
Under review as submission to TMLR

Model Alignment Search

Anonymous authors
Paper under double-blind review

Abstract

When can we say that two neural systems are the same? What nuances do we miss when we
fail to causally probe the representations of the systems? In this work, we introduce a method
for connecting neural representational similarity to behavior through causal interventions. The
method learns transformations that find an aligned subspace in which behavioral information
can be interchanged between multiple distributed networks’ representations. We first show
that the method can be used to transfer the behavior from one frozen Neural Network (NN)
to another in a manner similar to model stitching, and we show how the method can differ
from correlative similarity measures like Representational Similarity Analysis. Next, we
empirically and theoretically show how the method can be equivalent to model stitching when
desired, or it can take a form that has a more restrictive focus to shared causal information;
in both forms, it reduces the number of required matrices for a comparison of n models to be
linear in n. We then present a case study on number-related tasks showing that the method
can be used to examine specific subtypes of causal information, and we present another case
study showing that the method can reveal toxicity in fine-tuned DeepSeek-r1-Qwen-1.5B
models. Lastly, we show how to augment the loss with a counterfactual latent auxiliary
objective to improve causal relevance when one of the two networks is causally inaccessible
(as is often the case in comparisons with biological networks). We use our results to encourage
the use of causal methods in neural similarity analyses and to suggest future explorations of
network similarity methodology for model misalignment.

1 Introduction

An important question for understanding both Artificial and Biological Neural Networks (ANNs and BNNs)
is knowing what it means for one distributed system to model or represent another (Sucholutsky et al., 2023).
Establishing isomorphisms between different distributed systems can be useful for simplifying their complexity
and for understanding otherwise opaque inner mechanisms. Instead of asking how to interpret neural activity
directly, we can instead use simplified neural systems, or neural systems understood through a higher level of
analysis, and compare the internals of these known systems to uknown systems (Cao & Yamins, 2021; 2024;
Richards et al., 2019). Furthermore, there are a number of open questions about how representations differ or
converge between architectures, tasks, and modalities (Huh et al., 2024; Sucholutsky et al., 2023; Wang et al.,
2024; Li et al., 2024; Hosseini et al., 2024; Zhang et al., 2024; Grant et al., 2025). Implicitly intertwined in
these issues is the notion of network similarity, or dissimilarity. How do we measure the degree to which one
model represents another? Researchers often use correlational methods to measure the similarity of different
neural representations. We can see examples of this in works that perform direct correlational analyses
between individual ANN activations and BNN firing rates (Yamins & DiCarlo, 2016; Maheswaranathan et al.,
2019; Khosla & Williams, 2023; Williams et al., 2022), and in works that use Representational Similarity
Analysis (RSA)—or Centered Kernel Alignment (CKA) (Kornblith et al., 2019; Williams, 2024)—finding
2nd order isomorphisms between model and system (Kriegeskorte et al., 2008). We also see examples of this
in linear decoding techniques, where linear decodability and predictability can be used as a measure of the
type of information encoded in distributed representations (Chen et al., 2020; Radford et al., 2021; Grill
et al., 2020; Caron et al., 2021; Haxby et al., 2001; Haxby, 2013; Lampinen et al., 2024). A question remains,
however, how to causally associate these neural analyses with behavioral outcomes. What do we miss when
we ignore the behavioral relevance of the neural activity (Pearl, 2010; Geiger et al., 2024; Cloos et al., 2024;

1

Under review as submission to TMLR

h(trg) z(trg)
Q

h(src)z(src)
Q

mask mask

O O

z(v)

+

h(v)
Q-1

h(src) h(src) h(src) h(src) h(src)

h(trg) h(trg) h(trg)

h(src)

h(v) h(v) h(v)

Intervention Intervention Intervention

h(trg)

Intervention

h(v) h h

(a) (b)

? i ? k

? i ? i

? i? i ? i,0 ? i,1 ? i,2 ? i,3 ? i,0 ? i,1 ? i,2 ? i,3 ? i,4 ? i,5

? k,0 ? k,1 ? k,2 ? k,3 ? k,4 ? k,5? k ? k

? i

Figure 1: (a) A depiction of an interchange intervention from Equation 6 on the target latent vector h(trg)
ψi

from model ψi using the source latent vector h(src)
ψk

from ψk. Rectangles represent vectors; colors distinguish
between behaviorally relevant and extraneous activity. The causally relevant information is spread across
the neural population (Smolensky, 1988; Park et al., 2023), represented by the red and green semi-vertical
slices in the respective h vectors. To disentangle and isolate the complement of the behavioral null-space, we
rotate the h vectors into an aligned space, using Qψi and Qψk , where the behaviorally relevant information
is organized along separate dimensions than the extraneous, behavioral null-space. We can then intervene
on and transfer the relevant information without affecting other information. In the figure, this is done by
applying binary masks (black represents 0s and white 1s and ⊙ is a Hadamard product) to the z vectors and
taking their sum. We then invert the rotation on z(v)

ψi
to return it to the original latent space where it can be

used by ψi to make predictions. (b) Depicts Stepwise MAS where the individual intervention shown in panel
(a) is applied at multiple token positions in the sequence. We limit our interventions to contiguous sets of
tokens starting from the first token and ending with a sampled position t.

Schaeffer et al., 2024)? And how do we incorporate a focus on behavioral relevance in our measures of neural
similarity?

Some works have made progress towards connecting representational similarity to behavior by transforming
intermediate representations from one neural system into a usable form for another. We see examples in works
like Sexton & Love (2022) where they attempt to use transformed neural recordings in a trained computational
model, and in model stitching, where a linear mapping is learned from intermediate representations from one
ANN to another for the purpose of measuring similarity and/or improving one of the two models (Lähner &
Moeller, 2024; Moschella et al., 2023; Bansal et al., 2021; Lenc & Vedaldi, 2015). To build upon these works,
we ask: 1) what do these representational mappings tell us about the underlying representations of the two
systems; are behaviorally successful mappings both necessary and sufficient for claims of functional similarity?
2) How can we isolate and compare the behaviorally relevant activity within transferred representations? 3)
How do we isolate the similarity of specific behavioral information in the representations, thus allowing us to
compare models with disparate behavioral outputs? And 4) how do we achieve causal relevance in systems
for which we do not have causal access—as is often the case in ANN to BNN comparisons?

In this work, we introduce a neural similarity method, Model Alignment Search (MAS), that uses causal
interventions to isolate and compare behaviorally relevant activity from neural representations in different
ANNs. MAS learns a rotation matrix, or more generally an alignment function, for each model in the analysis
to simultaneously uncover causally relevant latent subspaces in each model and map these spaces onto one
another so that behavioral information can be patched between models. These manipulated representations
are then returned back to their original neural space where the networks’ resulting behavior can be compared
to the expected counterfactual behavior as a means of measuring neuro-behavioral similarity.

The contributions of this work are as follows.

2

Under review as submission to TMLR

1. We introduce and motivate MAS by comparing to correlative representational similarity methods
demonstrating a need to supplement correlational with causal methods depending on the research
goals.

2. We empirically and theoretically compare MAS to model stitching, showing that it requires less
compute when comparing 3 or more models, and it can be more restrictive to causal subspaces than
model stitching.

3. Using numeric cognition as a case study, we show how MAS can be used to examine the similarity of
specific types of behavioral information in neural representations.

4. Using model misalignment as a case study, we show that the method can be used to reveal toxicity
in DeepSeek-R1-Qwen-1.5B models (Guo et al., 2025) finetuned to be toxic or nontoxic.

5. We introduce a counterfactual latent auxiliary loss objective that can be used to find behaviorally
relevant alignments in cases where one of the two models is causally inaccessible (making the technique
potentially relevant for comparisons between ANNs and BNNs).

2 Background and Related Work

There has been a call to use causal methods for both interpreting neural activity and making comparisons
between different NN internals (Geiger et al., 2024; Sexton & Love, 2022; Feather et al., 2025; Lampinen
et al., 2025). This call has been made due to principles of causal mediation Pearl (2010), and, more recently,
representation and causal computation have been shown to be different in NNs (Hermann & Lampinen, 2020;
Braun et al., 2025; Lampinen et al., 2025). In the mechanistic interpretability literature, a popular method for
making claims about cause and effect in NNs is activation patching (Geiger et al., 2020; Vig et al., 2020; Wang
et al., 2022; Meng et al., 2023) where experimentalists manipulate the NN activity to observe downstream
effects. One such method is DAS, which finds causal subspaces that align with high-level variables from causal
abstractions (Geiger et al., 2021; 2023; Wu et al., 2024). In cases of multi-model comparisons, a particularly
popular method for causally comparing representations between different models is model stitching (Lenc &
Vedaldi, 2015; Bansal et al., 2021). In this section, we present a background on both model stitching and
DAS to establish notation and a conceptual framework for MAS.

2.1 Model Stitching

Model stitching aims to learn a mapping from the latent state space of one NN, ψ1, to that of another,
ψ2. Let hψi ∈ Rdψi denote a latent representation from ψi; i ∈ {1, 2}. Stitching seeks a transformation
T : Rdψ1 → Rdψ2 such that

T (hψ1) ≈ hψ2

where hψ2 ∈ Rdψ2 is the corresponding representation in ψ2. The mapped representation T (hψ1) is then fed
into ψ2’s remaining layers, denoted fψ2(x, h), so that ψ2 can make predictions consistent with those produced
by ψ1.

Although T can be trained in a number of ways, we focus on cases in which T is learned by optimizing ψ2’s
outputs, conditioned on the stitched representation ĥψ2 = T (hψ1), to match ψ1’s behavior, also conditioned
on hψ1 . The learning objective is a behavioral matching loss:

L(T) = Ex∼D
[
ℓ
(
fψ1(x, hψ1) ∥ fψ2(x, ĥψ2)

)]
(1)

where x D are samples from a dataset and ℓ is a divergence measure (e.g., KL divergence or cross-entropy)
between ψ1’s output distribution and ψ2’s output distribution under the stitched representation.

In this work, we narrow our focus to transformations of the form

T (hψ1) = aWhψ1

where a ∈ R is a scalar constant and W ∈ Rdψ2 ×dψ1 is a matrix—possibly low rank—with orthonormal rows.

3

Under review as submission to TMLR

Model stitching has been used as a method to make claims about the similarity between two different NNs
Bansal et al. (2021). However, it has problems as a similarity method due to the fact that it is unidirectional,
and, as we will show in Section 4.2, it can make use of ψ′

1s behavioral null space when mapping to ψ2—where
the behavioral null space is defined as the span of vector directions that have no influence on the NN’s
behavior. Furthermore, a successful mapping ignores naturally occurring variability in ψ2’s behavioral null
space. Thus, a successful mapping T only needs to produce a single sufficient representation for any given
behavior. Thus, successful T ’s do not necessarily indicate that ψ1 and ψ2 perform the task in the same way.

2.2 DAS Formulation

DAS is a framework for causally determining the degree of alignment between a single NN’s latent represen-
tations and variables from a causal abstraction (Geiger et al., 2021; 2023; Wu et al., 2024). We can think
of such variables as those in a computer program, or nodes in a Directed Acyclic Graph (DAG). DAS does
this alignment by attempting to transform model latent states h ∈ Rdψ into aligned vectors z ∈ Rdψ that
consist of contiguous subspaces that have an analogous causal effect on behavior as high-level variables from a
pre-specified causal abstraction. The transformation is performed by learnable, invertible Alignment Function
(AF), A, as follows: z = A(h) (Grant et al., 2025). We narrow our focus to orthogonal AFs: A(h) = Qh
where Q ∈ Rdψ×dψ is an orthogonal matrix. The purpose of this transformation is that it organizes causal
subspaces into separated, contiguous dimensions in z. This allows for causal interventions on the values of
specific subspaces—analogously to changing value of a variable in a computer program—without affecting
the values of the other subspaces.

Concretely, for a given causal abstraction with variables vari ∈ {var1, var2, ..., varn}, DAS learns a rotation
Q to find a z composed of subspaces z⃗vari ∈ Rdvari corresponding to each of the variables of the causal
abstraction. We also include a causally irrelevant subspace, z⃗extra ∈ Rdextra , encoding extraneous, behaviorally
irrelevant activity (i.e., the behavioral null-space and dormant subspaces—defined as those that do not vary
between inputs (Makelov et al., 2023)).

Q(h) = z =


z⃗var1

z⃗var2

· · ·
z⃗varn
z⃗extra

 (2)

Each z⃗vari ∈ Rdvari is a column vector of potentially different lengths satisfying the relation dextra+
∑n
i=1 dvari =

dψ. Under this assumption, the value of a single causal variable encoded in h can be freely exchanged by
performing an interchange intervention defined as follows:

h(v) = Q−1((1 −Dvari)Qh(trg) +DvariQh
(src)) (3)

Where Dvari ∈ Rdψ×dψ is a manually chosen, diagonal, binary matrix with dvari contiguous ones along the
diagonal used to isolate the dimensions that make up z⃗vari , h(src) is the source vector from which the subspace
activity is harvested, h(trg) is the target vector into which the harvested activations are substituted, and h(v)

is the resulting intervened vector that is used to replace h(trg) in the model’s processing. This allows the
model to make predictions using a different value of subspace vari after a successful intervention.

DAS uses counterfactual behavior to create intervention data to train and evaluate Q. Counterfactual behavior
is defined as the behavior that would have occurred had the value of a variable in a causal abstraction been
different and everything else remained the same (Pearl, 2010; Geiger et al., 2021). We can create intervention
data by freezing the state of an environment at a particular point in time, changing one or more values in
the causal abstraction’s variables, and then unfreezing the environment and using the causal abstraction to
generate the counterfactual behavior. These intervention samples can then be used as training labels to train
Q while keeping the NN parameters frozen. Once Q’s training has converged, the robustness of the alignment
can be evaluated using the Interchange Intervention Accuracy (IIA)—defined as the NN’s prediction accuracy
on the counterfactual behavior for a held out set of interventions. IIA is then used to make claims about the
NN’s internal mechanisms.

4

Under review as submission to TMLR

3 Methods

All of the analyses in this work are performed on autoregressive, sequence based ANNs trained to predict
sequences of tokens. Depending on the experiment, we consider GRUs (Cho et al., 2014), LSTMs (Hochreiter
& Schmidhuber, 1997), shallow transformers (Vaswani et al., 2017; Su et al., 2023), and DeepSeek-R1-Distill-
Qwen-1.5B (Guo et al., 2025). The majority of our analyses are confined to models trained to perform
variations of numeric tasks. These tasks serve as a simplified setting to demonstrate how MAS works and
how it compares to other methods. We additionally include a more general language modeling experiment
where we explore the similarity of toxic vs nontoxic models as a case study on how to use MAS in more
practical settings (Appendix B.1).

3.1 Numeric Tasks

Each task consists of a sequence of tokens that start with a beginning of sequence token, B, and end with an
end of sequence token, E. Some of the tokens in each task are produced by the task environment and define
the specific goals within the task. Other tokens are determined by these task provided tokens. Each trial
is considered correct when all deterministic tokens are correctly predicted. During the model training, we
include all token types in a Next-Token Prediction (NTP) cross entropy loss, even though many tokens are
unpredictable. See Figure 3(c) for a visual depiction of each of the tasks described in this section.

Multi-Object Task: The environment presents some number of demonstration (demo) tokens that are
each sampled with replacement from the set {Da, Db, Dc}. The task is to produce the same number of
response (R) tokens as D tokens and end with an E token. The environment signals the end of the D tokens
by producing a trigger (T) token. The number of D tokens at this point is referred to as the object quantity
for the trial, which is uniformly sampled from 1 to 20 at the beginning. The set of possible tokens includes
{B, Da, Db, Dc, T, R, E}. An example sequence with an object quantity of 2 is: "B Dc Da T R R E"

To prevent solutions that use positional readout (Grant et al., 2025), we modify the task for transformer
trainings: each token in the demo phase has a 0.2 probability of being a "void" token type, V, that has no
impact on the object quantity. An example sequence with an object count of 2 could be: "B V Db V V Dc T
R R E". All evaluations and analyses use the original Multi-Object Task.

Same-Object Task: same structure as the Multi-Object task except that all D and R tokens are replaced
by a single token type, C. The set of possible tokens includes {B, C, T, E}. An example sequence with an
object quantity of 2 would be: "B C C T C C E".

Modulo: This task is similar to the Multi-Object task except the number of R tokens is equal to the object
quantity mod 4. An example trial could be, "B Db Dc Da Dc Db T R E".

Rounding: Similar to the Modulo task except the number of R tokens is equal to the object quantity
rounded to the nearest multiple of 3. An example trial could be, "B Db Dc Da Dc T R R R E".

3.2 Model Architectures

In our numeric task experiments, each model, ψ, is autoregressively trained to perform only one of the tasks
through next-token prediction (NTP). We train 2 model seeds for each task variant up to > 99.99% accuracy
on both training and validation data and freeze the weights before analysis and interpretation. We consider
Gated Recurrent Units (GRUs) (Cho et al., 2014), Long-Short Term Memory recurrent networks (LSTMs)
(Hochreiter & Schmidhuber, 1997), and two layer Transformers based on the Roformer architecture (Vaswani
et al., 2017; Touvron et al., 2023; Su et al., 2023). The custom GRUs and Transformers use a dimensionality of
128, whereas the LSTM uses 64 dimensions for each the h and c vectors. We leave details of GRU and LSTM
cells to the referenced papers beyond noting that the GRU and LSTM based models have the structure:

ht+1 = g(ht, xt) (4)
x̂t+1 = f(ht+1) (5)

5

Under review as submission to TMLR

Where ht is the hidden state vector at step t, xt is the input token at step t, g is the recurrent function
(either a GRU or LSTM cell), and f is a two layer (two matrix) feed-forward network (FFN) used to make a
prediction, x̂t+1, of the token at step t+ 1 from the updated hidden state ht+1.

The transformer architecture uses Rotary Positional Encodings (RoPE) (Su et al., 2023) and GELU nonlin-
earities (Hendrycks & Gimpel, 2023). Transformers use a history of input tokens, Xt = [x1, x2, ..., xt], at each
time step, t, to make a prediction: ĥt = g(Xt), and x̂t+1 = f(ht) where g and f are now sets of transformer
layers. We show results from 2 layer, single attention head transformers. We refer readers to Figure 4 and
Appendix B.2 for more details. For our experiments on DeepSeek-R1-Distill-Qwen-1.5B, we refer readers to
Guo et al. (2025); Yang et al. (2025) for architectural details and Appendix B.1 for finetuning details.

3.3 MAS Formulation

At a high level, MAS can be thought of as a combination of model stitching and DAS. MAS causally measures
the degree to which multiple models’ behavioral subspaces align with each other.

Using our notation from Sections 2.1 and 2.2, MAS learns an invertible alignment function, Aψi : Rdψi → Rdψi
for each ψi of N models in the analysis, such that Aψi(hψi) = zψi , and within each zψi , MAS performs
interchange interventions to examine the degree to which the subspaces are causally interchangeable for all
included models. It does this using both between and within model interchange interventions. Effectively,
MAS asks, does z⃗ψi,vark = z⃗ψj ,vark∀ (i ∈ N, j ∈ N)? We limit our empirical analyses to N = 2 and we only
examine cases where Aψi = Qψi = aψiUψi where aψi is a scalar and Uψi ∈ Rdψi×dψi is an orthogonal matrix.

With these intutions, we can generalize Equation 3 to the multi-model case for an intervention on the subspace
for vark:

h
(v)
ψi

= Q−1
ψi

((1 −Dψi,vark)Qψih
(trg)
ψi

+Dψj ,varkQψjh
(src)
ψj

) (6)

Where i and j can be any model index in the set of all models considered, Qψi is a scaled orthogonal rotation
matrix for ψi, Dψi,vark ∈ Rdψi×dψi is a diagonal, binary matrix with dvark non-zero elements used to isolate
the dimensions corresponding to z⃗vark , h(src)

ψj
is the source vector from which the subspace is harvested, h(trg)

ψi

is the target vector into which activity is substituted, and h(v)
ψi

is the resulting intervened vector that replaces
h

(trg)
ψi

in ψ
(trg)
i ’s processing, allowing the model to make causally intervened predictions. See Figure 1(a) for

a visualization.

For many of our analyses, we will perform MAS without segregating the behaviorally relevant subspace.
Concretely, this can be formalized as a causal abstraction that uses a single Full variable in which all
behaviorally relevant information is encoded, z⃗full, and all extraneous information is encoded in z⃗extra, the

behavioral null-space and dormant subspaces. For completion: zψi =
[
z⃗ψi,full
z⃗ψi,extra

]
, and we will freely isolate

and manipulate z⃗ψi,full using Equation 3.

3.4 MAS Training

The MAS training procedure is similar to DAS in that the training loss is created using the output distribution
from ψ

(trg)
i conditioned on h

(v)
ψi

as predictions and the counterfactual behavior of the causal abstraction as
labels. In the case of z⃗full, the counterfactual behavior is the same as that of model stitching from Equation 1,
where the training labels are the behavior from ψsrc following the intervention. Using y to denote the
counterfactual behavior labels in the loss for a single intervention, the loss for a single intervention direction
is as follows:

L(Q(trg)
ψi

, Q
(src)
ψj

) = Ex,y∼D
[
ℓ
(
fψi(h

(v)
ψi

) ∥ y
)]

(7)

In Sections 3.5 and 4.5 we will address cases in which we only include a subset of the intervention direction
permutations in the training loss. However, unless otherwise stated, we default to averaging over all

6

Under review as submission to TMLR

permutations. The total loss for a single matrix Qψi is as follows:

Ltotal(Qψi) = 1
2N − 1

N∑
j=1

(
L(Qψi , Qψj) + 1{i̸=j}L(Qψj , Qψi)

)
(8)

When using auto-differentiation frameworks (Paszke et al., 2019), we simply use the gradient from the mean
of the losses in all directions:

Ltotal = 1
N2

N∑
i=1

N∑
j=1

L(Qψi , Qψj) (9)

It is crucial to include interventions where i = j as this adds a soft constraint to the alignment that encourages
the separation of z⃗full from z⃗extra.

MAS Evaluation: We can evaluate the quality of each Qψi using the accuracy of the models’ predictions on
held out counterfactual data following the interventions. We always report the IIA of the worst performing
causal direction in the analysis. In the numeric tasks experiments, a trial is considered correct when all
deterministic tokens are predicted correctly using the argmax over logits. For the LLM toxicity experiments,
we report token prediction accuracy rather than trial accuracy. We calculate error bars as Standard Error
over unique model seed pairings. We include two additional seeds for within training type comparisons in the
numeric task experiments, and three seeds for each of the DeepSeek finetunings.

3.5 Mas Variants

We explore a number of variations on the MAS procedure as a means of demonstrating how to use MAS in
different situations for different purposes. We enumerate these variants in this section.

Stepwise MAS: Up to this point, we have described a form of MAS that performs interventions on latent
vectors at individual time points in the sequence. We include an exploration of a variant in which Equation 6
is applied at each time point from the beginning of the sequence up to some time point t. For all embedding
layer analyses, we use this variant. See Figure 1(b) for a visual depiction.

Counterfactual Latent MAS (CLMAS): An interesting use case for neural similarity techniques is the
comparison of ANNs with BNNs. An issue with causal comparisons of this nature is that we often have no
causal access to the BNN in the analysis. We do, however, usually have neural recordings from the BNN.
Using a tilde to denote causally inaccessible models, ψ̃i, we can simulate such ANN-BNN comparisons by
omitting causal interventions using ψ̃i as the target model from the training loss. We will assume, however,
that we can still read from the latent vectors produced by ψ̃i—analogous to a neural recording. We adapt
Equation 8 for ψk, where k ̸= i, to ignore the behavior of ψ̃i as follows:

Laccessible(Qψk) = 1
2N − 1

(
L(Q(trg)

ψk
, Q

(src)
ψ̃i

) +
N∑
j=1

1{j ̸=i}
(
L(Q(trg)

ψk
, Q

(src)
ψj

) + 1{j ̸=k}L(Q(trg)
ψj

, Q
(src)
ψk

)
))

(10)

And the loss for ψ̃i is Linaccessible(Qψ̃i) = 1
2N−1

∑N
j=1 1{j ̸=i}L(Q(trg)

ψj
, Q

(src)
ψ̃i

).

We will show in Section 4.5 that if we attempt to train both Qψ̃i and Qψj∀ j ∈ Nj ̸=i using only the behavioral
gradient from minimizing Equation 10, the resulting Q’s do not achieve high IIA when evaluating causal
interventions that use ψ̃i as the target model. To address this shortcoming, we introduce an auxiliary loss
function to encourage causal relevance for ψ̃(trg)

i . This auxiliary objective relies on what we will refer to as
Counterfactual Latent (CL) vectors, which we define as latent vectors that encode the values of the causal
variables that we would expect to exist in the intervened vector—h

(v)
ψ̃i

from Equation 3—after an interchange
intervention. If we focus on the Full variable case of z⃗full, the CL vectors are prerecorded representations that
produce to the same behavior as the counterfactual behavior training labels. We can obtain CL vectors by
searching through a dataset of prerecorded hψ̃i vectors for cases that either have the correct variable values
produced by the causal abstraction or those that lead to the same behavior as the counterfactual behavior.

7

Under review as submission to TMLR

As an example, if we have a causal abstraction with variables var1, var2, and varextra, and, we expect h(v)
ψ̃i

to have a value of y for variable var1 and w for variable var2 after applying Equation 6, then a valid CL
vector, h(CL)

ψ̃i
, would be a pre-recorded representation in which the causal abstraction has labeled h

(CL)
ψ̃i

to
have the variable values: var1 = y and var2 = w.

The auxiliary loss X for a single intervention sample is composed of an L2 loss and a cosine loss using CL
vectors as the ground truth:

XL2 = 1
2 ||hv

ψ̃i
− h

(CL)
ψ̃i

||22 (11)

Xcos = −1
2

hv
ψ̃i

· h(CL)
ψ̃i

||hψ̃i ||2 ||h(CL)
ψ̃i

||2
(12)

where h(v)
ψ̃i

is the intervened target vector for the causally inaccessible model. The total CLMAS training
loss is a weighted sum of the loss from Equation 10 and the auxiliary loss where ϵ is a hyperparameter:
LCL = ϵ(XL2 + Xcos) + (1 − ϵ)Laccessible. We show results from the best performing training of ϵ values 0.5,
0.89, 0.94, and the best dfull out of 32, 64, and 128 dimensions.

Transferring Specific Variables Through our choice of counterfactual training behavior, we can explore
alignment of specific subspaces between models that do not possess the same domain or co-domain. We focus
on representations of number as a case study for their precise but general nature. To do this, we narrow
the MAS interchange interventions to z⃗ψ1,numeric and z⃗ψ2,numeric by constructing counterfactual sequences
for each ψ’s co-domain. We assume that the models encode a single numeric variable in the Multi-Object,
Same-Object, Modulo, and Rounding tasks Grant et al. (2025). In the arithmetic task, we assume there is a
numeric representation for the number of remaining operations, Rem Ops, and another representation for
the cumulative value, Cumu Val. See expanded details in Appendix B.7.

Model Stitching: As baselines, we include causal intervention methods that we refer to as Latent Stitch
and Stitch. Latent Stitch consists of a single orthogonal matrix Q for two models, ψ1 and ψ2, that learns to
map h

(src)
ψ1

to h(CL)
ψ2

by minimizing the CL auxiliary loss from Equation 11 without including the behavioral
objective Equation 10. Stitch consists of a single, possibly low rank, orthogonal matrix Q trained in a single
behavioral direction from ψ̃1 to ψ2 without using the CL auxiliary loss. Unless otherwise specified, assume Q
is full rank and the IIA is reported from validation intervention data in the ψ̃1 to ψ2 direction only.

3.6 Representational Similarity Analysis (RSA)

For a given model layer, we run the model on a batch of sequences consisting of 15 sequences from each
object quantity 1-20. We then sample 1000 representational vectors uniformly from all time points excluding
padding and end of sequence tokens. We construct a Representational Dissimilarity Matrix (RDM) as
1 minus the cosine similarity matrix over each pair-wise comparison of the representations (resulting in
an RDM of dimensions 1000 × 1000). We create an RDM for two models and compare the RDMs using
Spearman’s rank correlation on the lower triangle of each matrix (Virtanen et al., 2020). We perform the
RDM sampling 10 times and report the average over all 10 correlations. See Appendix B.5 for CKA methods.

4 Results

4.1 The Importance of Causal Analyses

We first set out to demonstrate why MAS could be preferable to a correlative similarity method such as
RSA. RSA and CKA are second order correlational methods that examine the similarity between sample
correlation matrices constructed from two models’ representations (see Appendix B.4 for details). We provide
comparisons between models differing only by seed to ground our intuition for MAS, RSA, and CKA values.
Turning our attention to Figure 2(a) we see that MAS can successfully align the behavior between GRUs

8

Under review as submission to TMLR

(a) (b) (c) (d)

Figure 2: (a) and (b) A comparison of MAS on the left axes and CKA and RSA on the right axes. We
examine both the input embeddings and the hidden state vectors for models trained on the Multi-Object
task. (a) Results for GRUs compared to GRUs, where RSA can give low estimates of embedding similarity
for different model seeds whereas MAS shows the high causal transfer we might expect. (b) Results for GRUs
compared to 2-layer Transformers where we see a similar effect as (a) in the embeddings using RSA and we
see a potential over-estimation of similarity of the hidden states in CKA and RSA. This over-estimation is
with respect to causal transfer, as prior work has shown the transformers to use anti-Markovian solutions,
where they recompute the relevant information at each step in the sequence. This is reflected in the low MAS
IIA (Grant et al., 2025). (c) IIA comparing finetuned toxic and nontoxic LLMs using stepwise MAS. We can
see that toxic models have higher IIA with themselves than with the nontoxic models. Notably, there is no
significant difference for the nontoxic models compared to themselves. (d) Comparison of the IIA from DAS
and MAS for different sizes of the aligned subspace, and model stitching with different rank transformation
matrices.

trained on the Multi-Object task, both within the embedding and hidden state layers. RSA, however, shows
a low RDM correlation on the embedding layer relative to its value for the hidden state layer1. A similar
issue occurs in Figure 2(b) where we see that Multi-Object trained GRU ↔ Transformer comparisons exhibit
the same RSA embedding issue, and the hidden states have potentially unintuitive values for both CKA
and RSA, as prior work has shown that Transformers use an anti-Markovian solution that recomputes the
relevant numeric information at each step in the Multi-Object task. Thus, we know that causally intervening
on the transformer’s hidden states will not yield the same behavior as intervening on the GRU hidden states.
In light of this fact, the low MAS result for the hidden states is to be expected (Grant et al., 2025; Behrens
et al., 2024). These Markovian differences are generally undetectable from correlative methods such as RSA
and CKA. Furthermore, it is difficult to interpret the RSA results as one might assume them to be higher
for the same model architecture trained on different seeds. We use this result to highlight the potential
importance of supplementing correlative methods with causal counterparts. We note that questions on how
to interpret RSA values have been addressed in previous work (Kriegeskorte et al., 2008; Sucholutsky et al.,
2023; Dujmović et al., 2022).

4.2 MAS is an Efficient, Restrictive Form of Model Stitching

We first note that while traditional model stitching learns a transformation matrix for each pair of models,
MAS learns a single transformation matrix for each model in the alignment. This reduces the number of
matrices required for comparing n models from n(n− 1) when training the traditional model stitching using
behavior in a single direction, or

(
n
2
)

when solving an invertible Procrustes mapping between representations,
to n when using MAS. Furthermore, when aligning the full dimensionality of the latent vectors, the trained
MAS matrices can be combined to become equivalent to model stitching. We note that it is possible that
using more than two models in a MAS comparison could harm the loss, leading to suboptimal alignments.
However, it is also possible that such trainings could assist in isolating causally relevant subspaces for all
involved models. We leave such explorations to future directions.

1When comparing the same RDMs using Pearson correlation, the values return to near ceiling, indicating that the issue is in
part due to the way that the Spearman’s Rank handles RDMs with differing relative extrema.

9

Under review as submission to TMLR

Turning to Figure 2(d), we compare the IIA of MAS, DAS, and model stitching in the Multi-Object GRU
models. The x-axis of the panel shows the aligned subspace size for DAS and MAS, and shows the rank of
the transformation matrix for stitching. We report the IIA of the worst performing intervention direction for
MAS, the only direction for DAS, and the trained direction for stitching. We see that the models’ behavior
can be compressed to as few as 4 dimensions when using DAS and MAS, and these methods have comparable
IIAs. Stitching, however, has nearly perfect performance even for rank 2 trainings.

To better understand this result, we first formulate model stitching in terms of the interpretable zψi vectors.
Causal interventions can be thought of as an equality constraint, where elements that are exchanged must
have some functional equivalence for successful interventions. For model stitching, ignoring the scalar a, a
trained matrix W ∈ Rdψ1 ×dψ2 attempts to transform hψ1 such that Whψ1 = hψ2 . Thus:

Whψ1 = WQ−1
ψ1
zψ1 = hψ2 = Q−1

ψ2
zψ2 (13)

zψ2 = Qψ2WQ−1
ψ1
zψ1 = Xzψ1 (14)

If we focus on z⃗ψ2,full in zψ2 , and assume that z⃗ψ2,full ∈ R1 for notational simplicity, we can see the following
equality z⃗ψ2,full =

∑dψ1
k=1 x

(1,k)z
(k)
ψ1

where the x(1,column) are elements of the first row of X and z(k)
ψ1

are column
elements of zψ1 . This shows that W can use z⃗ψ1,extra—the dormant and null subspaces from zψ1—to predict
hψ2 in the direct model-stitching case. Furthermore, we note that because stitching completely replaces the
target vector with the transformed source vector, the mapping only needs to learn a single sufficient causal
representation for each behavioral outcome without accounting for variability in z⃗ψ2,extra.

Using the same functional equivalence formulation for MAS, we see that MAS finds mappings such that
z⃗ψ1,full = z⃗ψ2,full, or more generally z⃗ψ1,vark = z⃗ψ2,vark , demonstrated as follows:

DvarkQψ1hψ1 = Dvarkzψ1 =
[
z⃗ψ1,vark

0⃗

]
=

[
z⃗ψ2,vark

0⃗

]
= Dvarkzψ2 = DvarkQψ2hψ2 (15)

Thus, the MAS interchange intervention does not make use of the extraneous subspace if z⃗ψi,full and z⃗ψi,extra
are properly separated for both ψ1 and ψ2. We use this as evidence for the claim that MAS is a more causally

(a) (b) (c)

Figure 3: (a) Comparison of the IIAs for CLMAS, Latent Stitching, and behavioral Stitching in different
intervention directions on the Multi-Object GRU models. The dashed line indicates MAS IIA as an upper
bound. On the x-axis, Access refers to interchange interventions from the inaccessible ψ̃(src)

1 to the accessible
ψ

(trg)
2 . No Access refers to interventions from the accessible ψ(src)

2 to the inaccessible ψ̃(trg)
1 . The Stitch

results are from model stitching trainings from ψ̃
(src)
1 to ψ(trg)

2 , and the Latent Stitch results are trained in
the inaccessible direction from ψ

(trg)
2 to ψ̃(src)

1 without behavioral training. Both Access and No Access values
are reported for the training step with the best No Access IIA (which is why Stitching does not have 100%
IIA in the Access direction). We see that CLMAS has the best performance in the No Access direction. (b) A
comparison of the transferrability of the behaviorally relevant numeric information between the Multi-Object
GRU models and the Multi-Object, Rounding, Modulo, and Same-Object models. DAS shows an upper
bound on the MAS performance which would result in the case that ψ1 and ψ2 represent numbers the same
way. (c) Example token sequences of the GRU tasks from panel (b).

10

Under review as submission to TMLR

focused choice than model stitching for causally addressing questions of how behaviorally relevant information
is encoded in different neural systems.

4.3 MAS Can Answer Questions About Specific Causal Information

Turning our attention to Figure 3(b), we see a causal comparison of numeric representations in GRUs trained
on different numeric tasks. We see from the DAS IIA that we can align the Multi-Object, Rounding, and
Modulo GRUs to causal abstractions that use a single numeric variable. We see from the MAS results that
the numeric representations differ between the GRUs trained on different tasks. We do a further exploration
on an arithmetic task in Appendix B.6, where we show that MAS can be used to explore representational
similarity for models with differing domains and codomains.

4.4 MAS reveals toxicity through model comparisons

As a proof of principle of the utility of MAS for more practical settings, we include an experiment that compares
toxic and non-toxic LLMs. A potential application of MAS is to compare internal representations of potentially
misaligned LLMs to those of known, aligned/misaligned LLMs for toxicity diagnosis. To demonstrate this
idea, we perform MAS on a set of DeepSeek-R1-Distill-Qwen-1.5B models that were finetuned to either be
toxic or nontoxic. We can see in Figure 2(c) that MAS results in greater IIA when comparing toxic models to
toxic models than nontoxic models. Given the current difficulty of using chain-of-thought and interpretability
methods to diagnose misaligned LLMs (Manuvinakurike et al., 2025; Turpin et al., 2023; Sharkey et al., 2025),
a potential direction is to examine the alignment of new models with known toxic/non-toxic models. As a
future direction, MAS-like methods could potentially even be used to directly constrain model internals to be
non-toxic (Geiger et al., 2022).

4.5 Providing Greater Causal Relevance with CLMAS

We can see from Figure 3 the results of CLMAS compared to behavioral model stitching (Stitch) and latent
model stitching (Latent Stitch). It is important to note that the Latent Stitch, Stitch, and CLMAS variants
do not include the autoregressive behavioral training signal in the No Access causal direction. The Latent
Stitch results, however, are trained from the accessible ψ(src)

2 to the inaccessible ψ̃(trg)
1 latents. The MAS

performance provides a theoretic upper bound on the possible IIA for CLMAS, shown by the dashed black
line. Stitching provides a lower bound on the possible CLMAS performance in the No Access direction.
Lastly, Latent Stitch provides a baseline of the best pre-existing method. We see that CLMAS is the best
performing in the inaccessible direction while still matching that of MAS in the accessible direction. We
expect the effect size of this result to correlate with the amount of variability in the behavioral null-space of
ψ̃i. This demonstrates the potential of CLMAS to improve the recovery of causally relevant intervention
rotation matrices even in cases when we do not have causal access to one of the models in the comparison.

5 Limitations/Future Directions

Many of the tasks and models in this work are simplistic, but their purpose is to serve as a proof of principle
for the MAS methodology, and to prove points about the importance of causal methods. We offer RSA,
model stitching, and DAS results as a grounding for the MAS results. This reduces the importance of task
complexity in this work.

An existing issue with MAS presented in this work is that it does not offer guarantees for the complete
removal of extraneous neural activity when performing interventions (Makelov et al., 2023). We attempt to
mitigate this issue by finding low dimensional subspaces for the interventions. However, we point out that
MAS is better than previous methods in this respect.

Despite CLMAS’s successes, there is an obvious difficulty of evaluating the causal relevance of the learned
alignment function without having causal access to the inaccessible model. This makes CLMAS less useful
for isolating functional information in BNNs without also using some sort of stimulatory method on the BNN
of interest—such as optogenetics (Deisseroth, 2011). However, CLMAS still can provide value in biological

11

Under review as submission to TMLR

settings as the method can potentially reduce or remove the need for NN stimulation during the alignment
training. Concretely, one could record from the BNN, then perform the CLMAS trainings, and then use the
stimulation to evaluate the effectiveness of the alignments, thus reducing the stimulatory requirements. We
hope to conduct future explorations in biological settings.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL https:

//arxiv.org/abs/1607.06450.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Yamini Bansal, Preetum Nakkiran, and Boaz Barak. Revisiting model stitching to compare neural represen-
tations, 2021. URL https://arxiv.org/abs/2106.07682.

Freya Behrens, Luca Biggio, and Lenka Zdeborová. Counting in small transformers: The delicate interplay
between attention and feed-forward layers, 2024. URL https://arxiv.org/abs/2407.11542.

Lukas Braun, Erin Grant, and Andrew M. Saxe. Not all solutions are created equal: An analytical dissociation
of functional and representational similarity in deep linear neural networks. In Aarti Singh, Maryam
Fazel, Daniel Hsu, Simon Lacoste-Julien, Virginia Smith, Felix Berkenkamp, and Tegan Maharaj (eds.),
Proceedings of the 42nd International Conference on Machine Learning, Proceedings of Machine Learning
Research. PMLR, July 2025.

Rosa Cao and Daniel Yamins. Explanatory models in neuroscience: Part 1 – taking mechanistic abstraction
seriously, April 2021. URL http://arxiv.org/abs/2104.01490. arXiv:2104.01490 [cs, q-bio].

Rosa Cao and Daniel Yamins. Explanatory models in neuroscience, Part 2: Functional intelligibility
and the contravariance principle. Cognitive Systems Research, 85:101200, June 2024. ISSN 1389-
0417. doi: 10.1016/j.cogsys.2023.101200. URL https://www.sciencedirect.com/science/article/
pii/S1389041723001341.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. ICML, 2020.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation.
CoRR, abs/1406.1078, 2014. URL http://arxiv.org/abs/1406.1078.

Nathan Cloos, Moufan Li, Markus Siegel, Scott L. Brincat, Earl K. Miller, Guangyu Robert Yang, and
Christopher J. Cueva. Differentiable optimization of similarity scores between models and brains, 2024.
URL https://arxiv.org/abs/2407.07059.

Karl Deisseroth. Optogenetics. Nature Methods, 8(1):26–29, 2011. doi: 10.1038/nmeth.f.324. URL https:
//www.nature.com/articles/nmeth.f.324.

Marin Dujmović, Jeffrey S Bowers, Federico Adolfi, and Gaurav Malhotra. The pitfalls of measuring
representational similarity using representational similarity analysis. bioRxiv, 2022. doi: 10.1101/2022.04.
05.487135. URL https://www.biorxiv.org/content/early/2022/04/07/2022.04.05.487135.

Jenelle Feather, Meenakshi Khosla, N Murty, and Aran Nayebi. Brain-model evaluations need the neuroai
turing test. arXiv preprint arXiv:2502.16238, 2025.

Atticus Geiger, Kyle Richardson, and Christopher Potts. Neural natural language inference models partially
embed theories of lexical entailment and negation. arXiv preprint arXiv:2004.14623, 2020.

12

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2106.07682
https://arxiv.org/abs/2407.11542
http://arxiv.org/abs/2104.01490
https://www.sciencedirect.com/science/article/pii/S1389041723001341
https://www.sciencedirect.com/science/article/pii/S1389041723001341
http://arxiv.org/abs/1406.1078
https://arxiv.org/abs/2407.07059
https://www.nature.com/articles/nmeth.f.324
https://www.nature.com/articles/nmeth.f.324
https://www.biorxiv.org/content/early/2022/04/07/2022.04.05.487135

Under review as submission to TMLR

Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal abstractions of neural networks.
CoRR, abs/2106.02997, 2021. URL https://arxiv.org/abs/2106.02997.

Atticus Geiger, Zhengxuan Wu, Hanson Lu, Josh Rozner, Elisa Kreiss, Thomas Icard, Noah Goodman, and
Christopher Potts. Inducing causal structure for interpretable neural networks. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 7324–7338. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/geiger22a.html.

Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas Icard, and Noah D. Goodman. Finding alignments
between interpretable causal variables and distributed neural representations, 2023.

Atticus Geiger, Duligur Ibeling, Amir Zur, Maheep Chaudhary, Sonakshi Chauhan, Jing Huang, Aryaman
Arora, Zhengxuan Wu, Noah Goodman, Christopher Potts, and Thomas Icard. Causal abstraction: A
theoretical foundation for mechanistic interpretability, 2024. URL https://arxiv.org/abs/2301.04709.

Satchel Grant, Noah D. Goodman, and James L. McClelland. Emergent symbol-like number variables in
artificial neural networks. Transactions on Machine Learning Research, 2025. URL https://arxiv.org/
abs/2501.06141.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena Buchatskaya,
Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot,
Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent: A new approach to
self-supervised learning, 2020.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

James V Haxby. Multivariate pattern analysis of fMRI: Parcellating abstract from concrete representations.
NEuroimage, 62(2):2013, 2013. doi: 10.1016/j.neuroimage.2012.03.016.Multivariate.

James V. Haxby, M. Ida Gobbini, Maura L. Furey, Alumit Ishai, Jennifer L. Schouten, and Pietro Pietrini.
Distributed and overlapping representations of faces and objects in ventral temporal corten. Social
Neuroscience: Key Readings, 293(September):87–96, 2001. doi: 10.4324/9780203496190.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL https://arxiv.org/
abs/1606.08415.

Katherine Hermann and Andrew Lampinen. What shapes feature representations? exploring datasets,
architectures, and training. Advances in Neural Information Processing Systems, 33:9995–10006, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
11 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.1162/neco.1997.
9.8.1735.

Eghbal Hosseini, Colton Casto, Noga Zaslavsky, Colin Conwell, Mark Richardson, and Evelina Fedorenko.
Universality of representation in biological and artificial neural networks. bioRxiv, 2024. doi: 10.1101/2024.
12.26.629294. URL https://www.biorxiv.org/content/early/2024/12/26/2024.12.26.629294.

Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation hypothesis,
2024. URL https://arxiv.org/abs/2405.07987.

Jigsaw. Jigsaw toxic comment classification challenge. https://www.kaggle.com/competitions/
jigsaw-toxic-comment-classification-challenge, 2018.

Meenakshi Khosla and Alex H. Williams. Soft matching distance: A metric on neural representations that
captures single-neuron tuning, 2023. URL https://arxiv.org/abs/2311.09466.

13

https://arxiv.org/abs/2106.02997
https://proceedings.mlr.press/v162/geiger22a.html
https://arxiv.org/abs/2301.04709
https://arxiv.org/abs/2501.06141
https://arxiv.org/abs/2501.06141
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.biorxiv.org/content/early/2024/12/26/2024.12.26.629294
https://arxiv.org/abs/2405.07987
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://arxiv.org/abs/2311.09466

Under review as submission to TMLR

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural network
representations revisited, 2019. URL https://arxiv.org/abs/1905.00414.

Nikolaus Kriegeskorte, Marieke Mur, and Peter Bandettini. Representational similarity analysis - connecting
the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 2008. ISSN 1662-5137. doi: 10.
3389/neuro.06.004.2008. URL https://www.frontiersin.org/articles/10.3389/neuro.06.004.2008.

Zorah Lähner and Michael Moeller. On the direct alignment of latent spaces. In Marco Fumero,
Emanuele Rodolá, Clementine Domine, Francesco Locatello, Karolina Dziugaite, and Caron Mathilde
(eds.), Proceedings of UniReps: the First Workshop on Unifying Representations in Neural Models,
volume 243 of Proceedings of Machine Learning Research, pp. 158–169. PMLR, 15 Dec 2024. URL
https://proceedings.mlr.press/v243/lahner24a.html.

Andrew Kyle Lampinen, Stephanie CY Chan, and Katherine Hermann. Learned feature representations are
biased by complexity, learning order, position, and more. arXiv preprint arXiv:2405.05847, 2024.

Andrew Kyle Lampinen, Stephanie CY Chan, Yuxuan Li, and Katherine Hermann. Representation biases:
will we achieve complete understanding by analyzing representations? arXiv preprint arXiv:2507.22216,
2025.

Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their equivariance and
equivalence, 2015. URL https://arxiv.org/abs/1411.5908.

Jiaang Li, Yova Kementchedjhieva, Constanza Fierro, and Anders Søgaard. Do Vision and Language Models
Share Concepts? A Vector Space Alignment Study. Transactions of the Association for Computational
Linguistics, 12:1232–1249, September 2024. ISSN 2307-387X. doi: 10.1162/tacl_a_00698. URL https:
//doi.org/10.1162/tacl_a_00698.

Zi Lin, Zihan Wang, Yongqi Tong, Yangkun Wang, Yuxin Guo, Yujia Wang, and Jingbo Shang. Toxicchat:
Unveiling hidden challenges of toxicity detection in real-world user-ai conversation, 2023.

Niru Maheswaranathan, Lane T. McIntosh, Hidenori Tanaka, Satchel Grant, David B. Kastner, Josh B.
Melander, Aran Nayebi, Luke Brezovec, Julia Wang, Surya Ganguli, and Stephen A. Baccus. The
dynamic neural code of the retina for natural scenes. bioRxiv, 2019. doi: 10.1101/340943. URL https:
//www.biorxiv.org/content/early/2019/12/17/340943.

Aleksandar Makelov, Georg Lange, and Neel Nanda. Is this the subspace you are looking for? an interpretability
illusion for subspace activation patching, 2023. URL https://arxiv.org/abs/2311.17030.

Ramesh Manuvinakurike, Emanuel Moss, Elizabeth Anne Watkins, Saurav Sahay, Giuseppe Raffa, and Lama
Nachman. Thoughts without thinking: Reconsidering the explanatory value of chain-of-thought reasoning
in llms through agentic pipelines. arXiv preprint arXiv:2505.00875, 2025.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations in
gpt, 2023. URL https://arxiv.org/abs/2202.05262.

Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, Francesco Locatello, and Emanuele
Rodolà. Relative representations enable zero-shot latent space communication, March 2023. URL http:
//arxiv.org/abs/2209.15430. arXiv:2209.15430 [cs].

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry of
large language models. arXiv preprint arXiv:2311.03658, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. CoRR,
abs/1912.01703, 2019. URL http://arxiv.org/abs/1912.01703.

14

https://arxiv.org/abs/1905.00414
https://www.frontiersin.org/articles/10.3389/neuro.06.004.2008
https://proceedings.mlr.press/v243/lahner24a.html
https://arxiv.org/abs/1411.5908
https://doi.org/10.1162/tacl_a_00698
https://doi.org/10.1162/tacl_a_00698
https://www.biorxiv.org/content/early/2019/12/17/340943
https://www.biorxiv.org/content/early/2019/12/17/340943
https://arxiv.org/abs/2311.17030
https://arxiv.org/abs/2202.05262
http://arxiv.org/abs/2209.15430
http://arxiv.org/abs/2209.15430
http://arxiv.org/abs/1912.01703

Under review as submission to TMLR

Judea Pearl. An Introduction to Causal Inference. The International Journal of Biostatistics, 6(2):7,
February 2010. ISSN 1557-4679. doi: 10.2202/1557-4679.1203. URL https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC2836213/.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision, 2021.

Blake A. Richards, Timothy P. Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz, Amelia Christensen,
Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli, Colleen J. Gillon, Danijar Hafner,
Adam Kepecs, Nikolaus Kriegeskorte, Peter Latham, Grace W. Lindsay, Kenneth D. Miller, Richard Naud,
Christopher C. Pack, Panayiota Poirazi, Pieter Roelfsema, João Sacramento, Andrew Saxe, Benjamin
Scellier, Anna C. Schapiro, Walter Senn, Greg Wayne, Daniel Yamins, Friedemann Zenke, Joel Zylberberg,
Denis Therien, and Konrad P. Kording. A deep learning framework for neuroscience. Nature Neuroscience,
22(11):1761–1770, November 2019. ISSN 1546-1726. doi: 10.1038/s41593-019-0520-2. URL https:
//www.nature.com/articles/s41593-019-0520-2. Publisher: Nature Publishing Group.

Rylan Schaeffer, Mikail Khona, Sarthak Chandra, Mitchell Ostrow, Brando Miranda, and Sanmi Koyejo. Does
maximizing neural regression scores teach us about the brain? In UniReps: 2nd Edition of the Workshop on
Unifying Representations in Neural Models, 2024. URL https://openreview.net/forum?id=vbtj05J68r.

Nicholas J. Sexton and Bradley C. Love. Reassessing hierarchical correspondences between brain and
deep networks through direct interface. Science Advances, 8(28):eabm2219, July 2022. doi: 10.1126/
sciadv.abm2219. URL https://www.science.org/doi/10.1126/sciadv.abm2219. Publisher: American
Association for the Advancement of Science.

Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas Goldowsky-Dill,
Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, et al. Open problems in mechanistic interpretability.
arXiv preprint arXiv:2501.16496, 2025.

Paul Smolensky. On the proper treatment of connectionism. Behavioral and Brain Sciences, 11(1):1–23, 1988.
doi: 10.1017/S0140525X00052432.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2023.

Ilia Sucholutsky, Lukas Muttenthaler, Adrian Weller, Andi Peng, Andreea Bobu, Been Kim, Bradley C. Love,
Erin Grant, Iris Groen, Jascha Achterberg, Joshua B. Tenenbaum, Katherine M. Collins, Katherine L.
Hermann, Kerem Oktar, Klaus Greff, Martin N. Hebart, Nori Jacoby, Qiuyi Zhang, Raja Marjieh, Robert
Geirhos, Sherol Chen, Simon Kornblith, Sunayana Rane, Talia Konkle, Thomas P. O’Connell, Thomas
Unterthiner, Andrew K. Lampinen, Klaus-Robert Müller, Mariya Toneva, and Thomas L. Griffiths. Getting
aligned on representational alignment. arXiv, November 2023. doi: 10.48550/arXiv.2310.13018. URL
http://arxiv.org/abs/2310.13018. arXiv:2310.13018 [cs, q-bio].

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t always say what
they think: Unfaithful explanations in chain-of-thought prompting. Advances in Neural Information
Processing Systems, 36:74952–74965, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL http:
//arxiv.org/abs/1706.03762.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Simas Sakenis, Jason Huang,
Yaron Singer, and Stuart Shieber. Causal mediation analysis for interpreting neural nlp: The case of gender
bias. arXiv preprint arXiv:2004.12265, 2020.

15

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836213/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836213/
https://www.nature.com/articles/s41593-019-0520-2
https://www.nature.com/articles/s41593-019-0520-2
https://openreview.net/forum?id=vbtj05J68r
https://www.science.org/doi/10.1126/sciadv.abm2219
http://arxiv.org/abs/2310.13018
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

Under review as submission to TMLR

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric
Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold,
Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro,
Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Junxuan Wang, Xuyang Ge, Wentao Shu, Qiong Tang, Yunhua Zhou, Zhengfu He, and Xipeng Qiu. Towards
Universality: Studying Mechanistic Similarity Across Language Model Architectures, October 2024. URL
http://arxiv.org/abs/2410.06672. arXiv:2410.06672 [cs].

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Interpretability in
the wild: a circuit for indirect object identification in gpt-2 small, 2022. URL https://arxiv.org/abs/
2211.00593.

Alex H. Williams. Equivalence between representational similarity analysis, centered kernel alignment,
and canonical correlations analysis. bioRxiv, 2024. doi: 10.1101/2024.10.23.619871. URL https://www.
biorxiv.org/content/early/2024/10/24/2024.10.23.619871.

Alex H. Williams, Erin Kunz, Simon Kornblith, and Scott W. Linderman. Generalized shape metrics on
neural representations, 2022. URL https://arxiv.org/abs/2110.14739.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers: State-of-the-art
natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Zhengxuan Wu, Atticus Geiger, Thomas Icard, Christopher Potts, and Noah D. Goodman. Interpretability
at scale: Identifying causal mechanisms in alpaca, 2024. URL https://arxiv.org/abs/2305.08809.

Daniel L.K. Yamins and James J. DiCarlo. Using goal-driven deep learning models to understand sensory
cortex. Nature Neuroscience, 19(3):356–365, 2016. ISSN 15461726. doi: 10.1038/nn.4244.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen
Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Jerrold H Zar. Spearman rank correlation. Encyclopedia of Biostatistics, 7, 2005.

Le Zhang, Qian Yang, and Aishwarya Agrawal. Assessing and learning alignment of unimodal vision and
language models, 2024. URL https://arxiv.org/abs/2412.04616.

16

http://arxiv.org/abs/2410.06672
https://arxiv.org/abs/2211.00593
https://arxiv.org/abs/2211.00593
https://www.biorxiv.org/content/early/2024/10/24/2024.10.23.619871
https://www.biorxiv.org/content/early/2024/10/24/2024.10.23.619871
https://arxiv.org/abs/2110.14739
https://arxiv.org/abs/2305.08809
https://arxiv.org/abs/2412.04616

Under review as submission to TMLR

A Appendix / supplemental material

Residual Stream 0

Attention Outputs

Residual Stream 1

Hidden States

FFN Outputs

Norm &
RoPE &

Single Head Self Attn

Add

Norm &
Feed Forward Network

Add

Residual Stream 0

Attention Outputs

Residual Stream 1

Hidden States

FFN Outputs

Norm &
RoPE &

Single Head Self Attn

Add

Norm &
Feed Forward Network

Add

Logits

Norm &
Linear

Identity

Layer 1

Layer 2

Embeddings

Identity

Figure 4: Figure and caption taken from Grant et al. (2025). Diagram of the transformer architecture used in
this work. White rectangles represent activation vectors, arrows represent functional operations. All causal
interventions were performed on either the Hidden State activations from Layer 1 or the Embeddings layer.
All normalizations are Layer Norms (Ba et al., 2016).

17

Under review as submission to TMLR

B Appendix

B.1 Toxicity Experimental Details

We include an experiment in which we first fine tune a set of DeepSeek-R1-Distill-Qwen-1.5B models (Guo
et al., 2025) on toxic or nontoxic text completions. We then perform MAS on each model pair to determine
whether toxic and nontoxic models are more or less similar to one another.

B.1.1 Fine-tuning Language Models

We fine-tuned publicly available DeepSeek-R1-Distill-Qwen-1.5B language models (LMs) (Guo et al., 2025)
on a concatenation of the train splits of three toxicity-related datasets (Jigsaw, 2018; Lin et al., 2023; Bai
et al., 2022). All datasets were filtered to ensure a balanced number of toxic-nontoxic samples before training
the model on a specified class (toxic or nontoxic). Samples were considered toxic if any of the possible toxicity
levels were true, jailbreaking was true, or the sample was the less favored of two Reinforcement Learning
with Human Feedback samples. The filtering consisted of uniformly sampling without replacement from the
larger of the two classes until the number of toxic and nontoxic samples reached equality. Training examples
were constrained to a maximum input length of 128 tokens. Models were optimized using the HuggingFace
Trainer API (Wolf et al., 2019) with full rank, a learning rate of 5 × 10−4, batch size 128, and a training
schedule comprising 10000 gradient steps. All other training parameters were left to their default values.

B.1.2 Source Data Collection

To prepare data for the MAS analyses, we generated seed text samples of length 32 from the test splits of the
same datasets used for finetuning, similarly after first balancing the number of toxic vs nontoxic samples. We
kept both toxic and nontoxic samples for the seed data regardless of the training mode of the model. We
then generated 64 new tokens for each data sample for each model in evaluation mode. To construct the
source dataset, we recorded the predicted logits in addition to the model hidden states for each input token
during the text generation. The text generation was performed using the argmax over logits for each new
token. We collected 1000 such prompt-completion samples.

B.1.3 Toxic LM MAS training details

To adapt MAS to the aforementioned LM source data, for a given pair of models, we constructed a total of
10000 intervention samples from the generated source data where each sample was created by first uniformly
sampling a pair of generation samples from each source dataset (with replacement) and then uniformly
sampling an intervention index at least 10 tokens from the beginning and ending indices in the sequences
(intervention indices ranged between 10 and 54 for the sequences of length 64). We only consider cases
using Stepwise MAS, meaning that the same intervention index was used for both the target and source
sequences; the source sequence input and output ids and replaced the target input and output ids after the
intervention index. To perform an interchange intervention on these samples, we first run the models up
to the intervention index, we then perform the intervention from Equation 3, and then allow the model to
continue making predictions from that point onward. We keep the models in evaluation mode for the MAS
trainings and we train the rotation matrix by predicting the tokens originally generated by the source model.

B.2 Model Details

All artificial neural network models were implemented and trained using PyTorch (Paszke et al., 2019) on a
single Nvidia Titan X GPU. Unless otherwise stated, all models used an embedding and hidden state size of
128 dimensions. To make the token predictions, each model used a two layer multi-layer perceptron (MLP)
with GELU nonlinearities, with a hidden layer size of 4 times the hidden state dimensionality with 50%
dropout on the hidden layer. The GRU and LSTM model variants each consisted of a single recurrent cell
followed by the output MLP. Unless otherwise stated, the transformer architecture consisted of two layers
using Rotary positional encodings (Su et al., 2023). Each model variant used the same learning rate scheduler,
which consisted of the original transformer (Vaswani et al., 2017) scheduling of warmup followed by decay.

18

Under review as submission to TMLR

We used 100 warmup steps, a maximum learning rate of 0.001 , a minimum of 1e-7, and a decay rate of 0.5.
We used a batch size of 128, which caused each epoch to consist of 8 gradient update steps.

B.3 MAS (and Associated Variants) Training Details

All MAS trainings were implemented and trained using PyTorch (Paszke et al., 2019) on single Nvidia Titan X
GPUs. For each rotation matrix training, we use 10000 intervention samples and 1000 samples for validation
and testing. We uniformly sampled corresponding indices upon which to perform interventions, excluding
the B, T, and E tokens in the numeric equivalence tasks from possible intervention sample indices. In the
Arithmetic task, we used the comma token for Rem Ops and Cumu Val interventions. When intervening
upon a state in the demo phase in the numeric equivalence tasks, we uniformly sample a number of steps to
continue the demo phase that will keep the object quantity below 20. We orthongonalize the matrices Qψi ,
using PyTorch’s orthogonal parametrization with default settings. PyTorch creates the orthogonal matrix as
the exponential of a skew symmetric matrix. We train the rotation matrices for 1000 epochs, with a batch
size of 512 used for each model index pairing. We only perform experiments considering two models. Each
gradient step uses the average gradient over batches of all 4 (i, j) ordered pairings. We select the checkpoint
with the best validation performance for analysis. We use a learning rate of 0.001 and an Adam optimizer.

For the LSTM architecture, we perform MAS on a concatenation of the h and c recurrent state vectors
(Hochreiter & Schmidhuber, 1997). In the GRUs, we operate on the recurrent hidden state. In the transformers,
we operate on the residual stream following the first transformer layer (referred to as the Layer 1 Hidden
States in Supplementary Figure 4).

Stepwise MAS applies Equation 3 to multiple, contiguous time-steps in the target and source sequences from
step 0 to u. This allows for meaningful transfer of information in cases of anti-Markovian solutions (Grant
et al., 2025). There is a question of what tokens to use to create each h(trg)

ψi
before transfer. We show results

where each target token comes from the original target sequence padded by the R token when u exceeds the
target sequence length. See Figure 1 for a visualization.

B.4 RSA Details

We performed RSA on a subsample of a dataset of 15 sampled sequences for each object quantity ranging
from 1-20 on the task that each model was trained on for each model. We first ran the models on their
respective datasets to collect the latent representations. We sampled 1000 of these latent vectors as the
sample representations in a matrix Mk ∈ RN×dk where k refers to the model index, N is the number of
latent vectors (N = 1000 in our analyses), dk is the dimensionality of a single latent vector for model k. We
then calculated the sample cosine distance matrices (1-cosine similarity) for each model resulting in matrices
Ck ∈ RN×N . Lastly we calculated the Spearman’s Rank Correlation Coefficient between the lower triangles
of the matrices C1 and C2 as the RSA value using python’s SciPy package (Zar, 2005; Kriegeskorte et al.,
2008; Virtanen et al., 2020). We resampled the 1000 vectors 10 times and recalculated the RSA score 10
times and report the average over these scores.

B.5 CKA Details

We performed CKA on a subsample of a dataset of 15 sampled sequences for each object quantity ranging
from 1-20 on the task that each model was trained on for each model. We first ran the models on their
respective datasets to collect the latent representations. We sampled 1000 of these latent vectors as the
sample representations in a matrix Mk ∈ RN×dk where k refers to the model index, N is the number of
latent vectors (N = 1000 in our analyses), dk is the dimensionality of a single latent vector for model k.
We then normalized the vectors along the sample dimension by subtracting the mean and dividing by the
standard deviation (using dk means and dk standard deviations calculated over 1000 samples). Using these
samples we calculated the kernel matrices using cosine similarity to create matrices Ck ∈ RN×N . Using these
matrices, we computed the Hilbert-Schmidt Independence Criterion (HSIC) where I ∈ RN×N is the identity

19

Under review as submission to TMLR

B D D T R R E B 2 EOp 4 + 6 = 10 , - 5 = 5

Count: 1 2 2 1 0

Rem Ops: 2 2 2 1 1 1 1 1 0 0 0 0

Count: 1 2 2 1

Rem Ops: 6 6 6 5 5 5 5 5 0 0 0 0

B D D T R R E B 6 EOp 8 - 1 = 7 , + 4 = 11R

0

Input: Input:

Input:Input:

Q1

Q2

Substitution

Q1 Q1
-1

Q2 Q2
-1

zsrc
(2)zsrc

(1)

ztrg
(1) ztrg

(2)

2-
>

1

1-
>

1

2-
>

2

1-
>

2

1

0 1

(a) (b)

hsrc
(1)

hsrc
(2)

htrg
(2)

htrg
(1)

Figure 5: (a) Diagram of MAS between models trained on structurally different tasks. We see all four
intervention directions on the latent vectors (rectangles) of a Multi-Object GRU, ψ1, and an Arithmetic GRU
ψ2. The value of the causal variables following each input token are shown above the hsrc and below the
htrg vectors. In the htrg vectors, we see the variable value before and after the intervention to the left and
right of the arrows respectively—the Count for ψ1 and Rem Ops for ψ2. The dotted Substitution arrows each
correspond to a single intervention. The models make predictions using the intervened vector following the
intervention. (b) A 2D vector depiction of a hypothetical intervention that substitutes the value of the Count
variable from ψi, z⃗ (1)

count, into the Count variable, z⃗ (2)
count in ψj where the superscripts refer to the originating

model. Using learned matrices Q1 and Q2, h(1)
src and h

(2)
trg are rotated into z

(1)
src and z

(2)
trg where the z⃗count

subspace is organized into a contiguous subset of vector dimensions disentangled from all other information.
In this aligned space the z⃗count values can be freely exchanged without affecting other information. Lastly,
z

(2)
v is returned to ψ2’s hidden state space by inverting Q2 and is used for inference by ψ2.

and J ∈ RN×N is a matrix of values all equal to 1:

H = I − 1
N
J (16)

HSIC(C1, C2) = trace(C1HC2H)
(N − 1)2 (17)

and lastly we computed CKA as the following:

CKA = HSIC(C1, C2)√
HSIC(C1, C1)HSIC(C2, C2)

(18)

(Kornblith et al., 2019). We resampled the 1000 vectors 10 times and recalculated the CKA score 10 times
and report the average over these scores.

B.6 Arithmetic

To further explore how representations of number differ across tasks, we include a comparison between GRUs
trained on the Multi-Object task and an arithmetic task. See Figure 5 for a visual of MAS applied between
the Arithmetic and Multi-Object tasks.

Arithmetic Task: This task consists of an indication of the number of addition/subtraction operations, an
initial value, and then the operations interlaced with the cumulative value (cumu val) of the operations. An
example sequence is: "B 3 4 + 3 = 7 , + 11 = 18 , - 5 = 13 E", where the first number indicates the number
of operations in the trial. The 2nd number is a sampled start value. Each operand is a sampled value that is
combined with the cumu val according to the operator. The number of operations is uniformly sampled from
1-10. The starting value is uniformly sampled from 0-20. All numeric values are restricted inclusively to 0-20.

20

Under review as submission to TMLR

GRU (MultiObj)

Rem Ops
Cumu Val
Low CumuVal
High CumuVal

Figure 6: MAS used to compare the Count variable from the Multi-Object GRUs to the Rem Ops and Cumu
Val variables from the Arithmetic GRUs. Cumu Val results are from MAS trained with all possible Cumu Val
values. Low Cumu Val results are from a separate MAS analysis restricted to Cumu Val values of 1-10, same
as the range of Rem Ops variable. High Cumu Val results are from MAS conditioned on values from 11-20.

The operations are uniformly sampled from {+,−} when the cumu val is in the range 1-19. When 0 and 20
the operations are "+" and "-" respectively. The operands are uniformly sampled from the set that restricts
the next cumu val to the range 0-20. The cumu val is shown after the "=" for each operation. The "," token
follows the cumu val until the end of the sequence in which the E token replaces the comma. The model
must predict the "=" tokens, cumu vals, commas, and the E token for a trial to be correct. We use a base 21
token system so that all values correspond to a single token.

Arithmetic Results We include a MAS analysis between Arithmetic GRUs and GRUs trained on the
Numeric Equivalence tasks (see Figure 6). The leftmost panel shows that we can successfully align the Cumu
Val, and the Rem Ops variables between and within the Arithmetic GRUs. The middle panel shows that
MAS can successfully align the Count with the Rem Ops variables between GRUs trained on the Multi-Object
and Arithmetic tasks respectively. These results are qualified by the lower IIA alignment between the Count
and the Cumu Val variables. We see that when we perform MAS only on Cumu Val values that are shared
with possible the Rem Ops values (Low CumuVal), the results are much higher but still do not match the
results from Rem Ops. These findings are consistent with the hypothesis that these GRUs are using different
types of numeric representations for arithmetic than incremental counting.

B.7 Symbolic Variables

Inspired by DAS, MAS has the ability to find alignments for specific types of information by conditioning the
counterfactual sequences specific causal variables (i.e. the count of the sequence in the numeric equivalence
tasks).

In all numeric equivalence tasks, we prevent interventions on representations resulting from the BOS, T, and
EOS tokens. In the arithmetic task, we only perform interventions on representations after the "," token.
We perform MAS using each of the following causal variables, where the corresponding task is denoted in
parentheses:

1. Full (Arithmetic/Num Equivalence/Modulo/Rounding): Refers to cases in which we transfer all
causally relevant information between models (not all activations).

21

Under review as submission to TMLR

2. Count (Num Equivalence/Modulo/Rounding): The difference between the number of observed demo
tokens and the number of response tokens in the sequence. Example: the following sequences have a
Count of 2 at the last token: "B D D" ; "B D D D T R"

3. Count (Modulo): The number of observed demo tokens when in the demo phase, and modulo 4
of the number of demo tokens minus the number of response tokens when in the response phase.
Example: the following sequences have a Count of 2 at the last token: "B D D" ; "B D D D D D D D
T R"

4. Count (Rounding): The number of observed demo tokens when in the demo phase, and the number
of demo tokens rounded to the nearest multiple of 3 minus the number of response tokens when in
the response phase. Example: the following sequences have a Count of 2 at the last token: "B D D" ;
"B D D D D T R"

5. Cumu Val (Arithmetic): The cumulative value of the arithmetic sequence in the Arithmetic task.
Example: if we substitute in a value of 3 at the "," token in the sequence "B 2 Op 3 + 5 = 8 ," the
counterfactual sequence could be "B 2 Op 3 + 5 = 8 , + 2 = 5 E".

6. Rem Ops (Arithmetic): The remaining number of operations in the arithmetic sequence. Example:
we substitute in a value of 1 at the "," token in the sequence "B 3 Op 3 + 5 = 8 ,", the counterfactual
sequence could be "B 3 Op 3 + 5 = 8 , + 1 = 9 E".

22

	Introduction
	Background and Related Work
	Model Stitching
	DAS Formulation

	Methods
	Numeric Tasks
	Model Architectures
	MAS Formulation
	MAS Training
	Mas Variants
	Representational Similarity Analysis (RSA)

	Results
	The Importance of Causal Analyses
	MAS is an Efficient, Restrictive Form of Model Stitching
	 MAS Can Answer Questions About Specific Causal Information
	MAS reveals toxicity through model comparisons
	Providing Greater Causal Relevance with CLMAS

	Limitations/Future Directions
	Appendix / supplemental material
	Appendix
	Toxicity Experimental Details
	Fine-tuning Language Models
	Source Data Collection
	Toxic LM MAS training details

	Model Details
	MAS (and Associated Variants) Training Details
	RSA Details
	CKA Details
	Arithmetic
	Symbolic Variables

