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Abstract

Topic models have evolved from conventional Bayesian probabilistic models to recent Neural
Topic Models (NTMs). Although NTMs have shown promising performance when trained
and tested on a specific corpus, their generalization ability across corpora has yet to be
studied. In practice, we often expect that an NTM trained on a source corpus can still
produce quality topical representation (i.e., latent distribution over topics) for the docu-
ment from different target corpora to a certain degree. In this work, we aim to improve
NTMs further so that their representation power for documents generalizes reliably across
corpora and tasks. To do so, we propose to enhance NTMs by narrowing the semantic
distance between similar documents, with the underlying assumption that documents from
different corpora may share similar semantics. Specifically, we obtain a similar document
for each training document by text data augmentation. Then, we optimize NTMs further
by minimizing the semantic distance between each pair, measured by the Topical Optimal
Transport (TopicalOT) distance, which computes the optimal transport distance between
their topical representations. Our framework can be readily applied to most NTMs as a plug-
and-play module. Extensive experiments show that our framework significantly improves
the generalization ability regarding neural topical representation across corpora.

1 Introduction

Topic modeling is a powerful technique for discovering semantic structures of text corpora in an unsupervised
manner. It brings success to various applications, such as information retrieval (Blei & Jordan, 2003),
marketing analysis (Reisenbichler & Reutterer, 2019), social media analysis (Laureate et al., 2023) and
bioinformatics (Liu et al., 2016). Conventional topic models such as Latent Dirichlet allocation (LDA) (Blei
et al., 2003) are Bayesian probabilistic models that assume generative stories of the data. With the increasing
scale of data and the development of modern deep learning techniques, the union of deep learning and topic
modeling, namely the Neural Topic Model (NTM) (Zhao et al., 2020), is becoming a popular technique for
text analytics.

Given a collection of documents, a topic model learns a set of latent topics, each describing an interpretable
semantic concept. A topic model is usually used in two ways: Using the topics to interpret the content of a
corpus and using the topic distribution of a document as the semantic representation (i.e., topical represen-
tation). For the latter, the learned topical representations by topic models have shown good performance
in downstream applications such as document classification (Nguyen & Luu, 2021), clustering (Zhao et al.,
2020), and retrieval (Larochelle & Lauly, 2012). In practice, it is important that a trained model yields good
representations for new documents. Ideally, these new documents are i.i.d. samples from the same distribu-
tion of the training documents (e.g., from the same corpus). However, this assumption is usually too strong
for real-world applications, where new documents may not share the same data distribution with the training
data (e.g., from different corpora). In this work, given an NTM trained on a source corpus, we are interested
in how well its power of learning neural topical representation of documents generalizes to an unseen corpus
without retraining. More importantly, we aim to propose a model-agnostic training scheme that can improve
the generalization power of an arbitrary NTM. Although many methods have been proposed for generalizing
deep neural networks to unseen domains (Wang et al., 2022; Zhou et al., 2022), most of them are designed
for image data and cannot be applied to topic models. This is potentially because that topic models are
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unsupervised methods whose latent representations (i.e., topics) encode specific semantic meanings and the
evaluation of a model’s generalization power is quite different from that of computer vision. Therefore, we
believe that the problem studied in this work has not been carefully investigated in the literature.

Our idea is straightforward: If an NTM generalizes, it shall yield similar topical representations for documents
with similar content. Based on this assumption, we further enhance NTMs by minimizing the distance
between similar documents, which are created by text data augmentation (Wei & Zou, 2019; Shorten et al.,
2021; Feng et al., 2021; Bayer et al., 2022). Specifically, a document can be encoded as a latent distribution z
over topics by NTMs. To make the model capable of producing quality z for unseen documents, we encourage
the model to learn similar z for similar documents, which can be generated by document augmentations
(Shorten et al., 2021; Bayer et al., 2022) such as adding, dropping and replacing words or sentences in the
documents. To bring the topical representations of similar documents close together, we need to measure the
distance between topical representations. This is done by a topical optimal transport distance that computes
the distance between documents’ topic distribution z. It naturally incorporates semantic information from
topics and words into the distance computation between documents. Finally, with the optimal transport
distance between the document and its augmentation, we propose to minimize this distance as a regularization
term for training NTMs for better generalization. Our generalization regularization (Greg) term can be easily
plugged into the training procedure of most NTMs. Our main contributions are summarized as followings:

• We are the first study of improving NTMs’ generalization capability regarding document represen-
tation, which is expected in practice, especially for downstream tasks based on document represen-
tation.

• We introduce a universal regularization term for NTMs by applying text data augmentation and
optimal transport, which brings consistent improvements over the generalization ability of most
NTMs.

• We examine the generalization capability of NTMs trained on a source corpus by testing their topical
representations on a different target corpus, which is a new setup for topic model evaluation.

2 Background

This section introduces the background of neural topic models and optimal transport, along with the no-
tations used in this paper, which will facilitate the understanding of our method discussed in section 3. A
summary of common math notations used in this paper is provided in Appendix A.

2.1 Neural Topic Models

Given a document collection, a topic model aims to learn the latent topics and the topical representation
of documents. Specifically, a document in a text corpus D can be represented as a Bag-Of-Words (BOW)
vector x ∈ NV , where V denotes the vocabulary size (i.e., the number of unique words in the corpus). A
topic model learns a set of K topics T := {t1, ..., tK} of the corpus, each tk ∈ ∆V is a distribution over
the V vocabulary words. The model also learns a distribution over the K topics z ∈ ∆K for document x
by modeling p(z|x), where z can be viewed as the topical representation of document x. To train a topic
model, one usually needs to “reconstruct” the BOW vector by modeling p(x|z).

Most conventional topic models such as LDA (Blei et al., 2003) are Bayesian probabilistic models, where
p(x|z) is built with probabilistic graphical models and inferred by a dedicated inference process. Alterna-
tively, Neural Topic Models (NTMs) (Zhao et al., 2021) have been recently proposed, which use deep neural
networks to model p(z|x) and p(x|z). Although there have been various frameworks for NTMs, models
based on Variational Auto-Encoders (VAEs) (Kingma & Welling, 2013) and Amortized Variational Inference
(AVI) (Rezende et al., 2014) are the most popular ones.

For VAE-NTMs, pϕ(x|z) is modeled by a decoder network ϕ: x′ := ϕ(z); p(z|x) is approximated by the
variational distribution qθ(z|x) which is modeled by an encoder network θ: z := θ(x). The learning objective
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of VAE-NTMs is maximizing the Evidence Lower Bound (ELBO):

max
θ,ϕ

(Eqθ(z|x)[log pϕ(x|z)] − KL[qθ(z|x) ∥ p(z)]), (1)

where the first term is the conditional log-likelihood, and the second is the Kullback–Leibler (KL) divergence
between the variational distribution of z and its prior distribution p(z). By using one linear layer for the
decoder in NTMs, one can obtain the topic over word distributions by normalizing the columns of the
decoder’s weight W ∈ RV ×K . Note that although VAE-NTMs are of the most interest in this paper, our
proposed method is not specifically designed for them, it can be applied to other NTM frameworks as well.

2.2 Optimal Transport

Optimal Transport (OT) has been widely used in machine learning for its capability of comparing probability
distributions (Peyré et al., 2019). Here, we focus on the case of OT between discrete distributions. Let
µ(X, a) :=

∑N
i=1 aiδxi

and µ(Y , b) :=
∑M

j=1 bjδyj
, where X := {x1, · · · , xN } and Y := {y1, · · · , yM }

denote the supports of the two distributions, respectively; a ∈ ∆N and b ∈ ∆M are probability vectors in
∆N and ∆M , respectively. The OT distance between µ(X, a) and µ(Y , b) can be defined as:

DM (µ(X, a), µ(Y , b)) := inf
P ∈U(a,b)

⟨P , M⟩, (2)

where ⟨·, ·⟩ denotes the Frobenius dot-product; M ∈ RN×M
≥0 is the cost matrix of the transport which defines

the pairwise cost between the supports; P ∈ RN×M
>0 is the transport matrix; U(a, b) denotes the transport

polytope of a and b, which is the polyhedral set of N × M matrices:

U(a, b) :=
{

P ∈ RN×M
>0 |P 1M = a, P T 1N = b

}
, (3)

where 1M and 1N are the M and N -dimensional column vector of ones, respectively. The OT distance
can be calculated by finding the optimal transport plan P ∗, for which various OT solvers (Flamary et al.,
2021) have been proposed. The direct optimization of Eq. (2) is computationally expensive, Cuturi (2013)
introduced the entropy-regularized OT distance, known as the Sinkhorn distance, which is more efficient for
large-scale problems. It can be defined as:

DM ,λ(µ(X, a), µ(Y , b)) := inf
P ∈Uλ(a,b)

⟨P , M⟩, (4)

where Uλ(a, b) defines the transport plan with the constraint that: h(P ) ≥ h(a) + h(b) − λ, where h(·)
denotes the entropy function and λ ∈ [0, ∞] is the hyperparameter.

3 Method

3.1 Problem Setting

In this paper, given an NTM trained on a source corpus DS , we are interested in how to train a neural
topic model on DS so that it can generate good topical representations not only on DS but also on unseen
corpora without retraining on them. We note that an NTM with a standard training scheme usually has
some intrinsic generalization power to new corpora, as documents from different domains may share similar
semantics. However, we argue that such intrinsic generalization power is not enough to generate quality
topical representations for unseen documents. In this work, we aim to study and improve such intrinsic
power of NTMs.

3.2 Overview of the Proposed Method

We enhance NTMs’ generalization by assuming that a document’s topical representation should be close to
the topical representations of its augmentations. Specifically, let xs be the BOW vector of the document
from the source corpus. Suppose a stochastic function F can produce a random augmentation xaug that
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Figure 1: Neural Topic Model (NTM) with Generalization Regularization (Greg). The BOW vectors of a
document and its augmentation are encoded as the topical representations, respectively; Besides common
VAE-NTMs that aim to reconstruct the input (“Rec Loss”) and match the posterior distribution to the prior
(“KL Loss”), we encourage the model to produce a similar z for the original document and its augmentation;
The distance between z is measured by TopicalOT as our “Greg Loss”, which is guided by the document
cost matrix whose entries specify the OT cost of moving between topics. Our framework can be readily
applied to most NTMs as a plug-and-play module. (We draw two encoders here for tidy illustration; they
are identical.)

is semantically similar to xs: xaug := F(xs). As both xs and xaug share similar semantics, their topical
representations zs and zaug should stay close in the learned representation space. To achieve this, we
introduce a new semantics-driven regularization term to the existing training objective of an NTM, which
additionally minimizes the distance between zs and zaug with respect to the encoder parameters θ:

min
θ

D(zs, zaug). (5)

Straightforward choices of D can be the Euclidean, Cosine, or Hellinger distances, to name a few. How-
ever, these distances cannot sufficiently capture the semantic distance between documents in terms of their
topic distributions. To address this issue, we propose to use a topical optimal transport distance between
documents, inspired by the Hierarchical OT (HOT) distance from Yurochkin et al. (2019). We refer to
it as TopicalOT throughout our paper for clarity within our context. Specifically, we are given the word
embedding matrix E ∈ RV ×L from pre-trained models such as Word2Vec (Mikolov et al., 2013), GloVe
(Pennington et al., 2014), BERT (Devlin et al., 2018) and etc., where V is the vocabulary size and L is the
embedding dimension. Each word embedding is denoted by ev ∈ RL, where v ∈ [1, . . . , V ] denotes the v-th
word in the vocabulary. Let T := {t1, ..., tK} ⊂ ∆V be the learned topics of the corpus, each of which is a
distribution over words. Therefore, each topic tk can be viewed as a discrete distribution whose supports
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are the word embedding: µ(E, tk). Then, the OT distance between topic tk1 and tk2 can be computed by:

WMD(tk1 , tk2) := DMt(µ(E, tk1), µ(E, tk2)),
where M t

v1,v2
:= 1 − cos(ev1 , ev2),

(6)

where DMt(·, ·) denotes the OT distance in Eq. (2); M t ∈ RV ×V
≥0 is the topic cost matrix and cos(·, ·) denotes

the Cosine similarity; k1, k2 ∈ [1, ..., K] are indices of topics and v1, v2 ∈ [1, ..., V ] are indices of vocabulary
words. Eq. (6) can be regarded as the Word Mover’s Distance (WMD) (Kusner et al., 2015), measuring the
topic distance instead of the document distance.

Similarly, as the document’s topical representation z can be viewed as a discrete distribution whose supports
are the topics, the OT Distance between documents di and dj is computed by:

TopicalOT(di, dj) := DMd(µ(T , zi), µ(T , zj))
where Md

k1,k2
:= WMD(tk1 , tk2),

(7)

where Md ∈ RK×K
≥0 is the document cost matrix whose entries indicate the OT distance between topics as

in Eq. (6).

As for topics, we use the decoder weights: W ∈ RV ×K as the representation of topics, like other NTMs. Since
OT measures the distance between distributions, we normalize each topic as the topic over word distribution
by the softmax function:

tk := softmax(W T
k,:), (8)

where T denotes the matrix transpose operation. Then, we can construct Md by computing the OT distance
between topics as Eq. (6). Putting all together, we have:

min
θ,W

DMd(µ(T , zs), µ(T , zaug)), (9a)

where T := {t1, ..., tK}, z := θ(x),
Md

k1,k2
:= DMt(µ(E, tk1), µ(E, tk2)), (9b)

M t
v1,v2

:= 1 − cos (ev1 , ev2). (9c)

Intuitively, we are encouraging the model to produce similar topical representations for documents with
similar semantics, where the semantic similarity between topical representations is captured by a two-level OT
distance. At the document level, TopicalOT compute the OT distance between two topical representations of
documents, where the cost matrix is defined by the semantic distances between topics. At the topic level, the
distance between two topics is again measured by OT, where the transport cost is determined by distances
between word embeddings. The whole computation injects rich semantic information from both external
(i.e., word embeddings from the pre-trained model) and internal (i.e., the topic model itself) sources, thus
better capturing the semantic similarity between documents.

3.3 Efficiently Computing Topical OT

Directly solving the problem in Eq. (9) during training is computationally expensive for two reasons: (i) To
obtain Md in Eq. (9b), we need to compute the OT distance between K × (K − 1)/2 topic pairs, each of
them has a problem space of V × V . This will be expensive since a corpus may have a large vocabulary
size; (ii) NTMs are usually trained on a large text corpus in batches of documents X := {xi}B

i=1 ∈ NB×V

where B denotes the batch size, so we need to compute between Zs and Zaug where Z := {zi}B
i=1 ∈ RB×K .

While the original HOT leverages the algorithm in Bonneel et al. (2011) for the computation of OT, which
can not support the computation between z pairs of Zs and Zaug in parallel, thus causing an enormous
computational cost during training.

To address the first issue, we leverage the fact that a topic’s semantics can be captured by its most important
words. Specifically, when computing Md, we reduce the dimension of each topic tk by considering only the
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top I words that have the largest weights in the topic:

t̃k := fN (fI((tk)), (10)

where tk is the topic before approximation defined in Eq. (8); fI is a function that returns the subset that
contains I elements with the largest weights; fN denotes the function for re-normalizing by dividing by the
sum. Now, we reduce the problem space of solving OT between one topic pair in Eq. (9b) from V ×V to I ×I,
and each estimated topic t̃k’s related vocabulary and word embeddings become V t̃k and E t̃k , respectively.
Since the vocabulary of each topic become different then, the topic cost matrix in Eq. (9c) will vary for
different topic pairs, which is denoted by M t̃k1 ,t̃k2 ∈ RI×I

≥0 for topic t̃k1 and t̃k2 . Now, we rewrite Eq. (9b)
and Eq. (9c) as:

Md
k1,k2

:= D
M

t̃k1 ,t̃k2
(µ(E t̃k1 , t̃k1), µ(E t̃k2 , t̃k2)), (11a)

where M
t̃k1 ,t̃k2
v1,v2 := 1 − cos (ev1 , ev2). (11b)

So far, we reduce the size of topic cost matrix to I × I (i.e., v1, v2 ∈ [1, ..., I]). We approximate this way
because only a small subset of most important words is helpful for the understanding of a topic, similar to
the consideration when evaluating topic coherence (Newman et al., 2010; Lau et al., 2014).

To address the second issue, we replace the OT distance between z with the Sinkhorn distance defined in
Eq. (4), and leverage the Sinkhorn algorithm (Cuturi, 2013) for its efficiency and parallelization. As for the
distance between topics, we keep it as OT distance because each topic does not share the same vocabulary
set by our approximation approach, which results in different cost matrices for each topic pair. Although it
has to be computed pairwise for topic pairs, it is still feasible since the number of topics K is usually small in
the settings of NTMs. Putting all together, we have the following as the final form for efficiently computing
TopicalOT during training:

min
θ,W

DMd,λ(µ(T̃ , Zs), µ(T̃ , Zaug)), (12a)

where T̃ := {t̃1, ..., t̃K}, Z := θ(X),

Md
k1,k2

:= D
M

t̃k1 ,t̃k2
(µ(E t̃k1 , t̃k1), µ(E t̃k2 , t̃k2)), (12b)

M
t̃k1 ,t̃k2
v1,v2 := 1 − cos (ev1 , ev2). (12c)

Compared to the original HOT distance, which only serves as a distance measure between documents, our
approximation by TopicalOT supports the computation of distances between batches of document pairs in
parallel. Additionally, it is optimizable, allowing for easy integration during model training.

3.4 Document Augmentation (DA)

As for the function F(·) that generates a random augmentation xaug of the original document xs, our
framework is agnostic to the text augmentation approach employed and is not limited to those discussed
in Wei & Zou (2019); Shorten et al. (2021); Feng et al. (2021); Bayer et al. (2022). As summarized in
Bayer et al. (2022), document augmentation can occur at the character, word, phrase, or document level.
Since common NTMs are trained on BOWs, we focus on word-level augmentation, which can be efficiently
integrated during training. Different word-level (Ma, 2019) document augmentations are investigated and
their descriptions are summarized in Table 1. Their effect to our generalization framework are studied in
Appendix D.3. As a general form, here we write zaug is obtained by:

zaug := softmax(θ(F(xs, β, Ω))), (13)

where β is the augmentation strength that determines the number of words to be varied: n = ceil(β×l) where
l is the document length and ceil(·) rounds up the given number; Ω denotes other information needed for
the augmentation, such as the number of top words for replacement, and the pre-trained word embeddings
E to provide similarity between words.
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Table 1: Word-level document augmentations

Approach Description
Random Drop Randomly sample n words from the document and drop;

Random Insertion Randomly sample n words from the vocabulary and add to the document;
Random to Similar Randomly replace n words of the document with one of their top similar words within the

vocabulary;
Highest to Similar Replace n words with the highest Term Frequency–Inverse Document Frequency (TF-IDF)

weight with one of their top similar words within the vocabulary;
Lowest to Similar Replace n words with the lowest TF-IDF weight with one of their top similar words within

the vocabulary;
Random to Dissimilar Randomly replace n words of the document with one of their top dissimilar words within

the vocabulary;
Highest to Dissimilar Replace n words with the highest TF-IDF weight with one of their top dissimilar words

within the vocabulary;
Lowest to Dissimilar Replace n words with the lowest TF-IDF weight with one of their top dissimilar words within

the vocabulary;

3.5 Integrating Greg to the Training of Existing NTMs

The integration of Greg with existing NTMs is illustrated in Figure 1, the algorithm of Greg is provided in
Appendix B. With the primary goal of NTMs that aims to reconstruct the input documents and match the
posterior to the prior distribution, we propose the following joint loss:

min
θ,ϕ

(γ · Eqθ(zs|x)[DMd,λ(µ(T̃ , zs), µ(T̃ , zaug))] + LNTM), (14)

where LNTM is the original training loss of an NTM, which can be ELBO in Eq. (1) or other losses; The
first term is the proposed Greg loss, where zs := softmax(θ(xs)); zaug is obtained by Eq. (13); Md is
parameterized by ϕ1 and can be obtained by solving Eq. (12b) and Eq. (12c); γ is the hyperparameter
that determines the strength of the regularization; λ is the hyperparameter for the Sinkhorn distance. The
training algorithm of our generalization regularization (Greg) is summarized in Algorithm 1. Notably, both
the Sinkhorn distance and OT distance support auto differentiation in deep learning frameworks such as
PyTorch (Patrini et al., 2020; Bonneel et al., 2011), thus the loss in Eq. (12) is differentiable in terms of θ
and ϕ.

4 Related Work

4.1 Neural Topic Models

For a comprehensive review of NTMs, we refer the readers to Zhao et al. (2021). Here, we mainly focus on
models based on VAE (Kingma & Welling, 2013) and AVI (Rezende et al., 2014). Early works of NTMs
focus on studying the prior distributions for the latent variables, such as Gaussian (Miao et al., 2017) and
various approximations of the Dirichlet prior (Srivastava & Sutton, 2017; Zhang et al., 2018; Burkhardt
& Kramer, 2019) for its difficulty in reparameterization (Tian et al., 2020). Recent NTMs mainly leverage
external information such as complementary metadata (Card et al., 2017) and contextual embeddings (Dieng
et al., 2020; Bianchi et al., 2020a;b; Xu et al., 2022). In this work, we are interested in generalizing NTMs
instead of proposing a new NTM. We believe that our method is general to improve the generalization of
most NTMs not limited to VAE-NTMs.

4.2 Topic Models and Optimal Transport

Recently, a few works have built the connection between topic modeling and OT, most focusing on developing
new OT frameworks for topic modeling, such as non-neural topic model (Huynh et al., 2020) and NTMs

1Precisely, Md is parameterized by W which is the weight of the linear layer of ϕ.
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(Zhao et al., 2020; Nan et al., 2019; Zhang & Lauw, 2023). Our method is not an OT framework for NTMs
but a general regularization term to improve the generalization of NTMs, which is also compatible with
NTMs based on the OT frameworks.

4.3 Topic Model Generalization

Model generalization is a popular topic in machine learning. However, the generalization of topic models,
especially NTMs, has not been comprehensively studied. (i) Most existing works focus on generalizing topic
models to multiple domains with access to the full or partial data of the new domains for retraining/fine-
tuning, such as the models on continual lifelong learning (Chen & Liu, 2014; Chen, 2015; Blum & Haghtalab,
2016; Chen et al., 2019; Gupta et al., 2020; Qin et al., 2021; Zhang et al., 2022; Lei et al., 2023) and few-
shot learning (Iwata, 2021; Duan et al., 2022; Xu et al., 2024). While our approach needs no access to the
data in the new domains nor retraining of the model. (ii) Some approaches focus on the generalization of
topics across different languages under the zero-shot or few-short setting (Bianchi et al., 2020b; Chang &
Hwang, 2021; Grootendorst, 2022). While ours focuses on the generalization of topical representation of
unseen documents. (iii) Recent Large Language Model (LLM) based topic models (Wang et al., 2023; Pham
et al., 2023; Chang et al., 2024) extract or refine topics by prompting, which inherits the generalization
power of LLMs. Their generalization capability originates from numerous training data, supervised fine-
tuning, etc., of LLMs, which is different from our setting as we only train the NTM on the source domain.
Moreover, they primarily concentrate on topic extraction and allocate less emphasis to representing the
documents themselves. (iv) In terms of domain generalization (Wang et al., 2022; Zhou et al., 2022),
extensive works exist for computer vision tasks, including image classification (Yue et al., 2019; Liu et al.,
2021), semantic segmentation (Gong et al., 2019; Li et al., 2021) and action recognition (Li et al., 2017;
2019); as well as some natural language processing tasks, such as sentiment classification (Balaji et al.,
2018; Wang et al., 2020b) and semantic parsing (Wang et al., 2020a). To the best of our knowledge, there
is no universal module or regularizer known to be applicable to topic models for domain generalization,
probably due to topic models’ unsupervised nature and the lack of comprehensive evaluation. Ours is the
first specialized for NTMs’ generalization. (v) Regarding the learning strategy, our work is related to the
contrastive learning framework (Chen et al., 2020a), but we focus on only the positive pairs and leverage
semantic distance between documents. As for the work that most related to ours, the Contrastive Neural
Topic Model (CLNTM) proposed by Nguyen & Luu (2021) employs contrastive distance (Chen et al., 2020b)
to regularize the topical representation of documents. However, there are key differences between CLNTM
and our model. First, CLNTM does not emphasize the generalization of NTMs. Second, it measures the
distance between document representations using Cosine distance, whereas our model utilizes TopicalOT,
which integrates semantic information from both topics and words. Beyond the distinctions noted above, we
anticipate that our approach will serve as a general regularization method to enhance other NTMs.

5 Experiments

5.1 Experimental Settings

5.1.1 Datasets

We conduct our experiments on five widely-used datasets: 20 Newsgroup (20News) (Lang, 1995), R82, Web
Snippets (Webs) (Phan et al., 2008), Tag My News (TMN) (Vitale et al., 2012) and DBpedia (Zhang
et al., 2015). We pre-process the documents as BOW vectors by the following steps: We clean the documents
by removing special characters and stop words, followed by tokenization. Then we build the vocabulary by
considering the words with document frequency greater than five and less than 80% of the total documents.
As we use word embeddings of GloVe (Pennington et al., 2014) pre-trained on Wikipedia3, we filter the
vocabulary words by keeping only the words that appear in the vocabulary set of GloVe. Finally, we convert
documents to BOW vectors based on the final vocabulary set. The statistics of the pre-processed datasets

2https://www.kaggle.com/datasets/weipengfei/ohr8r52
3https://nlp.stanford.edu/projects/glove/
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are summarized in Table C1. These datasets are further randomly split as training and testing sets by 8:2
for our experiments.

5.1.2 Evaluation Protocol

Topical Representation Quality We focus on the evaluation4 of the quality of documents’ topical
representations, which is done by downstream tasks where the topical representations are used as input
features for document classification and clustering: (i) Document Classification: We use the trained topic
model to infer the topic distributions of the training and testing documents as their topical representations.
Then we train a random forest classifier using the training documents’ topical representation and evaluate
the Classification Accuracy (CA) on testing documents. The random forest classifier consists of ten decision
trees with a maximum depth of 8, which has the same setting as the previous work in Nguyen & Luu (2021).
(ii) Document Clustering: We evaluate the clustering performance of test documents’ topical representation
based on the widely-used metrics, Purity and Normalized Mutual Information (NMI). Following Nguyen
et al. (2015), we assign each test document to the cluster corresponding to its highest-weighted topic. Then,
we compute Purity and NMI (denoted by Top-Purity (TP) and Top-NMI (TN), respectively) based on the
cluster assignments of the documents and their true labels.

Topical Representation Generalization To evaluate the generalization of topic representations, we
train a model on the source corpus and test on a target corpus. We explore two configurations of the target
corpus: (i) from a different domain of the source corpus; (ii) from the same domain of the source corpus but
with noise. When the targets are different text corpora, they may not share the same vocabulary sets, as
different pre-processing may result in various subsets of the language’s vocabulary for specific text corpus.
This makes NTM generalization harder as an NTM can not accept input documents with a vocabulary set
different from the training vocabulary. To address this issue, we unite the vocabulary set of all corpora for
BOW representation during the training, allowing NTMs to accept input documents from different corpora
(with varying vocabulary sets). When the target is the noisy source corpus, the noisy versions are created by
randomly sampled compositions of document augmentations described in Table 1, where the augmentation
strength is set as 0.75 (e.g., changing 75% of words in the original document). Notably, for all source-to-
target tasks, the models are only trained on the source corpus with no access to the documents of the target
corpus.

5.1.3 Backbones and Settings

Our generalization regularization (Greg) framework can be easily applied to most of the NTMs. Here, we
consider the following popular NTMs as our backbones: (i) Neural Variational Document Model (NVDM)
(Miao et al., 2017), a pioneer NTM that applies Gaussian prior to z. (ii) LDA with Products of Experts
(ProdLDA) (Srivastava & Sutton, 2017), an NTM that replaces the mixture of multinomials in LDA with
the product of experts. (iii) Neural Topic Model with Covariates, Supervision, and Sparsity (SCHOLAR)
(Card et al., 2017), an NTM which applies logistic normal prior and incorporates metadata. (iv) Contrastive
Neural Topic Model (CLNTM) (Nguyen & Luu, 2021), a recent NTM that uses a contrastive learning
framework to regularize the document representation. We follow the default settings for all these models,
except the learning rates are fine-tuned to fit our own datasets. As for Greg, different document augmen-
tations can be used; we use “Highest to Similar” in Table 1 throughout our experiments where the top 20
similar words are considered for replacement. The justification for this choice is described in Section 5.3.1.
As for hyperparameters of Greg, we set γ as 300, β as 0.5 for all experiments; As for the Sinkhorn algorithm
(Cuturi, 2013), we fix λ as 100, the maximum number of iterations as 5,000 and the stop threshold as 0.005;
As for the OT distance, we leverage the function with default settings in the POT package5 (Bonneel et al.,
2011) for the calculation.

4All experiments in this paper are conducted five times with different random seeds. Mean and std values (in percentage)
of metrics are reported.

5https://pythonot.github.io/index.html
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Table 2: One source (20News) to different targets

(%,↑) Method
Target

Webs TMN DBpedia R8

CA

NVDM 39.0±0.8 38.8±0.5 31.2±0.6 73.2±0.6
+ Greg 63.7±0.3 60.2±0.4 55.8±0.4 80.6±0.5
PLDA 25.7±0.5 32.0±0.6 14.9±0.8 59.8±0.7
+ Greg 31.6±0.4 40.0±0.6 19.0±0.4 61.2±1.1

SCHOLAR 56.0±0.7 51.8±0.3 50.9±1.2 78.7±1.5
+ Greg 59.6±1.9 57.8±1.8 53.3±1.3 77.2±0.5
CLNTM 46.5±1.7 43.8±1.1 42.0±1.4 74.9±1.9
+ Greg 54.5±2.2 54.0±1.6 47.8±0.9 76.7±1.3

TP

NVDM 28.6±0.7 32.2±0.4 19.7±0.7 62.1±2.1
+ Greg 35.8±1.5 40.1±1.5 26.3±0.9 63.7±1.8
PLDA 24.7±0.5 26.9±0.2 13.0±0.3 56.4±0.3
+ Greg 25.7±0.8 29.5±0.8 14.8±0.4 57.7±0.8

SCHOLAR 37.0±2.2 38.6±1.6 22.7±0.6 61.2±1.1
+ Greg 41.4±4.0 45.6±4.1 23.1±2.6 61.0±1.2
CLNTM 31.8±2.8 37.0±1.9 20.8±1.5 63.6±2.6
+ Greg 34.3±1.7 41.9±2.5 21.1±1.9 63.6±4.7

TN

NVDM 6.3±0.3 3.8±0.1 9.0±0.5 13.3±1.1
+ Greg 12.7±0.8 9.6±0.8 15.7±0.5 15.5±0.7
PLDA 3.6±0.2 1.6±0.1 4.0±0.2 7.7±0.3
+ Greg 4.3±0.3 2.7±0.4 5.1±0.3 8.4±0.2

SCHOLAR 16.2±0.9 11.3±1.1 15.1±0.8 15.2±0.9
+ Greg 19.5±2.7 19.3±3.2 15.6±2.5 13.7±1.8
CLNTM 10.1±1.7 7.9±1.0 11.3±0.9 15.3±2.4
+ Greg 14.1±1.8 14.6±2.6 12.4±1.5 15.4±4.5

Table 3: Different sources to one target (TMN)

(%,↑) Method
Target (TMN)

20News_T Webs_T DBpedia_T R8_T

CA

NVDM 38.4±0.3 44.4±0.3 39.5±1.8 33.5±0.6
+ Greg 59.6±0.4 63.4±0.6 59.4±0.6 43.3±0.7
PLDA 31.7±0.1 43.1±0.6 37.4±0.6 26.8±0.2
+ Greg 40.7±0.5 48.8±0.8 42.0±0.3 27.3±0.1

SCHOLAR 51.3±0.6 49.3±0.8 56.8±0.7 43.8±0.7
+ Greg 58.5±1.8 63.6±1.0 60.9±1.4 45.9±0.7
CLNTM 44.8±1.3 45.4±1.3 53.8±0.8 42.2±0.8
+ Greg 54.1±2.2 64.1±1.3 60.6±1.5 45.1±0.8

TP

NVDM 32.0±0.3 31.5±0.2 30.8±0.7 29.4±0.7
+ Greg 40.0±0.7 38.9±0.6 38.0±1.4 33.7±1.1
PLDA 27.0±0.2 37.4±0.6 30.6±0.4 26.3±0.0
+ Greg 30.5±0.7 41.7±0.6 32.3±0.6 26.5±0.1

SCHOLAR 37.8±5.3 35.5±3.4 49.2±2.3 29.3±1.2
+ Greg 48.7±1.9 55.8±2.4 53.4±1.3 33.8±1.2
CLNTM 38.2±3.3 33.1±1.1 45.9±2.0 34.1±1.5
+ Greg 42.2±3.9 58.0±1.3 53.9±2.0 34.1±2.5

TN

NVDM 3.5±0.1 3.6±0.1 3.0±0.2 2.3±0.2
+ Greg 9.7±0.4 8.9±0.2 8.1±1.0 4.7±0.3
PLDA 1.5±0.1 6.8±0.4 3.1±0.2 1.1±0.0
+ Greg 3.3±0.2 9.6±0.6 4.5±0.3 1.1±0.0

SCHOLAR 12.8±1.7 12.0±2.1 18.2±1.0 3.4±0.8
+ Greg 20.5±1.4 23.1±2.4 24.3±1.2 7.2±0.8
CLNTM 8.5±2.1 6.6±1.9 17.0±0.9 6.7±0.7
+ Greg 14.4±3.5 24.2±0.5 23.8±1.5 8.1±1.5

5.2 Results

5.2.1 One Source to Different Targets

We set 20News as the source corpus and the other datasets as the target corpora for our experiments. The
quality of the topical representation is measured by CA, TP and TN. The results for K = 50 are illustrated in
Table 2, where the larger value between backbone and backbone with Greg under each setting is highlighted
in boldface. From the results, it can be observed that applying Greg to various models significantly improves
the CA, TP, and TN metrics across different target corpora in most instances. For example, by integrating
NVDM with Greg, we improve CA from 39% to 63.7%, 38.8% to 60.2%, 31.2% to 55.8% and 73.2% to 80.6%
on average for targets Webs, TMN, DBpedia and R8, respectively. Similarly, a large improvement can also
be obtained for TP and TN after applying Greg. Overall, the results show that our approach effectively
generalizes the neural topical representation across corpora in our experiments.

5.2.2 Different Sources to One Target

We fix the target and use different source datasets to further investigate NTM’s generalization ability. We
use TMN as the target, then the rest datasets are set as the sources, respectively. The results for K equals
50 are illustrated in Table 3. Notably, “20News_T” indicates the evaluation is conducted on target corpus
TMN where the model is trained on source corpus 20News. Based on the results, we summarize the following
observations: We significantly improve documents’ topical representation in the target corpus when different
source datasets are used. For example, in terms of CA, by integrating Greg with NVDM, the performance
in the target TMN is increased from 38.4% to 59.6%, 44.4% to 63.4%, 39.5% to 59.4% and 33.5% to 43.3%
when 20News, Webs, DBpedia and R8 are used as the source, respectively. Similar observations can be made
when setting a different target corpus such as R8, with the results illustrated in Appendix D.1.

5.2.3 Target as Noisy Corpus

We challenge the models with noisy datasets as the target, where the model is trained on original source
datasets but evaluated on their noisy versions (e.g., Dataset_N). The experimental results on the noisy
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Table 4: Target as noisy corpus

(%,↑) Method 20News_N Webs_N TMN_N DBpedia_N R8_N

CA

NVDM 25.8±0.2 49.7±0.9 51.3±0.5 58.5±1.0 80.3±0.4
+ Greg 28.0±0.4 60.1±0.8 57.5±0.9 66.1±0.8 83.5±1.0
PLDA 23.1±0.6 52.2±0.9 52.1±0.6 55.3±2.1 70.6±0.4
+ Greg 25.3±0.6 55.4±0.4 54.1±0.7 58.2±1.1 73.0±0.9

SCHOLAR 43.2±0.7 73.6±2.9 66.1±0.9 82.7±1.4 87.3±0.9
+ Greg 42.3±2.1 86.0±0.7 77.5±0.3 84.1±1.4 88.4±0.5
CLNTM 39.8±1.3 70.7±1.3 66.1±0.7 70.0±1.6 87.3±0.6
+ Greg 39.5±1.8 87.1±0.6 77.2±0.7 82.2±1.0 87.7±0.8

TP

NVDM 14.4±0.4 30.4±0.5 33.1±0.8 24.7±1.2 66.3±1.1
+ Greg 14.7±0.5 33.0±0.8 35.7±1.0 26.6±1.3 66.8±1.3
PLDA 21.6±0.5 50.3±0.6 50.8±0.8 58.2±0.6 64.7±0.6
+ Greg 23.3±0.4 53.7±0.4 52.6±0.6 62.0±1.1 66.8±1.0

SCHOLAR 39.5±1.0 46.6±2.7 54.0±1.5 74.2±1.9 83.7±1.2
+ Greg 37.7±1.3 83.1±1.7 76.7±0.9 86.4±0.8 83.0±0.6
CLNTM 37.4±1.1 46.7±2.4 54.6±2.9 59.0±4.0 80.9±1.9
+ Greg 30.2±3.8 84.6±1.2 74.9±1.1 81.7±1.3 80.4±2.1

TN

NVDM 8.8±0.2 7.3±0.1 4.5±0.2 14.1±0.7 16.5±0.6
+ Greg 9.0±0.4 9.1±0.2 6.3±0.4 17.3±0.8 17.3±1.0
PLDA 10.7±0.4 18.3±0.4 14.0±0.1 35.8±0.5 15.1±0.4
+ Greg 12.7±0.4 21.1±0.5 15.4±0.4 40.0±0.7 16.6±0.3

SCHOLAR 31.6±0.9 29.6±3.5 31.7±1.8 69.1±1.4 36.4±1.3
+ Greg 32.0±1.1 53.2±1.4 39.1±0.4 68.5±1.1 37.3±0.8
CLNTM 30.4±1.4 28.8±2.0 33.3±1.9 54.5±3.2 34.3±1.3
+ Greg 26.1±2.3 55.1±1.4 38.4±1.2 64.9±0.9 36.2±1.8

Table 5: Source corpus performance

(%,↑) Method 20News Webs TMN DBpedia R8

CA

NVDM 40.1±0.2 60.1±0.8 61.9±0.8 74.5±0.6 87.6±0.6
+ Greg 41.9±0.4 69.5±0.4 67.1±1.1 79.3±0.5 88.7±0.4
PLDA 35.2±0.8 62.0±1.3 62.7±0.8 69.5±1.1 79.7±0.5
+ Greg 37.7±0.5 65.3±1.1 64.5±1.1 72.1±1.9 81.5±0.6

SCHOLAR 56.3±0.8 81.2±2.2 73.0±0.5 89.1±1.2 91.4±0.4
+ Greg 54.1±2.2 88.1±0.9 82.6±0.5 91.0±1.1 93.3±0.4
CLNTM 55.6±1.0 77.9±2.0 72.6±0.7 76.2±1.3 92.1±0.4
+ Greg 53.0±1.3 91.1±0.7 82.0±0.4 88.8±0.7 92.9±0.3

TP

NVDM 19.7±0.4 32.2±0.7 36.0±0.6 30.0±1.2 70.2±1.6
+ Greg 19.1±0.5 34.4±0.7 38.2±1.1 31.5±1.3 70.3±1.7
PLDA 33.6±0.7 60.5±1.3 62.5±0.9 74.5±1.1 74.7±0.2
+ Greg 35.8±0.5 63.9±0.9 63.8±1.1 77.0±0.7 77.2±0.9

SCHOLAR 54.6±0.8 51.6±3.1 58.5±1.6 80.1±3.0 91.1±0.6
+ Greg 51.0±1.8 85.4±1.7 81.0±0.8 91.5±1.1 88.9±0.9
CLNTM 57.5±1.0 51.2±3.3 59.7±2.5 63.5±4.2 91.1±1.7
+ Greg 44.5±5.0 88.8±0.9 79.7±1.1 88.2±1.4 90.0±1.5

TN

NVDM 14.2±0.4 8.3±0.4 6.5±0.3 20.3±1.1 22.0±0.7
+ Greg 14.0±0.5 10.2±0.3 8.2±0.4 23.3±1.1 21.7±0.7
PLDA 22.3±0.3 27.4±1.0 23.6±0.3 54.2±0.4 24.0±0.4
+ Greg 25.4±0.4 30.7±0.9 25.1±0.6 57.2±0.4 26.4±0.7

SCHOLAR 48.1±0.7 34.2±3.6 37.8±1.2 78.4±1.6 43.2±0.6
+ Greg 46.7±1.7 55.8±1.5 44.5±0.4 75.3±1.3 44.8±1.2
CLNTM 49.1±0.3 34.7±2.5 39.1±1.8 63.1±3.4 43.7±1.4
+ Greg 42.5±3.4 60.7±1.2 43.4±1.1 72.6±0.7 45.3±1.8

Table 6: Effect of DA on Greg

(%,↑) Method
Targets

Webs TMN DBpedia R8

CA

Random to Similar 62.7±0.4 58.3±0.2 56.0±0.7 80.5±0.5
Highest to Similar 63.7±0.3 60.2±0.4 55.8±0.4 80.6±0.5
Lowest to Similar 55.5±0.7 52.8±0.8 49.6±0.8 78.9±0.8
Both to Similar 60.7±1.2 57.3±0.1 52.4±1.5 79.3±0.9

TP

Random to Similar 34.7±1.0 39.6±1.6 25.5±0.9 63.5±1.8
Highest to Similar 35.8±1.5 40.1±1.5 26.3±0.9 63.7±1.8
Lowest to Similar 33.6±0.7 37.4±1.2 23.9±1.1 62.6±1.7
Both to Similar 34.8±1.2 38.6±1.7 25.5±1.2 62.4±2.1

TN

Random to Similar 12.5±1.0 9.1±0.7 15.6±0.6 15.3±1.0
Highest to Similar 12.7±0.8 9.6±0.8 15.7±0.5 15.5±0.7
Lowest to Similar 10.8±0.3 7.4±0.5 13.8±0.5 14.5±1.3
Both to Similar 11.9±0.9 8.4±0.9 15.0±0.9 14.9±0.9

Table 7: Effect of different distances on Greg

(%,↑) Method
Targets

Webs TMN DBpedia R8

CA

Euclidean Distance 41.1±1.1 39.7±0.2 38.0±0.9 69.3±0.6
Cosine Distance 24.1±0.3 26.9±0.2 14.6±0.3 59.5±0.6

Hellinger Distance 38.8±1.0 38.8±0.6 31.3±0.6 73.3±0.9
TopicalOT 63.7±0.3 60.2±0.4 55.8±0.4 80.6±0.5

TP

Euclidean Distance 30.0±0.4 32.1±0.6 21.0±0.5 61.5±1.3
Cosine Distance 23.4±0.1 25.8±0.1 11.6±0.4 55.3±0.6

Hellinger Distance 28.8±0.4 32.3±0.5 19.6±0.2 62.0±2.0
TopicalOT 35.8±1.5 40.1±1.5 26.3±0.9 63.7±1.8

TN

Euclidean Distance 6.5±0.2 3.8±0.2 9.9±0.5 12.4±1.1
Cosine Distance 4.3±0.1 2.2±0.2 5.4±0.3 10.0±0.4

Hellinger Distance 6.5±0.3 3.7±0.2 9.0±0.4 12.9±1.1
TopicalOT 12.7±0.8 9.6±0.8 15.7±0.5 15.5±0.7

targets at K = 50 are illustrated in Table 4. From this set of experiments, we can observe that (i) Greg
continues showing its benefits in generalizing neural topical representation when the target domain contains
noise in most settings, demonstrating improved robustness at the same time. (ii) It is noticeable that
Greg causes a performance drop when applied to CLNTM on the 20News dataset. The potential reason is
that CLNTM employs a contrastive learning approach to regularize topical representations alongside Greg,
making it challenging to achieve a balance between the two regularizers during training. A further analysis
of Greg under different settings is provided in Appendix D.2.

5.2.4 Source Corpus Performance

We illustrate the performance on the original corpus when applying Greg to different NTMs in Table 5.
Based on these results, it can be observed that (i) Greg can improve the topical representation quality of the
source documents at the same time for short documents (i.e., Webs, TMN and DBpedia) under most settings.
(ii) For long document corpora like 20News and R8, there are instances where Greg leads to a performance
drop on the source corpus. However, we believe that the advantages of using Greg are substantial, and that
performance can be further improved across specific datasets through adjusted hyperparameters. A further
analysis of Greg under different settings is provided in Appendix D.2.
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5.3 Ablation Study and Hyperparameter Sensitivity

5.3.1 Effect of Positive DA on Greg

Different DAs can be applied for Greg as long as it creates positive (e.g., similar) documents, which shows
the flexibility of our framework. Here, we demonstrate our choice of DA by applying different positive DAs
to Greg. Their resulting topical representation quality of target corpora is illustrated in Table 6, where the
source corpus is 20News, and the backbone is NVDM with K = 50. Based on these results, “Highest to
Similar” obtains the highest quality in almost all the target domains, which shows the best generalization
capability among the DAs investigated. Thus, we apply “Highest to Similar” in Greg throughout our
experiments.

5.3.2 Effect of Distance Metrics on Greg

Here, we demonstrate the effectiveness of TopicalOT in Greg in enhancing NTMs’ generalization power by
changing different distance metrics. We consider other standard distances for the experiments, including
Euclidean, Cosine and Hellinger distances. Their resulting topical representation quality of target corpora is
illustrated in Table 7, where the source corpus is 20News, and the backbone is NVDM with K = 50. Based
on these results, TopicalOT brings a significant improvement to the performance of the target domains and
leaves a large margin compared to other distance metrics. It demonstrates the effectiveness of TopicalOT
within our generalization regularization framework.

Figure 2: Effect of number of topics (i.e., K) to back-
bones and Greg.

5.3.3 Sensitivity to K in Short Document

Setting the number of topics (i.e., K) for topic mod-
els is one of the challenges in short-text topic mod-
eling (Xuan et al., 2016; Qiang et al., 2020). From
the experiments in previous sections, it can be no-
ticed that Greg brings a huge improvement of topi-
cal representation quality for short documents when
applying to SCHOLAR and CLNTM for most set-
tings. Here, we explore how sensitive this improve-
ment is to the settings of K. We plot the results
for two short document corpora, Webs and TMN,
in Figure 2. It can be observed that the topical rep-
resentation quality of both SCHOLAR and CLNTM
drops rapidly as K increases, which indicates that
they are sensitive to K for short documents. By ap-
plying Greg, both SCHOLAR and CLNTM exhibit
improved and stable topical representation quality
across various settings of K. This indicates that
Greg effectively addresses their sensitivity issues.

6 Conclusion

In this work, we propose a new regularization loss that can be integrated into many existing neural topic
models (NTMs) for training on one dataset and generalizing their topical representations to unseen documents
without retraining. Our proposed loss, Greg, encourages NTMs to produce similar latent distributions
for similar documents. The distance between document representations is measured by TopicalOT, which
incorporates semantic information from both topics and words. Extensive experiments demonstrate that our
framework, as a model-agnostic plugin for existing NTMs, significantly improves the generalization ability
of NTMs. In the future, we believe that topic model generalization can be extended to generalizing both
document representations and topics across different languages and modalities.
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A Summary of Math Notations

Table A1: Mathematical notations and descriptions

Category Notation Description

NTM

K, V, I, B Number of topics, vocabulary words, topic top words, batch size;
d, x, xs, xaug Document, BOW vector, BOW of source document and its augmentation;

z, zs, zaug Topical representation, topical representation of source document and its augmentation;
X, Xs, Xaug Batch of BOW vectors, Batch of BOW of source documents and their augmentations;
Z, Zs, Zaug Batch of topical representations, Batch of topical representations of source documents and

their augmentations;
D, DS , DT Text corpus, the source and target corpus;
V, VS , VT Vocabulary, source and target vocabulary;
T , T̃ , tk, t̃k Set of topics, set of estimated topics, topic k, and estimated topic k;

θ, ϕ, W Encoder network, decoder network, and decoder weight;

OT

X, Y Supports of two discrete distributions;
a, b Probability vectors;
∆M M -dimensional probability simplex;

D, DM , DM ,λ General distance, OT distance, Sinkhorn distance;
M , M t, Md General cost matrix, topic cost matrix, document cost matrix;

P , U Transport matrix, transport polytope;

General
E, e, L Word embedding matrix, word embedding vector, embedding dimension;
β, γ, λ Augmentation strength, regularization weight, Sinkhorn hyperparameter;

F , fN , fI Data augmentation function, normalizing function, function return top I elements

B Algorithm

Algorithm 1 Neural Topic Model with Greg
Input: Dataset Ds = {xi}N

i=1, pre-trained word embeddings E, topic number K, regularization weight γ,
augmentation strength β

Output: θ, ϕ
1: Randomly initialize θ and ϕ;
2: while not converged do
3: Sample a batch of data X;
4: Compute Z = softmax(θ(X));
5: Compute Zaug by Eq. (13);
6: Get topics T̃ from ϕ by Eq. (8) and (10);
7: for each topic pairs t̃k1 , t̃k2 do
8: Construct M t̃k1 ,t̃k2 in Eq. (12c);
9: Compute Md

k1,k2
in Eq. (12b);

10: end for
11: Compute the loss defined in Eq. (14);
12: Compute gradients w.r.t θ and ϕ;
13: Update θ and ϕ based on the gradients;
14: end while
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C Datasets Statistics

Table C1: Statistics of the datasets

Dataset # Docs Voc Size Avg. Length # Labels
20News 18846 1997 87 20

R8 7674 5047 56 8
Webs 12337 4523 14 8
TMN 32597 12004 18 7

DBpedia 19993 9830 23 14

D More Results

D.1 Different Sources to One Target (R8)

Table D1: Different sources to one target (R8)

(%,↑) Method
Target (R8)

20News_R Webs_R TMN_R DBpedia_R

CA

NVDM 72.6±0.3 73.8±0.9 78.6±0.6 72.2±0.6
+ Greg 80.8±1.4 80.1±1.0 83.7±0.6 73.8±0.9
PLDA 59.7±0.3 63.5±0.9 74.9±1.2 63.6±0.6
+ Greg 63.4±0.7 64.4±0.8 75.9±0.7 63.9±0.6

SCHOLAR 77.8±1.6 76.8±1.1 76.5±1.5 76.0±0.2
+ Greg 75.2±1.5 77.6±0.7 84.2±0.9 75.1±0.8
CLNTM 74.0±1.6 75.9±1.3 76.6±1.0 73.5±0.6
+ Greg 75.0±1.5 77.5±1.1 81.9±2.3 75.5±0.6

TP

NVDM 61.2±0.5 62.2±1.1 61.0±1.5 61.9±2.0
+ Greg 65.1±2.9 64.8±2.6 64.7±1.5 61.8±2.2
PLDA 56.7±0.4 58.2±0.7 64.5±2.6 61.1±0.7
+ Greg 57.8±1.1 56.7±0.7 68.5±2.3 62.1±0.9

SCHOLAR 61.6±1.5 64.3±0.6 58.8±3.4 64.1±0.6
+ Greg 63.0±2.0 64.4±1.4 70.6±5.3 63.9±2.1
CLNTM 63.0±2.2 65.0±2.1 58.8±0.8 64.8±1.4
+ Greg 62.8±2.1 64.3±1.4 68.9±5.4 62.5±2.3

TN

NVDM 12.9±0.5 13.4±0.8 13.2±0.6 12.6±0.9
+ Greg 17.5±1.5 17.5±2.3 16.9±1.4 13.1±1.1
PLDA 7.8±0.3 10.6±0.9 20.0±1.7 11.8±0.2
+ Greg 8.7±0.4 10.5±0.7 23.2±2.5 12.4±0.7

SCHOLAR 14.7±1.2 20.6±1.9 12.4±2.4 20.2±0.6
+ Greg 16.2±2.2 20.8±1.2 35.4±5.0 18.9±1.2
CLNTM 15.0±1.2 18.8±1.9 13.4±2.0 20.3±1.2
+ Greg 15.0±1.6 19.7±1.7 34.2±4.8 18.0±0.8

Here, we conduct similar experiments to those described in Section 5.2.2, where the target corpus is changed
to R8. The results are illustrated in Table D1. Notably, “20News_R” indicates the evaluation is conducted
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on target corpus R8 where the model is trained on source corpus 20News. Based on the results, we observe
that Greg brings improvements to the topical representation of the target corpus R8 under most settings
when a different source corpus is used.

D.2 Significance Test

Table D2: P-value of paired T-test on target corpus (α = 0.05)

Metric
Target

Webs TMN DBpedia R8
CA 3.66e-12 6.49e-70 4.70e-09 1.25e-25
TP 4.88e-07 1.68e-43 7.35e-05 9.71e-11
TN 1.31e-09 5.95e-55 1.87e-05 1.23e-12

Table D3: P-value of paired T-test on noisy corpus (α = 0.05)

Metric
Noisy Target

Webs TMN DBpedia 20News R8
CA 1.42e-12 3.79e-14 1.21e-10 7.01e-02 2.67e-09
TP 2.98e-07 2.25e-10 9.90e-07 7.45e-01 4.85e-01
TN 1.11e-07 8.03e-10 4.44e-07 6.37e-01 1.30e-04

Table D4: P-value of paired T-test on source corpus (α = 0.05)

Metric
Source

Webs TMN DBpedia 20News R8
CA 2.24e-12 5.12e-14 5.53e-11 3.42e-01 2.96e-16
TP 1.67e-07 1.43e-09 1.23e-06 3.10e-05 5.61e-01
TN 8.88e-08 3.54e-08 3.62e-06 2.23e-02 1.20e-03

We conduct paired t-tests across our previous experimental results to demonstrate Greg’s performance across
different scenarios from a general view. We collect paired differences in performance metrics between the
original model and the model incorporating Greg across various datasets under the following settings: (i)
different target corpora (Table D2), (ii) noisy versions of the source corpora (Table D3), and (iii) the original
source corpora (Table D4). We set the significance level (i.e., α) as 0.05 for all paired t-tests. The P-value
lower than α is highlighted in boldface in tables, indicating a significant difference between the model with
and without Greg. We have the following observations based on the results: (i) From Table D2, the benefit of
Greg that improves the performance of different target corpora is significant for all targets. (ii) From Table
D3, when the target is a noisy corpus, the improvement by Greg is significant for all short corpora (e.g.,
Webs, TMN and DBpedia). For the long-document noisy target such as 20News, Greg shows comparable
performance with the original model. (iii) From Table D4, the improvement to source corpus performance
by Greg is significant for most settings.
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D.3 Effect of DA on Topical Representation

Table D5: Effect of different DA on topical representation

Dataset Method
CD (%, ↓) HD (%, ↓) TopicalOT (%, ↓)

LDA NVDM NVDM + Greg LDA NVDM NVDM + Greg LDA NVDM NVDM + Greg

20News

Random Drop 13.3±0.4 9.8±0.1 7.3±0.1 33.3±0.4 15.8±0.1 13.6±0.1 10.8±0.2 8.9±0.1 3.8±0.1
Random Insertion 14.2±0.4 9.7±0.1 7.0±0.1 38.5±0.4 15.7±0.1 13.2±0.1 13.2±0.2 8.8±0.0 3.6±0.1
Random to Similar 15.8±0.3 11.1±0.1 7.2±0.1 37.6±0.3 16.9±0.1 13.6±0.1 12.5±0.2 9.5±0.0 3.7±0.1
Highest to Similar 17.6±0.5 11.3±0.1 7.1±0.1 38.8±0.4 17.0±0.1 13.4±0.1 12.7±0.3 9.5±0.0 3.7±0.1
Lowest to Similar 17.6±0.1 10.2±0.1 7.4±0.1 39.6±0.3 16.1±0.1 13.6±0.1 14.2±0.2 9.0±0.0 3.8±0.1

Random to Dissimilar 26.3±1.6 20.7±1.1 15.0±0.5 47.7±1.0 23.7±0.7 19.9±0.4 18.4±0.4 13.2±0.4 5.5±0.1
Highest to Dissimilar 32.4±2.0 21.2±1.0 15.0±0.4 51.5±1.1 23.9±0.6 19.9±0.3 20.8±0.5 13.4±0.4 5.5±0.1
Lowest to Dissimilar 20.4±1.1 19.5±1.2 14.7±0.4 44.0±0.9 22.8±0.7 19.6±0.3 16.0±0.4 12.8±0.4 5.4±0.1

Webs

Random Drop 5.9±0.2 10.0±0.1 5.6±0.1 20.2±0.3 16.5±0.0 12.3±0.1 8.7±0.1 8.8±0.2 3.1±0.1
Random Insertion 4.8±0.2 9.4±0.1 4.7±0.1 23.6±0.3 15.8±0.1 11.0±0.1 9.3±0.1 8.4±0.1 2.8±0.1
Random to Similar 5.6±0.4 10.8±0.1 5.0±0.1 21.4±0.5 17.1±0.1 11.4±0.1 8.4±0.2 9.0±0.2 2.9±0.1
Highest to Similar 5.8±0.4 10.3±0.2 4.7±0.1 21.1±0.4 16.7±0.1 11.2±0.1 8.3±0.2 8.9±0.2 2.9±0.1
Lowest to Similar 4.8±0.3 11.0±0.1 5.3±0.1 21.2±0.4 17.2±0.1 11.7±0.1 8.2±0.1 9.1±0.2 3.0±0.1

Random to Dissimilar 8.8±0.3 11.9±0.2 6.4±0.1 29.6±0.4 18.1±0.2 13.0±0.1 12.6±0.2 9.6±0.2 3.3±0.1
Highest to Dissimilar 8.4±0.3 11.3±0.1 6.1±0.1 28.9±0.4 17.7±0.1 12.8±0.1 12.5±0.2 9.4±0.1 3.2±0.1
Lowest to Dissimilar 7.7±0.4 11.9±0.3 6.6±0.2 27.7±0.7 18.0±0.2 13.2±0.2 11.5±0.3 9.6±0.1 3.4±0.1

Setup We study the effect of different DAs on topical representations. As most topic models work with
BOWs, we focus on the word-level DAs described in Table 1. The effect of DAs on topical representation
is measured by the distance between the topical representations of original documents and augmentations.
Specifically, we use the trained model to infer the topical representation of the test documents and their
augmentations; Then different distance metrics are applied to calculate the distance between the topical
representations of a document and its augmentations. The choices of distance metrics include Cosine distance
(CD), Hellinger distance (HD) and TopicalOT. The choice of models here includes LDA, NVDM and NVDM
with Greg; Moreover, we train these models with K = 50 on one long document corpus 20News and one short
document corpus Webs; For the settings of DA, the augmentation strength is set as 0.5. For approaches
based on word similarities, the number of top similar/dissimilar words considered for replacement is 20,
where the Cosine similarity between GloVe word embeddings is applied to provide word similarity.

Result From the results in Table D5, we have the following observations: (i) When more words are
perturbed (e.g., in long documents of 20News), NTMs such as NVDM are more stable (i.e., lower distances
obtained) to DAs than probabilistic topic models such as LDA. While in the case that fewer words are
perturbed, such as in Webs, LDA is more stable than NVDM. (ii) DAs that replace with similar words bring
less effect than those that replace with dissimilar words. (iii) Interestingly, adding noise by random drop or
insertion has a similar effect to replacing with similar words in our settings. These observations are cues of
the intrinsic generalization ability of NTMs, which is further enhanced by Greg in this work.
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D.4 Hyperparameter Sensitivity of Greg

Figure D1: Hyperparameter sensitivity of Greg. The x-axis of the first row is the regularization weight γ;
The x-axis of the second row is the augmentation rate β.

Here, we study the sensitivity to the setting of hyperparameters in Greg, focusing on the regularization
weight γ and augmentation weight β. We attach Greg to NVDM at K = 50 on the “One Source to Different
Targets” tasks as in Section 5.2.1. We vary the regularization weight and augmentation rate, respectively, and
record the performance of different metrics on different target corpora. Again, experiments are conducted
5 times with different random seeds. As shown in Figure D1, whether varying the regularization weight or
the augmentation rate within a wide range, the benefits of Greg to target corpora performance still hold,
and with little influence. It demonstrates Greg is not sensitive to the setting of its hyperparameters, thus
its benefits are general, robust and reliable.
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D.5 Qualitative Analysis of Topics

Table D6: Example topics

Topic Top 10 Words (first rows: PLDA, second rows: PLDA + Greg)

ecosystems habitat endemic tropical natural subtropical forest threatened loss moist ecuador
habitat endemic natural tropical forest subtropical loss moist threatened ecuador

snail snail marine gastropod sea mollusk family specie slug land terrestrial
snail sea gastropod marine mollusk family specie genus land terrestrial

location village mi east county km voivodeship central lie gmina poland
village county district population central mi gmina administrative voivodeship poland

insects moth wingspan family larva feed mm noctuidae tortricidae geometridae arctiidae
moth described arctiidae geometridae noctuidae family snout subfamily beetle genus

religious st church england century mary catholic saint parish paul roman
church st historic catholic parish street saint england mary place

music album released music singer song band record musician songwriter rock
album released music record studio song singer band single debut

river river long flow km mile tributary lake near creek source
river tributary long near mile flow km basin source creek

Although our primary focus is the generalization of document representation, we show examples of the
learned topics to understand what topics are captured after integrating Greg. We choose the learned topics
on DBpedia using the backbone PLDA. We pick the top coherent topics learned by PLDA and find their
alignments in the learned topics of PLDA with Greg to explore the difference. The results are shown in
Table D6. From the “location” topic, we observe that the top words are more coherent and related to the
administrative division after using Greg; Within the “music” topic, Greg can identify words such as “studio”,
which may diversify the range of music-related words.
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