 0153  0.848  4.000
LDCM 0.031 0993 1.000 0.033 0991 1.000 0.034 0989 1.000 0.036 0.987  1.000
Method Lidar-4-Lines 10% 5% 3%

REL? | &'t Rk] REL’| &'t Rk] REL’| &'t Rk] REL’?] 4’1 Rk}
VGGT 0.147 0823 4000 0.147 0823 4500 0.147 0823 4500 0.147 0823 4500

MoGe V2 0.056 0.968 2.000 0.056 0.968 2.000 0.056 0.968 2.000 0.056 0.968 2.000
WorldMirror 0.136 0.821 4.000 0.102 0.900 3.000 0.100 0.901 3.000 0.100 0.902 3.000
MapAnything  0.367 0.344  6.000 0.365 0.345 6.000 0.365 0.345 6.000 0.367 0.341 6.000

Pow3R 0.154 0.844  4.000 0.154 0.847 4500 0.155 0.843 4500 0.155 0.841 4.500
LDCM 0.043 0976  1.000 0.034 0.990  1.000 0.035 0.989  1.000 0.036 0.987  1.000
Method 1% SIFT ORB Average

REL? | &7 1 Rk., REL?| &7 Rk.] REL?| &% Rk.] REL?| &7 Rk.|
VGGT 0.147 0.823 4500 0.147 0.823 4500 0.147 0.823 4500 0.147 0.823  4.500

MoGe V2 0.056 0.968  2.000 0.056 0.968 1.500 0.056 0.968 1.500 0.056 0.968 1.909
WorldMirror ~ 0.100 0.902  3.000 0.100 0.902  3.000 0.102 0.897  3.000 0.108 0.886  3.136
MapAnything  0.370 0.338  6.000 0.367 0.344  6.000 0.367 0.343  6.000 0.366 0.344  6.000

Pow3R 0.155 0.839  4.500 0.155 0.839  4.500 0.155 0.840  4.500 0.152 0.850  4.318

LDCM 0.040 0.983 1.000 0.054 0.961 1.500 0.051 0.963 1.500 0.039 0.983 1.091

Table 25: Quantitative comparison of affine-invariant point map estimation with baseline
methods on the indoor scenes of the DIODE dataset Vasiljevic et al.| (2019). The best and
the second-best results are highlighted.

Method 10% Noise 5% 3% 1%
REL? | 6’1 Rk] REL’| &1 Rk] REL’| &1 Rk] REL’] 4’1 Rkl
VGGT 0.107 0926 5000 0107 0926 5000 0.107 0926 5000 0.107 0926 4500

MoGe V2 0.052 0972  2.000 0.052 0972 2.000 0.052 0972 2.000 0.052 0972  2.000
WorldMirror ~ 0.079 0.951 3.500 0.072 0.952  3.500 0.070 0.953 3.000 0.071 0.953  3.000
MapAnything  0.169 0.762  6.000 0.168 0.762  6.000 0.168 0.762  6.000 0.169 0.763  6.000

Pow3R 0.099 0960 3.500 0.104 0954 3500 0.106 0951 4.000 0.108 0946  4.500
LDCM 0.009 1.000 1.000 0.009 1.000 1.000 0.009 1000 1.000 0.009 0999  1.000
Method 500 100 SIFT ORB

REL | 6’1 Rk] REL’| &1 Rk] REL’| &1 Rk| REL’] 4’1 Rkl
VGGT 0.107 0926 4500 0.107 0926 4500 0.107 0926 4500 0.107 0926  4.500

MoGe V2 0.052 0972 2.000 0.052 0972 2.000 0.052 0972 2.000 0.052 0.972 1.500

WorldMirror 0.072 0.955 3.000 0.073 0.955 3.000 0.073 0.956 3.000 0.078 0.945 3.000
MapAnything  0.175 0.753 6.000 0.173 0.758 6.000 0.176 0.753 6.000 0.175 0.758 6.000

Pow3R 0.110 0.944  4.500 0.110 0.943  4.500 0.109 0.944  4.500 0.109 0.944  4.500
LDCM 0.010 0.999  1.000 0.012 0.996  1.000 0.029 0979  1.000 0.036 0972  1.000
Method Virtual-Lidar-32-Lines Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines Average

REL? | &7 1 Rk., REL?| &7 Rk.] REL?| &7 Rk.)] REL?| &7 Rk.}
VGGT 0.107 0.926  4.500 0.107 0.926  4.500 0.107 0.926  4.500 0.107 0926  4.636

MoGe V2 0.052 0972 2.000 0.052 0972 2.000 0.052 0.972  2.000 0.052 0.972 1.955
WorldMirror ~ 0.072 0.955 3.000 0.072 0.955 3.000 0.073 0.955  3.000 0.073 0.953  3.091
MapAnything  0.175 0.753  6.000 0.173 0.758  6.000 0.173 0.759  6.000 0.172 0.758  6.000

Pow3R 0.109 0.945 4500 0.109 0.943 4500 0.110 0.944 4500 0.108 0.947  4.273

LDCM 0.010 0.999  1.000 0.010 0.999  1.000 0.011 0.997  1.000 0.014 0995  1.000
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Table 26: Quantitative comparison of affine-invariant point map estimation with baseline
methods on the outdoor scenes of the DIODE dataset Vasiljevic et al.| (2019). The best and
the second-best results are highlighted.

Method Virtual-Lidar-64-Lines Virtual-Lidar-32-Lines Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines
REL? | &V 1 Rk., REL?| &% Rk.] REL? ] o1 Rk.] REL?] ot Rk.}
VGGT 0.215 0.700 5.000 0.215 0.700 5.000 0.215 0.700 5.000 0.215 0.700 5.000

MoGe V2 0.124 0.841 2.000 0.124 0.841 2.000 0.124 0.841 2.000 0.124 0.841 2.000
WorldMirror 0.156 0.786 3.000 0.156 0.788 3.000 0.154 0.792 3.000 0.155 0.792 3.000
MapAnything ~ 0.299 0.506  6.000 0.310 0.481 6.000 0.309 0.489 6.000 0.317 0.487 6.000

Pow3R 0.200 0.745  4.000 0.200 0.747  4.000 0.201 0.743  4.000 0.201 0.745  4.000
LDCM 0.072 0.965  1.000 0.079 0.950  1.000 0.090 0.920  1.000 0.097 0.903  1.000
Method Virtual-Lidar-4-Lines 10% Noise 5% 3%

REL? | &7 1 Rk., REL?| &7 Rk.] REL?| &7 Rk.] REL?| &7 Rk.|
VGGT 0.215 0.700  5.000 0.215 0.700  5.000 0.215 0.700  5.000 0.215 0.700  5.000

MoGe V2 0.124 0.841 2.000 0.124 0.841 2.000 0.124 0.841 2.000 0.124 0.841 2.000
WorldMirror 0.154 0.793 3.000 0.140 0.822 3.000 0.151 0.799 3.000 0.157 0.782  3.000
MapAnything ~ 0.311 0.500  6.000 0.296 0.500  6.000 0.291 0.510  6.000 0.291 0.517 6.000

Pow3R 0.201 0.745  4.000 0.181 0.770  4.000 0.190 0.756  4.000 0.194 0.752  4.000
LDCM 0.117 0.856  1.000 0.059 0.988  1.000 0.061 0.985  1.000 0.063 0.981 1.000
Method 1% SIFT ORB Average

REL? | &V 1 Rk., REL?| &7 Rk., REL?| &7 Rk.)] REL?| &% Rk.|
VGGT 0.215 0.700  5.000 0.215 0.700  5.000 0.215 0.700  5.000 0.215 0.700  5.000

MoGe V2 0.124 0.841 2.000 0.124 0.841 2.000 0.124 0.841 2.000 0.124 0.841 2.000
WorldMirror 0.158 0.781 3.000 0.157 0.784 3.000 0.170 0.750  3.500 0.155 0.788 3.045
MapAnything ~ 0.293 0.515 6.000 0.301 0.505 6.000 0.302 0.505 6.000 0.302 0.501 6.000

Pow3R 0.199 0.747 4.000 0.200 0.748 4.000 0.197 0.751 3.500 0.197 0.750  3.955

LDCM 0.068 0971  1.000 0.071 0.966  1.000 0.073 0.957  1.000 0.077 0949  1.000

Table 27: Quantitative comparison of affine-invariant point map estimation with baseline

methods on the iBims dataset [Koch et al. (2018). The best and the second-best results are
highlighted.

Method 10% Noise 5% 3% 1%
REL? | &1 Rk] REL’| &'t Rk] REL’| &'t Rk] REL’?] 4’1 Rk}
VGGT 0.048 0967 4000 0048 0967 4000 0048 0967 3.500 0.048 0967  3.500

MoGe V2 0.046 0972 2.500 0.046 0972 2.500 0.046 0.972  2.500 0.046 0972  2.500

WorldMirror 0.044 0972 2.000 0.043 0.968 2.500 0.043 0.965 3.000 0.042 0.963 3.500
MapAnything ~ 0.233 0.612  6.000 0.231 0.616  6.000 0.231 0.614  6.000 0.230 0.618 6.000

Pow3R 0077 0952 5000 0068 0962 5000 0064 0965 4500 0061 0967  4.000
LDCM 0013 0996 1.000 0013 0995 1000 0.014 0995 1.000 0.015 0994  1.000
Method 500 100 SIFT ORB

REL? | 6’1 Rk] REL’?| &1 Rk] REL’| &1 Rk] REL’] o't Rkl
VGGT 0048 0967 4500 0048 0967 4500 0.048 0967 4.000 0048 0967  3.000

MoGe V2 0.046 0972 2.500 0.046 0972 2.500 0.046 0972 2.500 0.046 0972 2.000

WorldMirror 0.042 0.968 2.500 0.042 0.968 2.500 0.042 0.967 3.000 0.060 0.946  4.500
MapAnything  0.235 0.597 6.000 0.234 0.602  6.000 0.232 0.614  6.000 0.234 0.613 6.000

Pow3R 0.061 0.968  4.000 0.061 0.968  4.000 0.062 0.968  4.000 0.062 0.967  4.000
LDCM 0.018 0.991 1.000 0.022 0.987  1.000 0.020 0.990  1.000 0.024 0.989  1.000
Method Virtual-Lidar-32-Lines Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines Average

REL? | &7 1 Rk., REL?| &7 Rk.] REL?| &% Rk.) REL?| &7 Rk.|
VGGT 0.048 0.967 3.500 0.048 0.967  4.000 0.048 0.967  4.500 0.048 0.967  3.909

MoGe V2 0.046 0972 2.500 0.046 0972 2.500 0.046 0972 2.500 0.046 0972 2455

WorldMirror 0.042 0.967 2.500 0.042 0.967 3.000 0.042 0.968 2.500 0.044 0.965 2.864
MapAnything  0.233 0.610  6.000 0.233 0.609  6.000 0.232 0.613 6.000 0.233 0.611 6.000
Pow3R 0.062 0.966  5.000 0.061 0.968 4.000 0.061 0.968  4.000 0.064 0.965 4318

LDCM 0.015 0.993 1.000 0.017 0.991 1.000 0.020 0.990 1.000 0.017 0.992 1.000
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Table 28: Quantitative comparison of affine-invariant point map estimation with baseline
methods on the indoor scenes of the ETH3D dataset [Schops et al. (2017). The best and the
second-best results are highlighted.

Method 10% Noise 5% 3% 1%
REL | 6’1 Rk] REL’| &1 Rk] REL’| &1 Rk| REL’] 4’1 Rkl
VGGT 0.045 0988 2000 0045 0988 3.500 0.045 0988 3.500 0.045 0988  3.500

MoGe V2 0.041 0.986  2.500 0.041 0.986  3.000 0.041 0.986  3.500 0.041 0.986  3.000

‘WorldMirror 0.048 0.986  4.000 0.042 0.989 2.500 0.040 0.990 1.500 0.041 0.992 1.500
MapAnything ~ 0.255 0.559  6.000 0.252 0.562  6.000 0.252 0.562  6.000 0.254 0.560  6.000

Pow3R 0.070 0987 4000 0068 0990 3.500 0069 0990 3.500 0.070  0.990  4.000
LDCM 0.047 0994 2000 0.047 0994 2500 0.047 0994 2500 0.047 0994  2.500
Method 500 100 SIFT ORB

REL” | "1 Rk] REL’| &'t Rk] REL’| &'t Rk] REL’?] 4’1 Rk}
VGGT 0.045 0988 3000 0045 0988 3000 0045 0988 3000 0045 0988 2500

MoGe V2 0.041 0.986 3.000 0.041 0.986 3.000 0.041 0.986  3.000 0.041 0.986  2.500

WorldMirror 0.043 0.991 2.000 0.043 0.990  2.000 0.043 0.990  2.000 0.048 0.980  4.000
MapAnything  0.261 0.545 6.000 0.259 0.549  6.000 0.258 0.549 6.000 0.257 0.554  6.000

Pow3R 0.073 0.988  4.000 0.073 0.988  4.000 0.073 0.988  4.000 0.073 0.989  3.500
LDCM 0.047 0.993  2.500 0.048 0.992  2.500 0.049 0993  2.500 0.050 0992  2.500
Method Virtual-Lidar-32-Lines Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines Average

REL” | &1 Rk., REL?| &1 Rk., REL?| &1 Rk., REL?| &1 Rk.|
VGGT 0.045 0.988 3.500 0.045 0.988 3.000 0.045 0.988  3.500 0.045 0.988  3.091

MoGe V2 0.041 0.986 3.000 0.041 0.986 3.000 0.041 0.986  3.000 0.041 0986  2.955

WorldMirror  0.041 0.991 1.500 0.042 0.991 2.000 0.043 0.990  2.000 0.043 0989 2273
MapAnything  0.259 0.551 6.000 0.257 0.554  6.000 0.256 0.552  6.000 0.256 0.554  6.000

Pow3R 0.071 0.989  4.000 0.072 0.988 4.000 0.073 0.989  4.000 0.071 0.989 3.864
LDCM 0.047 0.994  2.500 0.047 0993  2.500 0.048 0.992  2.500 0.048 0993 2455

Table 29: Quantitative comparison of affine-invariant point map estimation with baseline
methods on the outdoor scenes of the ETH3D dataset [Schops et al.| (2017). The best and
the second-best results are highlighted.

Method Virtual-Lidar-64-Lines Virtual-Lidar-32-Lines Virtual-Lidar-16-Lines Virtual-Lidar-8-Lines
REL? | &V 1 Rk., REL?| &7 Rk.] REL? ] o1 Rk.] REL? ] ot Rk.}
VGGT 0.061 0.967 4.500 0.061 0.967 4.500 0.061 0.967 4.500 0.061 0.967 4.500

MoGe V2 0.046 0974  2.500 0.046 0.974  2.500 0.046 0.974  2.500 0.046 0.974 2500
WorldMirror ~ 0.048 0970  3.500 0.048 0.969  3.500 0.048 0.971 3.500 0.050 0.969  3.500
MapAnything  0.273 0.542  6.000 0.277 0.535  6.000 0.276 0.540  6.000 0.275 0.543  6.000

Pow3R 0.076 0.977 3.500 0.075 0.978 3.500 0.075 0.978 3.500 0.075 0.980 3.500
LDCM 0.027 0.997 1.000 0.028 0.997 1.000 0.029 0.996 1.000 0.032 0.993 1.000
Method Virtual-Lidar-4-Lines 10% Noise 5% 3%

REL? | &V 1 Rk., REL?| &7 Rk., REL?| &% Rk.] REL? | a1 Rk.}
VGGT 0.061 0.967 4.500 0.061 0.967 3.500 0.061 0.967 3.500 0.061 0.967 3.500

MoGe V2 0.046 0974  2.500 0.046 0974  2.000 0.046 0.974  2.000 0.046 0.974  2.000
WorldMirror 0.048 0.973 3.500 0.058 0.961 3.500 0.061 0.953  4.000 0.063 0.951 4.500
MapAnything  0.276 0.546  6.000 0.271 0.545 6.000 0.268 0.549 6.000 0.268 0.553 6.000

Pow3R 0.075 0980  3.500 0.082 0.960  5.000 0.079 0.969  4.000 0.078 0.972  4.000
LDCM 0.040 0.985  1.000 0.026 0.998  1.000 0.027 0.998  1.000 0.027 0.998  1.000
Method 1% SIFT ORB Average

REL” | &1 Rk., REL?| &1 Rk., REL?| &1 Rk., REL?| &1 Rk.|
VGGT 0.061 0.967  4.000 0.061 0.967  4.500 0.061 0.967 3.500 0.061 0.967  4.091

MoGe V2 0.046 0974  2.500 0.046 0974  2.500 0.046 0.974  2.000 0.046 0974 2318
WorldMirror 0.054 0.961 4.000 0.050 0.969 3.500 0.077 0.931 4.500 0.055 0962  3.773
MapAnything  0.271 0.548 6.000 0.276 0.543 6.000 0.275 0.545 6.000 0.273 0.544  6.000

Pow3R 0.076 0.975 3.500 0.076 0.977 3.500 0.077 0.973 3.500 0.077 0974  3.727
LDCM 0.027 0.997  1.000 0.031 0.994  1.000 0.030 0994  1.000 0.029 0.995  1.000
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