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Label Text-aided Hierarchical Semantics Mining for Panoramic
Activity Recognition

Anonymous Authors

ABSTRACT

Panoramic activity recognition is a comprehensive yet chal-
lenging task in crowd scene understanding, which aims to
concurrently identify multi-grained human behaviors, includ-
ing individual actions, social group activities, and global ac-
tivities. Previous studies tend to capture cross-granularity
activity-semantics relations from solely the video input, thus
ignoring the intrinsic semantic hierarchy in label-text space.
To this end, we propose a label text-aided hierarchical seman-
tics mining (THSM) framework, which explores multi-level
cross-modal associations by learning hierarchical semantic
alignment between visual content and label texts. Specifical-
ly, a hierarchical encoder is first constructed to encode the
visual and text inputs into semantics-aligned representations
at different granularities. To fully exploit the cross-modal se-
mantic correspondence learned by the encoder, a hierarchical
decoder is further developed, which progressively integrates
the lower-level representations with the higher-level contex-
tual knowledge for coarse-to-fine action/activity recognition.
Extensive experimental results on the public JRDB-PAR
benchmark validate the superiority of the proposed THSM
framework over state-of-the-art methods.

CCS CONCEPTS

• Computing methodologies → Activity recognition
and understanding.

KEYWORDS

Panoramic Activity Recognition, Hierarchical Semantics Min-
ing, Vision-Language Learning

1 INTRODUCTION

Human activity recognition (HAR), which aims to automat-
ically interpret or identify behaviors occurring in scenes, has
attracted considerable attention in both academic and in-
dustrial communities, owing to its widespread real-world ap-
plications [18, 26, 31, 46], such as intelligent surveillance,
social events analysis, and multimedia content review. Over
the past decade, researchers have made various attempts to
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recognize activities at a specific granularity level, e.g., sin-
gle subject-based individual actions [3, 39], a few people-
involved interaction activities [28, 29], and group activities in
crowd scenes [33, 44]. However, in practical unconstrained en-
vironments, it is likely that the scenes contain multi-grained
semantic levels of activities, which pose great challenges for
the existing HAR methods. Thus, in this paper, we focus on
addressing an emerging activity understanding task, namely
panoramic activity recognition (PAR), which requires model-
s to comprehensively recognize behaviors in crowded scenes
from three semantic granularities, including individual ac-
tion, social group activity, and global (scene) activity. This
is essentially a challenging task, with the need to establish
latent relationships among the human activities of different
granularity levels.

Previous PAR works exploited the hierarchical graph net-
work [12] or the Transformer-based perception block [2] to
explore cross-granularity activity-semantics relations from
the sampled visual input. However, they neglect the inher-
ent semantic hierarchy in the label-text space, which can be
resorted to build rich cross-modal correspondence at multi-
ple levels. For instance, the semantic relation between the
visual content of one of the subjects in a group and the
corresponding individual-action text of “listening to some-
one” or “talking to someone” is crucial in inferring the social
group activity of “chatting”. Moreover, identifying the cor-
respondence between the holistic scene and the correspond-
ing global-activity text of “walking” first can provide prior
knowledge regarding the overall event type, which eases the
reasoning of social group activities, e.g., “walking closely”,
and is beneficial to suppress unreasonable predictions, e.g.,
“sitting closely”.

More generally, as illustrated in Fig. 1, there are intrinsi-
cally two flows of semantic hierarchies in tackling the PAR
task. On the text side (see Fig. 1(a)), the semantics of the
label set can be naturally divided into a three-level hierarchy,
which consists of individual action, social group activity and
global activity organized in a bottom-up manner. On the
visual side (see Fig. 1(b)), the appearance clues correspond-
ing to different semantic levels of activities also exhibit three
granularities, with spatially interaction-based dependencies
from coarse to fine. By learning the associations between the
visual content and different levels of label texts for multi-
level action/activity recognition, the model is encouraged to
explore the interconnections between activities at different
semantic granularities.

Based on the abovementioned observations, we propose
a label text-aided hierarchical semantics mining (THSM)
method for PAR. Our proposed THSM framework is devised
based on a multi-level encoder-decoder architecture, which
exploits hierarchical semantic clues from two perspectives.
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Figure 1: Illustration of (a) the bottom-up semantic
hierarchy of label-text space corresponding to indi-
vidual action, social group activity, and global ac-
tivity, and (b) the coarse-to-fine hierarchy of spatial
interaction granularities exhibited in visual clues.

On the one hand, the hierarchical cross-modal correspon-
dence is learned by gradually aligning the semantics between
visual input and label texts in multiple levels of common s-
paces. Precisely, to fully explore the semantic hierarchy of
label texts, we construct a hierarchical cross-modal encoder,
which comprises three semantic granularities, including indi-
vidual, social group, and global scene, from the bottom up.
Each level of the encoder receives the action/activity cate-
gory text embeddings and the pooled visual representations
from a lower level as input, and continually learns visual-
textual associations at a higher level via attention-based
cross-modal interactions. On the other hand, we leverage the
learned abundant cross-level contexts to progressively perfor-
m multiple levels of action/activity recognition in a coarse-
to-fine fashion. Concretely, we design a three-level coarse-to-
fine decoder based on the spatial interaction granularities
from global to local. Each level of the decoder progressively
integrates the lower-level cross-modal representations with
the higher-level contextual knowledge, which facilitates finer
action/activity reasoning with the guidance of holistic event
semantics. Thus, the three sub-tasks in PAR are jointly con-
ducted within the proposed unified hierarchical framework,
which is beneficial to transfer useful clues across different
levels.

The main contributions of this paper can be summarized
in three ways. 1) A label text-aided hierarchical semantics
mining (THSM) framework is proposed for panoramic activ-
ity recognition. To the best of our knowledge, this is the first
work that explores hierarchical cross-modal semantic corre-
spondence between the visual content and label texts for im-
proving PAR. 2) A multi-level encoder-decoder architecture
is designed, where the encoder accounts for visual-textual
semantics alignment at different granularities, while the de-
coder progressively integrates the learned cross-level cross-
modal semantics for coarse-to-fine action/activity recogni-
tion. 3) Extensive experimental results and ablation studies
on the public JRDB-PAR benchmark validate that the pro-
posed THSM framework can consistently outperform other
competing methods.

2 RELATED WORK

Human Activity Recognition. As one of the longstand-
ing research topics, human activity recognition (HAR) has

gained great improvements with the rapid development of
deep learning techniques. 1) 3-D CNNs-based methods [3, 35]
simultaneously learn spatial and temporal features via s-
tacked 3-D convolution and pooling operations. To alleviate
the high computational cost brought by 3-D CNNs, sever-
al attempts have been made to replace a 3-D convolution
kernel with a 2-D spatial kernel and a 1-D temporal ker-
nel, e.g., R(2+1)D [36] and S3D [42]. 2) The two-stream
CNN architecture [30] receives RGB and optical-flow inputs
to separately extract appearance and motion representations
for activity recognition. Then, several methods employed the
basic idea of the two-stream architecture to design a multi-
stream network for learning diverse features, with efficient
motion-aware blocks, e.g., STM [15], or with different RGB
sequences sampled at various frame rates, e.g., SlowFastNet
[8]. 3) Transformer-based HAR methods, e.g., TimeSformer
[1], VideoSwin [22], and DVT [38], are typically built based
on the ViT [4] model, by regarding the time axis as an ex-
tra dimension and formulating diverse temporal attention
mechanisms to measure the similarities among patches in d-
ifferent frames. To reduce the computational cost of video
Transformers, MViT [7] employs a series of local pooling op-
erations, which gradually reduce the number of tokens while
increasing the channel dimension.
Activity Understanding in Multi-person Scenes. As a
pioneering task for understanding activities in multi-person
scenes, group activity recognition (GAR) targets at identify-
ing activities performed by a group of individuals. Over the
past few years, deep learning-based methods have achieved
promising performance on GAR. Ibrahim et al. [14] first de-
signed a two-stage deep model with two LSTM modules,
which extracts the individual-level action dynamics and learn-
s group-level representations, respectively. Since multiple per-
sons in the scenes can be naturally modeled by attributed
graphs, where the individuals and interactions correspond
to the nodes and the edges, respectively, graph neural net-
work (GNN) has been employed for tackling the GAR task
[5]. Wu et al. [41] proposed an actor relation graph (ARG)
by measuring both the appearance and position relation-
ship between subjects, and utilized a graph convolutional
network (GCN) for inferring group activities. Xie et al. [43]
proposed an actor-centric causality graph to model the asyn-
chronous temporal causal relationships among individuals in
the scenes. Inspired by the excellent capacity of Transformer-
s [37] in capturing long-term dependencies [11], Li et al. [20]
devised a clustered spatial-temporal transformer to enhance
the individual and group features, by concurrently capturing
spatial and temporal contexts. Recently, to comprehensive-
ly understand multi-granularity activities occurring in the
crowd scenes, Han et al. [12] introduced a new task, name-
ly panoramic activity recognition (PAR), and developed a
hierarchical graph network to progressively recognize the ac-
tivities from different semantic levels. Cao et al. [2] proposed
a unified perception framework based on Transformer blocks,
to synchronously excavate both intra- and cross-granularity
semantics for PAR. Different from these methods, we resort
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to the aid of the unleashed semantic hierarchy in the label-
text space, which can be leveraged to establish cross-modal
correspondence, thereby facilitating activity recognition at
multiple granularities.
Hierarchical Vision-Language Learning. In the past
few years, with the remarkable progress of vision-language
pretraining (VLP), learning hierarchical vision-language rep-
resentations from image-text pairs has attracted increasing
attention and benefited diverse downstream tasks [16, 19, 27,
34, 48]. PyramidCLIP [9] first builds a pyramid with different
semantic levels for each input modality, and aligns visual and
linguistic entities by exploiting both peer-level semantics and
cross-level relations. MVPTR [21] divides hierarchical multi-
modal alignment learning into two phases, which conduct
intra-modality multi-level representation learning and cross-
modal interactions, respectively. X-VLM [50] learns multi-
grained alignments between the discovered visual concepts
in the image and the associated texts. Motivated by the effec-
tiveness of the aforementioned works, the proposed THSM
method explores hierarchical semantic associations between
visual content and label texts for improving multi-level ac-
tion/activity understanding in crowd scenes.

3 METHODOLOGY

As illustrated in Fig. 2, the overall framework is designed
based on a hierarchical encoder-decoder architecture. First,
we encode the sampled input frames and three-level label
texts (including individual action, social group activity, and
global activity) into embeddings. Then, these visual and text
embeddings are fed into a hierarchical encoder to learn repre-
sentations at different semantic granularities. By fully explor-
ing the visual-textual associations, a hierarchical decoder is
further leveraged to progressively integrate the learned cross-
modal semantics for coarse-to-fine action/activity recogni-
tion in the crowd scenes. In this way, the three sub-tasks are
jointly conducted through the hierarchical framework, which
facilitates the sharing of beneficial knowledge for panoramic
activity understanding.

3.1 Cross-Modal Embedding Extraction

Visual Embedding. Given a video captured from crowd
scenes, we sample several frames as the input and employ a
pretrained CNN network, e.g., Inception-v3 [32], to extrac-
t initial visual feature maps. Then, based on the bounding
box of each person, the local features of each individual are
cropped from these feature maps and normalized to the same
size via RoIAlign [13]. The individual-level feature of the i-th
person is denoted as fi ∈ RH×W×C , where C is the number
of channels, and H and W are the height and width of the
local feature map, respectively. By following ViT [4], we fur-
ther flatten the individual feature fi into a series of patches,

denoted as fpi ∈ RN×(P2×C), where (P, P ) represents the
resolution of each patch, and N = HW/P 2 is the number of
patches. A trainable linear layer is employed to project the
patches into D-dimensional visual embeddings fvi ∈ RN×D.

Text Embedding. Given the label-text set of three-level
action/activity granularities, we first leverage a pretrained
Glove [24] model to convert each category text into a vector
embedding. Then, a three-layer self-attention module is em-

ployed to generate label-text embeddings as FI =
{
fIj

}LI

j=1
∈

RLI×D, FS =
{
fSj

}LS

j=1
∈ RLS×D, and FG =

{
fGj

}LG

j=1
∈

RLG×D, where LI , LS , and LG denote the categories of in-
dividual action, social group activity, and global activity, re-
spectively.

3.2 Hierarchical Cross-Modal Encoder

Individual-level Encoder. Given the visual embeddings
FV = {fvi }Mi=1 ∈ RM×N×D, where M denotes the number
of individuals in the sampled frame, we first utilize a self-
attention module to produce refined patch-level embeddings
FE = {fei }Mi=1. Then, a patch pooling operation is employed
to obtain the global tokens of individuals, as follows:

ΩI
i =

1

N

N∑
n=1

fei (n) , (1)

where n represents the patch index within the local regions of
each individual. We further exploit the cross-attention mech-
anism [37], which utilizes the global tokens as queries to in-

duce the initial individual-level visual representation XI(0),
as follows:

XI(0) = CrossAttn
(
ΩI ,FE ,FE

)
. (2)

Subsequently, an individual-level encoder is devised to learn
the shallow cross-modal semantic relations between the ini-
tial visual inputXI(0) ∈ RM×D and action-label textsQI(0) ∈
RLI×D (QI(0) = FI). Specifically, in the (k + 1)-st layer, we
first concatenate the cross-modal inputs and project them

into a shared representation UI(k) ∈ R(M+LI)×D. Then, a
cross-modal self-attention mechanism is employed to mea-
sure pairwise semantic affinities, as follows:

s
I(k)
ij =

1

σk
·
φ(k)

(
U

I(k)
i

)(
ϕ(k)

(
U

I(k)
j

))T∥∥∥φ(k)
(
U

I(k)
i

)∥∥∥∥∥∥ϕ(k)
(
U

I(k)
j

)∥∥∥ , (3)

where φ(k) (·) and ϕ(k) (·) are two learnable linear projection

functions, the scalar coefficient σ(k) controls the sharpness
of the similarity function, and ∥·∥ denotes L2 norm. There-

after, the similarity scores sI(k) are utilized to rearrange and
aggregate the cross-modal semantics, as follows:

HI(k+1) = softmax
(
sI(k)

)
ψ(k)

(
UI(k)

)
, (4)

where ψ(k) (·) is another trainable linear projection func-
tion. After the cross-modal self-attention layer, two modality-
specific multilayer perceptron (MLPs) are introduced to de-

rive visual output XI(k+1) and textual output QI(k+1) from
the cross-modal representation HI(k+1). To ensure sufficient
alignment learning between the visual content of each in-
dividual and the action-label texts, we stack B1 layers to
perform the complicated cross-modal interactions, i.e., k ∈
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Figure 2: The overall architecture of the proposed label text-aided hierarchical semantics mining (THSM)
framework, which consists of a hierarchical cross-modal encoder and a coarse-to-fine decoder.

{0, 1, ..., B1 − 1}. Thus, the individual-level encoder captures
the low-level visual-textual semantic associations, which serve
as the basis for the understanding of higher-level activity
concepts.
Group-level Encoder. Based on the social group division
results, we first employ an individual pooling operation and
a cross-attention operation on XI(B1), to obtain the initial
group-level visual representation XS(0) ∈ RS×D, where S
denotes the number of social groups detected in the scene.

Then, a cross-modal representation US(0) ∈ R(S+LS)×D can
be generated by concatenating and projecting the group-
level visual input XS(0) and activity-label texts QS(0) ∈
RLS×D (QS(0) = FS). A series of stacked cross-modal self-
attention layers and two unshared MLPs are utilized to pro-
duce the visual and textual outputXS(B2) andQS(B2), where
B2 represents the number of group-level layers. The group-
level encoder builds the visual-textual correspondence at the
middle semantic granularity, which bridges the atomic individual-
level actions and holistic scene-level events.
Global-level Encoder. Analogously, a group pooling op-
eration followed by a cross-attention module is applied to
XS(B2) to obtain an initial global-level visual representation
XG(0) ∈ RD. After constructing the cross-modal represen-

tation UG(0) ∈ R(L
G+1)×D by concatenation and projec-

tion of the group-level visual and label-text input XG(0) and

QG(0) ∈ RLG×D (QG(0) = FG), a stack of B3 cross-modal
self-attention layers and two modality-specific MLPs are em-
ployed on UG(0) to generate the visual output XG(B3) and
textual output QG(B3). The global-level encoder establishes
the correspondence between the visual content of the holistic
scene and the most abstract semantics of the crowd event.

Text-to-Visual Semantic Aggregation. To further ex-
ploit the cross-modal associations learned by the hierarchi-
cal encoder for panoramic activity recognition, we aggregate
the label-text clues into visual representations according to
the visual-to-textual semantic affinities, as follows:

Aℓ =
1

τ ℓ
·Xℓ(D)

(
Q

ℓ(D)
)T

, (5)

gℓ =
[
X

ℓ(D)
; softmax

(
Aℓ

)
Q

ℓ(D)
]
, (6)

where (ℓ,D) ∈ {(I, B1) , (S, B2) , (G, B3)}, i.e., ℓ and D rep-
resent the semantic granularity level and the depth of each

encoder, respectively. X
ℓ(D)

and Q
ℓ(D)

are obtained by ap-
plying L2 normalization to Xℓ(D) and Qℓ(D), respectively. τ ℓ

is a temperature factor and [; ] denotes the channel-wise con-
catenation. Hence, AI , AS , and AG reflect the cross-modal
semantic similarity degrees at individual-level, group-level,
and global-level, respectively. The cross-modal representa-
tion gℓ integrates the refined visual features and the relevant
semantic clues conveyed by label texts at granularity level ℓ.

3.3 Coarse-to-Fine Decoder

Global-level Decoder. For predicting the global activity
at the coarsest semantic level, we directly apply a linear pro-
jection followed by a two-layer MLP predictor on gG , to

obtain the activity classification results ỹG ∈ RLG
of the

holistic scene.
Group-level Decoder. At the group level, the goal is to
identify the interactive activities occurring in each detect-
ed social group. Moreover, contextual cues from the global-
level decoder can provide holistic semantics of the crowd
scene. Thus, we integrate the group-level and global-level
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cross-modal representations gS and gG , and feed them into
a self-attention module, as follows:{

gSG
r

}S

r=1
= SelfAttn

({[
gS
r ;g

G
]}S

r=1

)
, (7)

where gS functions as the conditional context that boosts
the social group-level activity recognition. Then, we input
gSG into a two-layer MLP predictor to obtain the activity

categories for each group, i.e.,
{
ỹS
r

}S

r=1
∈ RS×LS

.
Individual-level Decoder. For the finest-level decoding,
we conduct atomic action recognition with respect to each
individual in the scene. Concretely, we first rearrange the
original individual-level tokens gI ∈ RM×D into the format
distributed in each group, denoted as ĝI ∈ RS×O×D, where
O is the padding size that is set to the maximum number
of individuals in the group. Then, we feed ĝI and gSG into
a self-attention module, to learn the individual-level interac-
tion contexts, as follows:{

ĝIS
i,j

}Mi

j=1
= SelfAttn

({[
ĝI
i,j ;g

SG
i

]}Mi

j=1

)
, (8)

where ĝIS is the refined individual-level representation aug-
mented with the context of the group to which it belongs.
A two-layer MLP is employed on ĝIS to predict individual-

level action recognition results ŷI ∈ RS×O×LI
. By remov-

ing the padded individuals, we can further obtain the final

individual-level predictions
{
ỹI
i

}M

i=1
∈ RM×LI

.

3.4 Training Strategy

Encoder Loss. To guide the learning of the hierarchical
cross-modal encoder, we formulate a three-level semantic
alignment loss Lenc. This loss intrinsically encourages to
learn the associations between visual content and label texts
at different semantic granularities, as follows:

Lenc = LI
enc + LS

enc + LG
enc (9)

=

M∑
i=1

Lbce

(
AI

i ,y
I
i

)
+

S∑
r=1

Lbce

(
AS

r ,y
S
r

)
+ Lbce

(
AG ,yG

)
,

where Lbce represents the binary cross-entropy loss function.
Thus, LI

enc, LS
enc, and LG

enc measure the difference between

the ground-truth labels (i.e., yI ∈ RM×LI
, yS ∈ RS×LS

,

and yG ∈ RLG
) and the visual-text semantic affinity matrices

(i.e., AI , AS , and AG derived from Eq. (5)) at individual,
group, and global levels, respectively.
Decoder Loss. We leverage multiple levels of classification
loss on the action/activity category prediction results pro-
duced by the hierarchical coarse-to-fine decoder, as follows:

Ldec = LI
dec + LS

dec + LG
dec (10)

=

M∑
i=1

Lbce

(
ỹI
i ,y

I
i

)
+

S∑
r=1

Lbce

(
ỹS
r ,y

S
r

)
+ Lbce

(
ỹG ,yG

)
,

where LI
dec, LS

dec, and LG
dec represent the classification losses

with respect to individual action, social group activity, and
global activity, respectively.

Group Detection Loss. Panoramic activity recognition in-
volves the subtask of social group detection. This subtask
aims to discover the group that has relatively strong interac-
tions between individuals. Thus, the results of group division
are crucial for the individual-to-group representation pooling
in the group-level encoder. Following previous works [2, 12],
we adopt a group detection loss as follows:

Lgd = Lbce

(
Z̃,Z

)
, (11)

where Z ∈ RM×M denotes the ground-truth individual-relation
matrix with binary values, whose elements equal 1 only when
the corresponding two subjects belong to the same group.

Therefore, the proposed hierarchical encoder-decoder-based
framework is trained by jointly minimizing the loss terms de-
fined in Eqs. (9)-(11), as follows:

Ltotal = Lenc + Ldec + Lgd. (12)

4 EXPERIMENTS

4.1 Experimental Setup

Data Sets. The proposed method is evaluated on a recently
released data set, namely JRDB-PAR [12], which is tailored
for panoramic activity recognition. It contains 360◦ RGB
videos captured by a mobile robot in diverse crowded multi-
person scenes, e.g., campuses, canteens, and classrooms, etc.
The JRDB-PAR benchmark inherits the annotations of hu-
man bounding boxes with IDs, individual actions, and group
divisions from previous the JRDB [23] and JRDB-Act [6] da-
ta sets. Additionally, it introduces manual labels for social
group activities and global activities. JRDB-PAR contains
27 videos, which are further split into 20 videos for train-
ing and 7 videos for testing. In total, JRDB-PAR consists
of 27,920 frames with more than 628k bounding boxes, and
covers 27 categories of individual actions, 11 categories of
social group activities, and 7 categories of global activities.
Evaluation Metrics. Following the pioneering work [12],
the commonly used precision, recall and F1 score are adopted
as the main evaluation metrics. For individual action recogni-
tion, the precision, recall, and F1 score are denoted as Pi, Ri,
and Fi, respectively, which evaluate the action classification
accuracy for each subject in the testing set. For social group
detection, we follow the general protocol in [40]. Moreover,
after group division, we compute the precision Pp, recall Rp,
and F1 score Fp as the evaluation metrics for social activity
recognition. For global activity recognition, we also adopt
the precision, recall, and F1 score, denoted as Pg, Rg, and
Fg, respectively, for evaluation. Finally, the above three F1
scores (i.e., Fi, Fp, and Fg) are averaged as the overall met-
ric Fa for evaluating the performance of panoramic activity
recognition, i.e., Fa = 1

3
(Fi + Fp + Fg).

Implementation Details. We employ an Inception-v3 [32]
network, pretrained on ImageNet, to extract initial visual
features from each sampled frame. A pretrained Glove [24]
model is utilized to extract linguistic embeddings for the
action/activity label texts. The number of hierarchical en-
coder layers {B1, B2, B3} is set to {2, 2, 2}. The cross-modal
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Table 1: Comparison results of different methods under clustered group division setting.

Methods
Individual Action Group Activity Global Activity Overall
Pi Ri Fi Pp Rp Fp Pg Rg Fg Fa

ARG [41] 39.9 30.7 33.2 8.7 8.0 8.2 63.6 44.3 50.7 30.7
SA-GAT [5] 44.8 40.4 40.3 8.8 8.9 8.8 36.7 29.9 31.4 26.8
JRDB-Base [6] 19.1 34.4 23.6 14.3 12.2 12.8 44.6 46.8 45.1 27.2
PAR [12] 51.0 40.5 43.4 24.7 26.0 24.8 52.8 31.8 38.8 35.6
MUP [2] 55.4 44.8 47.7 25.4 26.6 25.1 58.0 49.0 51.8 41.5
THSM (Ours) 58.2 47.3 50.1 27.3 29.4 27.3 66.3 53.6 57.8 45.1

Table 2: Comparison results of different methods under ground-truth group division setting.

Methods
Individual Action Group Activity Global Activity Overall
Pi Ri Fi Pp Rp Fp Pg Rg Fg Fa

AT [10] 38.9 33.9 34.6 32.5 32.3 32.0 21.2 19.1 19.8 28.8
SACRF [25] 31.3 23.6 25.9 25.7 24.5 24.8 42.9 35.5 37.6 29.5
TCE+STBiP [47] 40.7 33.4 35.1 33.5 30.1 30.9 37.5 27.1 30.6 32.2
HiGCIN [45] 34.6 26.4 28.6 34.2 31.8 32.2 39.3 30.1 33.1 31.3
ARG [41] 42.7 34.7 36.6 27.4 26.1 26.2 26.9 21.5 23.3 28.8
SA-GAT [5] 39.6 34.5 35.0 32.5 32.5 30.7 28.6 24.0 25.5 30.4
JRDB-Base [6] 21.5 44.9 27.7 54.3 45.9 48.5 38.4 33.1 34.8 37.0
PAR [12] 54.3 44.2 46.9 50.3 52.5 50.1 42.1 24.5 30.3 42.4
MUP [2] 56.8 45.6 48.6 55.7 49.7 51.3 57.0 46.2 47.3 49.2
THSM (Ours) 59.6 48.4 50.7 58.2 54.1 54.7 60.1 47.9 52.0 52.5

Table 3: Comparison results of different methods un-
der conventional multi-person activity recognition
setting.

Methods
Individual Action Global Activity
Pi Ri Fi Pp Rp Fp

AT [10] 36.8 30.1 31.7 17.4 15.7 16.1
SACRF [25] 39.2 29.4 32.2 34.8 26.2 28.4
TCE+STBiP [47] 46.6 37.7 39.7 31.9 23.7 26.4
HiGCIN [45] 36.9 30.1 31.6 46.0 34.2 38.0
PAR [12] 51.0 40.5 43.4 52.8 31.8 38.8
MUP [2] 55.4 44.8 47.7 58.0 49.0 51.8
THSM (Ours) 58.2 47.3 50.1 66.3 53.6 57.8

self-attention layers are implemented in a multi-head fash-
ion, where the number of heads is 8. The dimension of the
features is set to 512, i.e., D = 512. The temperature factor
τ ℓ in Eq. (5) is empirically set to 0.2. To train the proposed
hierarchical framework, we adopt the ADAM optimizer [17],
with a learning rate of 1×10−4 and a weight decay of 5×10−4,
for 60 epochs. The batch size is set to 8. As argued in [12],
integrating temporal clues requires additional multi-object
associations and group evolution detection, which has the
risk of introducing unexpected errors, especially in challeng-
ing panoramic crowd scenes. Thus, following previous works
[2, 12], the temporal information across frames is not taken
into consideration.

4.2 Comparison with State-of-the-Arts

Results in Clustered Group Division Setting. For a
comprehensive performance comparison, in addition to ex-
isting panoramic activity recognition models, e.g., PAR [12]
and MUP [2], we also include several state-of-the-art social
group-activity understanding methods, e.g., ARG [41], SA-
GAT [5], and JRDB-Base [6], which have been modified for
adaptation to the target task. Table 1 tabulates the com-
parison results of our proposed THSM method with other

Figure 3: Structure comparison of four types of base-
line models.

state-of-the-art methods based on clustered group division
setting. Following the practice of [12], a spectral clustering
algorithm [49] was applied to the individual-relation matrix
produced by ARG [41] for group division, and a feature fu-
sion mechanism [6] was further employed to conduct com-
plete panoramic activity recognition. As can be seen from
Table 1, the proposed THSM framework achieves consisten-
t performance improvements over other competing method-
s in all evaluation metrics by considerable margins. Com-
pared with the pioneering hierarchical GNNs-based model,
i.e., PAR [12], the proposed method leads to an overall F1-
score improvement of 9.5%. Moreover, our proposed THSM
framework improves the state-of-the-art MUP [2] by 3.6% in
terms of Fa metric.
Results in Ground-truth Group Division Setting. We
include some more state-of-the-art methods, i.e., AT [10],
SACRF [25], TCE+STBiP [47], and HiGCIN [45], which are
originally developed based on the traditional group activity
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Table 4: Ablation results of the proposed THSM
framework with and without using label-text clues.

Ablation Config.
Individual Group Global Overall

Fi Fp Fg Fa

w/o LTC 44.5 24.6 42.2 37.1
Full THSM 50.1 27.3 57.8 45.1

Table 5: Ablation results of using hierarchical mod-
eling and separate level-specific modeling strategies.

Ablation Config.
Individual Group Global

Fi Fp Fg

IL 43.1 - -
SL - 24.8 -
GL - - 39.6

IL+ SL+ GL 50.1 27.3 57.8

recognition pipeline, for comparison. However, these meth-
ods can neither detect latent social groups in crowd scenes
nor generate the individual-relation matrix as in ARG. Thus,
following [12], the ground-truth group detection results are
provided as additional input for performance evaluation. As
summarized in Table 2, all the listed methods exhibit signifi-
cant performance gains (at least 18% in terms of Fp metric)
in social group activity recognition, which indicates the influ-
ence of precise group division in the downstream task. More
importantly, we can find that the proposed THSM method
consistently outperforms other competitors in all evaluation
metrics.
Generalization Evaluation on Conventional Multi-
person Activity Recognition. We evaluate the general-
ization ability of different methods on conventional multi-
person activity recognition, which consists of two subtasks,
i.e., individual action and global activity recognition. Table 3
presents the comparison results by adopting the original set-
ting of previous group activity recognition methods without
modification. It can be observed that our proposed method
achieves the best F1 scores of 50.1% and 57.8% in recogniz-
ing individual action and global activity, respectively.

4.3 Ablation Studies

Effect of the Injection of Label-text Clues. Since the
proposed method learns hierarchical action/activity seman-
tics with the aid of label texts, we conducted ablation ex-
periments to investigate its effect. For comparison, as shown
in Fig. 3(a), we implemented a baseline model, without ex-
ploiting textual clues of labels. Specifically, it takes only the
visual embeddings as the input of the hierarchical encoder-
decoder framework and is trained by optimizing the losses
defined in Eqs. (10)-(11). Table 4 tabulates the ablation re-
sults. We can find that the baseline model “w/o LTC” stil-
l slightly outperforms the hierarchical GNNs-based model,
i.e., PAR [12], by 1.5%, in terms of the overall F1 score. By
injecting label-text embeddings, the full version of the pro-
posed THSM framework significantly improves the Fa score
of the baseline model by 8%, which shows the advantage of
establishing multi-level cross-modal semantics associations

Table 6: Ablation results of using different alignment
loss functions in the encoder part.

Alignment Losses Individual Group Global Overall

LI
enc LS

enc LG
enc Fi Fp Fg Fa

- - - 46.2 25.0 51.4 40.9
- - X 46.5 25.1 53.2 41.6
- X - 47.1 25.9 52.0 41.7
X - - 48.3 25.5 52.6 42.1
- X X 46.9 26.3 54.8 42.7
X - X 47.7 26.0 55.4 43.0
X X - 48.7 26.8 56.1 43.5
X X X 50.1 27.3 57.8 45.1

Table 7: Ablation results under different settings of
the decoder.

Ablation Config.
Individual Group Global Overall

Fi Fp Fg Fa

w/o decoder 45.3 24.3 42.7 37.4
w/ plain decoder 46.5 25.1 55.6 42.4
w/ C2F decoder 50.1 27.3 57.8 45.1

between the label space and visual content in recognizing
multi-grained activities.
Effect of the Hierarchical Modeling. To study the effect
of the hierarchical modeling shown in Fig. 3(b), we imple-
mented three level-specific baseline models, which are sepa-
rately tailored for recognizing individual action, social group
activity, and global activity, respectively. Concretely, each
baseline model is constructed based on a single-level encoder-
decoder architecture and is fed with the visual and label-text
embeddings at the corresponding level. The ablation result-
s are presented in Table 5. Without cross-level semantics
interactions, the separate level-specific baseline models ex-
hibit an obvious performance drop of 7%, 2.5%, and 18.2%,
in terms of F1 scores, in the three sub-tasks of panoramic ac-
tivity recognition, respectively. In contrast, the hierarchical
modeling strategy employed in our proposed THSM method
simultaneously tackles the three sub-tasks in a unified frame-
work, which can facilitate the flow of useful knowledge across
different semantic granularities.
Effect of the Alignment Loss. We conduct ablation ex-
periments to investigate the influence of visual-textual se-
mantic alignment losses, which are imposed on different lev-
els of the encoder part. Table 6 presents the ablation results.
We can find that removing the alignment loss at a specific
level will lead to degraded performance in recognizing the
corresponding activities. What’s worse, it also has a side
effect on activity recognition on other semantic levels. For
instance, without using the individual-level alignment loss
(the fifth row in Table 6), i.e., LI

enc, the model shows a per-
formance drop of 3.2%, in terms of Fi, in individual action
recognition, and also degrades the Fp and Fg metrics by
1% and 3%, in recognizing social group and global activi-
ties, respectively. The performance of the proposed THSM
framework can be improved when continually introducing
the cross-modal alignment losses on different semantic level-
s.
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Figure 4: Visualization of (a) panoramic activity
recognition results and the learned (b) individual-
level, (c) social group-level, and (d) global-level
visual-to-textual semantic affinity matrices, pro-
duced by the baseline model trained without using
hierarchical modeling (w/o HM) and the proposed
THSM framework (ours).

Effect of the Coarse-to-Fine Decoder. To evaluate the
contribution of the coarse-to-fine (C2F) decoder, we imple-
mented two baseline models for comparison. The vanilla base-
line, denoted as “w/o decoder” (see Fig. 3(c)), is built by
solely maintaining the hierarchical encoder, which directly
produces the action/activity recognition results from the se-
mantic affinity matrix Aℓ at each semantic level. Moreover,
another baseline model, i.e., “w/ plain decoder” (see Fig.
3(d)), takes the learned cross-modal representation gℓ after
text-to-visual aggregation, as the input of a two-layer MLP-
based decoder, for inferring actions/activities at different se-
mantic granularities. As illustrated in Table 7, “w/ plain
decoder” outperforms “w/o decoder” by 5%, in terms of Fa,
which suggests that even a simple encoder can be augment-
ed by the text-to-visual semantic aggregation. In addition,
by progressively integrating higher-level contexts with lower-
level features, the proposed C2F decoder can further lead to
an improvement of 2.7%, in terms of the overall F1 score.

4.4 Qualitative Results

Visualization of Learned Visual-to-Textual Semantic
Affinities. To intuitively interpret the learned cross-modal
semantic affinities, as shown in Fig. 4, we visualize the three-
level visual-to-textual affinity matrices (i.e., AI , AS , and
AG derived from Eq. (5)) and the corresponding panoramic
activity recognition results of the proposed THSM frame-
work and the three level-specific baseline models. For the
individual-action level, due to the lack of holistic guidance
from other levels, the baseline model fails to capture the
affinities between subtle appearance cues with the seman-
tics conveyed by the label-text embeddings (highlighted by
orange bounding boxes in Fig. 4(b)), e.g., the impercepti-
ble talking behaviors for person “0” and “1”, and the un-
observable bottle held by person “3” owing to small size
and motion blur. This eventually results in missing some

Figure 5: Visualization of attention maps of the pro-
posed THSM framework, activated by (a) individual-
level, (b) social group-level, and (c) global-level ac-
tion/activity categories.

action categories. For the social group-activity level, with-
out ingesting sufficient fine-grained atomic action clues, the
level-specific baseline model can solely explicitly establish
semantic relations between group “0” and the text of “s-
tanding closely” (see Fig. 4(c)), which leads to the missing
of “chatting”. Similarly, without cross-level interactions, the
global-level baseline model only identifies the salient event
semantics and assigns a relatively low affinity score to the
label-text of “conversing” (see Fig. 4(d)), thus casing incom-
plete activity recognition results.
Visualization of Attention on the Tokens. To quali-
tatively examine the effectiveness of the proposed THSM
method, as shown in Fig. 5, we visualize the attention maps
of the tokens, activated by the actions or activities at differ-
ent semantic granularities. In Fig. 5(a), we can find that the
proposed method assigns relatively higher weights on the to-
kens regarding the crucial body parts, e.g., legs and eyes, for
person “6”. This helps to accurately recognize the individu-
al actions of “walking” and “looking at robot (camera)”. In
Fig. 5(c), for the holistic scene, our proposed THSM frame-
work pays less attention to the irrelevant individuals, e.g.,
persons “2” and “8”, and highlights more on the groups “0”
and “1”, which can provide useful cues for recognizing the
global activities of “conversing” and “walking”.

5 CONCLUSION

In this paper, we propose a label text-aided hierarchical se-
mantics mining (THSM) method, which targets at explicit-
ly exploring multi-granularity cross-modal associations for
improving panoramic activity recognition (PAR). Concrete-
ly, the proposed THSM framework is designed based on a
three-level encoder-decoder architecture. The encoder estab-
lishes the hierarchical correspondence between visual con-
tent and label texts from multiple semantic levels, while the
decoder progressively integrates the higher-level contextual
knowledge into the lower-level cross-modal representations
for coarse-to-fine action/activity recognition. Both quantita-
tive and qualitative evaluation results on the public JRDB-
PAR data set demonstrate the superior performance of the
proposed method.
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