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ABSTRACT

The past few years have produced a series of spectacular advances in the decoding
of speech from brain activity. The engine of these advances has been the acqui-
sition of labelled data, with increasingly large datasets acquired from single sub-
jects. However, participants exhibit individual differences, such as anatomy, and
datasets use varied scanners and task designs. As a result, prior work has strug-
gled to leverage data from multiple subjects, multiple datasets, multiple tasks, and
unlabelled datasets. In turn, the field has not benefited from the rapidly growing
number of open neural data repositories to exploit large-scale data and deep learn-
ing. This gap exists for all neural data, but especially for magnetoencephalog-
raphy (MEG), where the scale of individual datasets has not yet caught up with
other modalities. To address this, we develop a set of neuroscience-inspired self-
supervised objectives, together with a neural architecture, for representation learn-
ing from heterogeneous and unlabelled neural recordings. Experimental results
with MEG show that representations learned with these objectives scale with data,
generalise across subjects, datasets, and tasks, outperform using the raw input rep-
resentation, and even surpass comparable self-supervised approaches. In addition,
we set new benchmarks for two foundational speech decoding tasks. Collectively,
these methods now unlock the potential for training speech decoding models with
orders of magnitude more existing data.

Labelled
MEG

(scarce)

Unlabelled MEG
(abundant)

Figure 1: Leveraging unlabelled data using pretext tasks for speech decoding. We pre-train a
neural network using tasks that generate implicit labels from abundant unlabelled MEG neuroimag-
ing data, permitting learning from large heterogeneous datasets. The tasks apply a randomly selected
neuroscientifically relevant transformation T to the data and the network predicts the transformation.
We then train a linear probe on top of the pre-trained model, which remains frozen, with labelled
data, achieving superior generalisation (cf. raw inputs) owing to the strength of the representation.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

In his Bitter Lesson, Richard Sutton argues that a major conclusion of 70 years of AI research is
that general methods exploiting large-scale computation will outperform model-based approaches
as the availability of compute increases (Sutton, 2019). In line with this, the generality of deep
learning, via statistical learning from ever bigger datasets, has allowed the field to leverage compu-
tation in a way that appears to scale arbitrarily, leading to astounding advances across a diverse set
of domains (Jumper et al., 2021; Caron et al., 2021; OpenAI, 2023; Radford et al., 2023).

In the domain of brain data, and of tasks like speech decoding, the bitter lesson has not yet been fully
assimilated. State-of-the-art brain-computer interfaces (BCIs) have tried to scale up labelled datasets
for individual subjects, using either invasive (Moses et al., 2021; Willett et al., 2023) or non-invasive
brain recordings (Tang et al., 2023), mapping these to transcripts of attempted or imagined speech.
Yet, a number of obstacles to scale remain. With few exceptions at present, e.g. Défossez et al.
(2023), speech decoding models tend not to train on data from more than one subject. Moreover,
they do not combine data from multiple datasets and in general do not utilise unlabelled data, or data
from diverse tasks. Thus the size of training data has been limited to how much can be acquired for a
single subject, and data from other subjects, or from the growing number of public data repositories,
has not been leveraged. There are many reasons for these limitations; individual brains and data
from different neuroimaging scanners differ, for example. But overcoming these limitations, as has
begun to happen in neighbouring sub-fields, such as Jiang et al. (2024), holds the promise of training
models on collective, internet-scale data.

While neuroimaging modalities such as electroencephalography (EEG) are more abundant, MEG
may be a better modality for decoding as it provides a richer signal (Lopes da Silva, 2013; Hall
et al., 2014). Given the scarcity of speech-labelled MEG data and the relative abundance of other
MEG data, self-supervised learning (SSL) appears promising as it is an avenue for domains where
labels are rare or hard to obtain (Balestriero et al., 2023). But the scale of public MEG data, while
large, is still not at the volume of breakthroughs in self-supervised image and natural language pro-
cessing, let alone EEG. Thus, SSL methods for MEG need to be highly data-efficient. Pretext tasks
are one such method in which domain-specific self-supervised tasks are used to pre-train a model on
unlabelled data by generating implicit training labels through transformations of the input in order to
help a downstream task. We develop a set of these tasks, informed by advances in neuroscience, for
learning with unlabelled brain data (Figure 1) and design an architecture for processing continuous
multi-sensor neuroimaging signals which we train using our pretext tasks. In order to scale exist-
ing non-invasive datasets, we provide a unified method that allows us to leverage data from other
experiments that do not have the same labels (by treating them as unlabelled) and that come from
different subjects and neuroimaging scanners. We evaluate the representations learned with our ap-
proach on heard speech datasets acquired with non-invasive MEG, setting the baselines for speech
detection and voicing classification on this data. The results not only demonstrate that scaling with
unlabelled data works in speech decoding, but also shows that these representations can generalise
across datasets, tasks, and even novel subjects for the first time. Our main contributions are:

• A set of domain-specific self-supervised pretext tasks for representation learning that can
scale speech decoding over multiple subjects, multiple studies, and unlabelled data;

• A data-efficient neural architecture for learning these self-supervised objectives and train-
ing downstream speech decoding from brain data; and

• A comprehensive experimental evaluation, using multiple times the volume of data in
prior work, that verifies the above claims and additionally provides evidence for the exis-
tence of scaling laws when pre-training models with unlabelled MEG recordings.

2 RELATED WORK

Prior work in speech decoding has focused almost entirely on supervised learning with decoding
models that typically do not generalise across participants or experiments. This is true both in
recent state-of-the-art invasive studies (Moses et al., 2021; Metzger et al., 2023; Willett et al., 2023;
Chen et al., 2024a) and non-invasive studies (Tang et al., 2023). These prior works have scaled
up the experimental data collected within individual subjects, but are unable to leverage data from
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other subjects and experiments. Focusing on semantic rather than phonetic decoding, the method
developed by Tang et al. (2023) is remarkable for showing an ability to generalise across labelled task
data when listening to speech, imagining speech, or even watching videos. They do not, however,
leverage unlabelled data and are unable to show generalisation between subjects.

Specific studies into the limitations of generalising models between subjects show that while perfor-
mance decreases on average when subjects are pooled, there are exceptions (e.g. Anumanchipalli
et al. (2019) and Makin et al. (2019) in surgical settings and Csaky et al. (2022) non-invasively).
Exploiting audio data in a multi-modal framework, Défossez et al. (2023) show that decoding per-
formance improves for a segment identification task as data from multiple subjects listening to con-
nected speech are aggregated. However, they do not demonstrate the ability to generalise to novel
subjects and must retrain their model for new datasets. Moreover, although they repeat the result
within two MEG and two EEG datasets, Défossez et al. (2023) do not show any improvements for
pooling data across datasets. Their method is also unable to incorporate data without corresponding
audio labels and so they do not combine data from studies with other kinds of labels either; cf. Wang
& Ji (2022); Duan et al. (2023); Wang et al. (2023a). Unfortunately, the first two of these papers in-
cluded a bug in their evaluation code. As such, their methods may perform no better than a baseline
that provides pure noise inputs to the model (Jo et al., 2024).

In general, speech decoding has centred on different kinds of speech: listening, imagining, speak-
ing out loud, and, for paralysed patients, attempting to speak aloud. We focus here on listening
because it is easier to decode than imagined speech (e.g. Martin et al. (2014)). There is also some
evidence of a functional overlap between listening and imagined speech representations in the brain
(Wandelt et al., 2024), though we acknowledge that the question of overlap has been contested
(Langland-Hassan & Vicente, 2018). Prior work has also investigated the two tasks that we focus
on here (Dash et al., 2020; Moses et al., 2021; Gwilliams et al., 2023). The first of these, speech
detection, formed the backbone to Moses et al. (2021), where a speech detection model was trained
and subsequently used to detect isolated words, which were in turn classified and checked against a
language model to generate acceptable sentences. Hamilton et al. (2018) further elaborated on the
neural anatomy underlying speech detection, categorising neural responses in the superior temporal
gyrus (STG) to sustained speech and speech onset. As for the second task, voicing classification,
Gwilliams et al. (2023) used this task as a proxy for phoneme classification, as pooling phonemes
into unvoiced or voiced segments (e.g. /p t k f s/ vs /b d g v z/) improves data efficiency. We note
that voicing classification and speech detection are related tasks as voicing is a subclass of speech.
This makes them foundational for building hierarchical speech decoding pipelines similar to prior
surgical decoding work (Moses et al., 2021; Willett et al., 2023).

In the computer vision literature, there have been a plethora of methods that use self-supervised
pretext tasks for representation learning (Agrawal et al., 2015; Doersch et al., 2015; Noroozi &
Favaro, 2016; Larsson et al., 2016; Zhang et al., 2016; Gidaris et al., 2018). Until now, similar
approaches have not translated to the brain decoding literature with few exceptions (e.g. Cai et al.
(2023)). However, prior work has used other methods to leverage unlabelled brain data (Banville
et al., 2019; Kostas et al., 2021; Le & Shlizerman, 2022; Zhang et al., 2023; Yi et al., 2023; Ye et al.,
2023; Yuan et al., 2024; Chen et al., 2024b). For example, Jiang et al. (2024) succeeded in cross-
dataset and cross-task generalisation, using a transformer with tokenised brain signals and a masked
token prediction objective. Although this work combined unlabelled datasets, their results studied
simpler non-speech tasks with EEG. Wang et al. (2023b) used a similar approach, replacing tokens
with contextualised embeddings of time-frequency input representations. Their impressive speech
detection results were achieved with invasive neural recordings, which are comparatively rare and
thus have much less potential to scale than non-invasive data. Perhaps the closest work to ours in
terms of unlocking scaling with neural data is BIOT (Yang et al., 2023). This is a self-supervised
architecture for encoding bio-signals that is similarly capable of training with different datasets,
labels, and varied numbers of sensors. Like the previous works, the approach tokenises signals for
a transformer architecture, but instead of a masked loss it uses a contrastive pre-training objective.
While theoretically supporting MEG, Yang et al. (2023) evaluate BIOT on simple ECG/EEG tasks
rather than address the comparatively complex challenge of speech decoding with MEG data.
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Figure 2: Architecture overview. Inputs are projected into a shared dimension by the dataset-
conditional layer, then encoded. In pre-training, all weights are trainable except for modules in
light-red, while in fine-tuning, modules with light-blue borders are frozen and modules with light-
red borders are unfrozen. Dashed borders indicate optional components.

3 METHOD

To encode continuous neuroimaging data, we introduce a neural architecture to embed heteroge-
neous brain signals. We leverage this architecture for self-supervised learning from unlabelled MEG
data using a set of pretext tasks designed to generate generalisable brain representations for speech
decoding. With this approach, we hope to replicate similar successes in computer vision (Gidaris
et al., 2018; Chen et al., 2020).

3.1 NETWORK ARCHITECTURE

Our two-stage neural network architecture (Figure 2) uses pretext tasks in pre-training to learn a
representation with unlabelled brain data. Then, the fine-tuning stage uses this representation to
learn the downstream task by training with labelled data.

We divide recordings into windows of length w seconds or t samples. At train time, each batch of
windows is standardised such that each sensor has zero mean and unit variance. The network takes
as input the standardised sample windows. To combine heterogeneous datasets, which have different
numbers of sensors S, we apply a dataset-conditional linear layer to the sensor dimension, projecting
the signal into a shared space with dimension dshared. Then, to encode the signal, we construct a
wave-to-wave convolutional encoder architecture, the cortex encoder, inspired by work in neural
audio codecs (Zeghidour et al., 2022; Défossez et al., 2022). Specifically, our convolutional encoder
adapts the implementation of the SEANet architecture (Tagliasacchi et al., 2020) used in Défossez
et al. (2022) which we describe here and as part of Figure 2. As these codecs typically operate
on mono audio signals in R1×t, while our signals are in Rdshared×t, we increase the convolutional
channel dimension from 1 to match dshared while also inflating the channel dimension of subsequent
convolutions. We refer to the output dimension of embeddings from this backbone as dbackbone.
Thus, the backbone takes as input a window in RS×t, and encodes this into τ embeddings (where
τ < t), each of dimension dbackbone (i.e. an Rdbackbone×τ output).

Just as speakers have different voices, neural responses between subjects have different characteris-
tics. Consequently, individual variation leads to models that do not generalise well across subjects
(Csaky et al., 2022). In the speech literature, models include speaker conditioning to account for
these differences (Gibiansky et al., 2017). We take a similar approach by introducing subject condi-
tioning. Zeghidour et al. (2022) find that conditioning is equally effective at the encoder bottleneck
as in other stages of the model. Hence, we place ours at the cortex encoder bottleneck for simplicity.
We use feature-wise linear modulation (FiLM) (Perez et al., 2018) as our conditioning method.

Following the advice of Balestriero et al. (2023, Section 3.2), we use a two-layer feedforward projec-
tor to alleviate misalignment between our pretext and downstream tasks in the representation. After
the projector, linear classifiers make predictions for each of the pretext tasks. When fine-tuning, we
train a linear decoder, for a downstream task, on top of the pre-trained representation, which remains
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frozen. Thus, we backpropagate only through the classifier. A trainable dataset-specific linear layer
can be introduced for a novel dataset.

For speech detection, our classifier makes a prediction for each individual embedding. For voicing
classification, where there is only one label for each sample window, the embeddings are flattened
into a tensor in Rdbackbone×τ representing the entire window. This is the input to the voicing classifier
and is referred to as full epoch decoding in neuroimaging literature (Csaky et al., 2023).

3.2 PRETEXT TASKS

Our pretext tasks are unsupervised feature learning tasks that aim to learn generalisable speech
decoding features. Since different datasets use varied numbers of sensors, we construct these tasks
with labels that are agnostic to the number of sensors in the signal.

Band prediction. In the literature, neural responses can be segmented into functional frequency
bands (Giraud & Poeppel, 2012; Piai et al., 2014; Mai et al., 2016). Delta (δ) waves (0.1–4 Hz) are
commonly associated with the rhythmic structure of heard speech (Luo et al., 2010), Theta (θ) waves
(4–8 Hz) reliably track (Luo & Poeppel, 2007) and phase-lock to the amplitude envelope of heard
sentences (Peelle et al., 2012), Alpha (α) waves (8–12 Hz) relate to attentional processes and the
inhibition of irrelevant information, helping to focus on relevant speech signals (Strauß et al., 2015),
Beta (β) waves (12–30Hz) are implicated in top-down predictive coding (Bressler & Richter, 2015)
which affects lexical processing (Weiss & Mueller, 2012), Gamma (γ) waves (30–70 Hz) occur with
higher cognitive functions (e.g. memory, learning, reasoning, and planning) (Fries, 2009; Buzsáki
& Wang, 2012), and High Gamma (γhigh) waves (>70 Hz) have been linked specifically to speech
detection (Hamilton et al., 2018) and phonemic feature classification in the STG (Mesgarani et al.,
2014) as well as phonemic feature classification in the ventral sensorimotor cortex (vSMC) (Cheung
et al., 2016). As High Gamma is a relatively wide band, we have split it into two sub-bands: Lower
High Gamma (γhigh

lower) waves (70–100 Hz) and Upper High Gamma (γhigh
upper) waves (100–150 Hz).

To learn representations that can distinguish between these, our band prediction task applies a band-
stop filter for a randomly selected band ω to the sample x, passes the filtered sample xω′

through the
network backbone g and the corresponding linear predictor fband, requiring the network to classify
which frequency band ω was rejected. This yields the loss

Lband =
∑
x∈B

LCE(fband(g(x
ω′
)), ω), (1)

where B is a mini-batch of samples, ω ∈ {δ, θ, α, β, γ, γhigh
lower, γ

high
upper}, and LCE is the cross-entropy

loss as this is a multi-class classification task.

Phase shift prediction. Phase coupling between networks of neuron populations is necessary for
coordinating brain activity (Fries, 2005; Vidaurre et al., 2018). Thus, since phase often synchronises
between communicating brain areas, phase coupling between spatially distant sensors is likely to be
a useful feature. Supporting this insight, recent work (Jiang et al., 2024) also finds phase to be an
essential component of the signal.

To learn representations that encode phase differences between brain areas, this task applies a dis-
crete uniform random phase shift ϕ ∈ {0, π

8 ,
π
4 ,

3π
8 , π

2 ,
5π
8 , 3π

4 , 7π
8 } to a uniformly randomly selected

proportion ρ of the sensors. Applying this shift to random sensors is critical since sensors are placed
in different positions, capturing different regions of the brain. Uniform random selection ensures
differences between any two regions of the brain are represented. The objective of this task is to
predict the phase shift. This leads to a similar loss

Lphase =
∑
x∈B

LCE(fphase(g(x
ϕ)), ϕ), (2)

where xϕ describes the signal with a phase shift ϕ applied to a proportion of the sensors. We use
a discrete number of possible phase shifts, treating it as a multi-class task rather than a regression
task, to ease the difficulty of the problem as MEG scanners typically have a large number of sensors.

Amplitude scale prediction. MEG and EEG signals use an array of sensors at different spatial
locations, capturing different signal sources more intensely. Representing the relative amplitude dif-
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ference between sensors could be important for differentiating between neural responses originating
from distinct parts of the brain. Within speech, Hamilton et al. (2018) find that localised regions of
the STG respond to sustained speech and speech onsets. Differentiating between neural responses
from this region and others may be essential for decoding speech perception.

Thus, this pretext task focuses on learning representations that encode relative sensor amplitude
differences. Similar to the phase shift task, we select a random proportion of the sensors ρ and apply
a discrete random amplitude scaling coefficient A ∈ [−2, 2], discretised into 16 scaling factors, to
the signal. The objective is to predict the scaling factor, leading to the loss

Lamplitude =
∑
x∈B

LCE(famplitude(g(x
A)), A), (3)

where xA is the signal scaled with A.

These pretext tasks capture complementary time- and frequency-domain properties of the signal.
Hence, during pre-training, we combine them, creating an augmented version of the input for every
pretext task by applying the matching transformation. We feed the augmented inputs through the
network backbone and apply the corresponding classifier to predict the transformation, summing the
weighted losses such that our final pre-training loss is given by

LSSL = w1Lband + w2Lphase + w3Lamplitude, (4)

where wi is a constant coefficient for each self-supervised loss.

4 EXPERIMENTS

In this section, we evaluate the representations learned with our pretext tasks by measuring their
ability to scale downstream performance with unlabelled data. This includes understanding how
well they can generalise across datasets, subjects, and tasks. We focus our evaluation on MEG
data as the signal is rich, with better spatial resolution than EEG (Lopes da Silva, 2013) and faster
sampling rates than fMRI (Hall et al., 2014).

We pre-train all models to completion and then fine-tune on labelled data for each task. In all tables
and figures, we quote the receiver operating characteristic area under the curve (ROC AUC) where
chance is always 0.5 regardless of class balance. We show the test ROC AUC at the best validation
ROC AUC (early stopping) and quote uncertainty as the standard error of the mean over three seeds.
Additionally, we state the t-score and p-value from single-sample one-sided t-tests against chance.

4.1 EXPERIMENTAL SETUP

Datasets. Unless specified otherwise, our experiments use Cam-CAN (Shafto et al., 2014; Taylor
et al., 2017) as an unlabelled representation learning dataset for pre-training. This is a study con-
taining 641 subjects with resting and sensorimotor tasks, totalling approximately 160 hours of MEG
recordings. For our downstream tasks, we use two labelled heard speech MEG datasets where par-
ticipants listen to short stories or audiobooks. Armeni et al. (2022) contains 3 subjects who listen
to 10 hours of recordings each (30 hours total) while Gwilliams et al. (2023) has 27 subjects, each
recorded for 2 hours (54 hours total). Overall, we utilise over 200 hours of data. To the best of our
knowledge, this is the largest volume of MEG data ever used for speech decoding.

Preprocessing. Each recording is in RS×T where S is the number of sensors and T is the number
of time points sampled by the scanner. To eliminate high-frequency muscle movement artifacts, we
apply a low-pass filter at 125Hz as well as a high-pass filter at 0.5Hz to remove slow-drift artifacts.
Since the datasets were recorded in Europe, where the electric grid frequency is 50Hz, we apply a
notch filter at multiples of 50Hz to account for line noise. Treating the low-pass filter threshold as the
Nyquist frequency, we downsample the signal to twice that at 250Hz, avoiding aliasing within our
band of interest. Finally, we detect bad sensor channels, those with significant noise and artifacts,
using a variance threshold and replace them by interpolating the spatially nearest sensors.

Downstream tasks. We evaluate our methods with two fundamental speech decoding tasks of
increasing difficulty. The first, speech detection, determines whether speech occurs in the auditory
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Table 1: Pre-training with pretext tasks leads to better representations for speech detection. In
the linear-only case, we train a supervised linear classifier on the input MEG signals. For BIOT, we
train a linear layer on top of a backbone pre-trained on CamCAN, with the rest of the model frozen.
Similarly, for ours, we train a linear probe on top of our pre-trained backbone with its weights
frozen. In the no pre-training baseline, the backbone uses randomly initialised and subsequently
unmodified weights. When all pretext tasks are used, their losses are weighted equally.

Armeni Gwilliams
Experiment ROC AUC t p ROC AUC t p

Linear 0.559± 2e−4 341 4e−6 0.527± 7e−5 379 3e−6
BIOT + linear 0.500± 4e−4 0 6e−1 0.499± 2e−4 −3 1e+0

Ours No pre-training 0.519± 0.002 8 7e−3 0.498± 0.003 0 7e−1
+ linear Amp(ρ = 0.2) 0.602± 0.001 114 4e−5 0.532± 0.005 6 1e−2

Phase(ρ = 0.5) 0.603± 0.003 35 4e−4 0.535± 0.003 12 3e−3
Band 0.616± 0.003 44 3e−4 0.542± 0.001 46 2e−4
All tasks 0.621± 0.003 36 4e−4 0.543± 0.003 13 3e−3

stimulus using the neural response. The second task is voicing classification. Given data aligned at
the occurrence of a phoneme, the task is to recognise whether the phoneme is voiced or voiceless,
where voicing is a binary phonetic feature that categorises whether a speech sound is associated with
vocal cord vibration. We select these tasks as they are simpler than phoneme recognition, but are
foundational because they must be solved to decode speech accurately into natural language.

4.2 LEARNING GENERALISABLE REPRESENTATIONS USING PRETEXT TASKS

Our first experiment investigates whether our self-supervised objectives produce generalisable rep-
resentations. In Table 1, we show the results of pre-training models with each pretext task inde-
pendently as well as together. Here, all of our pretext tasks lead to results that are statistically
significant, and outperform a baseline fine-tuned without pre-training. This provides initial evidence
that our tasks are helpful in speech decoding. Interestingly, the combination of all pretext tasks leads
to better generalisation than any task on its own. As we hypothesised earlier, this may be because
our pretext tasks capture complementary properties in time- and frequency-space, enforcing that our
representation includes more salient features for speech decoding than any individual task.

Now, we turn to the other baselines. Our approach significantly outperforms the equivalent with a
raw MEG input instead of a pre-trained representation (the linear experiment). Here, the baseline
has substantially more trainable parameters because the input dimension is far larger without an
encoder. Even with this bias favouring the experiment with the raw input, using our representation
still performs better. We also compare our approach to BIOT (Yang et al., 2023) which is a similar
state-of-the-art self-supervised method. When BIOT is pre-trained using exactly the same data, the
fine-tuned probe fails to generalise entirely after exhaustive hyperparameter tuning. We put this
down to three critical reasons. Firstly, BIOT was designed around considerably lower-dimensional
signals. Their EEG evaluation used an order of magnitude fewer sensors than our MEG data. With
MEG, their transformer approach requires many more channel embeddings, leading to difficulty
learning the complex interactions between sensors. Secondly, our self-supervised objective extracts
speech decoding features which is essential for solving speech decoding tasks. BIOT performs
well on simple EEG tasks in Yang et al. (2023)’s evaluation, but non-invasive speech decoding is
significantly more challenging. Together, these obstacles suggest a vast amount of data is required
to learn their objective with MEG. Indeed, given that they pre-train with over 50 thousand hours of
EEG data in their evaluation, their objective appears too general to efficiently learn a representation
for speech decoding from the limited amount of MEG pre-training data (160 hours) available to us.
This highlights the importance of data-efficiency in SSL methods for MEG.

Among the individual pretext tasks, band prediction leads the rest. Perhaps this is because, by learn-
ing to discriminate between meaningful bands, the representation easily identifies phase-locking to
speech onset in theta waves (Peelle et al., 2012). Further investigation is necessary here. The choice
of the proportion of sensors to apply transformations to, ρ = 0.5 for phase shift prediction and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

100 101 102

Unlabelled data (hours)

0.500

0.525

0.550

0.575

0.600

0.625

RO
C 

AU
C    Défossez

       et al. (2023)

   Moses et al. (2021)

Speech detection

100 101 102

Unlabelled data (hours)

0.51

0.52

0.53

0.54

0.55

RO
C 

AU
C

Voicing classificationArmeni Gwilliams

Figure 3: Scaling unlabelled data improves generalisation. We pre-train the model on increasing
amounts of unlabelled data from Cam-CAN (Shafto et al., 2014; Taylor et al., 2017). The solid lines
are the best linear fits to the data and the dashed lines show the amount of data used in prior surgical
(Moses et al., 2021) and non-invasive (Défossez et al., 2023) work.

ρ = 0.2 for amplitude prediction, were determined through a hyperparameter search. We conjecture
that a smaller ρ is optimal for amplitude scale prediction since this leads to representations that are
especially strong at discriminating amplitude differences among small groups of sensors. Perhaps
this makes it easier to distinguish between neural responses from distinct parts of the brain such as
the STG, which is associated with speech onset (Hamilton et al., 2018). In contrast, a larger ρ for
phase shift prediction could lead to representations that better discriminate neural synchrony infor-
mation which is distributed across the brain rather than localised. As a result, a large proportion of
the sensors in a MEG scanner should encode information about this feature.

4.3 SCALING SPEECH DECODING WITH UNLABELLED DATA

Here, we analyse generalisation as we increase the volume of unlabelled data, analysing scaling
performance on downstream tasks. As before, we pre-train with the combined pretext tasks. Figure
3 shows ROC AUC as we increase the amount of unlabelled data in pre-training up to approximately
160 hours. For both tasks, pre-training with any amount of data is sufficient to beat chance and
there is a clear improvement in accuracy as the amount of unlabelled data increases. For speech
detection on Armeni et al. (2022), scaling appears logarithmic in log-space; for all others, ROC
AUC improves log-linearly within the data regime we study. In any case, adding unlabelled data has
improved generalisation. Notably, we have scaled far beyond the data regime of prior surgical and
non-surgical work and yet performance has continued to scale. Thus, our self-supervision approach
may remain useful as the volume of open data in the field continues to rapidly increase.

Our results also reveal several new and notable phenomena. Firstly, we scaled up the pre-training
dataset by increasing the number of subjects. Since this led to consistent and almost monotonic
improvements in downstream accuracy, our method is an exception to the common consensus that
pooling subjects worsens generalisation. Secondly, as we pre-trained our model with a different
dataset to those we fine-tuned on, our representation shows cross-dataset generalisation. This is
particularly surprising as the Armeni et al. (2022), Gwilliams et al. (2023), and our pre-training
dataset all use different scanners entirely. Performing well across these datasets indicates that, to-
gether, our architecture and pretext tasks successfully generate representations that are generalisable
across heterogeneous scanners. Finally, we note that our pre-training dataset contained no language
data whatsoever yet still improved downstream accuracy on language tasks. Remarkably, this shows
that unlabelled brain data collected from any task (including those that are not linguistic) can be
used to improve speech decoding performance.

Since the results show improvements on both downstream tasks, this indicates that our pretext tasks
are sufficiently generic to produce representations that work with multiple speech decoding tasks
while still generalising well on each task individually. This is generally a challenging trade-off to
manage. However, we notice that in both tasks, the base accuracy is higher and the improvement
in ROC AUC is steeper for Armeni et al. (2022). This is likely to be because this dataset has more
within-subject data. The weaker results for Gwilliams et al. (2023) may be a consequence of the
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Figure 4: Scaling unlabelled data improves novel subject generalisation. We fine-tune on
Gwilliams et al. (2023). When in-distribution, we evaluate on held-out sessions from subjects in
the training set; when out-of-distribution, we evaluate on three held-out subjects. The solid lines
are the best linear fits while the dashed lines show the amount of data used in prior surgical (Moses
et al., 2021) and non-invasive (Défossez et al., 2023) work.

larger number of subjects with shorter intra-subject recordings and greater subject variation. These
observations support the findings of other recent work such as Csaky et al. (2022).

4.4 SCALING UNLABELLED DATA IMPROVES GENERALISATION TO NOVEL SUBJECTS

In neuroimaging, brain data is generally highly variable across participants, leading to difficulty
transferring models to novel subjects (Csaky et al., 2022). Whilst we have shown generalisation
across subjects, here, we investigate whether we can generalise to novel subjects—an even more
difficult challenge. This is critical in order to widely deploy speech BCIs for new patients. In this
experiment, we fine-tune only on Gwilliams et al. (2023) and hold out three subjects with which we
evaluate novel subject generalisation.

Figure 4 shows that scaling up the amount of unlabelled data used in pre-training not only improves
accuracy on subjects previously seen, but also demonstrates a positive log-linear trend in perfor-
mance for novel subjects. This indicates that scaling our method is an encouraging direction for
resolving the challenges of subject variance faced by prior work. Moreover, as far as we are aware,
this is the first result to demonstrate novel subject generalisation in speech decoding from MEG.

4.5 AGGREGATING UNLABELLED MEG DATASETS

To scale up unlabelled data further than individual studies, we must be able to combine many existing
datasets. As a preliminary investigation, we combine two of the largest public MEG datasets: MOUS
(Schoffelen et al., 2019) and Cam-CAN (Shafto et al., 2014; Taylor et al., 2017). In this section, we
investigate how pre-training with these combined datasets affects downstream performance using
the same experimental setup as Figure 3.

Table 2: Combining unlabelled datasets shows signs of outperforming single studies. We exam-
ine performance on the speech detection task. We see a small improvement when the datasets are
combined on Gwilliams et al. (2023), but not Armeni et al. (2022).

Pre-training Armeni Gwilliams
dataset Hours ROC AUC t p ROC AUC t p

Cam-CAN 159 0.621± 0.003 36 4e−4 0.543± 0.003 13 3e−3
MOUS 160 0.605± 0.000 261 7e−6 0.543± 0.004 9 5e−3
Cam-CAN + MOUS 319 0.611± 0.003 40 3e−4 0.546± 0.002 20 1e−3

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

The results in Table 2 show, for the first time, that combining datasets can improve performance
on downstream speech decoding tasks. It leads to better performance on Gwilliams et al. (2023)
compared to pre-training on either dataset alone. Interestingly, this was not the case for Armeni
et al. (2022) where pre-training on Cam-CAN alone performed best. Combined pre-training did,
however, outperform training only on MOUS. It is surprising that pre-training on Cam-CAN was
better than pre-training on MOUS when evaluating on Armeni et al. (2022) given that MOUS and
Armeni et al. (2022) both used speech tasks and were acquired on the same MEG scanner. Cam-
CAN, by contrast, did not use a speech task and was acquired on a different MEG scanner. We
hypothesise that the better results for Cam-CAN are due to it being a cleaner dataset. During our
experiments, we found that data quality, even among unlabelled data, can have a significant affect
as artefacts in recordings disrupt learning.

While the combination of the two datasets includes far more hours of data than any prior work on
deep learning with MEG, further work needs to be done to aggregate more datasets. Here, we were
limited by compute budget. Increasing the number of datasets could enable the network to eventually
always improve over the best singular dataset. Just as increasing the number of subjects (rather than
only within-subject data) improves novel subject generalisation, a larger number of datasets may be
key to scaling results when datasets are aggregated in pre-training.

4.6 LIMITATIONS

Although our results are significant in demonstrating a viable path forward to scale up speech BCIs,
there remain a number of limitations to the present work. We focused here on two downstream tasks:
speech detection and voice classification. Ultimately, we would like to expand this work to predict
full transcripts from brain recordings (i.e. brain-to-text). This has been achieved with surgical data
(Moses et al., 2021; Willett et al., 2023) but not yet convincingly with non-invasive methods like
MEG or EEG (Jo et al., 2024). Speech detection has played an important role in the development
of full brain-to-text in a surgical context (Moses et al., 2021) and we hope may play a similar role
for non-invasive methods. Prior work has further used voice classification as a stand in for phoneme
classification (Gwilliams et al., 2022), and we have been able to improve on these results here. In
future work, we would like to expand this to all English phonemes. Secondly, while we have been
able to demonstrate the utility of a few pretext tasks, we do not claim to have exhausted the full set
of useful tasks. Rather, we conjecture that more useful pretext tasks remain to be found and believe a
useful avenue of research will be into other input representations for brain recordings. For example,
this paper did not make use of spatial features. Another limitation is our emphasis on heard speech
over other types of speech, such as attempted or imagined speech. We hypothesise that the same
methods presented here will generalise to these other varieties of speech, though this has yet to be
shown. But, perhaps the biggest limitation of the present work is that, while it surpasses the amount
of data used in other studies, it remains to be seen how much speech decoding tasks can be improved
by scaling up the number of datasets used in training. In sharing this work now, we believe that the
current proof of concept will be sufficiently impactful to the field as we continue to actively scale up
the datasets that we can leverage.

5 CONCLUSION

Ultimately, solving speech decoding could transform the lives of patients with severe communica-
tion difficulties. This promise has not yet materialised because the field has been blocked by its
inability to scale up data to leverage deep learning. Prior methods have been unable to aggregate
data across different datasets, labels, or subjects to scale up because of heterogeneity in recording
hardware, experiment design, and participants. A handful of studies have shown weak signals to-
wards alleviating these issues. But until now, no one has developed a general solution. We provided
a unified method that leverages unlabelled recordings data-efficiently using generic pretext tasks that
shows that all of these problems can be solved. We verified this with experiments showing that our
method not only scales with heterogeneous data but even generalises across datasets, subjects, and
tasks. Our method unlocks the potential of the bitter lesson, providing a general method to exploit
more computation by using more data. We implore the research community to employ the vast
quantities of data and compute available to realise this potential. If scale is all you need in speech
decoding, then the bitter lesson may not be so bitter.
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ETHICS STATEMENT

In this work, we use data from studies that involve human subjects (Armeni et al., 2022; Gwilliams
et al., 2023; Shafto et al., 2014; Taylor et al., 2017; Schoffelen et al., 2019). These datasets are
public, cited, and have their own ethical approvals. The documentation for these is available with
the publications for the respective datasets.

While there are clear positive impacts, we acknowledge that insights from neural speech decoding
research may not all be beneficial. Research in this field could enable paralysed patients to commu-
nicate freely and materially assist those with minor communication difficulty (e.g. stammering). As
the technology matures, it could also enable new ways of communicating with others and interact-
ing with devices without the risks of invasive surgical implants. Nevertheless, the maturity of this
technology could also present potential negative societal impacts. For one, reading inner speech cre-
ates new concerns over data controls as this information is likely to be highly sensitive and personal
to individuals. Given access to this technology, there is also the risk that bad actors could extract
sensitive information from target individuals without consent. Moreover, there are possible long
horizon effects associated with speech decoding research. Broad adoption of this technology could
lead to the gradual erosion of privacy over inner speech within society. In addition, asymmetric ef-
fects, where some individuals or organisations can read inner speech but others are unable to, could
worsen societal inequality. Within the scope of this paper, we mitigate risks associated with inner
speech by focusing on decoding heard speech where there is low potential for abuse. Nonetheless,
we acknowledge that this is still a stepping stone towards solving inner speech decoding.

REPRODUCIBILITY STATEMENT

In the supplementary materials, we have provided an anonymised code repository with instructions
for reproducing our main experiments. We also include details on experiment design and setup
(Section 4.1 and Appendix A), hyperparameters (Appendix B), and compute (Appendix C). While
we attempt to be exhaustive with these details, any information not found directly in the main body
or appendices can be located in the supplementary materials.
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A EXPERIMENT DETAILS

We pre-train with non-overlapping sample windows from all subjects and sessions. We adjust the
amount of unlabelled data used from Cam-CAN by increasing the number of subjects in the sequence
1, 2, 4, 8, 17, 36, 74, 152, 312, and 641, successively randomly selecting more subjects to include.
Each seed uses a different set of subjects to reduce negative effects from outlier subjects.

When fine-tuning with Armeni et al. (2022), we hold out session 010 from all subjects during train-
ing and validation, using this for evaluation. Similarly, when fine-tuning with Gwilliams et al.
(2023), we hold out session 1 from subjects 23, 24, 25, 26, and 27, using these sessions for evalua-
tion only. As there is limited within-subject data in the latter dataset, we did not hold out a session
from all subjects as before. For our novel subject experiments, we hold out subjects 1, 2, and 3 en-
tirely and use the data for these subjects during evaluation. In Gwilliams et al. (2023), we note that
they use four different tasks for each subject and their order is randomized between subjects. Both
sessions for each task are repeats of the task. This means that while the recording itself is unseen, in
this dataset, it is possible that heldout sessions use tasks that may have been seen in the training set.

In all experiments, we always fine-tune to completion (usually around 300 epochs), taking the test
metric at the best validation loss (early stopping). We use three randomly selected seeds for each
pre-training and corresponding fine-tuning run. For speech detection, since our encoder reduces
the temporal dimension from 125 samples (the number of samples in a 0.5 second window with a
sample rate of 250Hz) down to 5 embeddings, we downsample our speech detection labels to match
using PyTorch’s torch.nn.functional.interpolate. Therefore, each speech detection
label represents a 0.1 second period of time.
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B HYPERPARAMETERS

We conducted a search over hyperparameters of interest to optimise our self-supervised objectives
and neural architecture. While these ablations indicated a theoretically ideal architectural configu-
ration, in practice, we altered our final experimental architecture due to instabilities during training
when data was scaled up. Our final architecture hyperparameters achieve a balance between the best
values from our hyperparameter search and stable training. These values are detailed in Table 3.

Table 3: Experimental hyperparameters.

Hyperparameter Value
Window length (s) 0.5

ρ (phase) 0.5
ρ (amplitude) 0.2
{w1, w2, w3} {1.0, 1.0, 1.0}
dshared 512

dbackbone 512
SEANet convolution channels (512, 512, 512, 512)
SEANet downsampling ratios (5, 5, 1)

FiLM conditioning dimension 16
Subject embedding dimension 16

Pre-training epochs 200
Optimizer AdamW (Loshchilov & Hutter, 2019)
Learning rate 0.000066
Train ratio 0.8
Validation ratio 0.1
Test ratio 0.1
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C COMPUTE RESOURCES

All experiments were run on individual NVIDIA V100 and A100 GPUs with up to 40GiB of GPU
memory on a system with up to 1TiB of RAM. Each pre-training run with the maximum amount of
pre-training data took approximately 200 hours (8.3 days). Fine-tuning following pre-training took
up to another 12 hours. We estimate that we used approximately 3000 hours of compute for the final
experimental runs, including hyperparameter searches. In total, over the course of developing this
work from idea to final paper, we used around 10,000 hours of GPU compute.

D LICENCES FOR DATASETS AND CODE

The Armeni et al. (2022) dataset is distributed under CC-BY-4.0 while the Gwilliams et al. (2023)
dataset is distributed under the CC0 1.0 Universal licence. The Schoffelen et al. (2019) dataset
is distributed with a RU-DI-HD-1.0 licence from the Donders institute. The licence for the Cam-
CAN (Shafto et al., 2014; Taylor et al., 2017) dataset is unknown. The SEANet code adapted from
Défossez et al. (2022) is distributed under the MIT licence, and the OSL library, which we use for
preprocessing, is under the BSD-3-Clause licence.
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