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ABSTRACT

The routing problem is a classic combinatorial optimization challenge. Construct-
ing heuristics using deep learning models presents a promising approach for its
resolution. In this paper, we propose a novel model with a dynamic encoder and
dual-channel decoder (DEDD) architecture to learn construction heuristics for the
routing problem. The dynamic encoder encodes the node features of the decom-
posed subproblems at each selection step, thereby obtaining more accurate node
embeddings. The dual-channel decoder facilitates more diverse node selections at
each step, increasing the probability of the model identifying optimal solutions.
Additionally, we design an effective node selection strategy to assist the model
in choosing nodes at each step. Experimental results on the Traveling Salesman
Problem (TSP) and the Capacitated Vehicle Routing Problem (CVRP) with up
to 1000 nodes demonstrate that the solutions generated by the DEDD model are
nearly optimal, underscoring its efficacy.

1 INTRODUCTION

The routing problem (Veres & Moussa, 2019) is a type of combinatorial optimization (CO) prob-
lem prevalent in logistics, distribution, transportation, and other fields with significant practical
application value (Toth & Vigo, 2014). Its fundamental problems and classic variants include the
Traveling Salesman Problem (TSP) and the Capacitated Vehicle Routing Problem (CVRP). The
routing problem is NP-hard, making it particularly challenging to solve (Li et al., 2022). Current
approaches for solving CO problems are mainly divided into four categories: exact approaches,
approximation algorithms, heuristic algorithms and deep learning-based approaches. Exact ap-
proaches, such as branch-and-bound (Fischetti et al., 1994; Lawler & Wood, 1966) and dynamic
programming (Bertsekas, 2000; Sniedovich, 2010), can theoretically find the global optimal so-
lution but have exponential worst-case computational complexity. Thus, as the problem size in-
creases, the computational effort required by these algorithms becomes impractical. Approximation
algorithms (Williamson & Shmoys, 2011; Vazirani, 2001; Hochba, 1997) can obtain a theoretically
guaranteed solution with polynomial computational complexity, but the solution quality is often
suboptimal. Heuristic algorithms (Van Laarhoven et al., 1992; Wesley Barnes & LAGUNA, 1993;
Halim & Ismail, 2019) involve experts designing specific heuristic rules based on extensive domain
knowledge to search the solution space within an acceptable timeframe to find feasible solutions to
CO problems. Due to the limitations of these three types of approaches, numerous deep learning
models have been proposed in recent years to address some of the issues presented in the aforemen-
tioned approaches.

Learning-based neural combinatorial optimization approaches can be divided into two categories:
learning improvement heuristics (Chen & Tian, 2019; Wu et al., 2021; Ma et al., 2021) and learning
construction heuristics (Vinyals et al., 2015; Joshi et al., 2019; Kool et al., 2022). Learning improve-
ment heuristics use deep reinforcement learning algorithms to learn the rules of iterative search op-
erators, iteratively searching for solutions based on the learned rules. Essentially, learning improve-
ment heuristics are iterative search algorithms with good optimization effects. The approaches pro-
posed by Chen & Tian (2019) and Lu et al. (2019) have achieved results that match or even surpass
professional combinatorial optimization solvers such as LKH3 (Helsgaun, 2017), Google OR tools
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(Perron & Furnon, 2019), Gurobi, and Concorde (Applegate et al., 2006). However, these methods
still lag behind end-to-end approaches.

Learning construction heuristics primarily use deep neural networks with an encoder-decoder struc-
ture. The encoder maps node information to embeddings, while the decoder, based on embeddings
and other information, provides the probability of each node being selected at each step. Finally,
based on these probabilities, a rule (e.g., greedily selecting the node with the highest probability
Luo et al. (2023) determines the node chosen at each step. After providing the problem instance as
input, the model repeatedly adds nodes to partial solutions until a complete solution is generated.
Since this approach inputs the problem instance directly into the deep neural network and outputs
the solution directly, it is also called an ”end-to-end method.” Compared to iterative heuristic algo-
rithms, learning construction heuristics offer several advantages: First, they directly output the solu-
tion, resulting in faster solving speeds. Second, deep neural networks learn heuristic rules from data,
replacing manually designed rules by experts. Finally, traditional CO problem-solving algorithms
usually run on CPU, whereas deep neural networks run on GPU, enabling better parallelization and
faster inference on large batches of problem instances. However, the quality of solutions directly
output by deep neural networks often has room for improvement. Thus, various approaches (e.g.,
beam search (Nazari et al., 2018)) are employed to refine the initially generated solutions for better
results.

To explore more ways to solve CO problems, scholars have proposed many deep learning mod-
els with different structures, trained through supervised learning (Fu et al., 2021; Joshi et al., 2022;
Hottung et al., 2021a) or reinforcement learning (Hottung & Tierney, 2020; Hottung et al., 2021b;
d O Costa et al., 2020). However, existing models still have some limitations. First, they are mostly
confined to solving small-scale problems and perform poorly on larger-scale problems. This is be-
cause most models are trained and tested on specific scales (e.g., TSP100), leading to suboptimal
generalization.

Second, existing learning-based neural combinatorial optimization models typically learn only one
construction strategy, limiting the diversity of decisions when selecting nodes at each step. The
decoder provides a probability matrix for node selection at each step, which is derived from the
rules learned and the node embeddings output by the encoder. The model ultimately selects the
node to visit based on the probability matrix and certain selection rules. In other words, the diversity
of node selection strategies at each construction step mainly comes from the decoder’s probability
matrix and the node selection strategy based on it, which is insufficient for constructing high-quality
solutions. Different node choices at each step lead to different directions for exploring complete
solutions, so enriching the diversity of node selection strategies at each step is crucial.

Additionally, current deep learning models encode the problem instance into global node embed-
dings and other information embeddings once at the beginning. In subsequent construction steps,
the decoder uses the same node embeddings to build the solution. However, when solving a routing
problem with state transitions, using node embeddings from the previous state to solve the current
state problem may lead to suboptimal strategies. Also, encoding all node at once may cause the
model to learn scale-related features, performing well on trained scales but failing to capture neces-
sary relationships among nodes in untrained scales.

To address these limitations, we propose a deep learning model with a dynamic encoder and dual-
channel decoder (DEDD) structure for learning construction heuristics for routing problems. Firstly,
to enhance model performance, the encoder in the DEDD model dynamically selects different nodes
at each step to form new subproblems as inputs, allowing the decoder to choose the next node based
on more accurate embeddings. Secondly, we propose a reasonable subproblem construction ap-
proach. At each construction step, we form subproblems from the starting point of the complete
instance, the visited node from the previous step, and the remaining available nodes, balancing
global and local information. Furthermore, since the dynamic encoder’s input changes with con-
struction steps, the DEDD model tends to learn scale-independent features, making it less sensitive
to instance sizes and better at generalizing across different problem scales. Lastly, to enhance the
effectiveness of node selection strategies, we propose a dual-channel decoder structure. The dual
channels independently provide node probability matrices at each step, with the model selecting one
channel’s result to update the partial solution based on the probability matrix and selection strat-
egy designed by us. Different channels share parameters in all but the final attention layer, thus
enhancing strategy effectiveness while minimizing computational overhead.
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It is worth noting that the DEDD model is not intended to completely surpass existing highly op-
timized professional routing problem solvers but to explore designing deep learning models that
autonomously learn stronger heuristic rules for solving CO problems. We apply the model to solv-
ing TSP and CVRP of various scales, and experimental results demonstrate that the proposed DEDD
model achieves good performance within shorter inference times and effectively solves instances up
to a scale of 1000 nodes

2 RELATED WORKS

In 1985, Hopfield & Tank (1985) introduce the Hopfield network for solving the TSP and other CO
problems, pioneering the use of neural networks for CO problem-solving. However, the Hopfield
network requires retraining for each new TSP instance. In 2015, Vinyals et al. (2015) introduce the
Pointer Network (PtrNet), the first to effectively employ deep neural networks for CO problems. The
PtrNet features an encoder-decoder structure, with both components composed of long short-term
memory (LSTM) networks. The model constructs complete solutions in an autoregressive man-
ner through supervised learning. Given that labels are the optimal solutions of problem instances,
and acquiring these solutions is costly, supervised learning becomes impractical. Bello et al. (2016)
propose using the efficient reinforcement learning approach A3C to replace supervised learning, al-
lowing the model to be trained on larger problem instances. Nazari et al. (2018) also use A3C to train
and optimize the PtrNet. Kool et al. (2022) and Deudon et al. (2018) employ the Transformer archi-
tecture for CO problems. Kool et al. (2022) propose an attention model with an encoder-decoder
structure. The encoder has three layers of attention, encoding all nodes simultaneously during train-
ing and inference. The decoder has a single layer of attention, utilizing a pointer-like attention
mechanism for decoding. Since the proposal of the attention model (AM), numerous learning con-
struction heuristics based on AM have been developed, but these methods can only perform well on
small-scale CO problems.

In addition to deep learning models with encoder-decoder structures, some researchers have pro-
posed approaches based on graph neural networks. Khalil et al. (2017) are the first to use the Q-
Learning (Watkins & Dayan, 1992) algorithm of deep reinforcement learning to train graph neural
networks for solving CO problems, achieving strong results in minimum vertex cover and maximum
cut, but their results for TSP are less ideal. Ma et al. (2019) combine the PtrNet and graph neural
networks by transforming graph neural network node features into node embeddings and using the
PtrNet’s attention mechanism to construct complete solutions, achieving strong optimization results
in TSP. However, hierarchical reinforcement learning requires the setting of goals in order to achieve
good performance, and the model has low efficiency in exploration during training.

Some researchers have used deep reinforcement learning to enhance search algorithms. Traditional
search algorithms typically involve experts manually designing heuristic rules based on specialized
domain knowledge. Currently, some researchers use deep reinforcement learning to enable models
to automatically learn or select heuristic rules, iteratively searching for solutions based on learned

Figure 1: The architecture of the proposed DEDD model, featuring a single-layer encoder and a
dual-channel decoder.
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rules and obtaining higher-quality solutions after multiple iterations. Chen & Tian (2019) propose
NeuRewriter to learn improvement heuristics, training two heuristic strategies to recursively re-
fine initial solutions, achieving or surpassing the performance of professional solvers like LKH3
(Helsgaun, 2017). However, a limitation of this approach is the difficulty in parallelizing the solv-
ing of instances. Yolcu & Póczos (2019) adopt a local search framework, using deep reinforcement
learning to learn variable selection operators, finding better-quality solutions in fewer iterations but
with a long runtime. Additionally, many approaches that iteratively improve solutions still rely
on expert-designed heuristic rules, and the iterative steps cannot be parallelized. Thus, learning im-
provement heuristics generally takes longer than learning construction heuristics. This paper focuses
on learning construction heuristics for quickly solving instances.

3 MODEL

In this section, we propose a deep learning model with a dynamic encoder and dual-channel decoder
structure and provide a detailed introduction to this model.

3.1 DYNAMIC ENCODER

In a VRP instance with n city nodes, the node feature xi for node i, includes 2-dimensional co-
ordinates and instance-specific features. For example, in TSP, the node coordinates are the node
features. The model constructs a complete solution by sequentially selecting nodes. Using the same
embeddings at each construction step may lead to poor performance. To address this issue, we use
the starting point of the complete solution and the node selected in the previous step to bridge the
partial solution with the subproblem composed of all available nodes, complementing the global
information. These elements are input into the dynamic encoder along with the available nodes for
re-embedding calculations at each step. Since the node from the previous step is input as the starting
point of the subproblem, node selection in the current step also serves as a search direction problem
for the optimal solution of the previous node. Additionally, incorporating the starting point and the
previous node allows the model to dynamically learn the relationship between the partial solution
and all available nodes at each step. As the scale of the subproblem input changes at each step, the
model learns the relationships between nodes, making it less sensitive to the problem instance scale
and thus achieving better generalization.

Recalculating node embeddings at each step increases computational cost. Most
Transformer-based models have several times more encoder attention layers than decoder

Figure 2: Multi-head Attention Layer

attention layers. With this structure, at each step, node
embeddings must pass through a linear projection layer
and multiple attention layers, leading to a significantly
high computational cost. To address this, we propose a
model with a DEDD structure, as shown in Figure 1. This
model includes a dynamic encoder with one attention
layer and a dual-channel decoder with multiple attention
layers. This structure substantially reduces the computa-
tional overhead incurred by re-encoding node features in
every construction step.

To express the node sequence Xt at step t (where t ∈
{1, 2, . . . , n} represents the current construction step),
we denote the features of the node selected at step
j as xj . Thus, Xt = (x1, xt−1, xt, xt+1, . . . , xn).
The dynamic encoder includes one linear projection
layer and one attention layer. For an instance with n
nodes, the linear projection layer first transforms the
node feature sequence Xt into initial node embeddings
E0 = (e01, e

0
t−1, e

0
t , e

0
t+1, . . . , e

0
n), where e0j denotes the

d-dimensional initial embedding of the node selected at
step j. These initial embeddings are then processed
through an attention layer to obtain the node embeddings
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E1 = (e11, e
1
t−1, e

1
t , e

1
t+1, . . . , e

1
n). The attention layer consists of a multi-head attention (MHA)

sublayer and a feedforward sublayer, as shown in Figure 2.

Let El−1 = (el−1
1 , el−1

t−1, e
l−1
t , el−1

t+1, . . . , e
l−1
n ) be the input of the l-th multi-head attention layer, so

the MHA can be defined as follow:

Qm
j ,Km

j , V m
j = Wm

Q el−1
j ,Wm

K el−1
j ,Wm

V el−1
j (1)

El,m = Attention(Qm,Km, V m)

= softmax(QmKmT /
√
dk)V

m,m = 1, 2, . . . ,M
(2)

Where El,m represents the node embeddings computed by the m-th attention head in the l-th multi-
head attention layer. Q, K, V are Query, Key, Value vectors, and Wm

Q , Wm
K , Wm

V are linear transfor-
mation matrices of Q, K and V , respectively. The M attention heads respectively perform equations
(1) and (2), with dk = d/M .

After concatenating all El,m, they are multiplied by WO to obtain the output of the multi-head
attention layer.

Multihead(Q,K, V ) = Concat(El,1, El,2, . . . , El,M )WO (3)

êlj = el−1
j + Multiheadj(Q,K, V ) (4)

elj = êlj + FF(êlj) (5)

Finally, using the skip connection layer (He et al., 2016) from equation (4) and the feedforward
sublayer composed of two linear projection layers from equation (5), we obtain the output elj of the
self-attention block. The process from equations (1) to (5) is represented as follows:

El = MHA(El−1) (6)

3.2 DUAL-CHANNEL DECODER

To enhance the effectiveness of the node selection strategy at each construction step, we employ
a dual-channel output decoder. The first L attention layers of the dual-channel decoder are shared
between both channels, while the final attention layer and linear projection layer in each channel
have identical structures but do not share parameters. This design choice balances performance
improvements with the increased computational cost. Utilizing one attention layer without shared
parameters significantly enhances the model’s performance with minimal additional computation.

As the final attention layer and linear projection layer in both channels do not share parameters, the
same input may yield different outputs. The randomness from unshared parameters is the primary
source of node diversity during the early stages of training, before the model is fully trained. Af-
ter training, the diversity in node selection strategies primarily stems from the training data of the
model. The trained model selects two optimal candidate nodes based on learned strategies at each
construction step, rather than randomly choosing nodes of unknown quality, thus more efficiently
finding higher-quality solutions. At step t, the encoder’s output E1 = (e11, e

1
t−1, e

1
t , e

1
t+1, . . . , e

1
n) is

fed into the decoder. The decoder then recalculates the embeddings for e11 and e1t−1 using two linear
projection layers, and concatenates them with (e1t , e

1
t+1, . . . , e

1
n) to obtain the input Ẽ0 for its first

attention layer. This process is expressed as follows:

Ẽ0 = Concat(W1e
1
1,W2e

1
t−1, e

1
t , e

1
t+1, . . . , e

1
n) (7)

After passing through L attention layers, we obtain the node embeddings ẼL. Then ẼL passes
through the last attention layer separately for each of the two channels:

Ẽ1 = MHA(Ẽ0) (8)

. . . . . .

ẼL = MHA(ẼL−1) (9)

ẼL+1
1 = MHA1(ẼL) (10)

ẼL+1
2 = MHA2(ẼL) (11)
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ẼL+1
r is transformed by a linear projection layer into a vector u, and finally undergoes a softmax

transformation to obtain the selection probability pt, represented as follows:

ui =

{
WAẽ

L+1
j , i ̸= 1 or 2

−∞, otherwise
(12)

pt = softmax(u) (13)

The high memory and computational costs of the heavyweight decoder structure make it difficult to
use reinforcement learning for training the DEDD model in this paper. Therefore, we use supervised
learning to train the DEDD model. We define the loss function of the DEDD model as follows:

loss = −[log(pt1) + log(pt2)] (14)

Where ptr represents the probability predicted by channel r of the DEDD model for the labeled node
in step t.

3.3 CANDIDATE NODE SELECTION STRATEGY

The node selection process of the decoder is depicted in Figure 3. After obtaining the selection
probabilities pt from both channels, the node with the highest probability in pt is selected as the
candidate node for each channel (for instance, in Figure 3, the candidate nodes for instance 1 at step
t are 3 and 0). The merits of the two candidate nodes are compared, and the best one is chosen as the
final node for step t. During the training process, data is fed into the DEDD model in batches. At
each construction step, we calculate the loss for both channels across the entire batch, as shown in
Equations (15) and (16), and select the nodes output by the channel with the lower loss as the final
nodes for the entire batch. During inference, we calculate the additional distance for both channels
across the entire batch, as indicated in Equations (17) and (18), and select the nodes output by the
channel with the shorter distance as the final nodes for the entire batch. This approach evaluates the
performance of both channels across multiple instances, thereby reducing the randomness associated
with single-instance evaluation.

loss1 = ls11 + ls12 + · · ·+ ls1b (15)

loss2 = ls21 + ls22 + · · ·+ ls2b (16)

d1 = d11 + d12 + · · ·+ d1b (17)

d2 = d21 + d22 + · · ·+ d2b (18)

Figure 3: The node selection process for the t-th construction step.

3.4 DESTRUCTION-RECONSTRUCTION APPROACH BASED ON NODE SELECTION STRATEGY

To improve the quality of solutions constructed by the model at once, we adopt a destruction-
reconstruction (DR) approach based on the node selection strategy. We perform operations on
batches of instances. First, a segment, referred to as a partial solution, is randomly extracted from
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the complete solution and input into the model for step-by-step reconstruction. In each reconstruc-
tion step, after the two channels output candidate nodes, the total distance values of all instances in
the batch are calculated for both channels. The nodes output by the channel with the smaller total
distance is selected as the final nodes for the current step. Once the partial solution is completely
reconstructed, the distance of the partial solution before and after reconstruction is compared. If the
reconstructed partial solution has a shorter distance, it replaces the original partial solution.

4 EXPERIMENT

In this section, we apply the proposed DEDD model to solve TSP and CVRP instances of various
sizes. We compare its performance with other learning-based approaches and specialized solvers to
assess its effectiveness. The TSP involves finding the shortest path for a salesman who starts from a
city, visits all cities exactly once, and returns to the starting city, considering the distances between
each pair of cities. The CVRP is a variant of the TSP where vehicles, starting from a depot and each
with a capacity limit, aim to satisfy delivery demands for each city.

Our dataset is generated in accordance with the standard data generation procedure established in
prior work AM (Kool et al., 2019). We employed the Concorde solver to obtain the optimal solutions
for the TSP training set and utilized the HGS to acquire the optimal solutions for the CVRP training
set.The training set includes one million TSP and CVRP instances, with sizes ranging from 4 to 100,
respectively. The test set comprises 10,000 TSP and 10,000 CVRP instances of size 100, and 128
TSP and 128 CVRP instances of sizes 200, 500, and 1000.

Hyperparameter settings: We set the embedding dimension to 128, the encoder to 1 attention layer,
the decoder to 5 parameter-shared attention layers, 1 non-shared attention layer. Each attention layer
employs 8 heads for multi-head attention, and the feed forward layer dimension is set to 512. The
DEDD model is trained separately on one million instances of size 100 for both the TSP and CVRP
datasets. For training, we use a batch size of 1024 and the Adam optimizer with a learning rate
of 10−4. For the TSP dataset, the learning rate decays by 0.97 per epoch, with training continuing
for 150 epochs. For the CVRP dataset, the learning rate decays by 0.9 per epoch, with training
lasting for 40 epochs. The DEDD model was trained and tested on an NVIDIA 3090 GPU, with
the training to solve TSP instances requiring approximately 8 days and the training to solve CVRP
instances requiring approximately 2 days.

We compare our approach to existing learning-based approaches and classical solvers. Classical
solvers include Concorde (Applegate et al., 2006), LKH3 (Helsgaun, 2017), HGS (Vidal, 2022),
and OR-Tools (Perron & Furnon, 2019). Learning-based approaches include LEHD (Luo et al.,
2023), POMO (Kwon et al., 2020), MDAM (Xin et al., 2021), EAS (Hottung et al., 2021b), SGBS
(Choo et al., 2022), BQ (Drakulic et al., 2023), and Att-GCN+MCTS (Fu et al., 2021). For optimal-
ity gap comparison, we use Concorde (Applegate et al., 2006) as the baseline for TSP and LKH3
(Helsgaun, 2017) as the baseline for CVRP. Our experiments focus on optimality gaps rather than
inference time due to classical solvers running on CPU and learning-based approaches running on
GPU, as well as potential differences in programming languages and platforms used for execution.

4.1 EXPERIMENTAL RESULTS

Table 1 presents experimental results comparing the DEDD model to various approaches. In TSP,
the solutions directly generated by the DEDD model (greedy in Table 1) are of high quality and
require minimal inference time. After 100 rounds of DR iteration, the DEDD model’s performance
surpasses all compared learning-based approaches in Table 1, except for LEHD (Luo et al., 2023).
For TSP100, solutions with only 0.009% gap from the baseline are achieved after 100 rounds of DR
iteration, nearly matching the baseline. For larger instances like TSP200, TSP500, and TSP1000,
which are not in the training set, the DEDD model achieves gaps of approximately 0.03%, 0.2%, and
0.8% respectively, after just 300 rounds of DR iteration, closely approaching the baseline results.
After 1000 rounds of DR iteration, the DEDD model nearly achieves optimal performance, with gaps
of 0.001% for TSP100 and 0.015% for TSP200. The gaps for TSP500 and TSP1000 are 0.142%
and 0.611%, respectively.

In CVRP, the DEDD model demonstrates superior performance relative to TSP. Due to the memory
constraints of a single NVIDIA 3090 GPU, 10,000 CVRP100 instances are divided into two batches
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Table 1: The experimental results for TSP and CVRP under uniformly distributed instances.

Method TSP100 TSP200 TSP500 TSP1000

Gap Time Gap Time Gap Time Gap Time

Concorde 0.000% 34m 0.000% 3m 0.000% 32m 0.000% 7.8h
LKH3 0.000% 56m 0.000% 4m 0.000% 32m 0.000% 8.2h
OR-Tools 2.368% 11h 3.618% 17m 4.682% 50m 4.885% 10h
Att-GCN+MCTS 0.037% 15m 0.884% 2m 2.536% 6m 3.223% 13m
MDAM bs50 0.388% 21m 1.996% 3m 10.065% 11m 20.375% 44m
POMO augx8 0.134% 1m 1.533% 5s 22.187% 1m 40.570% 8m
SGBS 0.060% 40m 0.562% 4m 11.550% 54m 26.035% 7.4h
EAS 0.057% 6h 0.496% 28m 17.080% 7.8h - -
BQ greedy 0.579% 0.6m 0.895% 3s 1.834% 0.4m 3.965% 2.4m
BQ bs16 0.046% 11m 0.224% 1m 0.896% 6m 2.605% 38m
LEHD RRC 1000 0.002% 2.1h 0.020% 12.3m 0.182% 1.3h 0.745% 7.2h
DEDD greedy 0.533% 0.6m 0.870% 0.07m 1.714% 0.4m 2.899% 2.0m
DEDD DR 50 0.182% 10.6m 0.118% 0.8m 0.454% 6.9m 1.245% 31.5m

DR 100 0.009% 19.0m 0.061% 1.8m 0.325% 12.5m 1.069% 1.0h
DR 300 0.004% 51.4m 0.028% 5.1m 0.198% 34.3m 0.801% 2.9h
DR 500 0.002% 1.4h 0.019% 8.4m 0.170% 53.9m 0.688% 4.7h
DR 1000 0.001%0.001%0.001% 2.8h 0.015%0.015%0.015% 17.0m 0.142%0.142%0.142% 1.8h 0.611%0.611%0.611% 9.4h

CVRP100 CVRP200 CVRP500 CVRP1000
LKH3 0.000% 12h 0.000% 2.1h 0.000% 5.5h 0.000% 7.1h
HGS -0.533% 4.5h -1.126% 1.4h -1.794% 4h -2.162% 5.3h
OR-Tools 6.193% 2h 6.894% 1h 9.112% 2.2h 11.662% 3h
MDAM bs50 2.211% 25m 4.304% 3m 10.498% 12m 27.814% 47m
POMO augx8 0.689% 1m 4.866% 7s 19.901% 1m 128.89% 10m
SGBS 0.079% 40m 2.581% 1m 15.343% 16m 136.98% 2.3h
EAS -0.234%-0.234%-0.234% 15h 0.640% 33m 11.042% 9.3h - -
BQ greedy 2.993% 0.7m 3.527% 4s 5.121% 0.4m 9.812% 2.4m
BQ bs16 0.611% 10m 1.141% 0.6m 2.991% 6m 7.784% 39m
LEHD RRC 1000 -0.100% 2.7h -0.346% 14.5m -0.01% 1.35h 2.484% 7.8h
DEDD greedy 3.557% - 3.055% 0.1m 2.877% 0.4m 6.456% 2.2m
DEDD DR 50 0.525% - 0.402% 1.4m 0.948% 6.0m 4.149% 38.7m

DR 100 0.257% - 0.123% 2.5m 0.606% 10.4m 3.602% 1.1h
DR 300 0.007% - -0.196% 6.8m 0.136% 32.8m 2.688% 3.0h
DR 500 -0.071% - -0.302% 11.5m -0.015% 57.8m 2.332% 4.9h
DR 1000 -0.148% 3.5h -0.446%-0.446%-0.446% 22.6m -0.245%-0.245%-0.245% 1.9h 1.879%1.879%1.879% 10.0h

of 5000 each for inference, and the results are averaged. Table 1 presents the total time after com-
pleting 1000 rounds of DR iteration for both batches. The solutions directly generated by DEDD
show gap of about 3% from the baseline for CVRP100, CVRP200, and CVRP500, and about 6%
for CVRP1000.

After 300 rounds of DR iteration, solution quality significantly improves. Specifically, the gap
for CVRP100 is 0.007%, CVRP200’s solution surpasses LKH3 (Helsgaun, 2017) by -0.196%,
CVRP500’s gap is close to the baseline at 0.136%, and CVRP1000 achieves a gap of 2.688%.

After 500 rounds of DR iteration, the DEDD model clearly outperforms LKH3 (Helsgaun, 2017) on
CVRP100, CVRP200, and CVRP500. After 1000 rounds of DR iteration, the gap for CVRP1000 is
also within 2%.

As shown in Table 1, the DEDD model’s performance slightly fell short of EAS only in the
CVRP100 solution. After 300 rounds of DR iterations, the DEDD model surpass five learning-based
methods (except EAS and LEHD) and the traditional solver OR-Tools across four scales. For larger
scales, such as CVRP200, CVRP500, and CVRP1000, the DEDD model demonstrate stronger ca-
pabilities, surpassing six learning-based methods (except LEHD) and OR-Tools with only 50 rounds
of DR iterations. These results indicate that the DEDD model performs excellently.
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5 ABLATION STUDY

We assess the effectiveness of various model components using TSP instances across four scales.
Specifically, we compare the static encoder-dual channel decoder (SEDD) and the dynamic encoder-
single channel decoder (DESD) with the dynamic encoder-dual channel decoder (DEDD) to evaluate
the individual contributions of the dynamic encoder and dual-channel decoder to the model’s per-
formance. The dynamic encoder embeds nodes for subproblems at each construction step, while
the static encoder embeds all nodes in a single initial step. The dual-channel decoder generates
two probability matrices, from which higher-quality nodes are selected based on a node selection
strategy, while the single-channel decoder outputs only one probability matrix. Table 2 shows that
DEDD outperforms DESD and SEDD in all metrics for TSP100. However, for TSP200, TSP500,
and TSP1000, the solutions output by DEDD are slightly inferior to those of DESD or SEDD.

First, the DEDD solutions may be slightly inferior to those of SEDD because models of two struc-
tures are trained on a dataset of one million TSP instances ranging from size 4 to 100, thus learn-
ing relationships among nodes in small-scale instances. When constructing complete solutions for
TSP100, dynamic encoders improve performance comprehensively, as models of all three struc-
tures are trained on problems of related sizes. However, for larger-scale problems, neither dynamic
nor static encoders learn to encode features of nodes at this scale during training, complicating the
comparison of encoding approaches, as shown in the greedy metrics in Table 2.

Nonetheless, improvements can be made to the initial solution after it is directly output by the
model. We continuously improve solution quality using the DR strategy. Since partial solution
problems are present in the training set, the advantages and disadvantages of dynamic and static
encoders are apparent. Specifically, a more suitable encoder can greatly improve partial solutions,
thereby enhancing the overall solution quality. Table 2 shows that after multiple rounds of DR
iteration, models using dynamic encoders (DEDD) outperform those using static encoders (SEDD)
on all problem scales, proving the effectiveness of dynamic encoders.

Secondly, DEDD solutions may be slightly inferior to those of DESD for the following reasons. The
dual-channel decoder offers richer node selection for each construction

Table 2: Experimental results of models with different architectures on uniformly distributed in-
stances of TSP.

TSP100

greedy DR 50 DR 100 DR 300 DR 500 DR 1000

DESD gap 0.554% 0.023% 0.013% 0.0042% 0.0024% 0.0013%
SEDD gap 0.542% 0.033% 0.014% 0.0041% 0.0023% 0.0013%
DEDD gap 0.533%0.533%0.533% 0.018%0.018%0.018% 0.009%0.009%0.009% 0.0040%0.0040%0.0040% 0.0022%0.0022%0.0022% 0.0012%0.0012%0.0012%

TSP200

greedy DR 50 DR 100 DR 300 DR 500 DR 1000

DESD gap 0.922% 0.121% 0.075% 0.033% 0.023% 0.0155%
SEDD gap 0.826%0.826%0.826% 0.119% 0.068% 0.029% 0.021% 0.0152%
DEDD gap 0.870% 0.118%0.118%0.118% 0.061%0.061%0.061% 0.028%0.028%0.028% 0.019%0.019%0.019% 0.0151%0.0151%0.0151%

TSP500

greedy DR 50 DR 100 DR 300 DR 500 DR 1000

DESD gap 1.684%1.684%1.684% 0.474% 0.317%0.317%0.317% 0.210% 0.188% 0.165%
SEDD gap 1.732% 0.455% 0.329% 0.224% 0.190% 0.163%
DEDD gap 1.714% 0.454%0.454%0.454% 0.325% 0.198%0.198%0.198% 0.170%0.170%0.170% 0.142%0.142%0.142%

TSP1000

greedy DR 50 DR 100 DR 300 DR 500 DR 1000

DESD gap 2.713%2.713%2.713% 1.155%1.155%1.155% 1.081% 0.828% 0.693% 0.616%
SEDD gap 3.091% 1.381% 1.181% 0.944% 0.837% 0.726%
DEDD gap 2.899% 1.245% 1.069%1.069%1.069% 0.801%0.801%0.801% 0.688%0.688%0.688% 0.611%0.611%0.611%
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step, but this does not guarantee a higher-quality complete solution. Thus, the results of a single
solve may exhibit some randomness and yield slightly lower-quality solutions. However, after suf-
ficient rounds of reconstructing partial solutions, randomness is greatly reduced, resulting in high-
quality solutions. Table 2 shows that after 1000 rounds of DR, the quality of DEDD’s solutions
surpasses DESD, demonstrating the effectiveness of the dual-channel decoder structure.

Finally, we comprehensively compare the experimental results of the three structures. Since super-
vised learning-trained encoders may not accurately encode node features for problem scales outside
the training set, and the solutions produced by dual-channel decoders in one solve may exhibit some
randomness, we focus on the performance of models after multiple rounds of DR in the ablation
experiment. Table 2 shows that after multiple rounds of DR, DEDD performs best among the three
model structures, proving its effectiveness.

6 CONCLUSION

This paper introduces a novel model with dynamic encoders and a dual-channel decoder to learn
construction heuristic for routing problems. The model uses supervised learning and incorporates
dynamic encoders and a subproblem decomposition strategy tailored to routing problems, enhanc-
ing performance. The dual-channel decoder enables rich node selection and customized strategies,
further enhancing performance. Experimental results show that the DEDD model performs excep-
tionally well in both TSP and CVRP, with particularly strong results in CVRP. Future work will focus
on improving cooperative decision-making between decoder channels and exploring the potential of
training the DEDD model with reinforcement learning.
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