
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IS GRAPH CONVOLUTION ALWAYS BENEFICIAL FOR
EVERY FEATURE?

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have demonstrated strong capabilities in process-
ing structured data. While traditional GNNs typically treat each feature dimension
equally during graph convolution, we raise an important question: Is the graph
convolution operation equally beneficial for each feature? If not, the convolution
operation on certain feature dimensions can possibly lead to harmful effects, even
worse than the convolution-free models. Traditional feature selection methods fo-
cus on identifying informative features or reducing redundancy, but they are not
suitable for structured data since they overlook graph structures. In the context of
graphs, few studies have investigated GNN performance concerning node features
using feature homophily metrics, which assess feature consistency with graph
topology. Unfortunately, these metrics have not effectively aligned with GNN per-
formance or served as reliable guides for feature selection in GNNs. To address
these limitations, we introduce a novel metric, Topological Feature Informative-
ness (TFI), to distinguish between GNN-favored and GNN-disfavored features,
where its effectiveness is validated through both theoretical analysis and empiri-
cal observations. Based on TFI, we propose a simple yet effective Graph Feature
Selection (GFS) method, which processes GNN-favored and GNN-disfavored fea-
tures separately, using GNNs and non-GNN models. Compared to original GNNs,
GFS significantly improves the extraction of useful topological information from
each feature with comparable computational costs. Extensive experiments show
that after applying GFS to 8 baseline and state-of-the-art (SOTA) GNN archi-
tectures across 10 datasets, 90% of the GFS-augmented cases show significant
performance boosts. Furthermore, our proposed TFI metric outperforms other
feature selection methods in graphs. These results validate the effectiveness of
both GFS and TFI. Additionally, we demonstrate that GFS’s improvements are
robust to hyperparameter tuning, highlighting its potential as a universal method
for enhancing various GNN architectures.

1 INTRODUCTION

Graph Neural Networks (GNNs) are widely used for processing graph-structured data, such as rec-
ommendation systems (Wu et al., 2022; 2019b), social networks (Li et al., 2023a; Awasthi et al.,
2023; Luan et al., 2019), telecommunication (Lu et al., 2024a) and bio-informatics (Zhang et al.,
2021; Kang et al., 2022; Hua et al., 2024). Although graph convolution has been shown effective
to enrich node features with topological information through message propagation, the performance
gain is found to be restricted by the assumption of homophily, i.e., similar nodes are more likely to
be connected in a graph (McPherson et al., 2001). On the other hand, when a graph exhibits low ho-
mophily, i.e., heterophily, the graph convolution operation can lead to performance degradation and
sometimes even underperform convolution-free models, such as Multi-Layer Perceptrons (MLPs)
(Zhu et al., 2020a; Luan et al., 2022b; 2024c). Therefore, to measure the impact of graph convo-
lution operation, label-based homophily metrics (Pei et al., 2020a; Zhu et al., 2020a) are proposed
to measure the label consistency along graph topology. However, they neglect the effects on node
features, which is crucial for graph learning. Feature homophily metrics (Yang et al., 2021a; Jin
et al., 2022) are then proposed to measure the feature consistency along the graph.

Although these existing metrics can capture the feature similarity between connected nodes, they
overlook that different feature dimensions may exhibit different levels of compatibility with graph
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Figure 1: Improvements in GNN performance at node level and feature level. Different colors denote
node labels, while the direction and magnitude of arrows denote node features.

structures, and thus may gain different amounts of benefits or negative impacts from graph convo-
lution. For example, as illustrated in Figure 1 (right), the GNN-favored feature exhibits uniform
values among intra-class nodes while differing across inter-class nodes. This characteristic enables
graph convolution operation to effectively improve the distinguishability among nodes from different
classes, as demonstrated in (Luan et al., 2024b). Conversely, graph convolution on GNN-disfavored
features may hinder the learning process of GNNs. This example raises a crucial question: How can
we determine whether graph convolution is beneficial or not for a specific feature?

To address this issue, in this paper, we propose Topological Feature Informativeness (TFI), which
measures the mutual information between each dimension of aggregated node features and labels.
Compared with previous feature selection metrics [1] that primarily focused on selecting the most
informative features or reducing redundancy for i.i.d. data, our proposed TFI emphasizes differen-
tiating between GNN-favored and GNN-disfavored features, which is essential for effective graph
representation learning. Specifically, TFI can identify features that are either favored or disfavored
by GNNs, provably providing an upper bound on the performance gap between graph convolution
and convolution-free models, which is then supported by both theoretical analysis and empirical
observations. Additionally, TFI overcomes the “good heterophily” issue (Ma et al., 2021), which is
a serious misalignment of existing feature homophily metrics and GNN performance.

Motivated by the principle of “feed the right features to the right model” Luan et al. (2022a), we
propose a simple yet effective method called Graph Feature Selection (GFS). GFS first uses TFI
to identify GNN-favored and GNN-disfavored features. Then, to enhance the extraction of useful
information, the GNN-favored features are processed by GNNs, while MLPs handle the GNN-
disfavored features. Last, a final linear layer fuses the embeddings from both models to obtain the
final node representation. GFS can be seamlessly integrated into almost any GNN architecture,
improving overall model performance with comparable computational costs. Our experiments on
real-world datasets demonstrate that GFS significantly boosts the performance of 8 GNNs across
10 datasets in node classification tasks and the improvement is robust to hyperparameter tuning.
Moreover, we demonstrate that TFI outperforms other statistical and optimization-based metrics
for feature selection in GNNs, validating its superiority. Besides, we surprisingly find that GFS is
much more effective on node embeddings encoded by Pretrained Large Models (PLMs) than other
methods. This implies that the advantages of PLMs in understanding graph-structured data might
be rooted in their ability to disentangle the topology-aware and topology-agnostic information into
separate feature dimensions. In summary, our main contributions are as follows.

• We introduce a novel metric, Topological Feature Informativeness (TFI), to distinguish
between GNN-favored and GNN-disfavored features. We validate its effectiveness through
both empirical observations and theoretical analysis.

• We propose Graph Feature Selection (GFS) based on TFI, a simple yet powerful method
that significantly boosts GNN performance. To the best of our knowledge, this is the first
study to address the feature selection problem based on GNN-favored and GNN-disfavored
disentanglement.

• Our extensive experiments demonstrate that applying GFS to 8 baseline and state-of-the-
art (SOTA) GNN architectures across 10 datasets yields a significant performance boost in
90% (72 out of 80) of the cases.
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2 PRELIMINARY

We define a graph as G = {V,E}, where V is the node set and E is the edge set. For an undirected
graph, its structure can be represented by an adjacency matrix A ∈ RN×N , where N is the number of
nodes, Au,v = Av,u = 1 indicates the presence of an edge between nodes u and v, i.e., euv, evu ∈ E ,
otherwise Au,v = Av,u = 0. The node classification task on graph aims to predict node labels
Y ∈ RN by utilizing node features X ∈ RN×M and topological information, where Xu,m denotes the
m-th feature of node u. The node degree matrix is denoted as D ∈ RN×N , where Du = ∑v∈V Au,v is
the degree of node u. The adjacency matrix can be normalized as Â =D− 1

2AD− 1
2 . The neighbors

of node u are denoted by Nu = {v∣euv ∈ E}.

Graph Neural Networks. Graph Neural Networks (GNNs), such as GCN (Kipf & Welling, 2016),
GAT (Velicković et al., 2017), and GraphSage (Hamilton et al., 2017), can effectively capture useful
topological information from neighbors by message propagation mechanism. Specifically, for a
node u, its embedding zlu in the l-th layer of a GNN can be expressed as:

zlu = UPDATE (zl−1u ,AGGREGATE(zl−1u ,{zl−1v ∣v ∈ Nu})) (1)

where AGGREGATE(⋅) represents the aggregation function, and UPDATE(⋅) is the update function
based on the ego node and the aggregated neighbor representations from the previous layer. For the
first layer, the initial embedding is set as input node features.

The representative graph convolution can be formulated as Hl = σ(ÂHl−1W l−1), where Hl and
W l denote the node embeddings and learnable parameter matrix at the l-th layer, and σ(⋅) is an
activation function. To boost GNN performance, some architectures concatenate ego and neighbor-
hood node embeddings as the input of the next layer (Abu-El-Haija et al., 2019; Zhu et al., 2020b),
i.e., [ÂHl−1,Hl−1] or adding the aggregated node embeddings with the ego node embeddings (Bo
et al., 2021; Luan et al., 2022a), i.e., (Â + I)Hl−1, which has been shown to improve GNN perfor-
mance (Platonov et al., 2023), especially in the scenario of heterophily (Luan et al., 2024c; Lu et al.,
2024b).

Label Homophily. Homophily, a concept originating from social networks, is defined as the ten-
dency of similar nodes are more likely to connect with each other (Khanam et al., 2023). In graph
learning, homophily is used to measure whether graph convolution on certain graph is beneficial for
GNN or not. Higher homophily implies that the topological structure can provide useful informa-
tion, which typically leads to better GNN performance. The commonly used label-based homophily
metrics are defined as follows:

hedge(G,Y ) =
∣{euv ∣euv∈E,Yu=Yv}∣

∣E ∣ , hnode(G,Y ) =
1
∣V ∣ ∑v∈V

∣{u∣u∈Nv,Yu=Yv}∣

∣Nv∣
(2)

Generally, these metrics only measure label consistency across graph topology, but they overlook the
feature aspect, which also plays a critical role in GNN performance (Zheng et al., 2024a). Therefore,
some studies focus on the feature consistency across graph topology.

Feature Homophily. To extend the conventional definition of label homophily to node features,
feature homophily metrics are introduced. The general form of feature homophily is,

h(G,X∶,m) =
1

η(X∶,m)
∑

euv∈E
sim(Xu,m,Xv,m) (3)

where η(⋅) is a normalization function and sim(⋅) is a similarity metric. The key difference between
different feature homophily metrics lies in the choice of the similarity function sim(⋅), which could
be cosine similarity (Jin et al., 2022), dot-product (Yang et al., 2021b), or Euclidean distance (Chen
et al., 2023). Please refer to Appendix A for more detailed introduction to homophily metrics.

Mutual Information. Mutual Information measures the amount of information obtained about
one random variable given another variable (Reza, 1994). More specifically, given variable X and
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Y , the mutual information can be expressed as1:

I(X;Y ) = ∑
y∈Y
∑
x∈X

p(x, y) log
p(x, y)

p(x)p(y)
(4)

where p(x, y) is joint probability, and p(x) and p(y) are marginal probability distributions.

3 TOPOLOGICAL FEATURE INFORMATIVENESS

As illustrated in Figure 1, not all features in graphs benefit from graph convolution. This raises
the question: how can we determine which features are beneficial for graph convolution? Previ-
ous studies (Zheng et al., 2024a; Luan et al., 2024b; Wang et al., 2024a) have demonstrated that
it is the stable topological patterns of intra-class nodes that enable effective message aggregation
from neighbors, rather than relying solely on consistency-based homophily metrics. To address the
limitations of feature homophily metrics, we propose TFI (Topological Feature Informativeness) to
measure the informativeness of neighbors in graphs given the feature X∶,m, which can be expressed
as:

TFIm = I(Y ; X̃∶,m) (5)

where X̃∶,m = (Â)
kX∶,m is the aggregated node features from k-hop neighbors. Here Â is the

adjacency matrix without self-loop, and we set k = 1 in X̃∶,m by default.

The proposed TFIm leverages mutual information to quantify the degree of dependence between
variables, thereby revealing both linear and non-linear relationships. Then, we conduct a theoretical
analysis to determine how TFIm can effectively measure whether specific features in graphs benefit
from graph convolution.

Theorem 1. Given a graph G = {V,E} with C classes and TFIm measured on m-th feature, the
prediction accuracy PA of a classifier on node labels Y with aggregated features X̃∶,m is upper
bounded by:

PA ≤
TFIm + log 2

logC
(6)

where the proof is given in Appendix B.

From Theorem 1, we can see that TFIm can measure the effect of graph convolution on feature
dimension m by relating it to model performance. More specifically, a higher TFIm means the
prediction accuracy of a classifier with aggregated node feature m has a higher upper bound, which
indicates that the graph convolution operation is more likely to be beneficial to feature m. To guide
feature selection with TFIm, we next explain how it relates to the performance gap between graph-
convoluted and convolution-free features.

Theorem 2. The gap between I(Y ; X̃∶,m,X∶,m) and I(Y ;X∶,m) is upper bounded by TFIm:

I(Y ; X̃∶,m,X∶,m) − I(Y ;X∶,m) = I(Y ; X̃∶,m∣X∶,m) ≤ I(Y ; X̃∶,m) = TFIm (7)

In Theorem 2, the mutual information I(Y ;X∶,m) measures how well the ego node features capture
the relevant information of labels, without making assumptions about the underlying data distribu-
tion. This makes I(Y ;X∶,m) a non-parametric measure of MLP performance. On the other hand,
I(Y ; X̃∶,m,X∶,m) serves as a non-parametric measure of GNN performance, which utilizes both
the ego node features X∶,m and the aggregated features X̃∶,m for prediction 2. The subtraction
of I(Y ; X̃∶,m,X∶,m) and I(Y ;X∶,m) indicates the performance gap between graph-convoluted and
convolution-free features, which is upper bounded by TFIm.

1For a discrete variable Y and a continuous variable X , mutual information is estimated based on entropy
using k-nearest neighbor distances, following Kraskov et al. (2004); Ross (2014).

2The combination of X̃∶,m and X∶,m could be either concatenating node embeddings, i.e., [ÂHl−1,Hl−1
]

or adding the aggregated node embeddings with the ego node embeddings, i.e., (Â + I)Hl−1 as introduced in
Section 2

4
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Figure 2: The performance gap between GCN and MLP with the increase of TFI.

To verify the effectiveness of the above claims about TFI, we conduct experiments on real-world
benchmark datasets. Specifically, we first compute TFIm for all features in the graph, sort them,
and divide them evenly into 10 bins. Next, we train GCN and MLP only with the features in a
bin respectively, and report the performance difference of GCN and MLP. As shown in Figure 2,
GCN underperforms MLP in bins with low TFI and outperforms MLP in bins with high TFI. This
observation is consistent with Theorem 1 and 2, and indicates that TFI can effectively identifies
GNN-favored and GNN-disfavored features.

Note that the estimation of TFIm does not require all of the labels Y . In a semi-supervised setting,
TFIm can be calculated using only the training labels and features, i.e., I(Ytrain; X̃train,m), without
the need for pseudo labels. In the next section, we will introduce how to use TFIm for feature
selection in GNNs.

4 GRAPH FEATURE SELECTION

In this section, we propose GFS (Graph Feature Selection), a TFI-based feature selection method. It
is composed of three main components: (1) GNN-favored feature selection, (2) feature embedding,
and (3) feature fusion.
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Figure 3: Framework of GFS with TFI.

As illustrated in Figure 3, for each feature dimension m, we first measure its corresponding TFIm
using Eq. (5). Since a higher TFIm indicates stronger GNN performance compared to MLP, we
apply a threshold to select the set of GNN-favored features as {XG ∣X∶,m ∈ XG ,TFIm ≥ δ(r)},
where δ(r) is the threshold corresponding to the top r percentile of all TFI values in features, and
r ∈ (0,1). The GNN-disfavored features are the remaining 1 − r of features, defined as X¬G =
X/{XG}.

The GNN-favored features XG are expected to be more suitable for GNNs, whereas the GNN-
disfavored features X¬G are better suited for MLPs. Thus, we feed XG into a GCN (or any other
GNN architecture) and X¬G into an MLP to better leverage information from both neighbors and
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ego nodes. Specifically, in l-th layer of GCN or MLP, we have:

GCN: Hl
G = σ(ÂHl−1

G W l−1
1 ), MLP: Hl

¬G = σ(H
l−1
¬G W l−1

2 ) (8)

where H0
G = X

0
G and H0

¬G = X
0
¬G . During message passing, the representations of Hl

G and Hl
¬G

are derived independently, ensuring that Xl
G and Xl

¬G can be encoded by the most appropriate
model without interference.

Lastly, to combine the node information from XG and X¬G together, we concatenate the node
representation from the last layer L of GNN and MLP, and feed them into a linear layer:

H = [HL
G ,H

L
¬G]W + b (9)

where H is the final node representation, W is the weight matrix, and b is the bias, respectively.
This final node representation is then used for downstream graph tasks.

Complexity Analysis. To compare the time complexity of GNN+GFS against standard GNNs, we
use GCN as the backbone GNN and assume the embedding size F is consistent across all layers.
First, estimating and sorting TFI introduces a complexity of O(KC +N(1+ logN)), where K is a
parameter related to mutual information estimation, C is the number of classes, and N is the number
of nodes. Both K and C are much smaller than N or the number of edges ∣E ∣, making this overhead
negligible compared to GNN training complexity as below.

After feature selection, we obtain GNN-favored features XG ∈ RN×⌈rM⌋ and GNN-disfavored fea-
tures X¬G ∈ RN×⌈(1−r)M⌋, where ⌈⋅⌋ is the floor function. For the first layer of GCN+GFS, the time
complexity is O(∣E ∣ ⌈rM⌋ +N⌈rM⌋F ) for the GNN channel and O(N⌈(1 − r)M⌋F ) for the MLP
channel. The sum of these terms, O(∣E ∣ ⌈rM⌋+NM2), is smaller than the complexity of a standard
GCN, O(∣E ∣M + NM2), for r < 1. This is because GFS reduces the dimension of features that
input into GCN.

In subsequent layers, GCN+GFS has a complexity of O(∣E ∣F + 2NF 2), slightly higher than the
complexity of GCN O(∣E ∣F +NF 2) by an additional NF 2 term due to the MLP layers. However,
this additional cost O(NF 2) is smaller than the O(∣E ∣F ) introduced by graph convolutions. Thus,
the overall complexity of GCN+GFS is comparable to that of the original GCN.

5 EXPERIMENTS

To verify the effectiveness of our proposed Graph Feature Selection (GFS) and Topological Feature
Informativeness (TFI), we answer the following research questions with experimental evaluations.

RQ1: To what extent does GFS enhance the performance of GNNs?

RQ2: Can GFS universally improve GNN performance without the need for hyperparameter tuning?

RQ3: How does TFI compare to other statistic-based and optimization-based metrics in the context
of GFS?

RQ4: Do the GNN-favored and GNN-disfavored features identified by TFI truly align better with
GNNs or MLPs, respectively?

5.1 EXPERIMENTAL SETUPS

Data Preparation. The datasets used in our experiments include Children, Computers, Fitness,
History, and Photo from Yan et al. (2023), and Amazon-Ratings, Minesweeper, Questions, Roman-
Empire, and Tolokers from Platonov et al. (2023). These datasets exhibit varying levels of label
homophily across different domains. The dataset statistics and descriptions are shown in Appendix
C.1. For all datasets, we randomly split the data into training, validation, and test sets in a ratio of
50% ∶ 25% ∶ 25% for 10 runs. Note that the node features in datasets from Yan et al. (2023) are
encoded by Pretrained Language Models (PLMs).

Baselines. We implement GFS and compare its performance with 5 baseline GNNs, GCN (Kipf
& Welling, 2016), GAT (Velicković et al., 2017), GraphSAGE (SAGE) (Hamilton et al., 2017),
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SGC (Wu et al., 2019a) and APPNP (Gasteiger et al., 2018), and 3 SOTA GNNs, Graph Trans-
former (GT) (Shi et al., 2020), ACM-GCN (Luan et al., 2022a) and FAGCN (Bo et al., 2021). The
GFS-augmented GNN is denoted as GNN+GFS throughout this paper. To enhance performance,
we incorporate skip connections (He et al., 2016) and layer normalization (Ba et al., 2016) for all
the methods, as recommended in Platonov et al. (2023); Luo et al. (2024). The detailed descriptions
of these GNNs are introduced in Appendix C.2. Additionally, we compare our proposed TFI with
other statistic-based metrics, including hGE (Jin et al., 2022), hattr (Yang et al., 2021b), hsim−cos
(Chen et al., 2023), hsim−euc (Chen et al., 2023), and hCTF (Lee et al., 2024). We also evalu-
ate optimization-based metrics such as θSoft and θHard within GFS. Detailed definitions of these
statistic-based metrics and optimization-based metrics can be found in Appendix A and Appendix
C.4, respectively.

Training. During training, we utilize the Adam optimizer (Kingma & Ba, 2014) to update model
parameters. Each model is trained for 1000 epochs, with the epoch demonstrating the best perfor-
mance on the validation set selected for testing. Model performance is evaluated on node classifi-
cation tasks, measuring accuracy for multi-class datasets and AUC-ROC for binary-class datasets.
The searching space for the ratio r is {0.1,0.2, . . . ,0.9} in GFS3 and k = 1 for the number of the
hop of neighbors in TFI4. See Appendix C.3 for more training details.

5.2 PERFORMANCE (RQ1)

The results and comparisons of the model performance are shown in Table 1, where the performance
gap between GNN+GFS and GNN is denoted as ∆. We observe that (1) GFS significantly boosts
GNN performance on 90%(72/80) cases of the GFS-augmented GNNs, with an average increase
of 3.2% in accuracy or AUC-ROC on node classification tasks with various homophily levels. This
demonstrate the effectiveness of our proposed method. (2) We notice that the improvement of GFS
varies by dataset, e.g., in Children and Computers, GCN+GFS achieves a 5% average performance
improvement, while in Minesweeper and Questions, the improvement is less significant. This may
be because most features in Minesweeper and Questions are already GNN-favored. Nevertheless,
GFS remains effective on most datasets. (3) We find that GFS demonstrates greater improvements
on datasets encoded by Pretrained Language Models (PLMs) (40/40 cases) than those encoded by
some traditional methods (32/40 cases), e.g., one-hot, fasttext or statistics-based methods. This sug-
gests that, compared to traditional feature encoding methods, which is widely used in graph learning,
PLMs potentially enable the disentanglement of topology-aware and topology-agnostic infor-
mation into separate feature dimensions, further enhancing the effectiveness of GNN+GFS. This
is a surprising discovery and to our knowledge, we are the first to reveal this phenomenon. It can
help explain why PLMs can assist the learning of graph models (Ye et al., 2024). It would be inter-
esting to analyze each node feature encoded by PLMs in the future, but we will not conduct a deeper
discussion in this paper.

5.3 SENSITIVITY TO HYPERPARAMETERS (RQ2)

Some recent GNNs (Li et al., 2022; Liu et al., 2022) introduce more and more hyperparameters,
which could be fragile to hyperparameter tuning (Luan et al., 2024c). To investigate the sensitivity
of the superiority of GFS over GNNs to ratio r and other model hyperparameters, we compare the
performance between GCN and GCN+GFS under varying settings. First, we observe how model
performance responds to changes in ratio r, while fixing all other hyperparameters. Figure 4 shows
the response of GCN+GFS to r on 4 datasets, where GFS collapses to normal GCN when r = 1.0 or
MLP when r = 0.0, as all features are sent to GNN or MLP, respectively. On Children, Computer,
and Roman-Empire, GCN+GFS with r = 0.1 to 0.9 consistently outperforms GCN (r = 1.0) and
MLP (r = 0.0), indicating the performance gain obtained from GFS is robust to hyperparameter
r. We also observe that although on Tolokers GCN+GFS cannot significantly outperform GCN,
sending all the features into GCN (r = 1.0) is comparable to sending 40% (r = 0.4) to 90% (r = 0.9)

3To prevent the behavior of GNN+GFS from closely resembling that of traditional GNNs, we exclude
r = 1.0 from our experiments. However, in practice, r = 1.0 may occur in GNN+GFS when all features are
graph-favored, which would make GNN+GFS comparable to GNNs in the worst-case scenario.

4In Appendix D.4, we examine the influence of the number of k-hop neighbors on TFI. Our findings indicate
that k = 1 is sufficient to achieve strong model performance.
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Table 1: The performance of GFS on GNN baselines. The improvement is highlighted as bold if
there is an increase, i.e., ∆ > 0, after applying GFS.

Model Children Comp. Fitness History Photo Amazon. Mines. Questions Roman. Tolokers
GCN 53.88±0.37 83.38±1.78 87.56±0.79 84.26±0.38 84.48±0.65 51.40±0.49 90.01±0.53 76.28±1.18 75.51±0.65 84.19±0.75

GCN+GFS 59.29±0.31 90.23±0.18 93.09±0.13 84.99±0.38 87.31±0.36 53.32±0.81 89.99±0.60 76.50±1.38 83.30±0.57 85.01±0.91
∆ +5.41 +6.85 +5.53 +0.73 +2.83 +1.92 -0.02 +0.22 +7.79 +0.82

GAT 53.54±0.49 86.52±0.92 88.23±0.91 83.83±0.27 85.67±0.45 51.08±0.60 90.26±0.53 77.64±1.15 84.57±0.80 83.41±0.47
GAT+GFS 57.74±0.35 90.50±0.20 93.20±0.11 84.54±0.38 87.58±0.28 53.75±0.57 90.22±0.64 77.03±1.11 86.17±0.56 84.41±0.77

∆ +4.20 +3.98 +4.97 +0.71 +1.91 +2.67 -0.04 -0.61 +1.60 +1.00
SAGE 54.68±0.84 86.08±0.50 88.65±1.22 84.06±0.42 85.08±0.64 53.80±0.56 90.74±0.59 74.91±1.06 82.81±0.61 82.77±0.38

SAGE+GFS 59.14±0.33 90.47±0.24 93.63±0.10 84.68±0.33 87.23±0.51 54.17±0.61 90.71±0.62 75.37±1.33 85.47±0.53 83.16±0.73
∆ +4.46 +4.39 +4.98 +0.62 +2.15 +0.37 -0.03 +0.46 +2.66 +0.39
GT 51.20±0.38 85.63±1.16 87.37±1.38 83.61±0.43 83.65±0.59 51.30±0.73 90.11±0.57 77.57±1.09 84.95±0.54 83.20±0.60

GT+GFS 56.01±0.35 89.97±0.27 92.44±0.11 84.09±0.32 87.41±0.41 52.47±0.54 89.93±0.64 77.70±0.73 86.99±0.45 83.46±0.67
∆ +4.81 +4.34 +5.07 +0.48 +3.76 +1.17 -0.18 +0.13 +2.04 +0.26

SGC 52.69±0.52 82.50±0.34 84.23±0.31 83.98±0.37 82.79±0.45 49.00±0.42 76.43±1.01 71.78±0.81 69.89±0.51 78.65±1.01
SGC+GFS 55.93±0.37 87.78±0.40 90.29±0.25 84.15±0.23 85.46±0.33 51.43±0.64 88.79±0.66 73.53±1.10 74.00±0.67 82.76±0.84

∆ +3.24 +5.28 +6.06 +0.17 +2.67 +2.43 +12.36 +1.75 +4.11 +4.11
APPNP 50.63±0.89 83.67±0.90 86.76±1.18 83.37±0.26 82.20±1.41 48.73±0.61 81.61±0.79 75.29±1.06 71.48±0.65 79.82±1.17

APPNP+GFS 56.71±0.36 88.51±0.34 91.22±0.25 84.75±0.33 86.65±0.32 50.76±0.62 83.19±0.97 75.66±1.03 72.35±0.69 83.66±0.65
∆ +6.08 +4.84 +4.46 +1.38 +4.45 +2.03 +1.58 +0.37 +0.87 +3.84

ACMGCN 54.60±0.50 85.94±0.72 89.10±0.98 84.22±0.34 84.99±0.34 51.91±0.39 90.59±0.58 76.66±1.27 85.27±0.57 83.61±0.83
ACMGCN+GFS 59.04±0.37 89.59±0.19 93.44±0.07 84.70±0.30 86.61±0.42 52.81±0.75 90.45±0.59 75.99±1.27 87.03±0.57 83.45±1.03

∆ +4.44 +3.65 +4.34 +0.48 +1.62 +0.90 -0.14 -0.67 +1.76 -0.16

FAGCN 50.43±0.86 79.92±0.99 83.10±0.45 82.04±0.62 80.67±0.77 46.08±0.52 78.22±2.86 58.60±2.08 62.02±2.98 73.07±0.70
FAGCN+GFS 56.17±0.38 87.72±0.49 89.66±0.35 84.32±0.36 85.54±0.37 50.72±0.82 88.12±1.32 71.94±2.03 72.05±1.45 82.82±1.28

∆ +5.74 +7.80 +6.56 +2.28 +4.87 +4.64 +9.90 +13.34 +10.03 +9.75

features with the highest TFI in GCN+GFS. These results highlight the necessity of GFS, as neither
r = 1.0 (all features to GCN) nor r = 0.0 (all features to MLP) yields optimal results on most
datasets, which reduces the need for convoluting all the features.
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Figure 4: The impact of ratio r to the performance of GCN+GFS is examined, where r features
are sent to MLP and 1 − r features are sent to GCN. The point representing the best performance is
highlighted as☀.

Second, we analyze how other hyperparameters affect GFS performance. Figure 5 shows how GCN,
MLP, and GCN+GFS respond to the changes in the number of layers, dimension of hidden embed-
dings, learning rate, weight decay, and dropout rate on Computers (homophilic graph) and Amazon-
Ratings (heterophilic graph). Results indicate that GCN+GFS consistently outperforms GCN and
MLP across various hyperparameter values. This property allows GFS to be easily integrated into
other GNNs without much hyperparameter tuning. Please refer to Appendix D.2 for more results on
the sensitivity of GFS to hyperparameters on the other datasets.

5.4 EFFECTIVENESS OF TFI (RQ3)

We show the superiority of TFI by comparing GCN+GFS with other metric-based feature selection
methods, e.g., statistic-based metrics hGE Jin et al. (2022), hattr Yang et al. (2021a), hsim−cos,
hsim−euc Chen et al. (2023), and hCTF Lee et al. (2024) and optimization-based methods e.g.,
θSoft and θHard, where feature selection process is learned in an end-to-end manner. All methods
follow the same hyperparameter tuning as in GFS. Table 2 shows the performance of different met-
rics in feature selection for GCN, where TFI achieves the best performance in average rank across
10 datasets. This is reasonable because other statistic-based metrics suffer from explaining “good
heterophily” issue and TFI overcomes the issue by the measurement of mutual information Platonov
et al. (2024). Besides, the optimization-based metrics underperform TFI, indicating the feature se-
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Figure 5: Response of GCN+GFS, GCN, and MLP to 5 hyperparameters on Computers and
Amazon-Ratings.

lection cannot be effectively handled automatically during the optimization process of GNNs. In
addition, we find that even for the metrics that are inferior to TFI, e.g., hattr, hsim−euc, and hCTF ,
applying them within our GFS framework can still improve the performance of baseline GCN, indi-
cating the necessity of feature selection in GNNs.

Table 2: The performance of feature selection on feature homophily metrics and optimization-based
methods.

Metrics Children Comp. Fitness History Photo Amazon. Mines. Questions Roman. Tolokers Avg. Rank
TFI 59.29±0.31 90.23±0.18 93.09±0.13 84.99±0.38 87.11±0.42 53.32±0.81 89.99±0.60 76.50±1.38 83.30±0.57 85.01±0.91 1.40
hGE 55.00±0.25 83.72±1.32 87.06±0.58 83.88±0.26 83.36±0.94 51.71±0.53 89.75±0.68 75.73±1.53 79.11±0.48 83.31±0.77 6.70
hattr 55.15±0.32 84.62±0.61 87.88±0.53 84.22±0.25 83.22±0.52 51.46±0.70 90.18±0.70 76.40±1.39 78.90±0.58 84.04±0.82 4.70

hsim−cos 55.15±0.51 84.11±0.84 87.09±0.98 84.07±0.31 83.38±1.01 51.68±0.39 89.87±0.53 75.88±1.07 78.98±0.66 83.69±0.82 5.95
hsim−euc 56.32±0.26 89.08±0.20 87.52±1.04 85.00±0.38 86.71±0.30 51.35±0.49 90.19±0.69 76.51±1.17 78.96±0.73 84.03±0.83 3.35
hCTF 55.04±0.51 84.80±0.87 88.69±2.25 84.32±0.30 83.46±0.85 51.76±0.57 89.97±0.68 76.40±1.37 78.70±0.38 83.38±0.89 4.55
Soft 57.04±1.37 85.35±3.53 89.54±1.32 84.47±0.92 84.83±3.28 51.70±0.62 89.93±0.60 75.94±1.28 79.20±0.46 84.03±0.84 3.50
Hard 45.28±0.79 66.92±4.70 69.48±4.14 80.98±0.70 72.09±3.72 42.77±0.57 86.62±2.25 75.56±1.29 76.96±0.61 79.13±0.94 8.90
None 53.36±1.08 83.38±1.78 87.56±0.79 84.13±0.29 84.00±0.72 51.40±0.49 89.93±0.52 76.24±1.48 75.51±0.65 84.19±0.75 5.95

Since TFI is not an unsupervised measurement, we investigate how the percentage of supervision in
TFI (percentage of node labels used to calculate TFI in Eq. (5)) influences the model performance
of GCN+GFS. As shown in Figure 6, as the supervision percentage increases, the model perfor-
mance first increases and then stabilizes after 30%. This indicates that 30% of the label supervision
achieves similar results as full labels in most datasets and it highlights the effectiveness of TFI in
sparse label scenarios. Compared to some other methods (Zheng et al., 2024b; Li et al., 2023b) that
require pseudo labels during training, TFI requires less preprocessing in semi-supervised node clas-
sification settings. Even with only 10% supervision, TFI can still enhance GCN+GFS performance
on most datasets compared to the original GCN. Please refer to Appendix D.3 for more results on
the influence of the supervision percentage in TFI on GFS performance.
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Figure 6: Influence of the percentage of the supervision in TFI on the model performance of
GCN+GFS.

Based on TFI, we extend the feature selection from the raw node features to node embeddings,
which may also be GNN-favored or GNN-disfavored. Specifically, we train a GCN or MLP on the
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training set and then get the node embeddings from the last layer. After that, we train GCN+GFS
on these node embeddings following the same process as on the original node features. As shown
in Figure 7, applying GCN+GFS on either the original node features, X , or pretrained node embed-
dings, MLP(X) and GCN(X,A), improves GCN performance on most datasets. Furthermore, for
some datasets, such as Computers, Questions, and Amazon-ratings, the performance of GCN+GFS
could be further improved using pretrained node embeddings compared with original node features.
Additionally, it would be interesting to explore the impact of graph feature selection on dynamically
updated node embeddings in future research.

5.5 GNN-FAVORED AND GNN-DISFAVORED FEATURES (RQ4)

To validate whether features selected by a high TFI are truly GNN-favored, we swapped features
by feeding GNN-favored features into MLP and GNN-disfavored features into GNN. As shown
in Figure 8, the performance of GCN+GFS drops in all datasets after swapping GNN-favored and
GNN-disfavored features. Especially in some datasets, such as Minesweeper, there is a 40% drop
in performance. These results show that TFI reliably identifies GNN-favored and GNN-disfavored
features.
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Figure 7: GCN+GFS on node features
X and pretrained node embeddings
GCN(X,A) and MLP(X).
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Figure 8: Performance drop of GCN+GFS
by swapping GNN-favored and GNN-
disfavored features.

6 CONCLUSION AND FUTURE WORKS

In this paper, we study feature selection to enhance GNN performance by identifying GNN-favored
and GNN-disfavored features. To answer whether each feature in graphs is GNN-favored or not,
previous feature homophily metrics suffer from “good heterophily”. To address this issue, we intro-
duce Topological Feature Informativeness (TFI), which measures the mutual information between
aggregated node features and labels. This metric effectively quantifies the performance gap between
GNNs and Multi-Layer Perceptrons (MLPs), as supported by our empirical observations and theo-
retical analyses. We then propose a simple yet effective method, Graph Feature Selection (GFS), to
incorporate TFI to improve the GNN performance. Our extensive experiments demonstrate that ap-
plying GFS to 8 GNN architectures across 10 datasets yields a significant performance boost in 90%
(72 out of 80) of the cases, with an average increase of 3.2% in accuracy or AUC-ROC on node clas-
sification tasks. We also show that the performance gains from GFS are robust to hyperparameter
tuning, indicating its potential as a universal method for enhancing various types of GNNs.

Admittedly, the features selected by TFI introduce a new hyperparameter, ratio r, in GFS. Although
GFS improves GNNs performance across a large range of r, the best performance point remains
unknown due to the high complexity of the optimization process in GNNs and MLP. Therefore, it is
interesting to explore the auto-selection of ratio r in the future. Furthermore, since TFI is a super-
vised, statistic-based metric and other types of metrics may also enhance GNN performance under
GFS, it would be valuable to investigate more types of metrics, both supervised and unsupervised,
for feature selection in graphs with GNNs in the future.
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A RELATED WORK

The proposed Graph Feature Selection (GFS) in this paper mainly relates with feature selection and
GNNs efficacy. Thus, in this section, we first introduce feature selection methods on non-GNNs
models and GNNs. Then, we introduce the studies on the effectiveness of GNNs from a graph level,
node level, or feature level.

Feature Selection. Feature selection is crucial for improving model performance, preventing over-
fitting, and reducing computational complexity (Li et al., 2017). To preserve data similarity, Lapla-
cian Score (He et al., 2005) and SPEC (Zhao & Liu, 2007) are proposed to select features that best
preserve the data manifold structure. To maximize the correlation between feature and class labels,
MIM (Lewis, 1992) is proposed based on information theory. To minimize the fitting errors in clas-
sification tasks, Hara & Maehara (2017); Zhu et al. (2003) propose to select features with larger
weights in models with l1-norm regularization. To reduce feature redundancy, T-Score (Davis et al.,
1986) and Chi-Square Score (Liu & Setiono, 1995) are proposed to access whether features could
distinguish different classes. All of the aforementioned methods only consider data in Euclidean
space, which cannot be applied for non-Euclidean data, such as graph-structured data. To address
this, Ye & Liu (2012); Kim & Xing (2009) use a Graph Lasso regularizer to select features consistent
across connected nodes.

While effective in traditional machine learning, these methods do not identify GNN-favored or
GNN-disfavored features, as discussed in this paper. Our approach does not simply discard GNN-
disfavored features; instead, it strategically utilizes them with a non-GNN model, driven by the
principle of aligning the right features with the right model.

Graph Homophily. Even if traditional GNNs (Kipf & Welling, 2016; Velicković et al., 2017) are
believed to perform well on graph-related tasks, the performance of GNNs could be inferior than
non-GNNs models in some graphs. Therefore, metrics of graph homophily, such as edge homophily
(Zhu et al., 2020a), node homophily (Pei et al., 2020b), and class homophily (Lim et al., 2021), are
proposed to determine when GNNs perform well. The definitions of these homophily metrics are
given as:

hedge(G,Y ) =
∣{euv ∣euv∈E,Yu=Yv}∣

∣E ∣ , hnode(G,Y ) =
1
∣V ∣ ∑v∈V

∣{u∣u∈Nv,Yu=Yv}∣

∣Nv∣
(10)

hclass(G,Y ) =
1

C − 1

C

∑
c=1
[
∑u∈V,Yu=c ∣{v ∣ v ∈ Nu, Yu = Yv}∣

∑u∈{u∣Yu=c} du
−
Nc

N
]
+

(11)

hadj(G,Y ) =
hedge(G,Y ) −∑

C
c=1

D2
c

(2∣E ∣)2

1 −∑
C
c=1

D2
c

(2∣E ∣)2
(12)

Generally, these metrics measure the label consistency along the graph topology using an indicator
function to determine if the connected nodes share the same labels. However, these metrics suffering
from the ”good heterophily” (Ma et al., 2021), leading to a misalignment with GNNs performance.
Therefore, new metrics, such as label informativeness (Platonov et al., 2024), aggregation homophily
(Luan et al., 2022a), and classifier-based homophily (Luan et al., 2024b) are proposed to mitigate this
deficiency. Nevertheless, all these metrics neglect the feature aspect in graphs, which also constitute
an important role in GNNs performance (Zheng et al., 2024a). Therefore, some feature homophily
metrics, such as generalized edge homophily (Jin et al., 2022) is proposed to measure the feature
consistency across the graph topology:

hGE(G,X) =
1

∣E ∣
∑

euv∈E

XuXv

∥Xu∥ ∥Xv∥
(13)
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Similarly, local similarity (Chen et al., 2023) is proposed to measure feature homophily at the node
level by cosine similarity or Euclidean similarity:

hLS−cos(G,X) =
1

∣V ∣
∑
u∈V

1

du
∑

v∈Nu

XuXv

∥Xu∥ ∥Xv∥

hLS−euc(G,X) =
1

∣V ∣
∑
u∈V

1

du
∑

v∈Nu

(− ∥Xu −Xv∥2)

(14)

Attribute homophily (Yang et al., 2021b) also consider the feature homophily but with a different
normalization on each feature:

hattr,m(G,X∶,m) =
1

∑u∈V Xu,m
∑
u∈V
(Xu,m

∑v∈Nu
Xv,m

du
)

hattr(G,X) =
M

∑
m=1

hattr,m(G,X∶,m)

(15)

Class-controlled feature homophily (Lee et al., 2024) examines the relationship between graph
topology and feature dependence by analyzing the difference in expected distances between a node
and its neighbors compared to random nodes, defined as follows:

hCF (G,X,Y ) =
1

∣V ∣
∑
u∈V

1

du
∑

v∈Nu

(d(v,V/{u}) − d(v,{u}))

d(u,V ′) =
1

∣V ′∣
∑
v∈V ′
∥(Xu∣Y ) − (Xv ∣Y )∥

Xu∣Y =Xu − (
∑Yu=Yv

Xv

∣{v∣Yu = Yv, v ∈ V}∣
)

(16)

where Xu∣Y represents class-controlled features and d(⋅) denotes a distance function.

All of these feature homophily metrics measure the feature consistency, which still suffer from the
“good heterophily” issue as similar as node homophily or edge homophily. Our proposed Topologi-
cal Feature Informativeness (TFI) addresses this limitation by the mutual information, which better
aligns with GNNs performance on each feature in graphs.

Heterophily-oriented GNNs For graphs with low homophily (heterophily), GNNs are likely to
fail and even worse than non-GNNs models (Luan et al., 2024a). Therefore, many approaches
(Wang et al., 2024b; Yang et al., 2021b; Zheng et al., 2024b; Lu et al., 2024b; Luan et al., 2024c) are
proposed to improve the performance of GNNs on heterophilous graphs, which can be categorized
into graph level, node level, or feature level-based GNNs.

For the graph level, FAGCN (Bo et al., 2021) introduces high frequency signals in graph convolution
to capture local information to address heterophily. Similarly, ACMGCN (Luan et al., 2022a) and
FB-GNNs (Luan et al., 2022b) proposes filterbanks to fuse identify, low-pass, and high-pass filter
signals. To mitigate the limitation of local heterophilous neighbors, Mixhop (Abu-El-Haija et al.,
2019) and H2GCN Zhu et al. (2020b) introduces multi-hop neighbors during the graph convolution.
To extends the local neighbors in heterophilous graphs to global neighbors, GloGNN (Li et al., 2022)
proposes signed and learnable coefficient matrix and Geom-GCN (Pei et al., 2020b) introduces new
neighbors from the space of geometric embeddings.

For the node level, SnoH (Wang et al., 2024b) modifies the message propagation for each node with
varying receptive field in graph convolution. Similarly, CO-GNN (Finkelshtein et al., 2023) assigns
each node with different types of directed message propagation in a cooperative manner, NoSAF
(Wang et al., 2024c) provides each node with a node-specific layer aggregation with varying filter
weights, and Node-MOE (Han et al., 2024) identifies heterophilous nodes with a feature inconsis-
tency measurement, then treats these nodes differently with different filters. Different from these
approaches, DisamGCL (Zhao et al., 2024) adopts a contrastive learning objective, by identifying
ambiguous nodes with historical label predictions and treating these nodes as negative samples.

To our best knowledge, only DMP (Yang et al., 2021b) proposes to treat each feature differently
in heterophily-oriented GNNs. DMP first defines the attribute homophily as feature consistency
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across the graph topology, then use a learnable weight to automatic learn the layer-wised weights
for each features. However, this kind of attribute homophily suffers from ”good heterophily” issue
(Ma et al., 2021) and these homophily values haven’t been used to guide the feature selection in
graphs. Furthermore, these learnable weights in GNNs for feature selection still inferior than our
statistic-based metrics, TFI.

B PROOF OF THEOREM 1

Theorem 1. Given a graph G = {V,E} with node features Xm ∈ RN in the m-th dimension and
uniform node labels Y ∈ RN over V , we can obtain aggregated features by applying graph con-
volution k times, i.e., X̃m = (Â)

kXm. For a classifier that predicts label Y using the aggregated
features X̃m, its accuracy rate PA is upper bounded by:

PA ≤
I(Y ; X̃m) + log 2

log(C)
(17)

Proof. For a node with its aggregated feature X̃m, denote its true label as Y and the predicted label
as Ŷ = f(X̃m), where f(⋅) represents the classifier. The occurrence of an error E in the classifier
can be expressed as:

E ∶= {
1 if Ŷ ≠ Y,
0 if Ŷ = Y.

(18)

Considering the Markov chain Y → X̃ → Ŷ , we apply Fano’s inequality (Gerchinovitz et al., 2020)
to obtain:

H(Y ∣X̃) ≤Hb(PE) + PE log(C − 1) (19)
where PE is the error rate and Hb(⋅) is the binary entropy function.

To express PE , we rearrange the inequality:

PE ≥
H(Y ∣X̃) −Hb(PE)

log(C − 1)
(20)

Noting that H(Y ∣X̃) = H(Y ) − I(Y ; X̃) = log(C) − I(Y ; X̃) and that Hb(PE) ≤ log 2, we can
substitute these terms into the equation:

PE ≥ 1 −
I(Y ; X̃m) + log 2

log(C)
(21)

Finally, converting the expression to the accuracy rate, we find:

PA = 1 − PE ≤
I(Y ; X̃m) + log 2

log(C)
(22)

This concludes the proof.

C IMPLEMENTATION DETAILS

In this section, we provide all implementation details in Section 3 and Section 5. We have also made
the code publicly available, which can be accessed here: https://anonymous.4open.science/r/graph-
feature-selection-BF28.

C.1 DATASETS

We use Children, Computers, Fitness, History, Photo, Amazon-Ratings, Minesweeper, Questions,
Roman-Empire, Tolokers as mentioned in Table 3 and Squirrel, Chameleon, Actor, Texas, Cornell,
Wisconsin, Cora, CiteSeer, PubMed (?) as mentioned in Table 14 for all experiments. All datasets
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Table 3: Dataset Statistics

Dataset #Nodes #Edges #Features #Classes Ave. Degrees Domain Feat. Modeling hnode hedge hclass hadj Avg. TFI
Children 76,875 1,554,578 768 24 20.22 E-commerce PLMs 0.4579 0.4220 0.2372 0.2913 0.0225
Comp. 87,229 721,081 768 10 8.27 E-commerce PLMs 0.8469 0.8322 0.7601 0.7988 0.0208
Fitness 173,055 1,773,500 768 13 10.25 E-commerce PLMs 0.8991 0.9004 0.7940 0.8528 0.0366
History 41,551 358,574 768 12 8.63 E-commerce PLMs 0.7812 0.6626 0.2654 0.5463 0.0296
Photo 48,362 500,939 768 12 10.36 E-commerce PLMs 0.7792 0.7491 0.7229 0.6892 0.0234

Amazon. 24,492 93,050 300 5 3.80 E-commerce FastText 0.3793 0.3804 0.1270 0.1357 0.0177
Mines. 10,000 39,402 7 2 3.94 Games One-hot 0.6832 0.6828 0.0094 0.0108 0.0202

Questions 48,921 153,540 301 2 3.14 Website FastText 0.8963 0.8396 0.0722 0.2759 0.0049
Roman. 22,662 32,927 300 18 1.45 Website FastText 0.0415 0.0469 0.0230 -0.0778 0.4870
tolokers 11,758 519,000 10 2 44.14 Social Statistics 0.6331 0.5945 0.1867 0.0887 0.0044

used in this work are in compliance with the MIT license. Tables 3 and 14 shows the dataset statistics
and the values of homophily metrics measured on these datasets. The detailed definition of these
homophily measurements are shown in Appendix A. The descriptions of main datasets are given
below:

• Children and History (Yan et al., 2023) datasets are derived from the Amazon-Books
dataset, consisting of items with the second-level label “Children” and “History” , respec-
tively. In both datasets, nodes represent books, and edges indicate frequent co-purchases
or co-views between books. Each book’s label corresponds to its third-level category. The
node attributes are derived from the book’s title and description using Pre-trained Language
Models (PLMs). The task is to classify the books into 24 categories for Children and 12
categories for History. More details can be found on: https://github.com/sktsherlock/TAG-
Benchmark.

• Computers and Photo (Yan et al., 2023) datasets are extracted from the Amazon-Electronics
dataset, including products with the second-level label “Computers” and “Photo”, respec-
tively. Nodes in these datasets represent electronics products, and edges signify frequent
co-purchases or co-views. The labels correspond to the third-level category of the prod-
ucts. User reviews embedded by PLMs were used as the text attributes of the nodes, with
the review having the highest number of votes being selected, or, if such a review was un-
available, a random review was chosen instead. The task is to classify the products into
10 categories for Computers and 12 categories for Photo. More details can be found on:
https://huggingface.co/datasets/Sherirto/CSTAG/tree/main.

• Fitness dataset (Yan et al., 2023) is derived from the Amazon-Sports dataset, con-
sisting of fitness-related items with the second-level label “Fitness”. Nodes repre-
sent fitness products, and edges indicate frequent co-purchases or co-views between
products, encoded by PLM. The labels are based on the third-level category, and
the task is to classify items into 13 categories. More details can be found on:
https://huggingface.co/datasets/Sherirto/CSTAG/tree/main/Fitness.

• Amazon-Ratings (Platonov et al., 2023) is derived from the Amazon product co-purchasing
network metadata, provided by the SNAP (Leskovec & Krevl, 2014) Datasets, which nodes
represent products and edges connect products that are frequently bought together. Node
features are created using the mean of fastText (Grave et al., 2018) embeddings from prod-
uct descriptions. The task is to predict the average rating of a product, grouped into five
classes. More details can be found on: https://github.com/yandex-research/heterophilous-
graphs/tree/main/data.

• Minesweeper (Platonov et al., 2023) is inspired by the classic Minesweeper game and is
synthetic in nature. It consists of a regular 100x100 grid, where each node represents a cell
connected to its eight neighboring cells (except for cells on the edges, which have fewer
neighbors). In this setup, 20% of the nodes are randomly designated as mines. Each node
has one-hot-encoded features representing the number of neighboring mines, with 50% of
the nodes having missing features, indicated by a separate binary attribute. The task to
recognize if a nodes is mine or not. More details can be found https://github.com/yandex-
research/heterophilous-graphs/tree/main/data.

• Questions (Platonov et al., 2023) is based on user interactions on the Yandex Q question-
answering platform. Nodes’ labels represent users, and edges connect users if one an-
swered the other’s question during a one-year period. Node features are the mean of fast-
Text (Grave et al., 2018) embeddings from user descriptions, with an additional binary
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feature indicating users without descriptions. The task is to predict which users remained
active (i.e., not deleted or blocked) at the end of the period. More details can be found
https://github.com/yandex-research/heterophilous-graphs/tree/main/data.

• Roman-Empire (Platonov et al., 2023) is constructed from the “Roman Empire” article in
the English Wikipedia. Nodes in the graph represent individual words in the article, and
edges connect words that either appear consecutively in the text or are related via syn-
tactic dependencies. The node’s class is syntactic role obtained using spaCy (Honnibal
et al., 2020), and fastText (Grave et al., 2018) are used for word embeddings of node
features. More details can be found https://github.com/yandex-research/heterophilous-
graphs/tree/main/data.

• Tolokers (Platonov et al., 2023) is based on data from the Toloka crowdsourcing platform
(Likhobaba et al., 2023). The nodes represent tolokers (workers) who have participated in
at least one of 13 projects and edges connect workers who have collaborated on the same
task. Node features are based on profile information and task performance statistics. The
task is to predict which tolokers have been banned from a project. More details can be
found https://github.com/yandex-research/heterophilous-graphs/tree/main/data.

For all datasets, we randomly split the train, validation, and test set as 50% ∶ 25% ∶ 25% for 10
runs. Specifically, to investigatethe impact of supervision percentage on the performance of GFS, in
Figure 6, we combine the train, validation and test sets for TFI calculation with a given ratio r.

C.2 MODEL

The details of all the GNN methods used in our experiments are introduced as follows:

• GCN (Kipf & Welling, 2016) performs a layer-wise propagation of node features and ag-
gregates features from neighboring nodes to capture local graph structures. Each layer of
the network updates the node embeddings by applying a convolution operation over the
graph, which combines the node’s own features with the features of its neighbors. The
authors’ implementation is available at https://github.com/tkipf/gcn.

• GAT (Velicković et al., 2017) leverages self-attention mechanisms to perform node clas-
sification on graph-structured data. The innovation of GAT lies in its ability to learn
different attention coefficients for each neighboring node dynamically. Specifically,
the attention coefficient between node i and its neighbor j is computed as: eij =
LeakyReLU(aT [Whi∥Whj]), where hi and hj are the feature vectors of nodes i and j, W
is a shared weight matrix, and a is a learnable attention vector. The coefficients are normal-
ized using the softmax function: αij =

exp(eij)
∑k∈Ni

exp(eik) , where Ni denotes the set of neigh-
bors of node i. The final node representation is computed as a weighted sum of its neigh-
bors’ features: h′i = σ (∑j∈Ni

αijWhj) . The multi-head attention mechanism improves
stability and expressiveness by concatenating or averaging the outputs of multiple indepen-
dent attention heads, which is set with num heads = 8 in our experiments. This allows
GAT to assign different importances to each neighboring node while maintaining compu-
tational efficiency. The authors’ implementation is available at https://github.com/PetarV-
/GAT.

• SAGE (Hamilton et al., 2017) introduces an inductive framework for node embed-
dings by aggregating features from a node’s local neighborhood rather than requiring
all nodes to be available during training. Its key innovation lies in the aggregation
functions that can efficiently generate embeddings for unseen nodes. The aggregation
process involves sampling and aggregating feature information from a node’s neighbor-
hood at each layer of the network. The general form of feature aggregation is: h

(k)
v =

σ (W (k) ⋅AGGREGATE (h(k−1)u ,∀u ∈ N (v))) , where N (v) represents the set of neigh-
bors of node v, and AGGREGATE is set to mean operation in our experiment. This allows
the model to generalize across evolving graphs and unseen nodes. The authors’ implemen-
tation is available at https://github.com/williamleif/GraphSAGE.

• GT (Shi et al., 2020) is a transformer-based architecture designed for graph learning. It
adapts the traditional Transformer model to graph data by incorporating node and edge
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features into the attention mechanism. The key innovation of GT is the use of multi-
head attention to propagate node features across graph edges while also considering edge
information. In our experiments, we employ the Graph Transformer with 8 attention

heads. The attention coefficients are calculated as: αij =
exp(LeakyReLU(q⊺ikj+eij))

∑k∈N(i) exp(LeakyReLU(q⊺ikk+eik))
,

where qi and kj are the query and key vectors for nodes i and j, and eij rep-
resents the edge feature between nodes i and j. This allows the model to aggre-
gate both node and edge information. The author’s implementation is available at
https://github.com/PaddlePaddle/PGL/tree/main/ogb examples/nodeproppred/unimp

• SGC (Simplifying Graph Convolution) (Wu et al., 2019a) is a simplified variant of GCN
designed to reduce computational complexity while maintaining similar performance. SGC
removes the non-linear activation functions between layers of a traditional GCN, collapsing
multiple layers into a single linear transformation. This reduces the overall complexity
of the model and results in faster training and inference times. The propagation of node
features in SGC can be expressed as: H = SKXW, where S is the normalized adjacency
matrix, X is the input feature matrix, W is the weight matrix, and K is the number of
propagation steps (or layers). By precomputing SKX, the model reduces to simple logistic
regression on the preprocessed features, significantly speeding up the training process. In
our experiments, we use K = 1 for optimal performance. The authors’ implementation is
available at https://github.com/Tiiiger/SGC.

• APPNP (Gasteiger et al., 2018) builds upon Graph Convolutional Networks (GCNs) by
utilizing personalized PageRank for improved propagation of node features while avoiding
oversmoothing. The model separates the neural network prediction from the propagation
process, allowing it to handle larger neighborhood sizes efficiently. The propagation is
controlled by the following iterative equation: Z(k+1) = (1 − α)ÂZ(k) + αH, where Â
is the normalized adjacency matrix, α is the teleport probability (set as α = 0.1 in our
experiments), and H is the initial node feature set. After k (set default k = 2) propa-
gation steps, the output node features are computed as: Z = softmax(Z(k)). This struc-
ture permits the model to aggregate information from both local and distant nodes without
increasing the depth of the neural network. The authors’ implementation is available at
https://github.com/klicperajo/ppnp.

• ACMGCN (Luan et al., 2022a) addresses the heterophily problem in graph neural net-
works (GNNs) by introducing an Adaptive Channel Mixing (ACM) framework. This model
adapts to both homophilic and heterophilic graphs by dynamically learning to balance infor-
mation from three channels: aggregation, diversification, and identity. The key innovation
lies in its ability to adaptively learn different weights for each node, allowing the model to
exploit local graph structure and node feature similarities. The three channels are combined
using learned weights, allowing the model to emphasize different types of information for
different nodes: H(l) = αLH

(l)
L +αHH

(l)
H +αIH

(l)
I , where H(l)L , H(l)H , and H

(l)
I represent

the low-pass (aggregation), high-pass (diversification), and identity channels, respectively,
and αL, αH , αI are learned weights that balance these channels. This flexible channel mix-
ing enables ACMGCN to significantly outperform standard GNN models on heterophilic
graphs while maintaining strong performance on homophilic graphs. The authors’ imple-
mentation is available at https://github.com/SitaoLuan/ACM-GNN.

• FAGCN (Bo et al., 2021) tackles the limitation of traditional GNNs that primarily focus on
low-frequency signals. FAGCN introduces a self-gating mechanism to adaptively combine
both low-frequency and high-frequency signals, allowing it to handle both assortative and
disassortative networks effectively. The key innovation is its ability to dynamically adjust
the contribution of each frequency type in the message-passing process. The aggregation
of node features is expressed as: h′i = ϵhi+∑j∈N (i) αLij(FLhj)+αHij(FHhj), where FL

and FH are low-pass and high-pass filters, respectively, and αLij and αHij are the learned
attention coefficients for each type of signal. This enables FAGCN to adapt to different
graph structures and alleviates the over-smoothing problem common in deep GNNs. The
authors’ implementation is available at https://github.com/bdy9527/FAGCN.
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C.3 TRAINING DETAILS

All models are implemented using the PyTorch (Ansel et al., 2024) framework and the DGL (Wang
et al., 2019) library. We run experiments on a machine with 4 NVIDIA RTX A6000 GPUs, each
with 48GB of memory. For most of the tables and figures illustrated in Section 5, we perform a grid
search on all dataset and the hyperparameters used for search are list as follow:

• Number of layers: {2,3}
• Hidden dimension: {128,256,512}
• Learning rate: {3 × 10−5,10−4,3 × 10−4,10−3,3 × 10−3,10−2}
• Weight decay: {0,10−5,10−3}
• Dropout rate: {0.1,0.2,0.4,0.6,0.8}

Specially, for response of GCN+GFS, GCN, and MLP to number of layers and hidden dimension,
as shown in Figure 5 and Figure 11, the hyperparameters range of set are list as follow:

• Number of layers: {1,2,3,4,5,6,7,8,9,10}
• Hidden dimension: {16,32,64,128,256,512,1024}
• Learning rate: {10−5,3 × 10−5,10−4,3 × 10−4,10−3,3 × 10−3,10−2,3 × 10−2}
• Weight decay: {0,10−5,3 × 10−5,10−4,3 × 10−4,10−3}
• Dropout rate: {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}

To enhance the performance of all GNN models, we use skip connections (He et al., 2016) and layer
normalization (Ba et al., 2016) across all methods.

Table 4: Hyperparameters for GNN baselines and GNN+GFS on Children.

Dataset Model Num of Layers Hidden Dim Learning Rate Weight Decay Dropout

Children

GCN 2 256 3e-3 1e-3 0.2
GCN+GFS 2 256 3e-4 1e-4 0.2
GAT 2 512 3e-5 0 0.2
GAT+GFS 3 512 3e-4 0 0.2
SAGE 2 512 3e-5 0 0.2
SAGE+GFS 2 512 3e-5 0 0.2
GT 2 512 3e-4 1e-3 0.2
GT+GFS 3 512 3e-4 0 0.4
SGC 2 512 3e-3 0 0.2
SGC+GFS 2 512 3e-3 0 0.2
APPNP 2 512 3e-5 0 0.2
APPNP+GFS 2 512 3e-3 0 0.2
ACMGCN 2 512 3e-5 0 0.2
ACMGCN+GFS 3 512 3e-4 0 0.6
FAGCN 2 512 3e-5 0 0.2
FAGCN+GFS 2 512 3e-3 0 0.2

C.4 OPTIMIZATION-BASED GRAPH FEATURE SELECTION

We implement optimization-based metrics θSoft and θHard mentioned in Section 5.

• θSoft: We use two learnable weight matrices, WGNN ∈ RM and WMLP ∈ RM , to guide
feature selection for GNN and MLP. For the input node features X ∈ RN×M , we divide
them into a GNN-favored part XG and a GNN-disfavored part X¬G , computed as follows:

XG =
W2

GNN

W2
GNN +W2

MLP + ϵ
⋅X (23)

X¬G =
W2

MLP

W2
GNN +W2

MLP + ϵ
⋅X (24)
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Table 5: Hyperparameters for GNN baselines and GNN+GFS on Computers.

Dataset Model Num of Layers Hidden Dim Learning Rate Weight Decay Dropout

Computers

GCN 2 512 3e-5 0 0.2
GCN+GFS 3 512 1e-4 3e-5 0.2
GAT 2 128 3e-3 0 0.2
GAT+GFS 3 512 3e-4 0 0.4
SAGE 2 512 3e-5 0 0.2
SAGE+GFS 3 512 3e-4 0 0.4
GT 2 512 3e-5 0 0.2
GT+GFS 3 512 3e-5 0 0.2
SGC 3 512 3e-4 0 0.2
SGC+GFS 3 512 3e-3 0 0.2
APPNP 2 512 3e-5 0 0.2
APPNP+GFS 3 512 3e-4 0 0.2
ACMGCN 2 512 3e-5 0 0.2
ACMGCN+GFS 3 512 3e-4 0 0.4
FAGCN 2 512 3e-5 0 0.2
FAGCN+GFS 3 512 3e-3 0 0.2

Table 6: Hyperparameters for GNN baselines and GNN+GFS on Fitness.

Dataset Model Num of Layers Hidden Dim Learning Rate Weight Decay Dropout

Fitness

GCN 2 512 3e-5 0 0.2
GCN+GFS 3 512 3e-4 0 0.2
GAT 2 128 3e-3 0 0.2
GAT+GFS 3 512 3e-4 0 0.2
SAGE 2 512 3e-5 0 0.2
SAGE+GFS 3 512 3e-4 0 0.2
GT 2 512 3e-5 0 0.2
GT+GFS 3 512 3e-4 0 0.2
SGC 2 512 3e-3 0 0.2
SGC+GFS 3 512 3e-3 0 0.2
APPNP 2 512 3e-5 0 0.2
APPNP+GFS 3 512 3e-4 0 0.6
ACMGCN 2 512 3e-5 0 0.2
ACMGCN+GFS 3 512 3e-4 0 0.6
FAGCN 2 512 3e-5 0 0.2
FAGCN+GFS 2 512 3e-3 0 0.2

Table 7: Hyperparameters for GNN baselines and GNN+GFS on History.

Dataset Model Num of Layers Hidden Dim Learning Rate Weight Decay Dropout

History

GCN 2 256 3e-3 0 0.4
GCN+GFS 2 512 3e-5 0 0.2
GAT 2 512 3e-5 0 0.2
GAT+GFS 2 512 3e-5 0 0.2
SAGE 2 512 3e-5 0 0.2
SAGE+GFS 2 512 3e-5 0 0.2
GT 2 512 3e-5 0 0.2
GT+GFS 3 512 3e-4 0 0.2
SGC 2 256 3e-3 0 0.2
SGC+GFS 3 512 3e-3 0 0.2
APPNP 2 512 3e-5 0 0.2
APPNP+GFS 2 512 3e-3 0 0.2
ACMGCN 2 512 3e-4 0 0.2
ACMGCN+GFS 2 512 3e-4 0 0.6
FAGCN 2 512 3e-5 0 0.2
FAGCN+GFS 3 512 3e-3 0 0.2
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Table 8: Hyperparameters for GNN baselines and GNN+GFS on Photo.

Dataset Model Num of Layers Hidden Dim Learning Rate Weight Decay Dropout

Photo

GCN 3 256 3e-3 0 0.4
GCN+GFS 3 512 3e-5 0 0.2
GAT 2 128 3e-3 0 0.2
GAT+GFS 3 512 3e-4 0 0.2
SAGE 2 512 3e-5 0 0.2
SAGE+GFS 3 512 3e-4 0 0.2
GT 3 512 3e-4 0 0.2
GT+GFS 3 512 3e-5 0 0.2
SGC 2 512 3e-3 1e-3 0.2
SGC+GFS 3 512 3e-3 0 0.2
APPNP 2 512 3e-5 0 0.2
APPNP+GFS 3 512 3e-4 0 0.4
ACMGCN 2 512 3e-3 0 0.4
ACMGCN+GFS 3 512 3e-4 0 0.6
FAGCN 2 512 3e-5 0 0.2
FAGCN+GFS 3 512 3e-3 0 0.2

Table 9: Hyperparameters for GNN baselines and GNN+GFS on Amazon-Ratings.

Dataset Model Num of Layers Hidden Dim Learning Rate Weight Decay Dropout

Amazon-Ratings

GCN 2 512 3e-4 1e-3 0.4
GCN+GFS 2 512 1e-3 1e-3 0.4
GAT 2 512 3e-5 0 0.2
GAT+GFS 3 512 3e-4 0 0.4
SAGE 2 512 3e-5 0 0.2
SAGE+GFS 3 512 3e-4 0 0.4
GT 2 512 3e-5 0 0.2
GT+GFS 3 512 3e-5 0 0.2
SGC 3 512 3e-3 0 0.2
SGC+GFS 2 512 3e-3 0 0.2
APPNP 2 512 3e-5 0 0.2
APPNP+GFS 2 512 3e-3 0 0.4
ACMGCN 2 512 3e-4 0 0.4
ACMGCN+GFS 3 512 3e-4 0 0.6
FAGCN 2 512 3e-5 0 0.2
FAGCN+GFS 2 512 3e-3 0 0.2

Table 10: Hyperparameters for GNN baselines and GNN+GFS on Minesweeper.

Dataset Model Num of Layers Hidden Dim Learning Rate Weight Decay Dropout

Minesweeper

GCN 2 512 3e-4 0 0.2
GCN+GFS 2 128 1e-3 3e-4 0.2
GAT 2 512 3e-4 0 0.2
GAT+GFS 2 512 3e-5 0 0.2
SAGE 2 512 3e-5 0 0.2
SAGE+GFS 2 512 3e-5 0 0.2
GT 2 512 3e-5 0 0.2
GT+GFS 2 512 3e-5 0 0.2
SGC 2 128 3e-3 0 0.2
SGC+GFS 3 512 3e-3 0 0.2
APPNP 2 512 3e-5 0 0.2
APPNP+GFS 3 512 3e-4 0 0.2
ACMGCN 3 512 3e-5 0 0.2
ACMGCN+GFS 2 512 3e-5 0 0.2
FAGCN 2 512 3e-5 0 0.2
FAGCN+GFS 3 512 3e-3 0 0.2
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Table 11: Hyperparameters for GNN baselines and GNN+GFS on Questions.

Dataset Model Num of Layers Hidden Dim Learning Rate Weight Decay Dropout

Questions

GCN 2 512 3e-4 0 0.2
GCN+GFS 3 128 1e-4 1e-3 0.2
GAT 2 512 3e-4 0 0.2
GAT+GFS 2 512 3e-5 0 0.2
SAGE 2 512 3e-5 0 0.2
SAGE+GFS 2 512 3e-5 0 0.2
GT 2 512 3e-5 0 0.2
GT+GFS 3 512 3e-5 0 0.4
SGC 3 512 3e-3 0 0.8
SGC+GFS 3 512 3e-5 0 0.6
APPNP 2 512 3e-5 0 0.2
APPNP+GFS 3 512 3e-5 0 0.6
ACMGCN 2 512 3e-5 0 0.2
ACMGCN+GFS 2 512 3e-5 0 0.2
FAGCN 2 512 3e-5 0 0.2
FAGCN+GFS 3 512 3e-3 0 0.2

Table 12: Hyperparameters for GNN baselines and GNN+GFS on Roman-Empire.

Dataset Model Num of Layers Hidden Dim Learning Rate Weight Decay Dropout

Roman-Empire

GCN 2 512 3e-5 0 0.2
GCN+GFS 3 128 1e-2 1e-4 0.3
GAT 2 128 3e-3 0 0.4
GAT+GFS 3 512 3e-4 0 0.6
SAGE 2 512 3e-3 0 0.6
SAGE+GFS 3 512 3e-4 0 0.4
GT 2 512 3e-3 0 0.8
GT+GFS 3 512 3e-4 0 0.6
SGC 2 128 3e-3 0 0.4
SGC+GFS 2 512 3e-3 0 0.2
APPNP 2 512 3e-5 0 0.2
APPNP+GFS 2 512 3e-5 0 0.2
ACMGCN 2 512 3e-3 0 0.8
ACMGCN+GFS 3 512 3e-4 0 0.8
FAGCN 2 512 3e-5 0 0.2
FAGCN+GFS 2 512 3e-3 0 0.2

Table 13: Hyperparameters for GNN baselines and GNN+GFS on Tolokers.

Dataset Model Num of Layers Hidden Dim Learning Rate Weight Decay Dropout

Tolokers

GCN 2 512 3e-4 1e-5 0.2
GCN+GFS 3 128 1e-3 3e-5 0.2
GAT 2 512 3e-5 0 0.2
GAT+GFS 3 512 3e-5 0 0.2
SAGE 2 512 3e-5 0 0.2
SAGE+GFS 3 512 3e-3 0 0.4
GT 3 512 3e-5 0 0.2
GT+GFS 3 512 3e-5 0 0.2
SGC 2 512 3e-3 0 0.2
SGC+GFS 3 512 3e-3 0 0.2
APPNP 2 512 3e-5 0 0.2
APPNP+GFS 3 512 3e-3 0 0.2
ACMGCN 3 512 3e-4 0 0.2
ACMGCN+GFS 3 512 3e-4 0 0.2
FAGCN 2 512 3e-5 0 0.2
FAGCN+GFS 3 512 3e-3 0 0.2
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where ϵ is set to 10−7 to prevent division by zero. In this formulation, WGNN represents the
proportion of each feature that is GNN-favored, while WMLP represents the proportion that
is MLP-favored. The sum of XG and X¬G equals the original input X, indicating that the
features are divided based on the relative influence of GNN and MLP preferences. These
weight parameters are updated during the training process.

• θHard: We use a learnable weight matrix, WHard ∈ RM×2, to guide feature selection for GNN
and MLP. For the input node features X ∈ RN×M , we divide them into a GNN-favored part
XG and a GNN-disfavored part X¬G , computed as follows:

MHard = Gumbel-Softmax(WHard) (25)
XG = X ⋅MHard[∶,0] (26)

X¬G = X ⋅MHard[∶,1] (27)

In this case, MHard ∈ RM×2 is the output of the Gumbel-Softmax applied to WHard. For
each row in MHard, one value will be 1 and the other will be 0. A value of 1 indicates
the selection of that feature, meaning that either the GNN-favored part or the MLP-favored
part is chosen for each feature. This binary selection mechanism ensures that each feature is
exclusively assigned to either XG or X¬G , depending on which component is favored. The
use of Gumbel-Softmax(⋅) (Jang et al., 2017) allows for differentiable sampling, enabling
the weight parameters to be updated during the training process.

C.5 DETAILS OF PRETRAINED NODE EMBEDDINGS

We implement experiments using both GCN and MLP pretrained features to evaluate their effect
when applying GCN+GFS on either the original node features, X , or on the pretrained node em-
beddings, MLP(X) and GCN(X , A). The results of this evaluation are presented in Figure 7 in the
main text.

• MLP(X): We pretrain a Multi-Layer Perceptron (MLP) model with the following setup: 2
layers, a hidden dimension of 128, trained for 1000 steps using the ELU activation function.
For each of the 10 data splits, the MLP is trained separately with the Adam optimizer, using
a learning rate of 1e − 2 and a weight decay of 5e − 4. The pretrained MLP is then used to
extract MLP(X) corresponding to the training splits, which serves as the node embeddings
for the experiment.

• GCN(X , A): We pretrain a Graph Convolutional Network (GCN) with 2 layers, a hidden
dimension of 128, and trained for 1000 steps. The activation function used is ReLU, with
a dropout rate of 0.5. Similarly, GCN is trained separately on each of the 10 data splits
using the Adam optimizer, with a learning rate of 1e − 2 and a weight decay of 5e − 4. The
pretrained GCN is then used to extract GCN(X , A), corresponding to the training splits, as
the node embeddings.
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D MORE EXPERIMENTAL RESULTS

D.1 GCN+GFS ON ADDITIONAL DATASETS

We report the performance of GCN+GFS on additional datasets including Squirrel, Chameleon, Ac-
tor, Texas, Cornell, Wisconsin, Cora, CiteSeer, and PubMed. The dataset statistics and descriptions
are shown in Figure 14.

Table 14: Addtional Dataset Statistics

Dataset #Nodes #Edges #Features #Classes Ave. Degrees hnode hedge hclass hadj Avg. TFI
Squirrel 2223 46998 2089 5 21.14 0.1759 0.2072 0.0725 -0.0076 0.0173

Chameleon 890 8854 2325 5 9.95 0.2273 0.2361 0.0601 0.0360 0.0177
Actor 7600 26659 932 5 3.51 0.2197 0.2167 0.0074 0.0015 0.0029
Texas 183 279 1703 5 1.52 0.0748 0.0609 0.0017 -1.4628 0.0348

Cornell 183 277 1703 5 1.51 0.1246 0.1227 0.0482 -1.1984 0.0202
Wisconsin 251 450 1703 5 1.79 0.1934 0.1778 0.0447 -0.3947 0.0182

Cora 2708 10556 1433 7 3.90 0.8252 0.8100 0.7657 0.7717 0.0188
CiteSeer 3327 9228 3703 6 2.77 0.7166 0.7391 0.6267 0.6673 0.0103
PubMed 19717 88651 500 3 4.50 0.7924 0.8024 0.6641 0.6836 0.0440

As shown in Figure 9, the performance of the GCN+GFS model surpasses the standard GCN across
additional datasets. The selective feature processing approach provided by GFS allows GNNs to
focus on beneficial features, leading to improved performance across diverse datasets.
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Figure 9: Performance on additional datasets.

D.2 SENSITIVITY OF GFS

Figure 10 shows the response of GCN+GFS to r on 6 other datasets, where GFS collapses to a GNN
when r = 1.0 or an MLP when r = 0.0, as all features are sent to GNN or MLP, respectively. Al-
though in some datasets like Minesweeper and Questions, where all the features may favor GNNs,
GFS doesn’t significantly improve GCN performance, it doesn’t diminish GFS’s overall effective-
ness on most datasets.

Figure 11 shows how GCN, MLP, and GCN+GFS respond to changes in number of layers, dimen-
sion of hidden embeddings, learning rate, weight decay, and dropout rate on a homophilous graph
(Computers) and a heterophilous graph (Amazon-Ratings) on other 6 datasets. In most cases, GFS
outperforms GCN, but for certain hyperparameter settings on the Questions dataset, GFS does not
consistently outperform GCN. This is likely because the node features in these datasets are already
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Figure 10: The performance of GCN+GFS is shown as the ratio r of GNN-favored features in TFI
increases. The point representing the best performance is highlighted as☀.

highly graph-favored, making the additional feature selection offered by GFS less impactful. These
results highlight the robustness of GFS under different hyperparameter settings.

D.3 PERCENTAGE OF SUPERVISION IN TFI

In Figure 12, the influence of the supervision percentage in TFI on the performance of GCN+GFS
across other 6 datasets is shown. The results highlight that as the supervision percentage increases,
the performance of GCN+GFS generally improves or stabilizes. Even with only 10% supervision,
GCN+GFS outperforms the standard GCN, demonstrating the robustness of the TFI approach. For
datasets like Fitness and Amazon, there is a noticeable improvement in performance as the supervi-
sion percentage increases, but it stabilizes at around 30%. In datasets such as History, Photos, and
Mines, the model performance is relatively stable, indicating that a small percentage of supervision
is sufficient to achieve optimal performance. The performance on Questions shows more variability
with increasing supervision, possibly due to the graph-favored dataset’s features. This figure sup-
ports the claim that TFI requires minimal supervision to improve GCN+GFS performance, which is
particularly useful in semi-supervised learning settings.

D.4 THE NUMBER OF K-HOP NEIGHBORS IN TFI

We further investigate the influence of the number of neighbor hops in TFI on the performance of
GCN+GFS. We set k from {1,2, . . . ,8} as shown in Eq. (5). As illustrated in Figure 13, increasing
the number of neighbor hops does not significantly affect model performance and results in only
minor deviations in most datasets. This indicates that 1-hop neighbors are sufficient for TFI to select
GNN-favored or GNN-disfavored features.

D.5 PERFORMANCE ON DATASETS WITH PUBLIC SPLITS

We further conduct the experiments on these datasets with public splits as shown in Table 15. Ac-
curacy results on node classification are reported for Cora, PubMed, and CiteSeer, each having one
split. For the other datasets, which have ten splits, we provide both accuracy and standard deviation.
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The results demonstrate that GNN+GFS outperforms baseline GNN in most datasets for 4 types of
GNN backbones, which include GCN, GAT, SGC, and GraphSAGE.

Table 15: The performance of graph feature selection on GNN baselines in public split datasets.

Model Cora Pubmed. Citeseer Actor Chameleon. Cornell Squirrel Texas. Wisconsin
GCN 81.28 78.06 70.60 33.68±0.64 62.41±1.97 60.81±6.53 48.41±1.52 66.49±6.14 77.65±4.91

GCN+GFS 81.94 78.46 71.74 35.30±0.85 62.68±2.02 68.11±6.47 49.13±1.78 77.57±6.50 80.39±4.89
∆ +0.66 +0.40 +1.14 +1.62 +0.27 +7.30 +0.72 +11.08 +2.74

GAT 80.16 76.92 69.88 33.07±0.79 65.79±2.55 63.24±4.97 51.63±1.47 74.05±4.97 76.47±3.70
GAT+GFS 81.06 77.94 72.24 35.23±0.83 66.49±2.11 69.19±5.87 52.15±1.83 77.84±4.38 81.57±6.21

∆ +0.90 +1.02 +2.36 +2.16 +0.70 +5.95 +0.52 +3.79 +5.10
SGC 80.74 76.96 69.84 30.64±0.75 54.39±1.79 43.24±7.64 39.91±1.56 54.86±4.42 53.73±5.64

SGC+GFS 81.48 76.38 71.18 35.62±1.20 54.63±2.14 67.30±4.84 42.19±1.12 71.62±4.27 78.63±6.43
∆ +0.74 -0.58 +1.34 +4.98 +0.24 +24.06 +2.28 +16.76 +24.90

SAGE 81.06 76.80 68.52 36.20±0.81 58.42±2.53 70.00±7.03 39.32±2.06 74.59±5.73 81.18±2.11
SAGE+GFS 81.88 78.40 71.46 36.47±0.72 58.71±1.93 71.08±5.70 39.28±1.49 81.08±5.55 83.14±5.08

∆ +0.82 +1.60 +2.94 +0.27 +0.29 +1.08 -0.04 +6.49 +1.96

D.6 IMPACT OF LABEL HOMOPHILY

To investigate how GSF performs under varying label homophily, we conduct experiments on syn-
thetic datasets using CSBM-H (Luan et al., 2024b; Zheng et al., 2024a) to control homophily levels.
Specifically, in the CSBM-H model, for a node u labeled with y, its features Xu ∈ RM are sampled
from a class-wise Gaussian distribution, specifically Xu ∼ NYu(µYu ,ΣYu). Each dimension of Xu

is independent of each other. To construct the graph structure G with a specified homophily degree
h, the node u has a probability h of connecting to nodes with the same label and a probability of
1−h
C−1 of connecting to nodes with different label. We randomly generate 10 graphs with different
seeds in our experiments to reduce uncertainty. Each graph has 1000 nodes with 10 features and 5
classes. The node degrees are uniformly sampled from [2,8].

We demonstrate how the performance of GCN+GFS varies with label homophily across the range
[0.1,0.2, . . . ,0.9] in Table 16 and Figure 14 for node classification tasks. Generally, GCN+GFS
outperforms both GCN and MLP across different levels of label homophily, indicating that GFS
addresses the limitations of GCN under low homophily and of MLP under high homophily through
effective feature selection. Furthermore, the relative increase ∆ (defined as the accuracy gap be-
tween GCN+GFS and GCN, divided by the accuracy of GCN) decreases as label homophily in-
creases. This finding is expected, as higher homophily levels typically enhance the performance of
all graph-aware models, thereby limiting the potential for improvement through GFS.

Table 16: Impact of label homophily on GFS.

Label Homophily 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MLP 73.12±4.06 71.24±5.81 68.44±6.93 70.36±5.30 66.92±6.36 67.52±4.64 70.12±5.49 69.88±4.77 69.32±4.68
GCN 50.12±3.09 50.56±3.28 56.00±5.49 61.24±5.30 65.84±5.11 72.32±2.35 80.32±3.44 87.64±2.23 90.64±2.32

GCN-GFS 73.24±3.85 69.96±7.24 69.04±6.76 71.36±6.17 69.68±7.69 73.84±4.65 82.76±6.65 89.36±4.20 91.20±6.04
∆ (relative) 23.12% 19.40% 13.04% 10.12% 3.84% 1.52% 2.44% 1.72% 0.56%

D.7 IMPACT OF FEATURE DIMENSION

We investigate the impact of feature dimension size based on the CSBM-H model (Luan et al.,
2024b; Zheng et al., 2024a), following the setup described in Section D.6. As shown in Table
17 and Figure 15, GFS demonstrates a pronounced advantage over GCN as the feature dimension
increases. This outcome is expected, as more features allow GFS to exhibit higher fault tolerance
during feature selection. In real-world scenarios, where the feature dimensions in datasets can reach
hundreds or thousands, as indicated in Table 3, GFS is likely to perform well.

D.8 IMPACT OF FEATURE SPARSENESS

We investigate the impact of feature sparseness on the CSBM-H model (Luan et al., 2024b; Zheng
et al., 2024a), following the setup outlined in Section D.6. To control sparseness in synthetic
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Table 17: Impact of size of feature dim on GFS.

#Feature Dim 10 20 30 40 50

MLP 67.52±4.64 77.76±3.53 83.40±2.58 87.60±1.89 91.12±1.88
GCN 72.32±2.35 79.20±2.15 81.40±2.37 84.64±3.07 87.80±2.73

GCN-GFS 73.84±4.65 84.12±3.70 87.40±3.68 90.84±3.51 94.12±3.37
∆ (relative) 2.06% 5.85% 6.86% 6.83% 6.71%

datasets, we randomly mask a certain percentage of node features. As shown in Table 18 and Figure
16, the results indicate that the advantage of GFS diminishes as feature sparseness increases. Al-
though the relative increase rate of GFS decreases in this context, it still outperforms GCN. This is
attributed to the presence of both GNN-favored and GNN-disfavored features, which allows GFS to
remain effective in enhancing GNN performance.

Table 18: Impact of sparseness on GFS.

Sparseness 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

GCN 54.16±5.58 46.48±3.79 48.88±3.43 45.68±1.93 42.12±2.88 39.52±2.86 34.88±5.59 32.08±2.05 29.92±2.75 25.12±3.07
GCN-GFS 67.96±7.72 59.84±6.83 60.04±5.49 54.92±5.47 50.64±4.15 46.20±5.26 39.52±6.72 35.68±3.05 31.36±5.09 27.24±3.65
∆ (relative) 25.48% 28.74% 22.83% 20.23% 20.23% 16.90% 13.30% 11.22% 4.81% 8.44%

D.9 IMPACT OF NOISES IN FEATURES

To investigate the impact of feature noise on GFS, we conduct experiments on four real-world
datasets: Children, Computer, Roman-Empire, and Tolokers, by introducing noise to the original
node features. Specifically, after normalizing the input features, we add Gaussian noise multiple
times. As shown in Table 19 and Figure 17, the relative increase ∆ (defined as the accuracy gap be-
tween GCN+GFS and GCN, divided by the accuracy of GCN) remains relatively stable, indicating
that the performance of GFS is robust against feature noise.

Table 19: Impact of noise on GFS.

Datasets Noise 1 5 10 15 20

Children
GCN 52.92±1.17 52.93±0.62 52.57±0.75 52.32±0.89 52.20±0.75

GCN-GFS 58.16±1.82 57.56±2.64 57.01±3.24 56.31±3.78 55.87±3.94
∆ (relative) 9.89% 8.75% 8.44% 7.65% 7.04%

Comp.
GCN 84.39±1.25 84.42±0.85 83.07±1.09 82.46±0.77 81.68±0.94

GCN-GFS 88.87±2.82 88.50±2.25 87.80±3.17 87.10±3.40 85.01±5.18
∆ (relative) 5.31% 4.84% 5.69% 5.63% 4.08%

Roman.
GCN 84.11±0.30 83.96±0.33 83.65±0.40 83.23±0.33 83.00±0.25

GCN-GFS 84.85±0.80 84.57±0.77 84.19±0.92 83.73±0.91 83.59±0.83
∆ (relative) 0.87% 0.73% 0.64% 0.60% 0.71%

Tolokers
GCN 82.83±1.41 83.28±0.73 82.81±0.79 82.50±0.77 82.12±0.62

GCN-GFS 86.52±1.85 85.99±1.79 85.48±1.54 84.99±0.87 84.44±1.75
∆ (relative) 4.46% 3.25% 3.23% 3.01% 2.81%

D.10 GOOD HETEROPHILY ON FEATURE HOMOPHILY

In this section, we show the phenomenon of ”good heterophily” occurs in feature homophily. First,
we split node features into 10 bins according to the values of feature homophily. Then, we run
GCN on these bins separately to see how the model performance changes with feature homophily.
As shown in Table 20 and Figure 18, the GCN performance remains good under a low value of
feature homophily, which includes attribute homophily (Yang et al., 2021a) (hattr), local similarity
(Chen et al., 2023) (hsim−euc), and class-controlled feature homophily (Lee et al., 2024) (hCTF ).
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This result indicates these consistency-based feature homophily cannot align well with GNN perfor-
mance, which is similar to the phenomenon in label homophily (Ma et al., 2021; Luan et al., 2024b;
Zheng et al., 2024a). Conversely, GNN performance consistently increases with the increase of our
proposed TFI, implying its effectiveness in selecting GNN-favored or GNN-disfavored features.

Table 20: GCN performance on different bins of feature homophily metrics.

Metrics 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

hattr 31.94±0.16 31.51±0.95 30.26±4.82 30.21±4.76 30.02±4.99 30.07±3.95 29.34±4.30 30.85±2.59 29.96±3.90 31.40±2.26
hsim−euc 31.92±0.18 29.52±5.15 31.13±2.02 31.21±1.61 30.75±3.65 30.16±4.75 31.38±1.40 31.19±1.86 31.22±1.61 30.89±3.10
hCTF 31.94±0.16 31.43±0.94 30.31±4.46 30.55±3.37 30.79±2.97 31.55±0.92 30.08±4.67 31.31±1.78 30.75±2.75 31.92±1.74
TFI 31.94±0.16 35.24±1.02 37.43±1.63 37.44±1.36 41.04±0.70 43.22±0.55 44.28±0.60 45.13±0.30 45.12±0.33 45.67±0.34

D.11 STATISTICAL OF SELECTED FEATURES

As shown in Table 21, we present the statistics of values, sparsity, and TFI for all features, GNN-
favored features, and GNN-disfavored features. The results indicate that: (1) the TFI of GNN-
favored features is significantly higher than that of GNN-disfavored features; (2) the datasets en-
coded by Pretrained Language Models (PLMs), including Children, Computers, Fitness, History,
and Photo, exhibit similar values in features, yet their TFI varies considerably. Notably, a higher
average TFI across all features correlates with better GFS performance; (3) GFS is less effective
on datasets with higher sparsity, such as Minesweeper and Tolokers. (4) Datasets with lower ho-
mophily tend to identify more features as GNN-disfavored, whereas those with higher homophily
identify more features as GNN-favored.

Table 21: Summary Statistics of Values, TFI, and Sparseness for Selected Features.

Dataset X XG X¬G r
Value Sparseness TFI Value Sparseness TFI Value Sparseness TFI

Children 0.0202±0.4081 0.00% 0.0278±0.0158 0.0202±0.4081 0.00% 0.0396±0.0143 0.0202±0.4082 0.00% 0.0159±0.0039 50%
Comp. 0.0201±0.4068 0.00% 0.0965±0.0232 0.0201±0.4063 0.00% 0.1010±0.0239 0.0202±0.4090 0.00% 0.0785±0.0021 80%
Fitness 0.0195±0.3928 0.00% 0.1841±0.0220 0.0195±0.3929 0.00% 0.1906±0.0233 0.0195±0.3927 0.00% 0.1688±0.0019 70%
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Figure 11: Response of GCN+GFS, GCN, and MLP to 5 hyperparameters on more datasets.
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Figure 12: Influence of the percentage of the supervision in TFI on the model performance of
GCN+GFS.
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Figure 13: Influence of the number of neighbor hops in TFI on the performance of GCN+GFS.
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Figure 14: Comparison of the performance of
MLP, GCN, and GFS across varying levels of la-
bel homophily in synthetic datasets.
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Figure 15: Comparison of the performance of
MLP, GCN, and GFS with the increase of the
number of feature dimensions.
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Figure 16: Comparison of the performance of MLP, GCN, and GFS with the sparseness in synthetic
datasets
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Figure 17: Comparison of the performance of MLP, GCN, and GFS with the increase of feature
noises
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Figure 18: Performance of GCN under varying levels of feature homophily or TFI.
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Figure 19: Visualizations of histogram of TFI on 10 datasets.
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