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ABSTRACT

Classifiers are biased when trained on biased datasets. As a remedy, we propose
Learning to Split (ls), an algorithm for automatic bias detection. Given a dataset
with input-label pairs, ls learns to split this dataset so that predictors trained
on the training split cannot generalize to the testing split. This performance gap
suggests that the testing split is under-represented in the dataset, which is a sig-
nal of potential bias. Identifying non-generalizable splits is challenging since we
have no annotations about the bias. In this work, we show that the prediction
correctness of each example in the testing split can be used as a source of weak
supervision: generalization performance will drop if we move examples that are
predicted correctly away from the testing split, leaving only those that are mispre-
dicted. ls is task-agnostic and can be applied to any supervised learning problem,
ranging from natural language understanding and image classification to molecu-
lar property prediction. Empirical results show that ls is able to generate aston-
ishingly challenging splits that correlate with human-identified biases. Moreover,
we demonstrate that combining robust learning algorithms (such as group DRO)
with splits identified by ls enables automatic de-biasing. Compared to previous
state-of-the-art, we substantially improve the worst-group performance (23.4% on
average) when the source of biases is unknown during training and validation. Our
code is included in the supplemental materials and will be publicly available.

1 INTRODUCTION

Recent work has shown promising results on de-biasing when the sources of bias (e.g., gender, race)
are known a priori Ren et al. (2018); Sagawa et al. (2019); Clark et al. (2019); He et al. (2019);
Mahabadi et al. (2020); Kaneko & Bollegala (2021). However, in the general case, identifying bias
in an arbitrary dataset may be challenging even for domain experts: it requires expert knowledge of
the task and details of the annotation protocols Zellers et al. (2019); Sakaguchi et al. (2020). In this
work, we study automatic bias detection: given a dataset with only input-label pairs, our goal is to
detect biases that may hinder predictors’ generalization performance.

We propose Learning to Split (ls), an algorithm that simulates generalization failure directly from
the set of input-label pairs. Specifically, ls learns to split the dataset so that predictors trained on the
training split cannot generalize to the testing split (Figure 1). This performance gap indicates that
the testing split is under-represented among the set of annotations, which is a signal of potential bias.

The challenge in this seemingly simple formulation lies in the existence of many trivial splits. For
example, poor testing performance can result from a training split that is much smaller than the
testing split (Figure 2a). Classifiers will also fail if the training split contains all positive examples,
leaving the testing split with only negative examples (Figure 2b). The poor generalization of these
trivial solutions arise from the lack of training data and label imbalance, and they do not reveal the
hidden biases. To ensure that the learned splits are meaningful, we impose two regularity constraints
on the splits. First, the size of the training split must be comparable to the size of the testing split.
Second, the marginal distribution of the labels should be the similar across the splits.

Our algorithm ls consists of two components, Splitter and Predictor. At each iteration, the Splitter
first assigns each input-label pair to either the training split or the testing split. The Predictor then
takes the training split and learns how to predict the label from the input. Its prediction performance
on the testing split is used to guide the Splitter towards a more challenging split (under the regularity
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Figure 1: Consider the task of classifying samoyed images vs. polar bear images. Given the set of
image-label pairs, our algorithm ls learns to split the data so that predictors trained on the training
split cannot generalize to the testing split. The learned splits help us identify the hidden biases.
For example, while predictors can achieve perfect performance on the training split by using the
spurious heuristic: polar bears live in snowy habitats, they fail to generalize to the under-represented
group (polar bears that appear on grass).

constraints) for the next iteration. Specifically, while we do not have any explicit annotations for cre-
ating non-generalizable splits, we show that the prediction correctness of each testing example can
serve as a source of weak supervision: generalization performance will decrease if we move exam-
ples that are predicted correctly away from the testing split, leaving only those predicted incorrectly.

ls is task-agnostic and can be applied to any supervised learning problem, ranging from natural
language understanding (Beer Reviews, MNLI) and image classification (Waterbirds, CelebA) to
molecular property prediction (Tox21). Given the set of input-label pairs, ls consistently iden-
tifies splits across which predictors cannot generalize. For example in MNLI, the generalization
performance drops from 79.4% (split by random) to 27.8% (split by ls) for a standard BERT-based
predictor. Further analysis reveals that our learned splits coincide with human-identified biases. Fi-
nally, we demonstrate that combining group distributionally robust optimization (DRO) with splits
identified by ls enables automatic de-biasing. Compared with previous state-of-the-art, we sub-
stantially improves the worst-group performance (23.4% on average) when the sources of bias are
completely unknown during training and validation.

2 RELATED WORK

De-biasing algorithms Modern datasets are often coupled with unwanted biases Buolamwini &
Gebru (2018); Schuster et al. (2019); McCoy et al. (2019); Yang et al. (2019). If the biases have
already been identified, we can use this prior knowledge to regulate their negative impact Kusner
et al. (2017); Hu et al. (2018); Oren et al. (2019); Belinkov et al. (2019); Stacey et al. (2020); Clark
et al. (2019); He et al. (2019); Mahabadi et al. (2020); Sagawa et al. (2020); Singh et al. (2021).
The challenge arises when the source of biases is unknown (Li & Xu, 2021). Recent work has
shown that the mistakes of a standard ERM predictor on its training data are informative of the
biases (Bao et al., 2021; Sanh et al., 2021; Nam et al., 2020; Utama et al., 2020; Liu et al., 2021a;
Lahoti et al., 2020; Liu et al., 2021b; Bao et al., 2022). They deliver robustness by boosting from
the mistakes. (Wang & Vasconcelos, 2018; Yoo & Kweon, 2019) also utilize prediction correctness
for confidence estimation and active learning. (Creager et al., 2021; Sohoni et al., 2020; Ahmed
et al., 2020; Matsuura & Harada, 2020) further analyze the predictor’s hidden activations to identify
under-represented groups. However, many other factors (such as the initialization, the representa-
tion power, the amount of annotations, etc) can contribute to the predictors’ training mistakes. For
example, predictors that lack representation power may simply under-fit the training data.

In this work, instead of looking at the training statistics of the predictor, we focus on its generaliza-
tion gap from the training split to the testing split. This effectively balances those unwanted factors.
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Figure 2: Splits that are difficult to generalize do not necessarily reveal hidden biases. (a) Predictors
cannot generalize if the amount of annotations is insufficient. (b) Predictors fail to generalize when
the labels are unbalanced in training and testing. ls poses two regularity constraints to avoid such
degenerative solutions: the training split and testing split should have comparable sizes; the marginal
distribution of the label should be similar across the splits.

Going back to the previous example, if the training and test splits share the same distribution, the
generalization gap will be small even if the predictors are underfitted. The gap will increase only
when the training and testing splits have different prediction characteristics. Furthermore, instead of
using a fixed predictor, we iteratively refine the predictor during training so that it faithfully measures
the generalization gap given the current Splitter.

Heuristics for data splitting Data splitting strategy directly impacts the difficulty of the under-
lying generalization task. Therefore, in domains where out-of-distribution generalization is crucial
for performance, various heuristics are used to find challenging splits Sheridan (2013); Yang et al.
(2019); Bandi et al. (2018); Yala et al. (2021); Taylor et al. (2019); Koh et al. (2021). Examples
include scaffold split in molecules and batch split for cells. Unlike these methods, which rely on
human-specified heuristics, our algorithm ls learns how to split directly from the dataset alone and
can therefore be applied to scenarios where human knowledge is unavailable or incomplete.

3 LEARNING TO SPLIT

3.1 MOTIVATION

Given a dataset Dtotal with input-label pairs {(x, y)}, our goal is to split this dataset into two subsets,
Dtrain and Dtest, such that predictors learned on the training split Dtrain cannot generalize to the testing
split Dtest.1

Why do we have to discover such splits? Before deploying our trained models, it is crucial to
understand the extent to which these models can even generalize within the given dataset. The
standard cross-validation approach attempts to measure generalization by randomly splitting the
dataset (Stone, 1974; Allen, 1974). However, this measure only reflects the average performance
under the same data distribution PDtotal(x, y). There is no guarantee of performance if our data
distribution changes at test time (e.g. increasing the proportion of the minority group). For ex-
ample, consider the task of classifying samoyeds vs. polar bears (Figure 1). Models can achieve
good average performance by using spurious heuristics such as “polar bears live in snowy habitats”
and “samoyeds play on grass”. Finding splits across which the models cannot generalize helps us
identify underrepresented groups (polar bears that appear on grass).

How to discover such splits? Our algorithm ls has two components, a Splitter that decides how
to split the dataset and a Predictor that estimates the generalization gap from the training split
to the testing split. At each iteration, the splitter uses the feedback from the predictor to update
its splitting decision. One can view this splitting decision as a latent variable that represents the
prediction characteristic of each input. To avoid degenerate solutions, we require the Splitter to
satisfy two regularity constraints: the size of the training split should be comparable to the size of
the testing split (Figure 2a); and the marginal distribution of the label should be similar across the
splits (Figure 2b).

1To prevent over-fitting, we held-out 1/3 of the training split for early-stopping when training the Predictor.
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Algorithm 1 ls: learning to split (see Algorithm 2 for full details)
Input: dataset Dtotal

Output: data splits Dtrain, Dtest

1: Initialize Splitter to random splitting
2: repeat
3: Apply Splitter to split Dtotal into Dtrain,Dtest. For each input-label pair (xi, yi), sample the

splitting decision zi 2 {0, 1} from PSplitter(zi | xi, yi).
4: Initialize Predictor and train Predictor on Dtrain using empirical risk minimization.
5: Evaluate Predictor on Dtrain and Dtest. Compute generalization gap = difference in accu-

racy/AUC.
6: repeat
7: Sample a mini-batch from Dtotal to compute the regularity constraints ⌦1,⌦2 (Eq 1).
8: Sample another mini-batch from Dtest to compute Lgap (Eq 2).
9: Compute the overall loss Ltotal = Lgap + ⌦1 + ⌦2. Update Splitter to minimize Ltotal.

10: until Ltotal stops decreasing
11: until generalization gap stops increasing

3.2 SPLITTER AND PREDICTOR

Here we describe the two key components of our algorithm, Splitter and Predictor, in the context of
classification tasks. The algorithm itself generalizes to regression problems as well.

Splitter Given a list of input-label pairs Dtotal = [(x1, y2), . . . , (xn, yn)], the Splitter decides
how to partition this dataset into a training split Dtrain and a testing split Dtest. We can view its
splitting decisions as a list of latent variables z = [z1, . . . , zn] where each zi 2 {1, 0} indicates
whether example (xi, yi) is included in the training split or not. In this work, we assume independent
selections for simplicity. That is, the Splitter takes one input-label pair (xi, yi) at a time and predicts
the probability PSplitter(zi | xi, yi) of allocating this example to the training split. We can factor
the joint probability of our splitting decisions as

P(z | Dtotal) =
nY

i=1

PSplitter(zi | xi, yi).

We can sample from the Splitter’s predictions PSplitter(zi | xi, yi) to obtain the splits Dtrain and
Dtest. Note that while the splitting decisions are independent across different examples, the Splitter
receives global feedback, dependent on the entire dataset Dtotal, from the Predictor during training.

Predictor The Predictor takes an input x and predicts the probability of its label PPredictor(y |
x). The goal of this Predictor is to provide feedback for the Splitter so that it can generate more
challenging splits at the next iteration.

Specifically, given the Splitter’s current splitting decisions, we re-initialize the Predictor and train
it to minimize the empirical risk on the training split Dtrain. This re-initialization step is critical
because it ensures that the predictor does not carry over past information (from previous splits) and
faithfully represents the current generalization gap. On the other hand, we note that neural networks
can easily remember the training split. To prevent over-fitting, we held-out 1/3 of the training split
for early stopping. After training, we evaluate the generalization performance of the Predictor on
the testing split Dtest.

3.3 REGULARITY CONSTRAINTS

Many factors can impact generalization, but not all of them are of interest. For example, the Predictor
may naturally fail to generalize due to the lack of training data or due to label imbalance across the
splits (Figure 2). To avoid these trivial solutions, we introduce two soft regularizers to shape the
Splitter’s decisions:

⌦1 = DKL(P(z) kBernoulli(�)),
⌦2 = DKL(P(y | z = 1) kP(y)) + DKL(P(y | z = 0) kP(y)). (1)
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The first term ⌦1 ensures that we have sufficient training examples in Dtrain. Specifically, the
marginal distribution P(z) = 1

n

Pn
i=1 PSplitter(zi = z | xi, yi) represents what percentages of

Dtotal are split into Dtrain and Dtest. We penalize the Splitter if it moves too far away from the prior
distribution Bernoulli(�). Centola et al. (2018) suggest that minority groups typically make up 25
percent of the population. Therefore, we fix � = 0.75 in all experiments.2

The second term ⌦2 aims to reduce label imbalance across the splits. It achieves this goal by pushing
the label marginals in the training split P(y | z = 1) and the testing split P(y | z = 0) to be close to
the original label marginal P(y) in Dtotal. We can apply Bayes’s rule to compute these conditional
label marginals directly from the Splitter’s decisions PS.(zi | xi, yi):

P(y | z = 1) =

P
i y(yi)PS.(zi = 1 | xi, yi)P

i PS.(zi = 1 | xi, yi)
, P(y | z = 0) =

P
i y(yi)PS.(zi = 0 | xi, yi)P

i PS.(zi = 0 | xi, yi)
.

3.4 TRAINING STRATEGY

The only question that remains is how to learn the Splitter. Our goal is to produce difficult and non-
trivial splits so that the Predictor cannot generalize. However, the challenge is that we don’t have
any explicit annotations for the splitting decisions.

There are a few options to address this challenge. From the meta learning perspective, we can back-
propagate the Predictor’s loss on the testing split directly to the Splitter. This process is expensive
as it involves higher order gradients from the Predictor’s training. While one can apply episodic-
training (Vinyals et al., 2016) to reduce the computation cost, the Splitter’s decision will be biased by
the size of the learning episodes (since the Predictor only operates on the sampled episode). From
the reinforcement learning viewpoint, we can cast our objectives, maximizing the generalization
gap while maintaining the regularity constraints, into a reward function (Lei et al., 2016). However,
according to our preliminary experiments, the learning signal from this scalar reward is too sparse
for the Splitter to learn meaningful splits.

In this work, we take a simple yet effective approach to learn the Splitter. Our intuition is that the
Predictor’s generalization performance will drop if we move examples that are predicted correctly
away from the testing split, leaving only those that are mispredicted. In other words, we can view
the prediction correctness of the testing example as a direct supervision for the Splitter.

Formally, let ŷi be the Predictor’s prediction for input xi: ŷi = argmaxy PPredictor(y | xi). We
minimize the cross entropy loss between the Splitter’s decision and the Predictor’s prediction cor-
rectness over the testing split:

Lgap =
1

|Dtest|
X

(xi,yi)2Dtest

LCE(PSplitter(zi | xi, yi), yi(ŷi)). (2)

Combining with the aforementioned regularity constraints, the overall objective for the Splitter is

Ltotal = Lgap + ⌦1 + ⌦2, (3)

One can explore different weighting schemes for the three loss terms (Chen et al., 2018). In this
paper, we found that the unweighted summation (Eq 3) works well out-of-the-box across all our ex-
periments. Algorithm 1 presents the pseudo-code of our algorithm. At each outer-loop (line 2-11),
we start by using the current Splitter to partition Dtotal into Dtrain and Dtest. We train the Predic-
tor from scratch on Dtrain and evaluate its generalization performance on Dtest. For computation
efficiency, we sample mini-batches in the inner-loop (line 6-10) and update the Splitter based on
Eq equation 3.

2We note that the two regularizers ⌦1 and ⌦2 are introduced to shape the Splitter’s decisions, but the model
has the flexibility to deviate from this “prior.” That is, the actual “posteriors” can be different depending on the
dataset. For example, the minority group is unlikely to always constitute exactly 25% of the dataset. Therefore,
it makes more sense to introduce soft regularizers instead of hard (and exact) constraints. Nevertheless, if users
want to allocate exactly 25% of the data into the test set, instead of sampling from the Splitter’s decisions
PSplitter(zi | xi, yi), they can simply sort these probabilities and split at the 25th percentile.
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Figure 3: Even while the label distributions remain similar (blue), predictors that generalize on
random splits fail to generalize on splits identified by ls (green). For both splits, to prevent
over-fitting, we held-out 1/3 of the training split for early-stopping. In MNLI (lower right), the
generalization gap for a standard BERT-based model is 93.6% � 27.8% = 65.8%.
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Figure 4: The splits learned by ls correlate with human-identified biases. For example in Waterbirds
(left), ls learns to amplify the spurious association between landbirds and land backgrounds in the
training split Dtrain. As a result, predictors will over-fit the background features and fail to generalize
at test time (Dtest) when the spurious correlation is reduced.

4 EXPERIMENTS

We conduct experiments over multiple modalities (Section 4.1) and answer two main questions. Can
ls identify splits that are not generalizable (Section 4.2)? Can we use the splits identified by ls
to reduce unknown biases (Section 4.3)? Implementation details are deferred to the Appendix. Our
code is included in the supplemental materials and will be publicly available.

4.1 DATASET

Beer Reviews We use the BeerAdvocate review dataset (McAuley et al., 2012) where each input
review describes multiple aspects of a beer and is written by a website user. Following previous
work (Lei et al., 2016), we consider two aspect-level sentiment classification tasks: look and aroma.
There are 2,500 positive reviews and 2,500 negative reviews for each task. The average word count
per review is 128.5. We apply ls to identify spurious splits for each task.

Tox21 Tox21 is a property prediction benchmark with 12,707 molecules Huang et al. (2016). Each
input is annotated with a set of binary properties that represent the outcomes of different toxicolog-
ical experiments. We consider the property Androgen Receptor (active or inactive) as our
prediction target. We apply ls to identify spurious splits over the entire dataset.
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Figure 5: ls-identified splits correlate with certain spurious properties (ATAD5, AhR) even
though they are not provided to algorithm. Here we present the train-test assignment of com-
pounds with AR=active given by ls. In the leftmost bar, we look at all examples: 58% of
{AR=active} is in the training split and 42% of {AR=active} is in the testing split. For
each bar on the right, we look at the subset where an unknown property is active. For ex-
ample, 17% of {AR=active,ATAD5=active} is allocated to the training split and 83% of
{AR=active,ATAD5=active} is in the testing split.
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Figure 6: Learning curve of ls. X-axis: number of outer-loop iterations. Y-axis: generalization gap
from Dtrain to Dtest. Error bar represents the standard deviation across 5 random seeds.

Waterbirds Sagawa et al. (2019) created this dataset by combining bird images from the Caltech-
UCSD Birds-200-2011 (CUB) dataset (Welinder et al., 2010) with backgrounds from the Places
dataset (Zhou et al., 2014). The task is to predict waterbirds vs. landbirds. The challenge is that
waterbirds, by construction, appear more frequently with a water background. As a result, predictors
may utilize this spurious correlation to make their predictions. We combine the official training data
and validation data (5994 examples in total) and apply ls to identify spurious splits.

CelebA CelebA is an image classification dataset where each input image (face) is paired with
multiple human-annotated attributes Liu et al. (2015). Following previous work (Sagawa et al.,
2019), we treat the hair color attribute (y 2 {blond,not blond}) as our prediction target. The
label is spuriously correlated with the gender attribute ({male,female}). We apply ls to identify
spurious splits over the official training data (162,770 examples).

MNLI MNLI is a crowd-sourced collection of 433k sentence pairs annotated with textual entailment
information (Williams et al., 2018). The task is to classify the relationship between a pair of sen-
tences: entailment, neutral or contradiction. Previous work has found that contradiction examples
often include negation words (McCoy et al., 2019). We apply ls to identify spurious splits over the
training data (206,175 examples) created by Sagawa et al. (2019).

4.2 IDENTIFYING NON-GENERALIZABLE SPLITS

Figure 3 presents the splits identified by our algorithm ls. Compared to random splitting, ls
achieves astonishingly higher generalization gaps across all 6 tasks. Moreover, we observe that the
learned splits are not degenerative: the training split Dtrain and testing split Dtest share similar label
distributions. This confirms the effectiveness of our regularity objectives.

Why are the learned splits so challenging for predictors to generalize across? While ls only
has access to the set of input-label pairs, Figure 4 and Figure 5 show that the learned splits are
informative of human-identified biases. For example, in the generated training split of MNLI, inputs
with negation words are mostly labeled as contradiction. This encourages predictors to leverage the
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Table 1: Average and worst-group test accuracy for de-biasing. When using bias annotations on
the validation data for model selection, previous work (CVaR DRO (Levy et al., 2020), LfF (Nam
et al., 2020), EIIL (Creager et al., 2021), JTT (Liu et al., 2021a)) significantly outperform ERM
(that is also tuned using bias annotations on the validation data). However, they underperform the
group DRO baseline (Sagawa et al., 2019) that was previously overlooked. When bias annotations
are not available for validation, the performances of these methods quickly drop to that of ERM. In
contrast, applying group DRO with splits identified by ls substantially improves the worst-group
performance. † and ‡ denote numbers reported by Liu et al. (2021a) and Creager et al. (2021)
respectively.

Method Bias annotated Waterbirds CelebA MNLI

in train? in val? Avg. Worst Avg. Worst Avg. Worst

Group DRO 3 3 93.5%† 91.4%† 92.9%† 88.9%† 81.4%† 77.7%†

ERM 7 3 97.3%† 72.6%† 95.6%† 47.2%† 82.4%† 67.9%†

CVaR DRO 7 3 96.0%† 75.9%† 82.5%† 64.4%† 82.0%† 68.0%†

LfF 7 3 91.2%† 78.0%† 85.1%† 77.2%† 80.8%† 70.2%†

EIIL 7 3 96.9%‡ 78.7%‡ 89.5% 77.8% 79.4% 70.0%

JTT 7 3 93.3%† 86.7%† 88.0%† 81.1%† 78.6%† 72.6%†

Group DRO 7 3
(with supervised bias predictor) 91.4% 88.2% 91.4% 88.9% 79.9% 77.7%

ERM 7 7 90.7% 64.8% 95.8% 41.1% 81.9% 60.4%

CVaR DRO 7 7 — 62.0%† — 36.1%† 81.8% 61.8%

LfF 7 7 — 44.1%† — 24.4%† 81.1% 62.2%

EIIL 7 7 90.8% 64.5% 95.7% 41.7% 80.3% 64.7%

JTT 7 7 — 62.5%† — 40.6%† 81.3% 64.4%

Group DRO 7 7
(with splits identified by ls) 91.2% 86.1% 87.2% 83.3% 78.7% 72.1%

presence of negation words to make their predictions. These biased predictors cannot generalize to
the testing split, where inputs with negation words are mostly labeled as entailment or neutral.

Convergence and time-efficiency ls requires learning a new Predictor for each outer-loop itera-
tion. While this makes ls more time-consuming than training a regular ERM model, this procedure
guarantees that the Predictor faithfully measures the generalization gap based on the current Splitter.
Figure 6 shows the learning curve of ls. We observe that the generalization gap steadily increases as
we refine the Splitter and the learning procedure usually converges within 50 outer-loop iterations.

4.3 AUTOMATIC DE-BIASING

Once ls has identified the spurious splits, we can apply robust learning algorithms to learn models
that generalize across the splits. Here we consider group distributionally robust optimization (group
DRO) and study three well-established benchmarks: Waterbirds, CelebA and MNLI.

Group DRO Group DRO has shown strong performance when biases are annotated (Sagawa
et al., 2019). For example in CelebA, gender (male, female) constitutes a bias for pre-
dicting blond hair. Group DRO uses the gender annotations to partition the training data
into four groups: {blond hair,male}, {blond hair,female}, {no blond hair,male},
{no blond hair,female}. By minimizing the worst-group loss during training, it regularizes
the impact of the unwanted gender bias. At test time, we report the average accuracy and worst-
group accuracy over a held-out test set.
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Group DRO with supervised bias predictor Recent work consider a more challenging setting
where bias annotations are not provided at train time. CVaR DRO (Levy et al., 2020) up-weights
examples that have the highest training losses. LfF (Nam et al., 2020) and JTT (Liu et al., 2021a)
train a separate de-biased predictor by learning from the mistakes of a biased predictor. EIIL (Crea-
ger et al., 2021) infers the environment information from an ERM predictor and uses group DRO
to promote robustness across the latent environments. However, these methods still access bias an-
notations on the validation data for model selection. With thousands of validation examples (1199
for Waterbirds, 19867 for CelebA, 82462 for MNLI), a simple baseline was overlooked by the com-
munity: learning a bias predictor over the validation data (where bias annotations are available) and
using the predicted bias attributes on the training data to define groups for group DRO.

Group DRO with splits identified by ls We consider the general setting where biases are not
known during both training and validation. To obtain a robust model, we take the splits identified
by ls (Section 4.2) and use them to define groups for group DRO. For example, we have four
groups in CelebA: {blond hair, z = 0}, {blond hair, z = 1}, {no blond hair, z = 0},
{no blond hair, z = 1}. For model selection, we apply the learned Splitter to split the validation
data and measure the worst-group accuracy.

Results Table 1 presents our results on de-biasing. We first see that when the bias annotations are
available in the validation data, the missing baseline Group DRO (with supervised bias predictor)
outperforms all previous de-biasing methods (4.8% on average). This result is not surprising given
the fact that the bias attribute predictor, trained on the validation data, is able to achieve an accu-
racy of 94.8% in Waterbirds (predicting the spurious background), 97.7% in CelebA (predicting the
spurious gender attribute) and 99.9% in MNLI (predicting the presence of negation words).

When bias annotations are not provided for validation, previous de-biasing methods (tuned based
on the average validation performance) fail to improve over the ERM baseline, confirming the find-
ings of Liu et al. (2021a). On the other hand, applying group DRO with splits identified by ls
consistently achieves the best worst-group accuracy, outperforming previous methods by 23.4% on
average. While we no longer have access to the bias annotations for model selection, the worst-group
performance defined by ls can be used as a surrogate (see Appendix C for details).

5 DISCUSSION

Section 4 shows that ls identifies non-generalizable splits that correlate with human-identified bi-
ases. However, we must keep in mind that bias is a human-defined notion. Given the set of input-
label pairs, ls provides a tool for understanding potential biases, not a fairness guarantee. If the
support of the given dataset doesn’t cover the minority groups, ls will fail. For example, consider
a dataset with only samoyeds in grass and polar bears in snow (no samoyeds in snow or polar bears
in grass). ls will not be able to detect the background bias in this case.

We also note that poor generalization can result from label noise. Since the Splitter makes its de-
cision based on the input-label pair, ls can achieve high generalization gap by allocating all clean
examples to the training split and all mislabeled examples to the testing split. Here we can think of
ls as a label noise detector (see Appendix D for more analysis). Blindly maximizing the worst-split
performance in this situation will enforce the model to memorize the noise.

Another limitation is running time. Compared to empirical risk minimization, ls needs to perform
second-order reasoning, and this introduces extra time cost (see Appendix C for more discussion).
Finally, in real-world applications, biases can also come from many independent sources (e.g., gen-
der and race). Identifying multiple diverse splits will be an interesting future work.

6 CONCLUSION

We present Learning to Split (ls), an algorithm that learns to split the data so that predictors trained
on the training split cannot generalize to the testing split. Our algorithm only requires access to the
set of input-label pairs and is applicable to general datasets. Experiments across multiple modalities
confirm that ls identifies challenging splits that correlate with human-identified biases. Compared
to previous state-of-the-art, learning with ls-identified splits significantly improves robustness.
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