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Abstract—The cascade of 2D geometric transformations were
exploited to model relations between entities in a knowledge
graph (KG), leading to an effective KG embedding (KGE) model,
CompoundE. Furthermore, the rotation in the 3D space was
proposed as a new KGE model, Rotate3D, by leveraging its non-
commutative property. Inspired by CompoundE and Rotate3D,
we leverage 3D compound geometric transformations, including
translation, rotation, scaling, reflection, and shear and propose
a family of KGE models, named CompoundE3D, in this work.
CompoundE3D allows multiple design variants to match rich
underlying characteristics of a KG. Since each variant has its
own advantages on a subset of relations, an ensemble of multiple
variants can yield superior performance. The effectiveness and
flexibility of CompoundE3D are experimentally verified on four
popular link prediction datasets.

Index Terms—Knowledge graph embedding, link prediction,
geometric transformation.

I. INTRODUCTION

KNOWLEDGE graphs (KGs) find rich applications in
knowledge management and discovery [1]–[3], recom-

mendation systems [4], [5], fraud detection [6], [7], chatbots
[8], [9], etc. KGs are directed relational graphs. They are
formed by a collection of triples in form of (h, r, t), where
h, r, and t denote head, relation, and tail, respectively. Heads
and tails are called entities and represented by nodes while
relations are links in KGs. KGs are often incomplete. One
critical task in knowledge graph (KG) management is “missing
link prediction”. Knowledge graph embedding (KGE) methods
have received a lot of attention in recent years due to their
effectiveness in missing link prediction. Many KGs such
as DBpedia [10], YAGO [11], Freebase [12], NELL [13],
Wikidata [14], and ConceptNet [15] have been created and
made publicly available for KGE model development and
evaluation.

One family of KGE models builds a high-dimensional
embedding space, where each entity is a vector. The relation
is modeled by a certain geometric manipulation such as trans-
lation and rotation. To evaluate the likelihood of a candidate
triple, the geometric manipulation associated with the relation
is applied to the head entity and then the distance between
the manipulated head and the tail is measured. The shorter
the distance, the higher likelihood of the triple. To this end,
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these KGE models are called distance-based KGEs. Examples
of distance-based KGEs include TransE [16], RotatE [17], and
PairRE [18]. Each of them uses a single geometric transfor-
mation to represent relations between entities. Specifically,
translation, rotation, and scaling operations are adopted by
TransE, RotatE, and PairRE, respectively.

The above-mentioned KGE models achieve reasonably good
performance in link prediction with only a single geometric
transformation. The cascade of multiple 2D geometric trans-
formations offers a powerful tool in image manipulation [19].
This idea was exploited to develop a new KGE model, called
CompoundE, in [20]. TransE, RotatE and PairRE are all degen-
erate cases of CompoundE. Thus, CompoundE outperforms
them in link prediction performance. CompoundE unifies
translation, rotation, and scaling operations under one common
framework. It has several mathematically provable properties
that facilitate the modeling of different complex relation types
in KGE. The effectiveness of these composite operators has
been successfully demonstrated through extensive experiments
and applications in downstream tasks such as entity typing
and multihop query answering in [20]. Furthermore, borrowed
from the concept of rotation in the 3D space, Rotate3D [21]–
[23] achieves more effective parameterization and endows a
model with greater modeling power than RotatE based on
2D rotation. That is, Rotate3D can model non-commutative
relations better than RotatE.

Inspired by the success of CompoundE and Rotate3D, we
wonder whether it would be beneficial to look for compound
geometric transformations in the 3D space in the KGE model
design. Here, we extend the CompoundE work in [20] along
three directions. First, we include more affine operations
beyond translation, rotation, and scaling such as reflection
and shear. Second, we extend these geometric transformations
from the 2D space to the 3D space and propose a family of
KGE models, CompoundE3D. Third, CompoundE3D allows
multiple design variants to match rich underlying characteris-
tics of a KG. Since each variant has its own advantages on a
subset of relations, an ensemble of multiple variants can yield
superior performance. The effectiveness of CompoundE3D
is experimentally verified on four popular link prediction
datasets.

It is worthwhile to emphasize that we enhance CompoundE
by addressing two critical issues. First, compound operations
lead to numerous model variants, and it is unclear how to
determine a scoring function that performs the best for a given
dataset. Here, we propose an adapted beam search algorithm
that builds more complex scoring functions from simple but
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effective ones gradually. Second, although ensemble learning
is a popular strategy, it remains under-explored when it comes
to building KGE models. In this work, we explore two
ensemble strategies that potentially boost link prediction per-
formance and allow different CompoundE3D variants to work
together and complement each other. First, we implement a
weighted sum of different scoring functions for link prediction.
Second, we apply unsupervised rank aggregation functions to
unify rank predictions from individual model variants. Both
strategies help boost the ranking of valid candidate entities
and reduce the impact of outliers.

The major contributions of this work are summarized below.
• We examine affine operations in the 3D space, instead

of the 2D space, to allow more versatile relation rep-
resentations. Besides translation, rotation, and scaling
used in CompoundE, we include reflection and shear
transformations which allow an even larger design space.

• We propose an adapted beam search algorithm to discover
better model variants. Such a procedure avoids unneces-
sary exploration of poor variants but zooms into more
effective ones to strike a good balance between model
complexity and prediction performance.

• We analyze the properties of each operation and its
advantage in modeling different relations. Our analysis
is backed by empirical results on four datasets.

• To reduce errors of an individual model variant and boost
the overall link prediction performance, we aggregate
decisions from different variants with two approaches;
namely, the sum of weighted distances and rank fusion.

The rest of this paper is organized as follows. A brief review
of related work is provided in Sec. II. The design methodology
of CompoundE3D is explained and the decision ensemble of
multiple model variants is elaborated in Sec. III. Experimental
results and performance benchmarking with previous work are
presented in Sec. IV. Finally, concluding remarks and future
research directions are given in Sec. V.

II. RELATED WORK

A. Knowledge Graph Embedding (KGE) Models

A large number of distance-based KGE models are derived
by treating relations as certain transformations. They are
briefly reviewed below.

1) 2D Geometric Transformations: Quite a few KGE mod-
els are inspired by 2D geometric transformations such as
translation, rotation, and scaling in the 2D plane. TransE [16]
models the relation as a translation between head and tail
entities. This simple model is not able to model symmetric
relations effectively. RotatE [17] treats relations as certain ro-
tations in the complex space, which works well for symmetric
relations. Furthermore, RotatE introduces a self-adversarial
negative sampling loss that improves distance-based KGE
model performance significantly. PairRE [18] models relations
with the scaling operation to allow variable margins. This is
helpful in encoding complex relations. The unitary constraint
on entity embedding in PairRE is also effective in practice.
CompoundE [20] adopts compound geometric transforma-
tions, including translation, rotation, and scaling, to model

different relations. It offers a superior KGE model without
increasing the overall complexity much.

2) Advanced Transformations: NagE [22] introduces
generic group theory to the design of KGE models and gives
a generic recipe for their construction. QuatE [24] extends the
KGE design to the Quaternion space which enables more com-
pact interactions between entities and relations while introduc-
ing more degree of freedom. To model non-commutativeness
in relation composition more effectively, both RotatE3D [21]
and DensE [23] leverage quaternion rotations but in different
forms. ROTH [25] adopts the hyperbolic curvature to capture
the hierarchical structure in KGs. On the other hand, it is
questioned in [26] whether the introduction of hyperbolic
geometry in KGE is necessary.

B. Classification-based Models

Another family of models is built by classifying an unseen
triple into “valid” (or positive) and “invalid” (or negative)
two classes and then using the soft decision to measure the
likelihood of the triple.

1) Simple Neural Networks: A multilayer perceptron
(MLP) network [27] is used to measure the likelihood of
unseen triples for link prediction. The neural tensor network
(NTN) [28] adopts a bilinear tensor neural layer to model
interactions between entities and relations of triples. ConvE
[29] stacks head entities and relations, reshapes them to 2D
arrays, and uses the convolutional neural network (CNN) to
extract the information from them. The resulting feature map
interacts with tail entities through dot products. R-GCN [30]
uses the graph convolutional network (GCN) with relation-
specific weights to obtain entity representations, which are
subsequently fed to DistMult [31] for link prediction. Despite
its potential of handling the inductive setting, its performance
is not on par with the embedding based approach.

2) Advanced Neural Networks: KG-BERT [32] uses the
pretrained language model, BERT [33], to obtain the entity
representation from textual descriptions (rather than from KG
links). However, its inference time is much longer com-
pared to embedding-based models. SimKGC [34] improves
transformer-based classification methods by constructing con-
trastive pairs. It uses BERT to estimate the semantic similarity
and treats triples of higher similarity score as positive sample
pairs, and vice versa. However, its performance is sensitive
to the language model quality, and its required computational
resource is high.

3) Lightweight Classification Model: KGBoost [35] pro-
poses a novel negative sampling scheme, and uses the XG-
Boost [36] classifier for link prediction. Inspired by the Dis-
criminant Feature Learning (DFT) [37], [38] that extracts most
discriminative features from trained embeddings, GreenKGC
[39] is a lightweight and modularized classification method
that trains a binary classifier to classify unseen triples.

C. Advanced Relation Modeling

Special techniques have been developed to model com-
plex relations. For example, to model relations such as 1-
to-N, N-to-1, and N-to-N effectively, TransH [40] projects
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the embedded entity space into relation-specific hyper-planes.
TransR [41] learns a relation-specific projection that maps
entity vectors to a certain relation space. TransD [42] derives
dynamic mapping based on relation and entity projection vec-
tors. TranSparse [43] enforces the relation projection matrix to
be sparse. Recently, many KGE models including X+AT [44],
SFBR [45], and STaR [46] apply translation and scaling op-
erations to both distance-based and semantic-matching-based
[47] models to improve the performance gain. The inclusion of
translation is proven to be effective in improving KGEs in the
Quaternion space such as DualE [48], BiQUE [49]. ReflectE
[50] models each relation as a normal vector of a hyper-plane
that reflects entity vectors. It can be used to model symmetric
and inverse relations well. So far, the cascade of various affine
operations is a natural yet unexplored idea to pursue.

D. Model Ensembles

Although ensemble learning is a prevailing strategy in ma-
chine learning, it remains under-explored for knowledge graph
completion. Link prediction evaluation is essentially a ranking
problem. It is desired to optimize an ensemble decision so
that valid triples get ranked higher than invalid ones among
all candidates. Rank aggregation is a classical problem in
information retrieval. Both supervised methods [36], [51] and
unsupervised methods [52], [53] have been studied. Since the
ground truth ranking in KG’s link prediction is not available
(except the top-1 triple), the unsupervised setting is more rel-
evant. Yet, the use of rank aggregation to boost link prediction
performance has received limited attention. Several examples
are given below. KEnS [54] performs ensemble inference
to combine predictions from multiple language-based KGEs
for multilingual knowledge graph completion. AutoSF [55]
develops an algorithm to search for the best scoring functions
from multiple semantic matching models. The ensemble of
multiple identical low-dimensional KGE models is adopted in
[56] to boost the link prediction performance. Recently, DuEL
[57] treats link prediction as a classification problem and
aggregates binary decisions from several different classifiers
using unsupervised techniques.

III. PROPOSED METHOD

A. CompoundE3D

In this work, we use 3D affine transformations, including
Translation, Scaling, Rotation, Reflection, and Shear as illus-
trated in 1, to model different relations in KGs. This large set
of transformation operators offer immense flexibility in the
KGE design against different characteristics of KG datasets.
Below, we formally define each of the 3D affine operators in
homogeneous coordinates.

1) Translation: Component T ∈ SE(3), illustrated by Fig.
1a, is defined as

T =


1 0 0 vx
0 1 0 vy
0 0 1 vz
0 0 0 1

 , (1)

2) Scaling: Component S ∈ Aff(3), illustrated by Fig. 1b,
is defined as

S =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

 , (2)

3) Rotation: Component R ∈ SO(3), illustrated by Fig.
1c, is defined as

R = Rz(α)Ry(β)Rx(γ) =


a b c 0
d e f 0
g h i 0
0 0 0 1

 , (3)

where

a = cos(α) cos(β),

b = cos(α) sin(β) sin(γ)− sin(α) cos(γ),

c = cos(α) sin(β) cos(γ) + sin(α) sin(γ),

d = sin(α) cos(β),

e = sin(α) sin(β) sin(γ) + cos(α) cos(γ),

f = sin(α) sin(β) cos(γ)− cos(α) sin(γ),

g = − sin(β),

h = cos(β) sin(γ),

i = cos(β) cos(γ).

(4)

This general 3D rotation operator is the result of compounding
yaw, pitch, and roll rotations. They are, respectively, defined
as

• Yaw rotation component:

Rz(α) =


cos(α) − sin(α) 0 0
sin(α) cos(α) 0 0

0 0 1 0
0 0 0 1

 , (5)

• Pitch rotation component:

Ry(β) =


cos(β) 0 − sin(β) 0

0 1 0 0
sin(β) 0 cos(β) 0

0 0 0 1

 , (6)

• Roll rotation component:

Rx(γ) =


1 0 0 0
0 cos(γ) − sin(γ) 0
0 sin(γ) cos(γ) 0
0 0 0 1

 . (7)

4) Reflection: Component F ∈ SO(3), illustrated by Fig.
1d, is defined as

F =


1− 2n2

x −2nxny −2nxnz 0
−2nxny 1− 2n2

y −2nynz 0
−2nxnz −2nynz 1− 2n2

z 0
0 0 0 1

 . (8)

The above expression is derive from the Householder re-
flection, F = I− 2nnT. In the 3D space, n is a 3-D unit
vector that is perpendicular to the reflecting hyper-plane,
n = [nx, ny, nz].
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(a) Translation (b) Scaling (c) Rotation

(d) Reflection (e) Shear (f) Compound

Fig. 1: Composing different geometric operations in the 3D subspace.

5) Shear: Component H ∈ Aff(3), illustrated by Fig. 1e,
is defined as

H = HyzHxzHxy =


1 Shy

x Shz
x 0

Shx
y 1 Shzy 0

Shx
z Shyz 1 0

0 0 0 1

 . (9)

The shear operator is the result of compounding 3 operators:
Hyz , Hxz , and Hxy They are mathematically defined as

Hyz =


1 0 0 0

Shx
y 1 0 0

Shx
z 0 1 0

0 0 0 1

 , (10)

Hxz =


1 Shyx 0 0
0 1 0 0
0 Shyz 1 0
0 0 0 1

 , (11)

Hxy =


1 0 Shzx 0
0 1 Shzy 0
0 0 1 0
0 0 0 1

 . (12)

Matrix Hyz has a physical meaning - the shear transformation
that shifts the y- and z- components by a factor of the x
component. Similar physical interpretations are applied to Hxz

and Hxy .

The above transformations can be cascaded to yield a
compound operator; e.g.,

O = T · S ·R · F ·H, (13)

In the actual implementation, we use the operator’s represen-
tation in regular Cartesian coordinate instead of the homo-
geneous coordinate. Furthermore, a high-dimensional relation
operator can be represented as a block diagonal matrix in the
form of

Mr = diag(Or,1,Or,2, . . . ,Or,n), (14)

where Or,i is the compound operator at the i-th stage.
We can define the following three scoring functions for

CompoundE3D:
• CompoundE3D-Head

f (h)
r (h, t) = ∥Mr · h− t∥, (15)

• CompoundE3D-Tail

f (t)
r (h, t) = ∥h− M̂r · t∥, (16)

• CompoundE3D-Complete

f (h,t)
r (h, t) = ∥Mr · h− M̂r · t∥, (17)

where h and t denote head and tail entity embeddings, and
Mr and M̂r denote the relation-specific operators that operate
on head and tail entities, respectively.

Generally speaking, we have five different affine operations
available to use, i.e. translation, scaling, rotation, reflection,
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and shear. Each operator can be applied to 1) head entity,
2) tail entity, or 3) both head and tail. Hence, we have in
total 15 different ways of applying operators at each stage.
All these possible choices are called CompoundE3D variants.
For a given KG dataset, there is a huge search space in finding
the optimal CompoundE3D variant. It is essential to develop
a simple yet effective mechanism to find a variant that gives
the best performance under a certain complexity constraint.

B. Beam Search for Best CompoundE3D Variant

In this subsection, we present a beam search algorithm to
find the optimal CompoundE3D variant. For the i-th stage, the
set of all operator pairs that can be applied at a certain step is

P ∈ {(T, I), (S, I), (R, I), (F, I), (H, I),

(I, T̂), (I, Ŝ), (I, R̂), (I, F̂), (I, Ĥ),

(T, T̂), (S, Ŝ), (R, R̂), (F, F̂), (H, Ĥ)},
(18)

where I is the identity operator. First, we apply all operator
pairs in P and calculate scoring functions for all intermediate
variants. Each variant is optimized with l iterations using the
training set and its performance is evaluated on the validation
dataset. Then, we choose the top-k best-performing variants
as starting points for further exploration in the next step. The
same process is repeated until one of terminating conditions is
triggered. Afterward, we proceed to the (i+ 1)-th stage. The
whole search is completed after the final stage is reached. The
total number of stages is a user selected hyper-parameter.

The beam search process in building more complex KGE
models from simpler ones is described in Algorithm 1. Addi-
tional comments are given below.

• We initialize the algorithm by setting up a loop to iterate
over the set, P, of all possible operator combinations to
train and evaluate them and find the top-k variants as
starting points.

• In the next loop, we have two stopping criteria to termi-
nate the beam search: 1) # operators > λ, meaning that
we stop the search when the number of operators exceeds
the upper bound λ; 2) ∆MRR

∆Param < γ, meaning that the ratio
of increase in MRR versus the increase in free parameters
fall below the threshold γ, and it is no longer worthwhile
to increase the model complexity for the marginal gain
in model performance.

• P ×W denotes the Cartesian product between the op-
erator pairs set P and top-k variants set W from the
last step while ḟ i−1

r (h, t) ◁ (Mi, M̂i) denotes applying
the operator pair (Mi, M̂i) to previous optimal scoring
function ḟ i−1

r (h, t).
• For example, if ḟ i−1

r (h, t) = ∥R · h− t∥ and
(Mi, M̂i) = (S, Ŝ), then f̃ i

r(h, t) = ∥S ·R · h− Ŝ · t∥.
• After the loop terminates due to any terminating condition

is triggered, we select the top-1 performing variant from
the explored variants set, W, as the best choice.

C. Model Ensembles

1) Weighted-Distances-Sum (WDS) Strategy: We choose
the top-k performing CompoundE3D variants and conduct a

Algorithm 1 Beam Search for Best CompoundE3D Variant

initialize i← 1,U← {}
for (Mi, M̂i) ∈ P do
f̃ i
r(h, t)← ∥Mi · h− M̂i · t∥;

train f̃r(h, t) for l iterations;
MRR ← evaluate f̃ i

r(h, t) with valid set;
U.insert({MRR, f̃ i

r(h, t)});
end for
W← top-k variants from U
i← i+ 1
∆MRR← γ, ∆Param← 1
while # operators < λ and max ∆MRR

∆Param ≥ γ do
initialize V← {}
for {(Mi, M̂i), ḟ i−1

r (h, t)} ∈ P×W do
f̃ i
r(h, t)← ḟ i−1

r (h, t)◁ (Mi, M̂i);
train f̃ i

r(h, t) for l iterations;
evaluate f̃ i

r(h, t) with valid set;
∆MRR ← f̃ i

r(h, t) MRR−ḟ i−1
r (h, t) MRR;

∆Param ← f̃ i
r(h, t) Param−ḟ i−1

r (h, t) Param;
V.insert(MRR, ∆MRR, ∆Param, f̃ i

r(h, t));
end for
W← top-k variants from V;

end while
f∗
r (h, t)← best variant from W;

Fig. 2: The ensemble of multiple CompoundE3D variants.

weighted average of their predicted scores. The following three
weighting schemes are considered.

• Uniform Weights. This scheme takes an equal weight of
selected k variants as

f̂r(h, t) =
1

k

k∑
i=1

f i
r(h, t), (19)

where f i
r(h, t) is the scoring function for the i-th variant.
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• Geometric Weights. This scheme sorts the variants based
on their MRR performance on the validation dataset in a
descending order and assign weight λk, 0 < λ < 1, to
the k-th variant. That is,

f̂r(h, t) =
1∑k

i=1 λ
k

k∑
i=1

λkf i
r(h, t). (20)

Since λk > λk+1, we assign a higher weight to a better
performer in computing the aggregated distance.

• Learnable Weights. This scheme trains a set of learnable
weights, wi > 0, based on the training dataset to
minimize the following weighted score:

f̂r(h, t) =
1∑k

i=1 wi

k∑
i=1

wif
i
r(h, t). (21)

The learnable weights are implemented as parameters in
the optimization process under the same learning rate and
the optimizer in finding the best variants.

For each relation, we compare the three weight schemes and
choose the one that offers the best performance.

2) Rank Fusion Strategy: Link prediction is a list ranking
problem. Rank fusion can be exploited to boost the perfor-
mance. A few simple rank fusion methods can be applied
to score-based KGE methods. For example, we can take
the maximum, minimum, median, sum, and L2 distance of
candidates’ ranks. They are denoted by CombMAX, Comb-
MIN, CombMEDIAN, CombSUM, and Euclidean in Table I,
respectively. Three advanced rank fusion methods are also con-
sidered and included in the table. They are: Borda Count [58],
Reciprocal Rank Fusion (RRF) [53], and RBC (Rank Biased
Centroid) [59]. Borda Count awards points to candidates based
on their positions in an individual preference list, where the top
candidate gets the most points and the last candidate gets the
least points. RRF aggregates the reciprocal rank to discount
the importance of lower-ranked candidates. The factor k in
the table mitigates the impact of high rankings by outliers.
RBC discounts the weights of lower-ranked candidates using
a geometric distribution. The mathematical formulas of all
rank fusion functions are given in the second column of Table
I, where Ri is the rank of the i-th base model (or variant),
1 ≤ i ≤ n, e ∈ E represents an entity in the entity set, and k
and ϕ are hyper-parameters.

D. Optimization

By following RotatE’s negative sampling loss and the self-
adversarial training strategy, we choose the following loss
function of CompoundE3D

LKGE = − log σ(ζ1 − fr(h, t)) (22)

−
n∑

i=1

p(h′
i, r, t

′
i) log σ(fr(h

′
i, t

′
i)− ζ1),

where σ is the sigmoid function, ζ1 is a preset margin hyper-
parameter, (h′

i, r, t
′
i) is the i-th negative triple, and p(h′

i, r, t
′
i)

is the probability of drawing negative triple (h′
i, r, t

′
i). Given

TABLE I: A list of rank fusion functions under consideration.

Name Function
CombMAX max{R1(e), · · · , Rn(e)}
CombMIN min{R1(e), · · · , Rn(e)}

CombMEDIAN median{R1(e), · · · , Rn(e)}

CombSUM
n∑

i=1

Ri(e)

Euclidean
√

R1(e)2 + · · ·+Rn(e)2

Borda Count
n∑

i=1

|E| −Ri(e) + 1

|E|

RRF [53]
n∑

i=1

1

k +Ri(e)

RBC [59]
n∑

i=1

(1− ϕ)ϕRi(e)−1

a positive triple, (hi, r, ti), the negative sampling distribution
is

p(h′
j , r, t

′
j |{(hi, r, ti)}) =

expα1fr(h
′
j , t

′
j)∑

i expα1fr(h′
i, t

′
i)
, (23)

where α1 is the temperature in the softmax function.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We evaluate the link prediction performance
of CompoundE3D and compare it with several benchmarking
methods on the following four KG datasets.

• DB100K [60]. It is a subset of the DBpedia KG. The
dataset contains information related to music content such
as genre, band, and musical artisits. It is a relatively
dense KG since each entity appears in at least 20 different
relations.

• YAGO3-10 [61]. It is a subset of YAGO3, which de-
scribes citizenship, gender, and profession of people.
YGGO3-10 contains entities associated with at least 10
different relations.

• WN18RR [16], [29]. It is a subset of the WordNet lexical
database. The inverse relation is removed from WN18RR
to avoid test leakage.

• Ogbl-Wikikg2 [62]. It is extracted from Wikipedia. It
contains 2.5M entities and is the largest one among the
four selected datasets.

The statistics of the four KG datasets are given in Table II.
2) Evaluation Protocol: The commonly used evaluation

protocol for the link prediction task is explained below. For
every triple (h, r, t) in the test set, we corrupt either the head
entity h or tail entity t to generate test examples (?, r, t)
and (h, r, ?). Then, for every head candidate that forms triple
(ĥ, r, t) and tail candidate that forms triple (h, r, t̂), we com-
pute distance-based scoring functions fr(ĥ, t) and fr(h, t̂),
respectively. The lower score value indicates that the generated
triple is more likely to be true. Then, we sort scores of all
candidate triples in ascending order and locate the rank of
the ground truth triple. Furthermore, we evaluate the link
prediction performance under the filtered rank setting [16] that
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TABLE II: Statistics of four link prediction datasets.

Dataset #Entities #Relations #Training #Validation #Test Ave. Degree
DB100K 99,604 470 597,572 50,000 50,000 12

ogbl-wikikg2 2,500,604 535 16,109,182 429,456 598,543 12.2
YAGO3-10 123,182 37 1,079,040 5,000 5,000 9.6
WN18RR 40,943 11 86,835 3,034 3,134 2.19

TABLE III: The search space of six hyper-parameters.

Dataset DB100K ogbl-wikikg2 YAGO3-10 WN18RR
Dim {150, 300, 450, 600} {90, 150, 180, 240, 300} {450, 600, 750, 900} {180, 240, 360, 480, 600}

lr {2, 3, 4, 5, 6, 7, 8, 9} × 10−5 {0.0005, 0.001, 0.005, 0.01} {3, 4, 5, 6, 7} × 10−4 {4, 5, 6, 7, 8} × 10−4

B {256, 512, 1024, 2048} {2048, 4096, 8192} {512, 1024, 2048, 4096} {512, 1024, 2048, 4096}
N {256, 512, 1024, 2048} {125, 250, 500} {256, 512, 1024, 2048} {256, 512, 1024, 2048}
ζ {4, 5, 6, 7, 8, 9, 10, 11, 12, 13} {5, 6, 7, 8, 9} {11, 12, 13, 13.1, 13.3, 13.5} {5, 6, 7, 8, 9}
α {0.5, 0.7, 0.9, 1.0, 1.2} {0.5, 1.0} {0.8, 0.9, 1.0, 1.1, 1.2} {0.5, 0.7, 0.9, 1.0, 1.2}

TABLE IV: Optimal configurations for link prediction tasks, where B and N denote the batch size and the negative sample
size, respectively.

Dataset CompoundE3D Variant #Dim lr B N ζ α

DB100K ∥S · h− T̂ · R̂ · Ŝ · t∥ 600 0.00005 1024 512 9 1
ogbl-wikikg2 ∥T · h− Ĥ · t∥ 300 0.001 8192 125 8 1
YAGO3-10 ∥T · S ·R · h− t∥ 600 0.0005 1024 1024 13.3 1.1
WN18RR ∥R · S ·T · h− t∥ 480 0.00005 512 256 6 1

gives salience to unseen triple predictions since embedding
models tend to give observed triples better ranks. We adopt
the Hits@k and the mean reciprocal rank (MRR) as evaluation
metrics to compare the quality of KGE models.

3) Hyper-parameter Search: We perform an extensive
search on six hyper-parameters of CompoundE3D with respect
to different KG datasets. They are: 1) the dimension of the
embedding space (Dim), 2) the learning rate (lr), 3) the batch
size (B), 4) the negative sample size (N), 5) the margin hyper-
parameter (ζ), and 6) the sampling temperature (α). Their
search values are listed in Table III.

In the search process, we first compute scoring functions
with a certain hyper-parameter setting that allows a few vari-
ants to have decent performance, where the number of training
iterations for each variant is set to l = 30000. After locating
the optimal variant, we finetune hyper-parameters under the
optimal variant. The optimal configurations are shown in Table
IV. The Adam optimizer [63] is employed for all parameter
tuning. For ensemble experiments, we adopt the same optimal
configuration for each base variant model.

4) Other Implementation Details: We run experiments and
perform hyper-parameter tuning on a variety of GPUs, includ-
ing Nvidia P100 (16G), V100 (32G), A100 (40G) and A40
(48G), depending on the GPU memory requirement of a job.
Typically, we request 8 CPU cores with less than 70G RAM
for each job. Results of each optimal configuration in Table
IV can be reproduced on one single V100 for all datasets. For
the WN18RR dataset, we adopt the rotation implementation
from Rotate3D [21].

B. Experimental Results

1) Performance Evalution: We compare the link prediction
performance of a few benchmarking KGE methods with that of

TABLE V: Comparison of the link prediction performance
under the filtered rank setting for DB100k.

Datasets DB100K
Model MRR H@1 H@3 H@10

TransE [16] 0.111 0.016 0.164 0.27
DistMult [31] 0.233 0.115 0.301 0.448

HolE [64] 0.26 0.182 0.309 0.411
ComplEx [65] 0.242 0.126 0.312 0.44
Analogy [66] 0.252 0.142 0.323 0.427
RUGE [67] 0.246 0.129 0.325 0.433

ComplEx-NNE+AER [60] 0.306 0.244 0.334 0.418
SEEK [68] 0.338 0.268 0.37 0.467

AcrE (Parallel) [69] 0.413 0.314 0.472 0.588
PairRE [18] 0.412 0.309 0.472 0.600

TransSHER [70] 0.431 0.345 0.476 0.589
CompoundE [20] 0.405 0.306 0.461 0.588
CompoundE3D 0.450 0.373 0.488 0.594

CompoundE3D RRF 0.457 0.376 0.497 0.607
CompoundE3D WDS 0.462 0.378 0.506 0.616

CompoundE3D using the optimal configuration given in Table
IV. The performance benchmarking results for DB100K, ogbl-
wikikg2, and YAGO3-10 datasets are shown, respectively, in
Table V, Table VI, and Table VII. Furthermore, the best
and the second-best results in each column are indicated
by the boldface font and with an underline, respectively.
CompoundE3D has significant performance improvement over
CompoundE and other recent models. We see a clear advan-
tage of CompoundE3D by including more affine operators and
extending affine transformations from 2D to 3D in the new
framework,

To verify the effectiveness of model ensembles, we examine
two different ensemble strategies for DB100K and YAGO3-10
datasets.

• For the DB100K dataset, we select the best two
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TABLE VI: Comparison of the link prediction performance
under the filtered rank setting for ogbl-wikikg2.

Datasets ogbl-wikikg2

Metrics Dim Valid Test
MRR MRR

AutoSF+NodePiece 100 0.5806 0.5703
ComplEx-N3-RP 100 0.6701 0.6481

TransE [16] 500 0.4272 0.4256
DistMult [31] 500 0.3506 0.3729
ComplEx [65] 250 0.3759 0.4027

RotatE [17] 250 0.4353 0.4353
Rotate3D [21] 100 0.5685 0.5568
PairRE [18] 200 0.5423 0.5208

TripleRE [71] 200 0.6045 0.5794
CompoundE [20] 100 0.6704 0.6515

CompoundE3D
90 0.6994 0.6826

180 0.7146 0.6962
300 0.7175 0.7006

TABLE VII: Comparison of the link prediction performance
under the filtered rank setting for YAGO3-10.

Datasets YAGO3-10
Metrics MRR Hit@1 Hit@3 Hit@10

DistMult [31] 0.34 0.24 0.38 0.54
ComplEx [65] 0.36 0.26 0.4 0.55
DihEdral [72] 0.472 0.381 0.523 0.643
ConvE [29] 0.44 0.35 0.49 0.62
RotatE [17] 0.495 0.402 0.55 0.67

InteractE [73] 0.541 0.462 - 0.687
HAKE [74] 0.545 0.462 0.596 0.694
DensE [23] 0.541 0.465 0.585 0.678

Rot-Pro [75] 0.542 0.443 0.596 0.699
CompoundE [20] 0.477 0.376 0.538 0.664
CompoundE3D 0.542 0.450 0.602 0.701

CompoundE3D RRF 0.541 0.446 0.607 0.707
CompoundE3D WDS 0.551 0.463 0.608 0.703

performing variants. They are ∥S · h− R̂ · Ŝ · t∥ and
∥S · h− T̂ · R̂ · Ŝ · t∥

• For the YAGO3-10 dataset, we select the best
three performing variants. They are ∥T · S ·R · h− t∥,
∥S ·R ·T · h− t∥, and ∥S ·T ·R · h− t∥.

2) Model Ensembles: As discussed in Sec. III-C, we
have two strategies to conduct model ensembles: weighted-
distances-sum (WDS) and rank fusion. Among the three WDS
strategies, the learnable weight strategy is the most effective
one for DB100K while the uniform weight performs the best
for YAGO3-10. We use CompoundE3D WDS to denote the
best WDS scheme in Tables V and VII and document the per-
formance of other weighting strategies in Table VIII. Among
all eight rank fusion strategies, we observe that reciprocal rank
fusion (RRF) is the most effective one for both DB100K and
YAGO3-10. Thus, we use CompoundE3D RRF to denote the
best rank fustion scheme in Tables V and VII, and document
the performance of other rank fushion strategies in Table IX.

3) Effectiveness of Beam Search: We conduct ablation stud-
ies on DB100K and YAGO3-10 datasets to shed light on the
effects of different transformation operators on model perfor-
mance. We begin with the variant of the simplest configuration

Fig. 3: The distribution of the MRR performance versus the
operator number of various model variants for the DB100K
dataset.

Fig. 4: The distribution of the MRR performance versus the
operator number of various model variants for the YAGO3-10
dataset.

and add additional operators at each stage. Good simple
models that lead to optimal variants and their performance
numbers are reported in Tables X and XI. Furthermore, we
visualize the distribution of the MRR performance as more
operators are added with respect to DB100K and YAGO-3 in
Figs. 3 and 4, respectively. To interpret box plots, yellow bar
represents the median, box represents the interquantile range,
two end-bars denote the lower and upper whiskers, and lastly
dots are outliers. They both show the effectiveness of the
proposed beam search algorithm.

4) Modeling of Symmetric Relations: Rotation and reflec-
tion are isometric operations. As stated in [17], [50], their 2D
versions can handle symmetric relations well in some cases.
It is our conjecture that the same property holds for their
corresponding 3D operators. To check it, we perform ablation
studies and evaluate the base scoring functions of those with
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TABLE VIII: Comparison of different weighted-distances-sum (WDS) strategies for DB100K and YAGO3-10.

Datasets DB100K YAGO3-10
Strategies MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Learnable Weights 0.462 0.378 0.506 0.616 0.545 0.451 0.586 0.696
Uniform Weights 0.460 0.376 0.503 0.614 0.551 0.463 0.608 0.703

Geometric Weights 0.446 0.348 0.503 0.618 0.531 0.439 0.580 0.691

TABLE IX: Performance comparison of different rank fusion methods for DB100K and YAGO3-10.

Datasets DB100K YAGO3-10
Aggregation Function MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

CombMAX 0.455 0.375 0.496 0.603 0.536 0.440 0.600 0.701
CombMIN 0.452 0.369 0.4955 0.606 0.527 0.427 0.597 0.702

CombMEDIAN 0.456 0.376 0.497 0.606 0.541 0.445 0.605 0.705
CombSUM 0.456 0.376 0.4969 0.6060 0.540 0.446 0.606 0.704
Euclidean 0.455 0.375 0.496 0.605 0.540 0.445 0.603 0.702

Borda 0.456 0.376 0.497 0.606 0.540 0.446 0.606 0.704
RRF 0.457 0.376 0.497 0.607 0.541 0.446 0.607 0.707
RBC 0.456 0.376 0.497 0.606 0.540 0.445 0.604 0.703

Fig. 5: Effects of rotation and reflection operators on symmetric relations.

TABLE X: Ablation study on CompoundE3D for DB100K.

Datasets DB100K
Variant MRR Hit@1 Hit@3 Hit@10

∥S · h− Ŝ · t∥ 0.417 0.323 0.471 0.590
∥S · h− R̂ · Ŝ · t∥ 0.447 0.364 0.492 0.600

∥S · h− T̂ · R̂ · Ŝ · t∥ 0.450 0.373 0.488 0.594

only translation and scaling versus those with rotation and
reflection as well. The MRR performance numbers of different
model variants for symmetric and asymmetric relations in
DB100K are compared in Fig. 5. In this figure, we choose
the most frequently observed relation types for meaningful
comparison. As expected, rotation and reflection operators

TABLE XI: Ablation study on CompoundE3D for YAGO3-10.

Datasets YAGO3-10
Metrics MRR Hit@1 Hit@3 Hit@10

∥R · h− t∥ 0.496 0.402 0.547 0.676
∥S ·R · h− t∥ 0.501 0.404 0.554 0.680

∥T · S ·R · h− t∥ 0.542 0.450 0.602 0.701

indeed bring more significant performance improvement on
symmetric relations than asymmetric relations. This supports
our conjecture that rotation and reflection operators are intrin-
sically advantageous for the modeling of symmetric relations.

5) Modeling of Multiplicity: Multiplicity is the scenario
where multiple relations co-exist between two entities; namely,



10

TABLE XII: Comparison of filtered MRR performance on each relation type of WN18RR.

Relations Types KhsGr ξGr TransE RotatE CompoundE CompoundE3D
similar to 1-to-1 0.07 -1.00 0.294 1.000 1.000 1.000

verb group 1-to-1 0.07 -0.50 0.363 0.961 0.974 0.898
member meronym 1-to-N 1.00 -0.50 0.179 0.259 0.230 0.246

has part 1-to-N 1.00 -1.43 0.117 0.200 0.190 0.202
member of domain usage 1-to-N 1.00 -0.74 0.113 0.297 0.332 0.378
member of domain region 1-to-N 1.00 -0.78 0.114 0.217 0.280 0.413

hypernym N-to-1 1.00 -2.64 0.059 0.156 0.155 0.182
instance hypernym N-to-1 1.00 -0.82 0.289 0.322 0.337 0.356

synset domain topic of N-to-1 0.99 -0.69 0.149 0.339 0.367 0.396
also see N-to-N 0.36 -2.09 0.227 0.625 0.629 0.622

derivationally related form N-to-N 0.07 -3.84 0.440 0.957 0.956 0.959

Fig. 6: Illustration of CompoundE3D’s capability in multiplic-
ity modeling.

triples (h, r1, t), . . . , (h, rn, t) hold simultaneously. Generally,
it is challenging to model multiplicity in traditional KGE
models due to their limited power in relational modeling. In
contrast, CompoundE3D is capable of modeling multiplicity
relation patterns well since it can use multiple distinct sets
of transformations that map from the head to the tail. We
present two examples to illustrate CompoundE3D’s capability
in modeling multiplicity relations in Fig. 6. They are taken
from the actual link prediction examples in DB100K. There are
three different relations held for a fixed (head, tail) pair. The
top three tail predictions for each relation in the two examples
are shown in the figure. We see that CompoundE3D can handle

Fig. 7: Comparing different model’s MRR performance metric
across different dimensions.

TABLE XIII: Complexity comparison of KGE models on
ogbl-wikikg2 under a similar testing MRR.

Models No. of Parameters
TransE [16] 1,251M
DistMult [31] 1,251M
ComplEx [65] 1,251M
ComplEx-RP [76] 250.1M
RotatE [17] 500M
RotatE3D [21] 750.4M
PairRE [18] 500M
CompoundE [20] 250.1M
CompoundE3D 225.2M

multiplicity well due to its rich set of variants.
6) Modeling of Hierarchical Relations: We would like to

investigate CompoundE3D’s capability in modeling hierarchi-
cal relations. WN18RR offers a representative dataset contain-
ing hierarchical relations. Two metrics can be used to measure
the hierarchical behavior of relations [25]: 1) the Krackhardt
score denoted by KhsGr

, and 2) the curvature estimate denoted
by ξGr . If relation r has a high KhsGr score and a low ξGr

score, then it has a stronger hierarchical behavior, and vice
versa. We compare the filtered MRR performance of different
baseline models, such as TransE, RotatE, CompoundE (2D
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version), and CompoundE3D in Table XII. In the same table,
we also list the KhsGr and ξGr values for each relation to see
whether it has a stronger hierarchical behavior. We see from
the table that CompoundE and CompoundE3D have better
performance than TransE and RotatE in almost all relations.
Furthermore, CompoundE3D outperforms CompoundE in all
hierarchical relations except “member meronym”. This result
indicates that CompoundE3D can model hierarchical relations
more effectively than CompoundE by including more diverse
3D transformations.

7) Model Efficiency: It is important to investigate the rela-
tionship between the model performance and the model dimen-
sion. The model dimension reflects memory and computational
complexities. To illustrate the advantage of CompoundE3D
over prior models across a wide range of embedding dimen-
sions, we plot the MRR performance of link prediction on
the Wikikg2 dataset in Fig. 7, where the dimension values
are set to 12, 24, 48, 102, 150, 198, 252, and 300. We see
from the figure that CompoundE3D consistently outperforms
all benchmarking models in all dimensions. Furthermore, we
analyze the complexity of different KGE models in terms
of the number of free parameters. Table XIII compares the
number of free parameters of different KGE models for the
ogbl-wikikg2 dataset.

We refer to the ogbl-wikikg2 leaderboard when reporting
the number of free parameters used by baseline models. The
reported number of parameters for CompoundE3D is when
the embedding dimension is set to 90. As shown in Fig. 7 and
Table XIII, CompoundE3D offers the best performance among
all benchmarking models while having the smallest number of
free parameters.

V. CONCLUSION AND FUTURE WORK

A novel and effective KGE model based on composite affine
transformations in the 3D space, named CompoundE3D, was
proposed in this work. A beam search procedure was devised
to build a desired KGE from the simplest configuration to
more complicated ones. The ensemble of the top-k model
variants was also explored to further boost link prediction
performance. Extensive experimental results were provided to
demonstrate the superior performance of CompoundE3D. We
conducted ablation studies to assess the effect of each operator
and performed case studies to shed light on the modeling
power of CompoundE3D for several relation types such as
multiplicity, symmetric relations, and hierarchical relations.

As to future research directions, it will be interesting to
explore the effectiveness of CompoundE3D in other important
KG problems such as entity typing [77] and entity alignment
[78]. Besides, research on performance boosting in low-
dimensional embedding space is valuable in practical real-
world applications and worth further investigation.
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