

000 001 002 003 THE COUNTING POWER OF TRANSFORMERS 004 005 006 007

008 **Anonymous authors**
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919

054 Multiple theoretical and empirical results (e.g. [Hahn & Rofin \(2024\)](#); [Chiang & Cholak \(2022\)](#);
 055 [Huang et al. \(2025\)](#); [Hahn \(2020\)](#); [Hao et al. \(2022\)](#); [Bhattacharya et al. \(2020\)](#); [Anil et al. \(2022\)](#);
 056 [Delétag et al. \(2023\)](#)) have shown that, while transformers can be efficiently trained for MAJ, this is
 057 not the case for PARITY. Several theoretical explanations have been offered, e.g., *sensitivity* by [Hahn](#)
 058 & [Rofin \(2024\)](#) and length generalization admitted by limit transformers by [Huang et al. \(2025\)](#)).

059 Thus far, existing results have touched only upon *semilinear* counting properties. For example,
 060 defining MAJ requires only a linear inequality (i.e. $|w|_a > |w|_b$). In fact, logical languages, which
 061 were devised in [Barceló et al. \(2024\)](#); [Yang & Chiang \(2024\)](#); [Huang et al. \(2025\)](#) epitomizing
 062 languages expressible by transformers, permit only linear expressions (e.g. $|w|_a + |w|_b > 2 \cdot |w|_c$).
 063 However, polynomial expressions (cf. [Shawe-Taylor & Cristianini \(2004\)](#)) are also used to express
 064 *co-occurrence* of terms/tokens in a text. For example, using a *higher-degree* monomial such as

$$\#(\text{nvidia}) \times \#(\text{intel}) \times \#(\text{deal}),$$

067 where $\#(w)$ counts the number of occurrences of a word w in the text, one can emphasize the
 068 co-occurrence of “nvidia”, “intel” and “deal” in a text. This motivates the following question:

069 **Research Question.** *What counting properties are expressible on transformers? Can they express*
 070 *nonlinear counting properties?*

072 The main contribution of this paper is the following result.

073 **Theorem 1.1.** *Transformers can capture all semialgebraic counting properties, i.e., those expressible*
 074 *as a boolean combination of inequalities between multivariate polynomials, where each variable*
 075 *counts the number of occurrences of a specific token in the text.*

077 This means that transformers can capture expressions involving higher-degree polynomials like:

$$7\#(\text{nvidia}) \times \#(\text{intel}) \times \#(\text{deal}) + 2\#(\text{shares}) - 8\#(\text{war}) > 10,$$

080 or boolean combinations (i.e. unions/intersections) of similar polynomial expressions. We provide a
 081 rigorous proof of this result (using softmax transformers) and experimentally validate this claim. In
 082 particular, *our proof requires the use of neither positional encodings nor positional masking*.

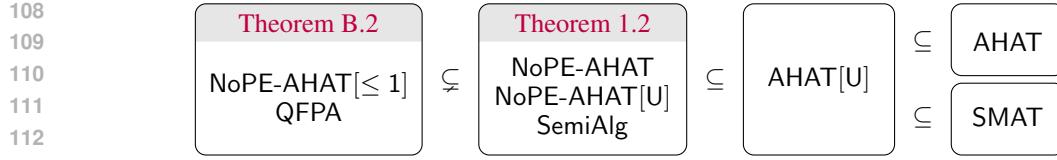
083 The next question we address is an attempt to better understand the expressivity of softmax transform-
 084 ers for capturing counting properties: *which class of softmax transformers capture semialgebraic*
 085 *counting properties?* To this end, we provide a rather surprising characterization involving *average*
 086 *hard attention* [Hao et al. \(2022\)](#); [Pérez et al. \(2021\)](#), which was devised to “approximate” soft
 087 attention by attending to all positions with maximum attention score and forwarding their average.
 088 In particular, Average Hard Attention Transformers (AHATs) with only *uniform layers* (written
 089 AHAT[U]) — that is, where maximum attention score is achieved at every position — immediately
 090 form a subclass of SoftMax Attention Transformers (SMAT). In the sequel, we write NoPE-AHAT
 091 (resp. NoPE-AHAT[U]) to mean AHAT (resp. AHAT[U]) that do not use Positional Encodings (PEs)
 092 (also no positional masking).

093 **Theorem 1.2.** *NoPE-AHAT and NoPE-AHAT[U] capture precisely semialgebraic counting proper-
 094 ties. In particular, as far as expressing counting properties, NoPE-AHAT is a subset of SMAT.*

096 This theorem is a surprising result, especially because it is still a major open problem whether AHAT
 097 can be captured by SMAT [Yang & Chiang \(2024\)](#); [Hahn \(2020\)](#); [Yang et al. \(2024b\)](#) for general (not
 098 necessarily) counting properties.

099 A corollary of Theorem 1.1, combined with Matiyasevich’s celebrated solution to the notorious
 100 Hilbert’s 10th Problem [Matiyasevich \(1993\)](#), is a kind of *universality* (i.e. Turing-completeness)
 101 of transformers. More precisely, any recursively enumerable counting property $P \subseteq \Sigma^*$ can be
 102 represented in terms of a program that, given an input string $w \in \Sigma^*$, feeds each string wv (where
 103 $v \in \Gamma^*$, for some $\Gamma \cap \Sigma = \emptyset$) into a transformer T and accepts if T accepts some wv . In this case,
 104 we say that P is a *projection* of the language accepted by T . In fact, we show that transformers T
 105 with only two attention layers are sufficient and necessary to achieve this result:

106 **Theorem 1.3.** *Every recursively enumerable counting property is a projection of a language recog-
 107 nized by a NoPE-AHAT[U], and thus by an SMAT. Here, two attention layers in NoPE-AHAT[U]*
and SMAT are sufficient.

Figure 1: *Visualization of our results.*

Similarly, our results also imply a new undecidability result for analyzing an extremely simple transformer model—surprisingly with neither positional encodings (i.e. NoPE-transformers) nor masking:

Theorem 1.4. *Given a NoPE-AHAT[U] or SMAT (with just two attention layers), it is undecidable whether its language is empty.*

Recent results on this, established by Sälzer et al. (2025), require a substantially more complex architecture, including non-trivial, idealised components, to achieve such an undecidability result, i.e., with powerful positional encoding and average hard attention.

Finally, *how do general transformers compare with other machine learning models as far as capturing counting properties?* To this end, let us discuss two models. First is the class of polynomial separators that can be generated by mapping to a higher dimension and look for a linear separator in this higher dimension. This is a standard technique in classical machine learning literature, where one can apply techniques like Support Vector Machines (SVM) (e.g. using polynomial kernel) in the *Vector Space Model (VSM)* Salton et al. (1975); Wong et al. (1985) (also see Chapter 10 of Shawe-Taylor & Cristianini (2004)). Our result shows that transformers generalize such counting properties, in that not only polynomial counting properties can be captured, but also *boolean combinations* thereof. Second is the model called C-RASP Huang et al. (2025), which is a simple declarative language that formalizes the so-called *RASP-L conjecture* Zhou et al. (2024) capturing “efficiently learnable” properties on transformers. In particular, C-RASP allows only inequalities over linear counting terms. We prove that C-RASP can capture *only* linear counting properties. Our experiments supporting Theorem 1.1 reveals that counting properties like

$$L_k := \{w \in \{a, b\}^+ : |w|_a^k \geq |w|_b\}$$

are also efficiently learnable for $k \geq 2$. This suggests that C-RASP provides only a partial characterization of efficiently learnable properties.

Organization. We recall transformer models and define our framework for studying counting properties in Section 2. We then show how to capture semialgebraic counting properties using transformers in Section 3. In Section 4, we provide a natural subclass of softmax transformers that completely characterizes semialgebraic counting properties. In Section 5, we show applications of our semialgebraic results for a better understanding of expressiveness of transformers, e.g., universality/undecidability and comparison to work on C-RASP transformers. We report our experimental results in Section 6 and conclude in Section 7. Some details have been relegated into the Appendix.

2 FRAMEWORK: TRANSFORMERS AND COUNTING PROPERTIES

In this section, we define a formal framework for investigating the expressive power of transformers for counting properties.

Formal language theory primer We assume some basic understanding of formal language theory (at the level of a standard undergraduate textbook by Sipser (2013)) and will only fix some notation.

For an alphabet $\Sigma = \{a_1, \dots, a_m\}$. A *language* is a set of strings over Σ . We Σ^* (resp. Σ^+) to mean the set of all strings (resp. all nonempty strings) over Σ . We write $|w|$ to denote the length of w . For each $a \in \Sigma$, we write $|w|_a$ to mean the number of occurrences of a in w . A language $K \subseteq \Sigma^*$ is a *projection* of a language $L \subseteq \Sigma^*$ if there is a subalphabet $\Gamma \subseteq \Sigma$ such that K is obtained from L by

162 deleting all occurrences of letters in Γ from words in L . For a class \mathcal{C} of languages, by $\text{Proj}(\mathcal{C})$, we
 163 denote the class of projections of languages in \mathcal{C} .

164 We will touch upon regular languages and recursively enumerable languages (see [Sipser \(2013\)](#) for
 165 details). In summary, regular languages are languages that can be described by regular expressions.
 166 *Recursively enumerable* languages are those that are recognized by (possibly nonterminating) Turing
 167 machines. The class of such languages is denoted RE . In particular, a machine model is said to be
 168 *Turing-complete* if it can capture all recursively enumerable languages.
 169

170 For an alphabet $\Sigma = \{\mathbf{a}_1, \dots, \mathbf{a}_m\}$, we define the *Parikh image* (a.k.a. *Parikh map*) as the function
 171 $\Psi: \Sigma^* \rightarrow \mathbb{N}^m$, where $\Psi(w)[i] := |w|_{\mathbf{a}_i}$ is the number of \mathbf{a}_i 's in w . Intuitively, Parikh image of a
 172 word w provides the letter counts in w , e.g., over $\Sigma = \{\mathbf{a}, \mathbf{b}\}$, we have $\Psi(abaa) = (3, 1)$. The Parikh
 173 map can also be extended to a language L ; that is, $\Psi(L) = \{\Psi(w) : w \in L\} \subseteq \mathbb{N}^{|\Sigma|}$. For example,
 174 if $L = \{\mathbf{a}^n \mathbf{b}^n \mathbf{a}^n : n \geq 0\}$ is a language over $\Sigma = \{\mathbf{a}, \mathbf{b}\}$, we have $\Psi(L) = \{(2n, n) : n \geq 0\}$.
 175

2.1 TRANSFORMERS

177 We now recall the formal definition of transformers. Loosely speaking, a transformer is a composition
 178 of finitely many attention layers, each converting a sequence σ of \mathbb{R}^d -vectors into another sequence
 179 σ' of \mathbb{R}^k -vectors, for some d and k . To turn a transformer T into a language recognizer, we have
 180 to embed any letter in the finite alphabet Σ as a \mathbb{R}^d -vector, where d is smaller than the dimension
 181 of the first attention layer. For example, $\Sigma = \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$, and the *one-hot* embeddings of \mathbf{a} , \mathbf{b} , \mathbf{c} are
 182 (respectively) $(1, 0, 0)$, $(0, 1, 0)$, and $(0, 0, 1)$. Finally, to determine acceptance, we simply run T on
 183 the embeddings of the input string w into a sequence of vectors (possibly expanded with positional
 184 information) and check if the last vector \mathbf{v} satisfies that the dot product $\mathbf{v} \cdot \mathbf{t}$ is greater than 0 (for some
 185 pre-defined vector \mathbf{t} of weights). In particular, w is accepted by T iff $\mathbf{v} \cdot \mathbf{t} > 0$.
 186

Example. Suppose we are given the input string $w = \mathbf{a}\mathbf{b}\mathbf{a}\mathbf{c}$. Additionally, suppose we use the
 187 positional embedding $p: n \mapsto 1/n$. Then, checking whether T accepts w amounts to running T on
 188 the sequence σ :

$$(1, 0, 0, 1)(0, 1, 0, 1/2)(1, 0, 0, 1/3)(0, 0, 1, 1/4).$$

189 After running T on σ , the resulting sequence is of the form $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$. Determining whether T
 190 accepts w amounts to checking whether $\mathbf{t} \cdot \mathbf{v}_4 > 0$. For example, $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ could be:
 191

$$(1, 1, 7, 1, 1)(2, 3, 1, 10, 1/2)(1, 8, 0, 8, 1/3)(0, 0, 1, -1, 1/4)$$

192 which will be accepted, whenever $\mathbf{t} = (1, 0, 0, 1, 0)$.
 193

194 Next we formalize the definition of transformers by defining how each attention layer functions.
 195

ReLU networks. We first define ReLU networks, which are used inside an attention layer. A
 196 *ReLU node* v is a function $\mathbb{Q}^m \rightarrow \mathbb{Q}$, where $m \in \mathbb{N}$ is referred to as the input dimension, and is
 197 defined as $v(x_1, \dots, x_m) = \max(0, b + \sum_{i=1}^m w_i x_i)$, where $w_i \in \mathbb{Q}$ are the *weights*, and $b \in \mathbb{Q}$
 198 is the *bias*. [In practice, [GeLU](#) and [SwiGLU](#) are also used instead of ReLU, which we do not
 199 consider in this paper.] A *ReLU layer* ℓ is a tuple of ReLU nodes (v_1, \dots, v_n) , all having the same
 200 input dimensionality, computing a function $\mathbb{R}^m \rightarrow \mathbb{R}^n$, where $n \in \mathbb{N}$ is referred to as the output
 201 dimension. Finally, a *ReLU network* \mathcal{N} is a tuple of ReLU layers (ℓ_1, \dots, ℓ_k) , such that the input
 202 dimension of ℓ_{i+1} is equal to the output dimension of ℓ_i . It computes a function $\mathbb{Q}^{m_1} \rightarrow \mathbb{Q}^{n_k}$, given
 203 by $\mathcal{N}(x_1, \dots, x_{m_1}) = \ell_k(\dots \ell_1(x_1, \dots, x_{m_1}) \dots)$.
 204

Attention layers Each attention layer involves a *weight normalizer* $\text{wt} : \mathbb{R}^* \rightarrow \mathbb{R}^*$, which turns
 205 any d -sequence of weights into another such d -sequence. Two widely used weight normalizers are:
 206

207 1. The softmax normalizer softmax. That is, given a sequence $\sigma = x_1, \dots, x_n \in \mathbb{R}$, define
 208 $\text{softmax}(\sigma) := y_1, \dots, y_n$, where

$$y_i := \frac{e^{x_i}}{\sum_{j=1}^n e^{x_j}}.$$

213 2. The averaging hard attention normalizer aha. We define $\text{aha}(\sigma) := y_1, \dots, y_n$, where

$$y_i := \begin{cases} 1/|P| & \text{if } x_i = \max(\sigma), \\ 0 & \text{or else.} \end{cases}$$

216 where P consists of positions i in σ such that x_i is maximum in σ . That is, aha behaves
 217 like softmax but maps all non-maximum weights to 0, and all maximum weights to $1/|P|$.
 218

219 One can also allow a temperature scaling $\tau > 0$ to softmax, i.e., $\text{softmax}_\tau(\sigma) = y_1, \dots, y_n$ and set
 220 $y_i := \frac{e^{x_i/\tau}}{\sum_{j=1}^n e^{x_j/\tau}}$. This is not so relevant in our paper since our proof works for *any* $\tau > 0$.
 221

222 An *attention layer* is a function $\lambda: (\mathbb{R}^d)^* \rightarrow (\mathbb{R}^e)^*$, given by affine maps $Q, K: \mathbb{R}^d \rightarrow \mathbb{R}^m$,
 223 $V: \mathbb{R}^d \rightarrow \mathbb{R}^k$ (query, key, and value matrices) and a ReLU neural net $\mathcal{N}: \mathbb{Q}^{d+k} \rightarrow \mathbb{Q}^e$. Given
 224 an input sequence $x = (x_1, \dots, x_n) \in (\mathbb{Q}^d)^n$, the output sequence $y = (y_1, \dots, y_n) \in (\mathbb{Q}^d)^n$ is
 225 computed as follows. First, one computes the sequences of key, query, and value vectors: $k_i =$
 226 Kx_i , $q_i = Qx_i$, $v_i = Vx_i$, for each $i = 1, \dots, n$, then we define

$$y_i = \mathcal{N}(x_i, a_i)$$

227 with $a_i = \sum_{j=1}^n w(j)v_j$, where $w = \text{wt}(\{\langle k_i, q_j \rangle\}_{j=1}^n)$.
 228

229 We say that λ is a *softmax* (resp. *aha*) layer if $\text{wt} = \text{softmax}$ (resp. *aha*). We say that it is a
 230 *uniform-aha* layer if it is an aha layer such that $Kx = Qx = \mathbf{0}$ for all x , i.e., $\langle Kx, Qy \rangle = 0$ for all
 231 x and y . Note that a uniform-aha is both an aha layer and a softmax layer since noting that

$$\text{softmax}(s_1, \dots, s_n) = \text{softmax}_\tau(s_1, \dots, s_n) = \text{aha}(s_1, \dots, s_n) = [1/n, \dots, 1/n],$$

232 whenever $s_1 = \dots = s_n$, which can be guaranteed for uniform aha layers. This holds for *all* $\tau > 0$.
 233

234 **Remark.** Some papers (e.g. [Yang et al. \(2024a\)](#); [Huang et al. \(2025\)](#); [Yang & Chiang \(2024\)](#)) apply
 235 *strict future masking*, which means that attention is only applied to positions up to the current position
 236 *i*. Our work does not apply masking.
 237

238 **Defining transformers.** To define a transformer and its language, we first extend the finite alphabet
 239 Σ with an *end marker* $\$ \notin \Sigma$. That is, $\Gamma := \Sigma \cup \{\$\}$. A *transformer* with ℓ layers over a finite
 240 alphabet Σ is then a function $T: \Sigma^+ \rightarrow \{0, 1\}$, given by: (i) the “input embedding” function
 241 $\iota: \Gamma \rightarrow \mathbb{Q}^{d_1}$, (ii) the positional encoding $p: \mathbb{N}^2 \rightarrow \mathbb{R}^{d_1}$, and (iii) a sequence of layers $\lambda_1: (\mathbb{R}^{d_1})^* \rightarrow$
 242 $(\mathbb{R}^{d_2})^*, \dots, \lambda_\ell: (\mathbb{R}^{d_\ell})^* \rightarrow (\mathbb{R}^{d_{\ell+1}})^*$. Given an input word $w = a_1 \dots a_n \in \Sigma^n$, the output $T(w)$ is
 243 computed as follows. First, we set $x_1 = \iota(a_1) + p(n+1, 1)$, \dots , $x_n = \iota(a_n) + p(n+1, n)$, $x_{n+1} =$
 244 $\iota(\$) + p(n+1, n)$. Then we compute $(y_1, \dots, y_{n+1}) = \lambda_\ell(\lambda_{\ell-1}(\dots \lambda_1(x_1, \dots, x_{n+1}) \dots))$, and
 245 we set $T(w) = 1$ if and only if $y_n[1] > 0$, and $T(w) = 0$ otherwise. The language $L(T)$ accepted
 246 by T is defined as $\{w \in \Sigma^*: T(w) = 1\}$. We say that T has *no positional encoding* (NoPE) if the
 247 positional encoding is a constant function.
 248

249 **Remark.** Several studies (e.g., [Merrill & Sabharwal \(2023b\)](#); [Sälzer et al. \(2025\)](#); [Li & Cotterell](#)
 250 (2025)) consider the capabilities of transformers in the context of restricted precision, such as
 251 assuming computations are carried out under the assumption of finite representation sizes. We do
 252 not focus on these aspects, but note that it is easy to see that our key results, such as [Proposition 3.1](#),
 253 also apply under so-called *log-precision* assumptions (cf. ([Merrill & Sabharwal, 2023b](#)), also see
 254 ([Merrill & Sabharwal, 2023a](#))) for rational numbers. This means that the binary representation size of
 255 a number $p/q \in \mathbb{Q}$ grows logarithmically with the length of the input.
 256

257 A *Softmax Attention Transformer* is a transformer using only softmax layers whereas an *AHA*
 258 *Transformer* is a transformer using only aha layers. By SMAT we denote the class of all languages
 259 accepted by softmax attention transformers and by AHAT we denote the class of all languages
 260 accepted by AHA transformers. To all classes we of transformer languages we append “[U]” to
 261 denote languages of transformers with only uniform layers, e.g. AHAT[U]. We prepend “NoPE” to
 262 denote only languages of transformers with no positional encoding, e.g. NoPE-AHAT[U]. Note that
 263 all transformer models we are considering in this paper have only one attention head.
 264

2.2 COUNTING PROPERTIES

265 We now define a framework for studying the counting ability of transformers. Intuitively, our
 266 framework focuses on “counting properties”. As we shall see below, we can build many interesting
 267 formal languages with the help of purely counting properties.
 268

269 Given a permutation $\pi: \{1, \dots, n\} \rightarrow \{1, \dots, n\}$ and a string $w = w_1 \dots w_n$ of length n , the string
 270 $\pi(w) := w_{\pi(1)} \dots w_{\pi(n)}$ is obtained by permuting the letters in w according to π .
 271

270 **Definition 2.1.** A *counting property* over the alphabet Σ is a permutation-closed language L , i.e., for
 271 each $w \in \Sigma^*$, it is the case that $w \in L$ iff $\pi(w) \in L$ for *each* permutation π over $\{1, \dots, |w|\}$.
 272

273 Examples of counting properties are MAJ and PARITY (see (1), (2)). We often identify a counting
 274 property L with its set $\Psi(w) \subseteq \mathbb{N}^{|\Sigma|}$ of letter counts (i.e. Parikh image). By PI, we denote the
 275 class of counting properties over Σ . Counting properties are also called *permutation-invariant* or
 276 “proportion-invariant” languages, e.g., see Pérez et al. (2021); Barceló et al. (2024).
 277

278 **Why counting properties?** Certainly, many languages of interests have both a “counting com-
 279 ponent” and an “order component”. Take, for example, the language $L_1 = \{a^n b^n c^n : n \geq 0\}$.
 280 Our framework focuses on *purely* counting properties for two reasons. Firstly, it abstracts away
 281 non-counting components that cannot be captured by the model. Secondly, many formal languages
 282 L of interests can be constructed by taking intersection of a counting property P and an order
 283 (and counting-insensitive) language L' . For example, L_1 above can be written as $P \cap L'$, where
 284 $P = \{w \in \Sigma^* : |w|_a = |w|_b = |w|_c\}$ and $L' = a^* b^* c^*$. Finally, multiple key languages in the
 285 literature on the expressivity of transformers are in fact counting properties (e.g. MAJ and PARITY).
 286

3 CAPTURING SEMIALGEBRAIC COUNTING PROPERTIES

288 A subset $S \subseteq \mathbb{N}^m$ is *semi-algebraic* if it is a Boolean combination of sets of the form $S_p = \{x \in$
 289 $\mathbb{N}^m \mid p(x) > 0\}$ for some polynomial $p \in \mathbb{Z}[X_1, \dots, X_m]$. A language $L \subseteq \Sigma^*$ is *semi-algebraic* if
 290 there is a semi-algebraic set $S \subseteq \mathbb{N}^m$ and $\Sigma = \{a_1, \dots, a_m\}$ such that $L = \{w \in \{a_1, \dots, a_m\}^* \mid$
 291 $\Psi(w) \in S\}$. Let SemiAlg denote the class of semi-algebraic languages. An example is
 292

$$293 \text{SQRT} = \{w \in \{a, b\}^* \mid |w|_a < |w|/\sqrt{2}\}, \quad (3)$$

294 since $|w|_a < |w|/\sqrt{2}$ if and only if $2|w|_a^2 < |w|^2$. Likewise, extending the coefficients of our
 295 polynomials to rational numbers does not increase the expressiveness of semialgebraic sets, e.g.,
 296 $\frac{7}{3}xy + y^2 > 8x - 3$ can be rewritten as $7xy + 3y^2 > 24x - 9$. Note that for every $p \in \mathbb{Z}[X_1, \dots, X_m]$,
 297 the set $\{x \in \mathbb{N}^m \mid p(x) = 0\}$ is semi-algebraic, because $p(x) = 0$ if and only if $-p(x)^2 + 1 > 0$.
 298 Thus, every solution set to polynomial equations is also semi-algebraic.
 299

300 We show Theorem 1.1. Since $\text{AHAT}[U] \subseteq \text{SMAT}$, it suffices to construct a $\text{AHAT}[U]$. We will even
 301 construct a $\text{NoPE-AHAT}[U]$. The key ingredient is:

302 **Proposition 3.1.** *For every polynomial $p \in \mathbb{Z}[X_1, \dots, X_m]$, the language $L_{p>0} = \{w \in$
 303 $\{a_1, \dots, a_m\}^* \mid p(\Psi(w)) > 0\}$ belongs to $\text{NoPE-AHAT}[U]$. Thus, $L_{p>0}$ is in SMAT .*
 304

305 Let us see why Proposition 3.1 implies $\text{SemiAlg} \subseteq \text{NoPE-AHAT}[U]$. First, the complement of each
 306 language $L_{p>0}$ can be obtained, because $p(x) > 0$ is violated if and only if $-p(x) + 1 > 0$. Moreover,
 307 NoPE-AHAT is closed under union and intersection (we prove a stronger fact in Appendix A.2). We
 308 can thus accept all Boolean combinations of languages of the form $L_{p>0}$, and hence SemiAlg .
 309

310 To show Proposition 3.1, we will use polynomials that are *homogeneous*, meaning all monomials have
 311 the same degree. Note that given an arbitrary polynomial $p \in \mathbb{Z}[X_1, \dots, X_m]$ of degree d , we can
 312 consider the polynomial $q \in \mathbb{Z}[X_0, \dots, X_m]$ with $q = X_0^d p(\frac{X_1}{X_0}, \dots, \frac{X_m}{X_0})$, which is homogeneous.
 313 It has the property that $p(x_1, \dots, x_m) > 0$ if and only if $q(1, x_1, \dots, x_m) > 0$. Therefore, from now
 314 on, we assume that we have a homogeneous polynomial $q \in \mathbb{Z}[X_0, \dots, X_m]$ and want to construct
 315 an $\text{AHAT}[U]$ for the language $K_q = \{w \in \{a_1, \dots, a_m\}^* \mid q(1, x) > 0 \text{ for } x = \Psi(w)\}$.
 316

317 To simplify notation, we denote the end marker by a_0 . Thus, the input will be a string $w \in$
 318 $\{a_0, \dots, a_m\}^+$ that contains a_0 exactly once, at the end. Since $|w|_{a_0} = 1$ is satisfied automatically,
 319 our $\text{AHAT}[U]$ only has to check that $q(x_0, \dots, x_m) > 0$, where $x_i = |w|_{a_i}$. The input encoding is
 320 the map $\{a_0, \dots, a_m\}^* \rightarrow \mathbb{Q}^m$ with $a_i \mapsto e_i$, where $e_i \in \mathbb{Q}^m$ is the i -th unit vector.
 321

322 **Overall idea** Roughly speaking, we implement multiplication via averaging using the following
 323 idea. For each letter a_i , we have a gadget that can multiply an existing entry $y \in [0, 1]$ (in each vector)
 324 by $\frac{x_i}{n+1}$ (recall that n is the overall word length). This is done by first multiplying the existing entries
 325 either (i) by 1 if the current letter is a_i or (ii) by 0 if the current letter is not a_i . This is achieved using
 326 a ReLU layer, by observing that for $u \in [0, 1]$ and $v \in \{0, 1\}$, we have $u \cdot v = \text{ReLU}(u - (1 - v))$.
 327

324 After this, we take the average over the entire input in this component. Since we make sure that all the
 325 entries we multiplied with 0 or 1 had the same value $y \in [0, 1]$, taking the average will result in the
 326 value $\frac{y \cdot x_i}{n+1}$. If we do this repeatedly for a monomial $x_{i_1} \cdots x_{i_d}$, then we arrive at the value $\frac{x_{i_1} \cdots x_{i_d}}{(n+1)^d}$.
 327

328 Since our homogenization step ensured that all our monomials have the same degree d , adding up the
 329 entries corresponding to the monomials will yield $\frac{p(\Psi(w))}{(n+1)^d}$. Finally, the latter quantity is positive if
 330 and only if $p(\Psi(w)) > 0$.
 331

332 **Step I: Compute frequencies** Our AHAT[U] first uses an attention layer to compute $m + 1$ new
 333 components, where i -th component holds $\frac{x_i}{n+1}$, where $n + 1$ is the length of the input (including the
 334 end marker). This is easily done by attending to all positions and computing the averages of the first
 335 $m + 1$ components. To simplify notation, we will index vectors starting with index 0.
 336

337 **Step II: Multiplication gadgets** Second, we have a sequence of gadgets (each consisting of **one**
 338 **ReLU layer and one attention layer**) that perform the multiplication. Each gadget introduces a new
 339 component, and does not change the existing components. Between gadget executions, the following
 340 additional invariants are upheld: (i) Overall, a gadget does not change existing components: it
 341 introduces one new component. (ii) The components $\{0, \dots, m\}$ are called the *initial* components.
 342 (iii) All other components are *uniform*, i.e. they are the same across all positions. (iv) The uniform
 343 components carry values in $[0, 1]$. Thus, we will call components $0, \dots, m$ the *initial* components;
 344 and we call components $> m$ the *uniform* components.
 345

346 Our gadgets do the following. Suppose we have already produced ℓ additional components. For each
 347 initial component $i \in [0, m]$ and uniform component $j \in [m + 1, m + 1 + \ell]$, gadget $\text{omult}(\ell, i, j)$,
 348 which introduces a new component, will carry the value $\frac{x_i \cdot y_j}{n+1}$, where y_j is the value in component j
 of all vectors. Recall that we use x_i to denote the number of \mathbf{a}_i occurrences in the input for $i \in [0, m]$.
 349

350 We implement the gadget $\text{omult}(\ell, i, j)$ using some ReLU layers and an attention layer. Suppose that
 351 before, we have the vector $\mathbf{u}_p \in \mathbb{Q}^{m+1+\ell}$ in position p . First, using ReLU layers, we introduce a new
 352 component that in position p has the value $\mathbf{u}_p[i] \cdot \mathbf{u}_p[j]$. This can be achieved since $\mathbf{u}_p[i]$ is in $\{0, 1\}$
 353 and $\mathbf{u}_p[j] \in [0, 1]$: Notice that $\mathbf{u}_p[i] \cdot \mathbf{u}_p[j] = \text{ReLU}(\mathbf{u}_p[j] - (1 - \mathbf{u}_p[i]))$. Indeed, if $\mathbf{u}_p[i] = 1$,
 354 then this evaluates to $\mathbf{u}_p[j]$; if $\mathbf{u}_p[i] = 0$, then we get $\text{ReLU}(\mathbf{u}_p[j] - 1) = 0$. We then use uniform
 355 attention to compute the average of this new $\mathbf{u}_p[i] \cdot \mathbf{u}_p[j]$ -component across all vectors. Since there
 356 are $n + 1$ vectors, exactly x_i of them have $\mathbf{u}_p[i] = 1$, and also $\mathbf{u}_p[j] = y_j$, we get the desired $\frac{x_i \cdot y_j}{n+1}$.
 357

358 **Step III: Computing the polynomial** We now use our gadgets to compute the value of the polynomial.
 359 For each monomial of q , say $X_{i_1} \cdots X_{i_d}$, we use $d - 1$ gadgets to compute $x_{i_1} \cdots x_{i_d}/(n+1)^d$:
 360 The frequency computation in the beginning yields $x_{i_1}/(n+1)$, and then we use gadgets to compute
 361 $x_{i_1}x_{i_2}/(n+1)^2, x_{i_1}x_{i_2}x_{i_3}/(n+1)^3$, etc. until $x_{i_1} \cdots x_{i_d}/(n+1)^d$. Finally, we use a ReLU layer to
 362 multiply each monomial with a rational coefficient, and compute the sum of all the monomials. Thus,
 363 we have computed $q(x_0, \dots, x_m)/(n+1)^d$. We accept if and only if $q(x_0, \dots, x_m)/(n+1)^d > 0$.
 364 Note that this is the case if and only if $q(x_0, \dots, x_m) > 0$.
 365

366 This completes [Proposition 3.1](#) and thus $\text{SemiAlg} \subseteq \text{NoPE-AHAT}[U]$. We remark that the embedding
 367 dimension and the number of layers of our transformer in [Proposition 3.1](#) depends on the degree d and
 368 the number M of monomials in p . We require at most $O(d)$ layers, each layer increasing the degree
 369 of the computed monomials by one. In the appendix, we detailed that polynomials of degree d are
 370 accepted by $\text{NoPE-AHAT}[U]$ using at most d attention layers (see [Proposition A.1](#)). The embedding
 371 dimension is $O(dM)$ because we store the value of each monomial in a separate dimension.
 372

373 4 CHARACTERIZING SEMI-ALGEBRAIC COUNTING PROPERTIES

374 We have shown that $\text{NoPE-AHAT}[U] \subseteq \text{SMAT}$ can capture semi-algebraic counting properties. We
 375 now prove that the subclass $\text{NoPE-AHAT}[U]$ precisely characterizes SemiAlg .
 376

377 **Proposition 4.1.** $\text{NoPE-AHAT} \subseteq \text{SemiAlg}$.

378 *Proof.* Suppose that $\Sigma = \{\mathbf{a}_1, \dots, \mathbf{a}_m\}$ is our alphabet, \mathbf{a}_0 the end marker, and $x_i \in \mathbb{N}$ the number
 379 of occurrences of \mathbf{a}_i in the input. We say that a position p is an \mathbf{a}_i -position if the input holds \mathbf{a}_i at
 380 position p . Notice that an AHAT without positional encoding cannot distinguish vectors that come
 381

378 from the same input letter. This means, in any layer, any two a_i -positions will hold the same vector.
 379 Thus, the vector sequence on layer ℓ is described by rational vectors $u_{\ell,0}, \dots, u_{\ell,m}$, where $u_{\ell,i}$ is
 380 the vector at all the a_i -positions on layer ℓ . Moreover, for each i , the set of positions maximizing an
 381 attention score also either contains all a_i -positions, or none of them. Therefore, if the AHAT has a
 382 attention layers, there are at most $((2^{m+1})^{m+1})^a = 2^{(m+1)^2 a}$ possible ways to choose the positions
 383 of maximal score: On each attention layer, and for each $i \in [0, m]$, we select a subset of the $m+1$
 384 letters. For each ReLU node and each i , there are two ways its expression $\text{ReLU}(v)$ can be evaluated:
 385 as 0 or as v . Thus, if there are r ReLU nodes, then there are 2^r ways to evaluate all those nodes.

386 For each of these $2^{r+(m+1)^2 a}$ choices, we construct a conjunction of polynomial inequalities that
 387 verify that (i) this choice actually maximized scores, (ii) the resulting vector at the right-most position
 388 in the last layer satisfies the accepting condition. This is easy to do by building, for each layer
 389 ℓ and each i , expressions in x_1, \dots, x_m for the vectors $u_{\ell,i}$, assuming our choice above. These
 390 expressions have the form $p(x_1, \dots, x_m)/q(x_1, \dots, x_m)$ (averaging can introduce denominators).
 391 Here, once we have expressions for $u_{\ell,i}$, we can use them to build expressions for $u_{\ell+1,i}$ by following
 392 the definition of AHAT. Checking (i) and (ii) is then also easy, because inequalities involving
 393 quotients $p(x_1, \dots, x_m)/q(x_1, \dots, x_m)$ can be turned into polynomial inequalities by multiplying
 394 with common denominators. Finally, we take a disjunction over all $2^{r+(m+1)^2 a}$ conjunctions. \square

396 **Inexpressibility of PARITY.** Our characterization of NoPE-AHAT (i.e. [Proposition 4.1](#)) implies
 397 an interesting inexpressibility result regarding PARITY (see [\(2\)](#)):

398 **Corollary 4.2.** PARITY *does not belong to* NoPE-AHAT.

400 PARITY is known to be accepted by AHAT [Barceló et al. \(2024\)](#) and by SMAT [Chiang & Cholak \(2022\)](#)
 401 (with PE). Inexpressibility of PARITY in a length-generalizable subclass of SMAT and
 402 AHAT (with strict future masking and positional encodings) is known ([Huang et al. \(2025\)](#)). Similarly,
 403 PARITY is not expressible by SMAT with strict future masking [Hahn \(2020\)](#). [Corollary 4.2](#)
 404 complements these results and is an easy corollary of [Proposition 4.1](#) (see [Appendix A.3](#)).
 405

406 5 APPLICATIONS

408 5.1 UNIVERSALITY AND UNDECIDABILITY OF TRANSFORMERS

409 Let us discuss why universality/undecidability (i.e. [Theorems 1.3](#) and [1.4](#)) follow from [Theorem 1.2](#).
 410 First, by the well-known theorem ‘‘MRDP’’ theorem ([Matiyasevich, 1993](#)) due to Matiyasevich,
 411 Robinson, Davis, and Putnam, every language in $\text{RE} \cap \text{PI}$ is a projection of a language of the form
 412 $L_p = \{w \in \{a_1, \dots, a_m\}^* \mid p(\Psi(w)) = 0\}$, where $p \in \mathbb{Z}[X_1, \dots, X_m]$ is a polynomial. Since
 413 L_p belongs to NoPE-AHAT[U], we thus obtain [Theorem 1.3](#). Furthermore, since our translation
 414 from polynomials to NoPE-AHAT[U] (and thus SMAT) is effective, this also implies [Theorem 1.4](#):
 415 By the MRDP theorem (which is also effective), it is undecidable whether a given polynomial
 416 $p \in \mathbb{Z}[X_1, \dots, X_m]$ has a solution. Using our translations, we can turn such a p into a NoPE-AHAT
 417 (or SMAT) that is non-empty if and only if p has a solution.

418 **Using only two layers** In fact, in [Theorems 1.3](#) and [1.4](#), we even claim that two layers suffice
 419 for universality and undecidability. Let us sketch this here. First, our construction above yields a
 420 NoPE-AHAT[U] of at most ℓ layers, provided that the polynomials in the semialgebraic set all have
 421 degree $\leq \ell$ (see [Appendix A](#)). In particular, we show that for each ℓ , NoPE-AHAT[ℓ , U] is closed
 422 under union and intersection (see [Appendix A.2](#)). Furthermore, we rely on the well-known fact that
 423 the set of solutions of a polynomial equation $p = 0$ can always be written as the projection of the
 424 set of solutions of a *system of quadratic equations*. Since by our stronger version of [Theorem 1.2](#),
 425 intersections of solution sets of quadratic equations only require a NoPE-AHAT[U] with ≤ 2 layers,
 426 this yields the stronger versions of [Theorems 1.3](#) and [1.4](#). See [Appendix B](#) for details (where we also
 427 show that with just one layer, [Theorems 1.3](#) and [1.4](#) do not hold).

429 5.2 COMPARISON WITH C-RASP AND LTL WITH COUNTING

431 C-RASP ([Huang et al., 2025](#); [Yang & Chiang, 2024](#)) is a simple programming language that can be
 converted into softmax transformers. In particular, it is a subset of the so-called *LTL with Counting*

<i>k</i>	Val. Perf.	Test Perf.	Gen. Perf.
1	0.015	0.016/0.99	0.301/0.95
2	0.024	0.033/0.99	0.324/0.94
3	0.023	0.021/0.99	0.299/0.96
4	0.019	0.020/0.99	0.099/0.97
5	0.020	0.024/0.99	0.107/0.96

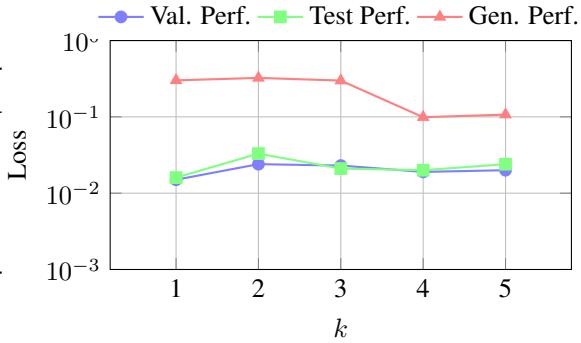


Figure 2: Performance of softmax transformer classifiers for L_k ($k = 1$ to 5). **Validation Performance (Val. Perf.):** BCEWithLogitsLoss on validation data. **Test Performance (Test Perf.):** BCEWithLogitsLoss and Accuracy (separated by $/$) on test data. **Generalization Performance (Gen. Perf.):** BCEWithLogitsLoss and Accuracy (separated by $/$) on generalization test set. The y-axis uses a logarithmic scale to accommodate the different orders of magnitude in the results.

(Yang & Chiang, 2024; Barceló et al., 2024). For example, $\{w \in \{a, b\}^* : |w|_a = |w|_b\}$ can be written as the following formula in LTL with Counting: $\overrightarrow{\#a} = \overrightarrow{\#b}$. In particular, only linear expressions can be constructed in such formulas. We show in the appendix that LTL with Counting (and therefore C-RASP) only capture (semi)linear counting properties, i.e., boolean combinations of linear inequalities (and modulo arithmetics), so not languages like $L_k := \{w \in \{a, b\} : |w|_a^k \geq |w|_b\}$.

Proposition 5.1. *LTL with Counting can define only (semi)linear counting properties.*

6 EXPERIMENTS

In this section, we experimentally complement our main result (cf. Theorem 1.1) that transformers can capture solutions of polynomial equations of higher degree. In particular, our results suggest that softmax transformers should be able to learn languages encoding solutions of polynomial equations.

We test our hypothesis on extensions of MAJ with polynomial inequalities. That is, we define the language L_k is defined by $L_k = \{w \in \{a, b\}^+ \mid |w|_b \leq (|w|_a)^k\}$, representing the set of solutions for the simple equation $y \geq x^k$.

Do softmax transformer classifiers perform well on language L_k ? Additionally, can we observe tendencies of length-generalization?

In other words, the task of the transformer is a binary classification such that $T(w)$ accepts if $w \in L_k$ and it does not if $w \notin L_k$.

We train softmax encoders without positional encoding and otherwise in line with the vanilla model, introduced by Vaswani et al. (2017), as binary classifiers using components offered by Pytorch’s `nn.Module` based on a balanced dataset of $5 \cdot 10^5$ data points sampled from L_k for $k = 1, \dots, 5$ of words up to length 500. In all experiments, we conduct a single epoch and choosed the best model conducting early stopping based on the binary-cross entropy loss combined with softmax, the typical metric for models outputting a probability for binary classification, offered in a numerical stable version by Pytorch’s `nn.Module` in form of `BCEWithLogitsLoss`, on a validation dataset sampled from the same distribution and of the same size as the training dataset. To partially explore the hyperparameter space, we conduct a grid search over number of layers 1 to 5, number of heads per layer 1, 2 or 4. In all experiments, we fixed the input features to 32, the feedforward dimension to 64, the dropout rate to 0.3, and optimized using the AdamW optimizer with a learning rate of 10^{-4} and weight decay of 0.01 as, again, offered by Pytorch’s `optim` package.

Figure 2 presents the outcome of our experiments. The table on the left-hand side demonstrates the best observed performance on the validation dataset (first column), a balanced test dataset derived from the same distribution as the training and validation data (second column). This specifically

486 implies that this dataset also only includes words of length up to 500. The final column represents
 487 another balanced test dataset encompassing words from length 501 to 1000, used to potentially unveil
 488 some length generalization performance. The plot on the right visualizes the same results.
 489

490 Generally, we observe very high performance with an accuracy of ≥ 0.99 on the in-distribution
 491 test dataset. Additionally, while the performance on the test dataset with longer words decreases, it
 492 remains relatively high, with an accuracy of ≥ 0.94 in all instances. Especially, it is to be assumed
 493 that with a more extensive experimental setup, this gap in performance will decrease. Therefore, we
 494 infer that our trained encoders perform well and that length generalization is supported, indicating
 495 that the model can capture the semantics of L_k . In Appendix D we report additional results, showing
 496 strong performance, with a decrease in performance on longer inputs. In summary, the experiments
 497 conducted in this study underscore that the theoretical results presented here, such as Proposition 3.1,
 498 can imply practical performance, but also that extensive studies are warranted.
 499

500 7 CONCLUDING REMARKS

501 **Related Work.** Lots of work have been done in recent years on the expressiveness of transformers
 502 for general (not necessarily counting) properties (cf. see the recent survey by Strobl et al. (2024)).
 503 Despite these, counting properties have played a central role in understanding the expressivity of
 504 transformers, e.g., the languages PARITY and MAJ, which have frequently featured in transformers
 505 expressivity research. Various theoretical transformer models have been used in the literature
 506 employing different assumptions on the attention mechanisms (hardmax attention vs. softmax
 507 attention), positional encodings, etc. For example, a large proportion of results use hardmax attention,
 508 which is not used by practical transformers (which instead use softmax attention). In addition, some
 509 works (e.g. Pérez et al. (2021); Barceló et al. (2024)) employ extremely complex positional encodings
 510 with no restrictions. That said, several recent works have adopted more practical models. In particular,
 511 the works of (Yang & Chiang, 2024; Huang et al., 2025; Yang et al., 2024b) employ softmax attention
 512 transformers and simple classes of positional encodings (causal masking, local, etc.). Our results
 513 also employ a similar model (AHAT[U] and SMAT); in fact, we proved that semialgebraic counting
 514 properties can be captured by transformers without any positonal encodings.
 515

516 **Potential Applications in NLP.** Since transformers are able to perform any polynomial counting,
 517 it follows that they can also approximate any continuous function of the number of occurrences
 518 of tokens (the set of polynomials is the universal approximator by the Weierstrass theorem). This
 519 might be useful in practical NLP tasks that require computation of nonlinear statistics in the word
 520 frequencies. Earlier we have mentioned that counting properties are tightly connected to *Vector Space*
 521 *Model (VSM)* Salton et al. (1975); Wong et al. (1985) that has applications in text classification and
 522 similarity analysis (a classic topic in information retrieval), where the standard method has been
 523 to employ Support Vector Machines (SVM), together with kernel analysis (e.g. using polynomial
 524 kernels). Our results imply that transformers are expressive enough to perform such tasks.
 525

526 In VSM, a document D is a vector v_D indexed by "terms" that may occur in D . That is, $v_D[t]$ is
 527 a count on the number of occurrences of t in D . To compare similarity between two documents
 528 D, D' , we may consider the Euclidean distance between v_D and $v_{D'}$, which requires a polynomial.
 529 Also, there are often challenges including "related terms" (e.g. husband, wife, and spouse), which
 530 are missed when we only use the aforementioned metric. Thus, a similarity measure is often learned
 531 (see Section 10.2.2 in Shawe-Taylor & Cristianini (2004), where VSM is used in combination with
 532 polynomial kernels). Our results show that transformers can solve such a task. A related task is the
 533 problem of determining proximity to a human written text, as dictated by Zipf (1935) stating that the
 534 frequency of the k -th most frequent word is proportional to $1/k$ in a natural language. As above, we
 535 may compare using Euclidean distance a document D with a predetermined Zipf-vector. This results
 536 in a polynomial, and our results show this can be captured by transformers.
 537

538 **Future Work.** We mention several open problems. Firstly, can softmax attention transformers
 539 with causal masking capture counting properties beyond semialgebraic sets? Secondly, our work
 540 has identified a gap in the formalization of the RASP-L conjecture by Huang et al. (2025). That is,
 541 transformers can capture and efficiently learn semialgebraic counting properties, which are beyond
 542 the language C-RASP. It is open whether the extension of C-RASP with inequalities over *nonlinear*
 543 polynomials can still be captured by softmax transformers.
 544

540 REFERENCES
541

542 Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay V. Ra-
543 masesh, Ambrose Sloane, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Explor-
544 ing length generalization in large language models. In Sanmi Koyejo, S. Mohamed,
545 A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural In-
546 formation Processing Systems 35: Annual Conference on Neural Information Process-
547 ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
548 2022*. URL http://papers.nips.cc/paper_files/paper/2022/hash/fb7451e43f9c1c35b774bcfad7a5714b-Abstract-Conference.html.

549

550 Pablo Barceló, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir V. Podolskii. Logical
551 languages accepted by transformer encoders with hard attention. In *ICLR*. OpenReview.net, 2024.

552 Satwik Bhattacharya, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
553 to recognize formal languages. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.),
554 *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing,
555 EMNLP 2020, Online, November 16-20, 2020*, pp. 7096–7116. Association for Computational
556 Linguistics, 2020. doi: 10.18653/V1/2020.EMNLP-MAIN.576. URL <https://doi.org/10.18653/v1/2020.emnlp-main.576>.

557

558 David Chiang and Peter Cholak. Overcoming a theoretical limitation of self-attention. In Smaranda
559 Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meeting
560 of the Association for Computational Linguistics (Volume 1: Long Papers)*, ACL 2022, Dublin,
561 Ireland, May 22-27, 2022, pp. 7654–7664. Association for Computational Linguistics, 2022.
562 doi: 10.18653/V1/2022.ACL-LONG.527. URL <https://doi.org/10.18653/v1/2022.acl-long.527>.

563

564 Dmitry Chistikov. An introduction to the theory of linear integer arithmetic (invited paper). In Siddharth Barman and Slawomir Lasota (eds.), *44th IARCS Annual Conference on Foundations
565 of Software Technology and Theoretical Computer Science, FSTTCS 2024, December 16-18,
566 2024, Gandhinagar, Gujarat, India*, volume 323 of *LIPICS*, pp. 1:1–1:36. Schloss Dagstuhl -
567 Leibniz-Zentrum für Informatik, 2024. doi: 10.4230/LIPICS.FSTTCS.2024.1.

568

569 Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot
570 Catt, Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A. Ortega. Neural
571 networks and the chomsky hierarchy. In *The Eleventh International Conference on Learning
572 Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL
573 <https://openreview.net/forum?id=WbxHAzkeQcn>.

574

575 Christoph Haase. A survival guide to presburger arithmetic. *ACM SIGLOG News*, 5(3):67–82, 2018.
576 doi: 10.1145/3242953.3242964.

577

578 Michael Hahn. Theoretical limitations of self-attention in neural sequence models. *Trans. Assoc.
579 Comput. Linguistics*, 8:156–171, 2020. doi: 10.1162/TACL_A_00306. URL https://doi.org/10.1162/tacl_a_00306.

580

581 Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? In Lun-Wei
582 Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of
583 the Association for Computational Linguistics (Volume 1: Long Papers)*, ACL 2024, Bangkok,
584 Thailand, August 11-16, 2024, pp. 14973–15008. Association for Computational Linguistics, 2024.
585 doi: 10.18653/V1/2024.ACL-LONG.800. URL <https://doi.org/10.18653/v1/2024.acl-long.800>.

586

587 Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention
588 transformers: Perspectives from circuit complexity. *Trans. Assoc. Comput. Linguistics*, 10:800–
589 810, 2022. doi: 10.1162/TACL_A_00490. URL https://doi.org/10.1162/tacl_a_00490.

590

591 Zellig Harris. Distributional structure. *Word*, 10(2-3):146–162, 1954. doi: 10.1007/978-94-009-8467-7_1. URL https://link.springer.com/chapter/10.1007/978-94-009-8467-7_1.

594 Xinting Huang, Andy Yang, Satwik Bhattacharya, Yash Raj Sarrof, Andreas Krebs, Hattie Zhou,
 595 Preetum Nakkiran, and Michael Hahn. A formal framework for understanding length generalization
 596 in transformers. In *The Thirteenth International Conference on Learning Representations, ICLR*
 597 *2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=U49N5V51rU>.

598

599 Jiaoda Li and Ryan Cotterell. Characterizing the expressivity of transformer language models. *CoRR*,
 600 [abs/2505.23623](https://arxiv.org/abs/2505.23623), 2025. doi: 10.48550/ARXIV.2505.23623. URL <https://doi.org/10.48550/arXiv.2505.23623>.

601

602

603 Yuri V. Matiyasevich. *Hilbert's Tenth Problem*. MIT Press, Cambridge, Massachusetts, 1993.

604

605 William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. In
 606 Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 607 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural*
 608 *Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -*
 609 *16, 2023*, 2023a. URL [http://papers.nips.cc/paper_files/paper/2023/hash/a48e5877c7bf86a513950ab23b360498-Abstract-Conference.html](https://papers.nips.cc/paper_files/paper/2023/hash/a48e5877c7bf86a513950ab23b360498-Abstract-Conference.html).

610

611 William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
 612 transformers. *Trans. Assoc. Comput. Linguistics*, 11:531–545, 2023b. doi: 10.1162/TACL_A_00562.
 613 URL https://doi.org/10.1162/tacl_a_00562.

614

615 Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing-complete. *J. Mach. Learn.*
 616 *Res.*, 22:75:1–75:35, 2021. URL <https://jmlr.org/papers/v22/20-302.html>.

617

618 Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for automatic indexing.
 619 *Commun. ACM*, 18(11):613–620, 1975. doi: 10.1145/361219.361220. URL <https://doi.org/10.1145/361219.361220>.

620

621 Marco Sälzer, Eric Alsmann, and Martin Lange. Transformer encoder satisfiability: Complex-
 622 ity and impact on formal reasoning. In *The Thirteenth International Conference on Learn-
 623 ing Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL
<https://openreview.net/forum?id=VVO3ApdMUE>.

624

625 John Shawe-Taylor and Nello Cristianini. *Kernel Methods for Pattern Analysis*. Cambridge University
 626 Press, illustrated edition edition, 2004. ISBN 0521813972. URL <http://www.amazon.com/Kernel-Methods-Pattern-Analysis-Shawe-Taylor/dp/0521813972>.

627

628 Michael Sipser. *Introduction to the Theory of Computation*. Course Technology, Boston, MA, third
 629 edition, 2013. ISBN 113318779X.

630

631 Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages
 632 can transformers express? A survey. *Trans. Assoc. Comput. Linguistics*, 12:543–561, 2024. doi:
 633 10.1162/TACL_A_00663. URL https://doi.org/10.1162/tacl_a_00663.

634

635 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 636 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
 637 Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
 638 Garnett (eds.), *Advances in Neural Information Processing Systems 30: Annual Conference on*
 639 *Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pp.
 640 5998–6008, 2017. URL <https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fdb053clc4a845aa-Abstract.html>.

641

642 S. K. Michael Wong, Wojciech Ziarko, and P. C. N. Wong. Generalized vector space model in
 643 information retrieval. In Jean Tague (ed.), *Proceedings of the 8th annual international ACM*
 644 *SIGIR conference on Research and development in information retrieval, Montréal, Québec,*
 645 *Canada, June 5-7, 1985*, pp. 18–25. ACM, 1985. doi: 10.1145/253495.253506. URL <https://doi.org/10.1145/253495.253506>.

646

647 Andy Yang and David Chiang. Counting like transformers: Compiling temporal counting logic into
 648 softmax transformers. *CoRR*, abs/2404.04393, 2024.

648 Andy Yang, David Chiang, and Dana Angluin. Masked hard-attention transformers
 649 recognize exactly the star-free languages. In A. Globerson, L. Mackey, D. Bel-
 650 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural In-*
 651 *formation Processing Systems*, volume 37, pp. 10202–10235. Curran Associates, Inc.,
 652 2024a. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/13d7f172259b11b230cc5da8768abc5f-Paper-Conference.pdf.

653
 654 Andy Yang, Lena Strobl, David Chiang, and Dana Angluin. Simulating hard attention using soft
 655 attention. *CoRR*, abs/2412.09925, 2024b. doi: 10.48550/ARXIV.2412.09925. URL <https://doi.org/10.48550/arXiv.2412.09925>.

656
 657 Hattie Zhou, Arwen Bradley, Eta Littwin, Noam Razin, Omid Saremi, Joshua M. Susskind, Samy
 658 Bengio, and Preetum Nakkiran. What algorithms can transformers learn? A study in length
 659 generalization. In *The Twelfth International Conference on Learning Representations, ICLR 2024,*
 660 *Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=AssIuHnmHX>.

661
 662 George Kingsley Zipf. *The Psychobiology of Language: An Introduction to Dynamic Philology*.
 663 Houghton Mifflin, Boston, MA, 1935.

666 A TRANSLATING SEMIALGEBRAIC SETS TO NoPE-AHAT

667 A.1 FINE-GRAINED ANALYSIS OF POLYNOMIAL DEGREE VS. DEPTH

668
 669 In this subsection, we show the inclusion $\text{SemiAlg} \subseteq \text{NoPE-AHAT}[\mathbf{U}]$. In fact, we show a stronger
 670 statement (**Proposition A.1**), which requires some notation. By $\text{SemiAlg}[\leq \ell]$ we denote the restriction
 671 of the class SemiAlg to the semi-algebraic languages $L \subseteq \Sigma^*$ such that the underlying semi-algebraic
 672 set $S \subseteq \mathbb{N}^m$ is a Boolean combination of sets S_p where $p \in \mathbb{Z}[X_1, \dots, X_m]$ are polynomials of
 673 degree $\leq \ell$. In particular, we have $\text{SemiAlg}[\leq 1] = \text{QFPA}$. Our construction for $\text{SemiAlg} \subseteq$
 674 $\text{NoPE-AHAT}[\mathbf{U}]$ actually shows the following:

675
 676 **Proposition A.1.** *For each $\ell > 0$ we have $\text{SemiAlg}[\leq \ell] \subseteq \text{NoPE-AHAT}[\leq \ell, \mathbf{U}]$.*

677
 678 For showing **Proposition A.1**, we need some more technical definitions. Let T be an AHAT with
 679 input embedding $\iota: \Sigma \rightarrow \mathbb{Q}^{d_1}$ and layers $\lambda_1: (\mathbb{Q}^{d_1})^* \rightarrow (\mathbb{Q}^{d_2})^*, \dots, \lambda_\ell: (\mathbb{Q}^{d_\ell})^* \rightarrow (\mathbb{Q}^{d_{\ell+1}})^*$. We
 680 define the function $f_T: \Sigma^+ \rightarrow \mathbb{Q}$ as follows: for a word $w = a_1 a_2 \dots a_n \in \Sigma^+$, if $\lambda_1 \circ \dots \circ$
 681 $\lambda_\ell(\iota(a_1), \dots, \iota(a_n)) = (\mathbf{y}_1, \dots, \mathbf{y}_n)$, then $f_T(w) = \mathbf{y}_n[1]$. In other words, we have $f_T(w) > 0$ iff
 $T(w) = 1$.

682
 683 **Proposition A.2.** *For every polynomial $p \in \mathbb{Z}[X_1, \dots, X_m]$ of degree ℓ , the language $L_{p>0} = \{w \in \{a_1, \dots, a_m\}^* \mid p(\Psi(w)) > 0\}$ belongs to $\text{NoPE-AHAT}[\leq \ell, \mathbf{U}]$.*

684
 685 To show **Proposition 3.1**, we will use polynomials that are *homogeneous*, meaning all monomials have
 686 the same degree. Note that given an arbitrary polynomial $p \in \mathbb{Z}[X_1, \dots, X_m]$ of degree ℓ , we can
 687 consider the polynomial $q \in \mathbb{Z}[X_0, \dots, X_m]$ with $q = X_0^\ell p(\frac{X_1}{X_0}, \dots, \frac{X_m}{X_0})$, which is homogeneous.
 688 It has the property that $p(x_1, \dots, x_m) > 0$ if and only if $q(1, x_1, \dots, x_m) > 0$. Therefore, from now
 689 on, we assume that we have a homogeneous polynomial $q \in \mathbb{Z}[X_0, \dots, X_m]$ and want to construct
 690 an AHAT for the language $K_q = \{w \in \{a_1, \dots, a_m\}^* \mid q(1, \mathbf{x}) > 0 \text{ for } \mathbf{x} = \Psi(w)\}$.

691
 692 To simplify notation, we denote the end marker $\$$ by a_0 . Thus, the input will be a string $w \in \{a_0, \dots, a_m\}^+$ that contains a_0 exactly once, at the end. Since $|w|_{a_0} = 1$ is satisfied automatically,
 693 our AHAT only has to check that $q(x_0, \dots, x_m) > 0$, where $x_i = |w|_{a_i}$. The input encoding is the
 694 map $\{a_0, \dots, a_m\}^* \rightarrow \mathbb{Q}^m$ with $a_i \mapsto e_i$, where $e_i \in \mathbb{Q}^m$ is the i -th unit vector.

695
 696 In a first lemma we show that each monomial of q can be computed by a NoPE-AHAT with ℓ uniform
 697 attention layers.

698
 699 **Lemma A.3.** *For every monomial $r \in \mathbb{Z}[X_0, X_1, \dots, X_m]$ of degree ℓ , there is a NoPE-AHAT T
 700 with ℓ uniform attention layers such that*

$$701 f_T(w) = \frac{r(\Psi(w))}{|w|^\ell}$$

702
 703 for each word $w \in \Sigma^*$. In particular, we have $f_T(w\$) > 0$ if and only if $r(\Psi(w)) > 0$.

702 *Proof.* We use the word embedding $\iota: \Sigma \rightarrow \mathbb{Q}^{m+1}$ with $\iota(\mathbf{a}_i) = \mathbf{e}_i$ for each $i \in [0, m]$.
 703

704 **Step I: Compute frequencies** Our AHAT first uses an attention layer to compute $m + 1$ new
 705 components, where i -th component holds $\frac{x_i}{n+1}$, where $n + 1$ is the length of the input (including the
 706 end marker). This is easily done by attending to all positions and computing the averages of the first
 707 $m + 1$ components. To simplify notation, we will index vectors starting with index 0.
 708

709 **Step II: Multiplication gadgets** Second, we have a sequence of gadgets (each consisting of one
 710 uniform attention layer and one ReLU layer). Each gadget introduces a new component, and does not
 711 change the existing components. Between gadget executions, the following additional invariants are
 712 upheld: (i) Overall, a gadget does not change existing components: it introduces one new component.
 713 (ii) The components $\{0, \dots, m\}$ are called the *initial* components. (iii) All other components are
 714 *uniform*, i.e. they are the same across all positions. (iv) The uniform components carry values in
 715 $[0, 1]$. Thus, we will call components $0, \dots, m$ the *initial* components; and we call components $> m$
 716 the *uniform* components.
 717

718 Our gadgets do the following. Suppose we have already produced k additional components. For each
 719 initial component $i \in [0, m]$ and uniform component $j \in [m + 1, m + 1 + k]$, gadget $\text{omult}(k, i, j)$,
 720 which introduces a new component, will carry the value $\frac{x_i \cdot y_j}{n+1}$, where y_j is the value in component j
 721 of all vectors. Recall that we use x_i to denote the number of \mathbf{a}_i occurrences in the input for $i \in [0, m]$.
 722

723 We implement the gadget $\text{omult}(k, i, j)$ using some ReLU layers and an attention layer. Suppose that
 724 before, we have the vector $\mathbf{u}_p \in \mathbb{Q}^{m+1+k}$ in position p . First, using ReLU layers, we introduce a new
 725 component that in position p has the value $\mathbf{u}_p[i] \cdot \mathbf{u}_p[j]$. This can be achieved since $\mathbf{u}_p[i]$ is in $\{0, 1\}$
 726 and $\mathbf{u}_p[j] \in [0, 1]$: Notice that $\mathbf{u}_p[i] \cdot \mathbf{u}_p[j] = \text{ReLU}(\mathbf{u}_p[j] - (1 - \mathbf{u}_p[i]))$. Indeed, if $\mathbf{u}_p[i] = 1$,
 727 then this evaluates to $\mathbf{u}_p[j]$; if $\mathbf{u}_p[i] = 0$, then we get $\text{ReLU}(\mathbf{u}_p[j] - 1) = 0$. We then use uniform
 728 attention to compute the average of this new $\mathbf{u}_p[i] \cdot \mathbf{u}_p[j]$ -component across all vectors. Since there
 729 are $n + 1$ vectors, exactly x_i of them have $\mathbf{u}_p[i] = 1$, and also $\mathbf{u}_p[j] = y_j$, we get the desired $\frac{x_i \cdot y_j}{n+1}$.
 730

731 **Step III: Computing the monomial** We now use our gadgets to compute the value of the monomial.
 732 Let $r(X_0, \dots, X_m) = \alpha \cdot X_{i_1} \cdots X_{i_\ell}$. We use $\ell - 1$ gadgets to compute $x_{i_1} \cdots x_{i_\ell} / (n + 1)^\ell$: The
 733 frequency computation in the beginning yields $x_{i_1} / (n + 1)$, and then we use gadgets to compute
 734 $x_{i_1} x_{i_2} / (n + 1)^2$, $x_{i_1} x_{i_2} x_{i_3} / (n + 1)^3$, etc. until $x_{i_1} \cdots x_{i_\ell} / (n + 1)^\ell$. Finally, we use a ReLU layer
 735 to multiply $x_{i_1} \cdots x_{i_\ell} / (n + 1)^\ell$ with α . Thus, we have computed $r(x_0, \dots, x_m) / (n + 1)^\ell$. \square
 736

737 A.2 COMBINING NoPE-AHAT[U] WITHOUT ADDITIONAL LAYERS

738 The following lemma states that two NoPE-AHAT with only uniform attention layers can be parallelized
 739 resulting in a NoPE-AHAT with the same number of uniform layers. Their outputs can also
 740 be combined via a ReLU neural network. In particular, NoPE-AHAT [$\leq \ell$, U] is closed under union
 741 and intersection.
 742

743 **Lemma A.4.** *Let T_1, T_2 be two NoPE-AHAT with ℓ uniform attention layers and let \mathcal{N} be a ReLU
 744 neural network computing a function $\mathcal{N}: \mathbb{Q}^2 \rightarrow \mathbb{Q}$. Then there is a NoPE-AHAT $T_{\mathcal{N}}$ with ℓ uniform
 745 attention layers computing $f_{T_{\mathcal{N}}}(w\$) = \mathcal{N}(f_{T_1}(w\$), f_{T_2}(w\$))$.*
 746

747 *Proof.* The idea of $T_{\mathcal{N}}$ is, that it concatenates the components from T_1 with those of T_2 and keeps
 748 the sets of components always disjoint. By uniformity we are able to apply the attention layers of T_1
 749 and T_2 in parallel. In the last attention layer we can simply apply \mathcal{N} to the first components of T_1
 750 and T_2 .
 751

752 By $\iota_i: \Sigma \rightarrow \mathbb{Q}^{d_{1,i}}$ we denote the word embedding of T_i . From this we construct a new word
 753 embedding $\iota: \Sigma \rightarrow \mathbb{Q}^{d_{1,1}+d_{1,2}}$ with $\iota(\mathbf{a}_j) = (\iota_1(\mathbf{a}_j), \iota_2(\mathbf{a}_j))$ for each $j \in [0, m]$.
 754

755 Now, let $\lambda_{k,i}: \mathbb{Q}^{d_{k,i}} \rightarrow \mathbb{Q}^{d_{k+1,i}}$ be the k th layer of T_i for $1 \leq k \leq \ell$. By K_i, Q_i, V_i , and \mathcal{N}_i we
 756 denote the parameters of $\lambda_{k,i}$. Since $\lambda_{k,i}$ is uniform, the key and query maps K_i and Q_i are constantly
 757 mapping to zero. We now construct a uniform layer $\lambda_k: \mathbb{Q}^{d_{k,1}+d_{k,2}} \rightarrow \mathbb{Q}^{d_{k+1,1}+d_{k+1,2}}$ composed of
 758 $\lambda_{k,1}$ and $\lambda_{k,2}$: the key and query maps K and Q still map to zero. If $V_i(\mathbf{x}_i) = A_i \mathbf{x} + \mathbf{b}_i$ then we

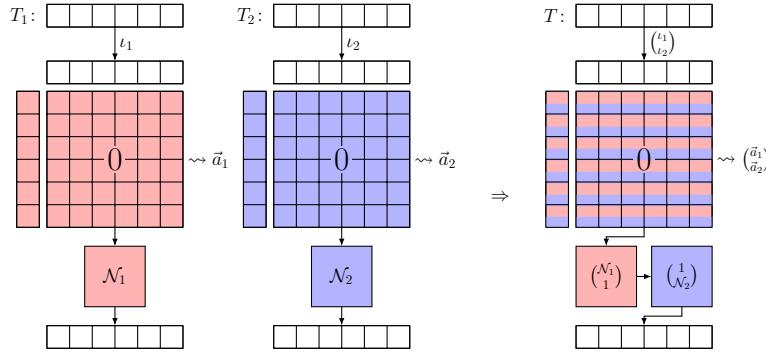


Figure 3: Visualization of the proof of Lemma A.4.

771 define the new value map V by

$$773 V\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} = \begin{pmatrix} A_1 & \mathbf{0} \\ \mathbf{0} & A_2 \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} + \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{pmatrix} = \begin{pmatrix} A_1 \mathbf{x}_1 + \mathbf{b}_1 \\ A_2 \mathbf{x}_2 + \mathbf{b}_2 \end{pmatrix} = \begin{pmatrix} V_1(\mathbf{x}_1) \\ V_2(\mathbf{x}_2) \end{pmatrix}.$$

775 By this definition we obtain that the attention vectors \mathbf{a}_j in λ_k are the concatenation of the attention
776 vectors $\mathbf{a}_{j,1}$ and $\mathbf{a}_{j,2}$ in $\lambda_{k,1}$ resp. $\lambda_{k,2}$. Similarly, we build the composition of \mathcal{N}_1 and \mathcal{N}_2 resulting
777 in an FFN computing $\begin{pmatrix} \mathcal{N}_1(\mathbf{x}_{j,1}, \mathbf{a}_{j,1}) \\ \mathcal{N}_2(\mathbf{x}_{j,2}, \mathbf{a}_{j,2}) \end{pmatrix}$.

779 Finally, in the last layer, we add the FFN \mathcal{N}' that takes the first components of the output of
780 $\mathcal{N}_i(\mathbf{x}_{j,i}, \mathbf{a}_{j,i})$ and simulates \mathcal{N} on these two numbers. \square

782 Recall that from a polynomial $p \in \mathbb{Z}[X_1, \dots, X_m]$ we constructed a homogeneous polynomial
783 $q \in \mathbb{Z}[X_0, X_1, \dots, X_m]$ such that $p(\mathbf{x}) > 0$ if and only if $q(1, \mathbf{x}) > 0$ holds for all vectors
784 $\mathbf{x} \in \mathbb{Q}^m$. Let $r_1, \dots, r_k \in \mathbb{Z}[X_0, X_1, \dots, X_m]$ be the monomials in q . Since q is homogeneous, all
785 monomials have the same degree ℓ . Lemma A.3 yields NoPE-AHATs T_1, \dots, T_k that are computing
786 the monomials r_i . Each of these AHATs has exactly ℓ uniform attention layers. Finally, we can apply
787 Lemma A.4 to construct a NoPE-AHAT T with ℓ uniform layers computing $f_T(w\$) = \frac{q(\Psi(w\$))}{|w\$|^\ell}$
788 (since addition is an affine map). Then T accepts w iff $\frac{q(\Psi(w\$))}{|w\$|^\ell} > 0$ iff $q(\Psi(w\$)) > 0$ iff $p(\Psi(w)) >$
789 0. In other words, T accepts the language $L_{p>0}$.
790

791 A.3 INEXPRESSIBILITY OF PARITY

793 *Proof of Corollary 4.2.* By Theorem 1.2, it suffices to show that PARITY is not semi-algebraic.
794 Suppose it is. Then there is a disjunction of conjunctions of polynomial inequalities that characterizes
795 PARITY. The polynomials are over $\mathbb{Z}[X, Y]$, where X is the variable for a's and Y is the variable
796 for b's. By plugging in $Y = 0$, we conclude that the set of even numbers is semi-algebraic.
797 Hence, there is a disjunction $\bigvee_{i=1}^n \bigwedge_{j=1}^m p_{i,j}(X) > 0$ of conjunctions that is satisfied exactly for
798 the even numbers. This implies that for some i , there are infinitely many even numbers k such
799 that $\bigwedge_{j=1}^m p_{i,j}(k) > 0$. Therefore, for every $j \in [1, m]$, the leading coefficient of $p_{i,j}$ must be
800 positive. But then, $\bigwedge_{j=1}^m p_{i,j}(k) > 0$ must hold for all sufficiently large k , not just the even ones, a
801 contradiction. \square

804 B PARAMETRIC ANALYSIS

806 In this section, we study how the expressive power of NoPE-AHAT[U] and SMAT depends on the
807 number of attention layers. In particular, we show that Theorems 1.3 and 1.4 hold already in the
808 case of two layers. The main insight of this proof is that the number of layers needed to express a
809 semialgebraic set depends on the degrees of the involved polynomials (see Proposition A.1): Note
810 that our sketch of an NoPE-AHAT for $L_{p>0}$ in Section 3 directly yields a NoPE-AHAT with ℓ layers,

810 where ℓ is the degree of p . For [Proposition A.1](#), one then has to show that Boolean combinations
 811 of such sets can be expressed without growing the number of attention layers. See [Appendix A](#) for
 812 details.
 813

814 **Capturing RE with two layers** From [Proposition A.1](#), we can now deduce the two-attention-layer
 815 version of [Theorems 1.3](#) and [1.4](#). The first ingredient is the following version of the MRDP theorem
 816 on Diophantine sets [Matiyasevich \(1993\)](#):

817 **Theorem B.1.** *Let $\Sigma = \{a_1, \dots, a_m\}$. A language $L \subseteq \Sigma^*$ belongs to $\text{RE} \cap \text{PI}$ if and only if there is
 818 a $k \in \mathbb{N}$ and a polynomial $p \in \mathbb{Z}[X_1, \dots, X_{m+k}]$ such that $L = \pi_{a_1, \dots, a_m}(K)$, where*

$$819 \quad K = \{w \in \{a_1, \dots, a_{m+k}\}^* \mid p(\Psi(w)) = 0\}.$$

820 In other words, every language in $\text{RE} \cap \text{PI}$ is a projection of a language of the form $L_p = \{w \in \{a_1, \dots, a_m\}^* \mid p(\Psi(w)) = 0\}$, where $p \in \mathbb{Z}[X_1, \dots, X_m]$ is a polynomial. Thus, it suffices to
 821 place L_p in $\text{Proj}(\text{NoPE-AHAT}[\leq 2, U])$. First observe that in [Theorem 1.2](#), we use one attention
 822 layer for each multiplication, so this avenue is closed if we want to stay within two attention layers.
 823 Instead, we use that for every polynomial $p \in \mathbb{Z}[X_1, \dots, X_m]$, there are *quadratic* (i.e. degree
 824 ≤ 2) polynomials $q_1, \dots, q_r \in \mathbb{Z}[X_1, \dots, X_{m+k}]$ for some $r, k \geq 0$ such that for $x \in \mathbb{N}^m$, we
 825 have $p(x) = 0$ if and only if there is some $y \in \mathbb{N}^k$ with $q_1(x, y) = 0, \dots, q_r(x, y) = 0$: Just
 826 introduce a fresh variable for each multiplication in p and use the q_i to assign these fresh variables.
 827 Since the language $K := \{w \in \{a_1, \dots, a_{m+k}\}^* \mid q_1(\Psi(w)) = \dots = q_r(\Psi(w))\}$ belongs to
 828 $\text{SemiAlg}[\leq 2]$ (since the q_i have degree ≤ 2) and L_p is a projection of K , this means L_p belongs to
 829 $\text{Proj}(\text{SemiAlg}[\leq 2])$. By [Proposition A.1](#), $\text{Proj}(\text{SemiAlg}[\leq 2]) \subseteq \text{Proj}(\text{NoPE-AHAT}[\leq 2, U])$.
 830

831 **NoPE AHAT with a single layer** The fact that two layers suffice for universality among counting
 832 properties raises the question of whether this is even possible with a single attention layer. We show
 833 here that this is not the case:

834 **Theorem B.2.** $\text{NoPE-AHAT}[\leq 1] = \text{NoPE-AHAT}[\leq 1, U] = \text{QFPA}$.

835 This means, with a single attention layer, NoPE-AHAT can recognize precisely those counting
 836 properties expressible using quantifier-free Presburger formulas. Since satisfiability of Presburger
 837 arithmetic is well-known to be decidable [Haase \(2018\); Chistikov \(2024\)](#), this implies that universality
 838 and undecidability of NoPE-AHAT (as we have shown for two attention layers), do not hold with
 839 just one attention layer. However, we leave open whether SMAT with one attention layer have a
 840 decidable emptiness problem.
 841

842 Before going into details, let us sketch the proof of [Theorem B.2](#). For the inclusion
 843 $\text{NoPE-AHAT}[\leq 1] \subseteq \text{QFPA}$, we proceed similarly to [Proposition 4.1](#), while observing that the
 844 inequalities we have to verify are all linear inequalities: This is because a single attention layer
 845 averages only once. Conversely, for the inclusion $\text{QFPA} \subseteq \text{NoPE-AHAT}[\leq 1, U]$ follows easily from
 846 [Proposition A.1](#).
 847

848 **Proof of Theorem B.2.** We begin by proving that $\text{NoPE-AHAT}[\leq 1] \subseteq \text{QFPA}$. Let T be an AHAT
 849 with input embedding $\iota : \Sigma \cup \{\$\}$ $\rightarrow \mathbb{Q}^d$, a single AHA layer λ utilising affine maps $Q, K \in \mathbb{Q}^{m \times d}$,
 850 $V \in \mathbb{Q}^{k \times d}$, given as matrices, and the ReLU network $\mathcal{N} : \mathbb{Q}^{d+k} \rightarrow \mathbb{Q}^e$. Our goal is to construct a
 851 quantifier-free PA formula φ_T with variables x_i for $i \in \{1, \dots, |\Sigma|\}$ such that $\Psi^{-1}([\varphi]) = \{w \in \Sigma^* \mid T \text{ accepts } w\$ \}$. In the following, we assume $\Sigma = \{a_1, \dots, a_m\}$ and denote $\Sigma \cup \{\$\}$ by Σ' .
 852

853 First, we observe that for all words $w \in \Sigma^*$, the output of T given $w$$ is computed by

$$854 \quad \mathcal{N} \left(\iota(\$), \frac{1}{|w\$|_{a_{i_1}} + \dots + |w\$|_{a_{i_h}}} \sum_{j=1}^h |w\$|_{a_{i_j}} V \iota(a_{i_j}) \right),$$

855 where $\Gamma = \{a_{i_1}, \dots, a_{i_h}\} \subseteq \Sigma'$ is exactly the subset of symbols a_{i_j} occurring in $w$$ that maximise
 856 $\langle Q \iota(a_{i_j}), K \iota(\$) \rangle$. We construct φ_T such that it mirrors exactly this computational structure. We
 857 have $\varphi_T = \bigvee_{\Gamma \subseteq \Sigma'} \varphi_{\Gamma}$, where \bigvee ranges over those subsets Γ where $\langle Q \iota(a_{i_j}), K \iota(\$) \rangle$ is maximal for
 858 precisely the $a_{i_j} \in \Gamma$. The subformula φ_{Γ} is defined as follows. For now, we assume that $\$ \notin \Gamma$ and
 859 introduce some auxiliary formulas. Throughout the following construction steps, we assume that
 860 atomic formulas are normalised to the form $c_1 x_1 + \dots + c_n x_n \leq b$.
 861

Given the ReLU network \mathcal{N} , it is straightforward to construct a quantifier-free PA formula $\varphi^{\mathcal{N}}$ such that $\llbracket \varphi^{\mathcal{N}} \rrbracket$ exactly includes those $x_1, \dots, x_{d+k} \in \mathbb{N}^{d+k}$ satisfying $\mathcal{N}(x_1, \dots, x_{d+k})_1 > 0$, where $\mathcal{N}(\cdot)_1$ denotes the first output dimension of \mathcal{N} . The key idea here is that the computation of a single ReLU node $v(x_1, \dots, x_{d+k}) = y$, with weights c_i and bias b of \mathcal{N} , is described by the quantifier-free PA formula: $(c_1 x_1 + \dots + c_{d+k} x_{d+k} + b \leq 0 \wedge 0 = y) \vee (c_1 x_1 + \dots + c_{d+k} x_{d+k} + b > 0 \wedge c_1 x_1 + \dots + c_{d+k} x_{d+k} + b = y)$. Then, by nesting this construction iteratively from the last layer to the first layer of \mathcal{N} , and finally replacing $= y$ with > 0 in the atomic formulas related to the first output dimension of \mathcal{N} , we achieve the construction of $\varphi^{\mathcal{N}}$. This nesting and replacement also ensures that $\varphi^{\mathcal{N}}$ includes only the variables x_1, \dots, x_{d+k} .

Let $\Gamma \subseteq \Sigma$ such that $\Gamma = \{a_{i_1}, \dots, a_{i_h}\}$. Consider the ReLU network \mathcal{N} , the value matrix V , and the embedding ι . We construct a quantifier-free PA formula $\varphi_{\Gamma}^{\mathcal{N}, V}$ such that $\llbracket \varphi_{\Gamma}^{\mathcal{N}, V} \rrbracket$ exactly includes those $(x_{i_1}, \dots, x_{i_h}) \in \mathbb{N}^h$ satisfying $\mathcal{N}(\iota(\$), \frac{1}{x_{i_1} + \dots + x_{i_h}} \sum_{j=1}^h x_{i_j} V \iota(a_{i_j}))_1 > 0$. To do so, we adjust the formula $\varphi^{\mathcal{N}}$ as described in the following. To account for the fixed input $\iota(\$)$, we replace each occurrence of x_1 to x_d in $\varphi^{\mathcal{N}}$ by the respective entry of $\iota(\$)$. Furthermore, to handle the specific form of the input $\frac{1}{x_{i_1} + \dots + x_{i_h}} \sum_{j=1}^h x_{i_j} V \iota(a_{i_j})$, we first replace each occurrence of x_{d+l} with $l \in \{1, \dots, k\}$ in the already modified $\varphi^{\mathcal{N}}$ by:

$$(v_{l1}\iota(a_{i_1})_1 + \dots + v_{ld}\iota(a_{i_1})_d)x_{i_1} + \dots + (v_{l1}\iota(a_{i_h})_1 + \dots + v_{ld}\iota(a_{i_h})_d)x_{i_h},$$

where v_{lj} are the respective entries of V . Lastly, we replace each atomic constraint $c_1 x_{i_1} + \dots + c_h x_{i_h} \leq b$ in the adjusted formula with $(c_1 - b)x_{i_1} + \dots + (c_h - b)x_{i_h} \leq 0$ to adjust for the factor $\frac{1}{x_{i_1} + \dots + x_{i_h}}$ present in the input.

Now, we define φ_{Γ} as $\varphi_{\Gamma}^{\mathcal{N}, V, \iota}$. If $\$ \in \Gamma$, we adjust $\varphi_{\Gamma}^{\mathcal{N}, V, \iota}$ slightly. Assuming $\$ = a_{i_j} \in \Gamma$, we replace the variable x_{i_j} with the constant 1 in $\varphi_{\Gamma}^{\mathcal{N}, V, \iota}$. Given this construction, it is clear that $\Psi^{-1}(\llbracket \varphi_{\Gamma} \rrbracket) = \{w \in \Sigma^+ \mid T \text{ accepts } w\$ \}$, as φ_{Γ} mimics the computation of T for all possible attention situations Γ .

For the inclusion $\text{QFPA} \subseteq \text{NoPE-AHAT}[\leq, \mathsf{U}]$, we observe that $\text{QFPA} \subseteq \text{SemiAlg}[\leq 1]$, and thus the inclusion follows from [Proposition A.1](#). \square

C COUNTING PROPERTIES EXPRESSIBLE BY OTHER MODELS

C.1 SEMILINEAR COUNTING PROPERTIES

A counting property $P \subseteq \mathbb{N}^d$ is said to be *semilinear* if it can be defined as a boolean combination of inequalities over linear arithmetic expressions (over variables x_1, \dots, x_d and integer constants) and modulo arithmetic expressions of the form $x_i \equiv a \pmod{b}$, where $a, b \in \mathbb{N}$ are fixed constants. In particular, semilinear counting properties cannot define semialgebraic counting properties involving polynomials of degrees 2 or above.

It is also convenient to use quantifiers when defining semilinear sets. In particular, they do not increase the expressive power since they can be eliminated. This results in the logic called *Presburger arithmetic (PA)*, which refers to the first-order theory of the structure $\langle \mathbb{N}; +, 0, 1, < \rangle$; see ([Haase, 2018](#); [Chistikov, 2024](#)).

C.2 PERMUTATION-INVARIANT LANGUAGES OF LTL WITH COUNTING

$\text{LTL}[\text{Count}]$ has the following syntax:

$$\begin{aligned} \phi &::= a \mid t \leq t \mid \neg\phi \mid \phi \vee \phi \mid \mathbf{X} \phi \mid \phi \mathbf{U} \phi \\ t &::= k \mid k \cdot \overleftarrow{\#} \phi \mid k \cdot \overrightarrow{\#} \phi \mid t + t \end{aligned}$$

where $a \in \Sigma$ and $k \in \mathbb{Z}$. Next we define the semantics of $\text{LTL}[\text{Count}]$. For any word $w = a_1 a_2 \dots a_{\ell} \in \Sigma^*$ with $a_1, a_2, \dots, a_{\ell} \in \Sigma$, for each $1 \leq i \leq \ell$, and each formula $\phi \in \text{LTL}[\text{Count}]$ we write $w, i \models \phi$ if the formula ϕ is satisfied in w at position i . Formally, this relation is defined inductively as follows:

- $w, i \models a$ (for $a \in \Sigma$) iff $a_i = a$,
- $w, i \models \neg\phi$ iff $w, i \not\models \phi$,
- $w, i \models \phi \vee \psi$ iff $w, i \models \phi$ or $w, i \models \psi$,
- $w, i \models X\phi$ iff $i < \ell$ and $w, i + 1 \models \phi$,
- $w, i \models \phi U \psi$ iff there is $i \leq j \leq k$ with $w, j \models \psi$ and for all $i \leq k < j$ we have $w, k \models \phi$,
- $w, i \models t_1 \leq t_2$ iff $\llbracket t_1 \rrbracket(w, i) \leq \llbracket t_2 \rrbracket(w, i)$ where the semantics $\llbracket t \rrbracket: \Sigma^* \times \mathbb{N} \rightarrow \mathbb{Z}$ of a term t is defined as follows: $\llbracket k \rrbracket(w, i) = k$, $\llbracket t_1 + t_2 \rrbracket(w, i) = \llbracket t_1 \rrbracket(w, i) + \llbracket t_2 \rrbracket(w, i)$, $\llbracket k \cdot \overleftarrow{\#\phi} \rrbracket = k \cdot |\{1 \leq j < i \mid w, j \models \phi\}|$, and $\llbracket k \cdot \overrightarrow{\#\phi} \rrbracket = k \cdot |\{i \leq j \leq \ell \mid w, j \models \phi\}|$.

Our main result on LTL[Count] is the following:

Theorem C.1. *Every permutation-invariant language definable in LTL[Count] has a semilinear Parikh image.*

Before we can prove [Theorem C.1](#), we need a few more definitions. For an alphabet Σ write Σ_ε for the set $\Sigma \cup \{\varepsilon\}$. A (d -dimensional) *Parikh automaton* is a tuple $\mathfrak{A} = (Q, \Sigma, \iota, \Delta, (C_q)_{q \in Q})$ where Q is a finite set of *states*, Σ is the *input alphabet*, $\iota \in Q$ is an *initial state*, $\Delta \subseteq Q \times \Sigma_\varepsilon \times \mathbb{N}^d \times Q$ is a finite *transition* relation, and $C_q \subseteq \mathbb{N}^d$ are semilinear *target sets*. A word $w \in \Sigma^*$ is *accepted* by \mathfrak{A} if there are $a_1, a_2, \dots, a_\ell \in \Sigma_\varepsilon$, states $q_0, q_1, \dots, q_\ell \in Q$, and vectors $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_\ell \in \mathbb{N}^d$ such that (i) $q_0 = \iota$ and $\mathbf{v}_0 = \mathbf{0}$, (ii) for each $0 \leq i < \ell$ there is a transition $(q_i, a_i, \mathbf{x}_i, q_{i+1}) \in \Delta$ with $\mathbf{v}_{i+1} = \mathbf{v}_i + \mathbf{x}_i$, and (iii) $\mathbf{v}_\ell \in C_{q_\ell}$. The accepted language $L(\mathfrak{A})$ of \mathfrak{A} is the set of all words accepted by \mathfrak{A} . It is a well-known fact that for each Parikh automaton \mathfrak{A} the accepted language $L(\mathfrak{A})$ has a semilinear Parikh image. Observe that 0-dimensional Parikh automata are essentially NFA and, hence, accept exactly the regular languages.

A *Parikh transducer* is a Parikh automaton with input alphabet $\Sigma_\varepsilon \times \Gamma_\varepsilon$ where Σ and Γ are two alphabets. The accepted language $L(\mathfrak{A}) \subseteq \Sigma^* \times \Gamma^*$ of a Parikh transducer can also be seen as a map: if $(v, w) \in L(\mathfrak{A})$ then we can see v as the input and w as the output of the transducer. Formally, for an input language $L \subseteq \Sigma^*$ a Parikh transducer computes the output $T_{\mathfrak{A}}(L) = \{w \in \Gamma^* \mid \exists v \in L: (v, w) \in L(\mathfrak{A})\}$. If L is accepted by a Parikh automaton then $T_{\mathfrak{A}}(L)$ is also accepted by a Parikh automaton. To see this, we can take the synchronized product of the Parikh automaton \mathfrak{B} accepting L and \mathfrak{A} (i.e., \mathfrak{B} reads the same letter from the input as \mathfrak{A} in its first component). Accordingly, cascading of Parikh transducers is also possible, i.e., if \mathfrak{A} and \mathfrak{B} are Parikh transducers over $\Sigma_\varepsilon \times \Gamma_\varepsilon$ and $\Gamma_\varepsilon \times \Pi_\varepsilon$, we can also construct a Parikh transducer \mathfrak{C} over $\Sigma_\varepsilon \times \Pi_\varepsilon$ computing $T_{\mathfrak{C}} = T_{\mathfrak{B}} \circ T_{\mathfrak{A}}$.

With the definition of Parikh automata and Parikh transducers we are now able to prove [Theorem C.1](#).

Proof. Let $\phi \in \text{LTL}[\text{Count}]$ be a formula such that the described language $L(\phi)$ is permutation-invariant. We will prove by induction on the structure of ϕ that the Parikh image of $L(\phi)$ (or actually a *bounded* subset of $L(\phi)$) is semilinear. Here, a language $L \subseteq \Sigma^*$ is *bounded* if there are letters $a_1, a_2, \dots, a_n \in \Sigma$ with $L \subseteq a_1^* a_2^* \cdots a_n^*$. So, let $a_1, a_2, \dots, a_n \in \Sigma$ be distinct letters with $\Sigma = \{a_1, a_2, \dots, a_n\}$. Then $L(\phi) \cap a_1^* a_2^* \cdots a_n^*$ is clearly bounded and has the same Parikh image as $L(\phi)$.

For each subformula ψ of ϕ we construct a Parikh transducer that labels each position satisfying ψ . In the base case, we decorate each letter a by $\mathbf{b} \in \{0, 1\}^n$ where $\mathbf{b}[i] = 1$ iff $a_i = a$. Note that this transducer handles all atomic formulas $a \in \Sigma$ at once. For $\psi = \chi_1 \vee \chi_2$ we add the decoration $\mathbf{b} \in \{0, 1\}$ to each letter where $b = 1$ iff one of the decorations corresponding to χ_1 and χ_2 is 1. There are similar transducers (which do not introduce counters) for the cases $\psi = \neg\chi$, $\psi = X\chi$, and $\psi = \chi_1 U \chi_2$. Note that applying these transducers to a bounded language always yields another bounded language.

Now, consider a counting subformula, i.e. $\psi = \sum_{i=1}^{\ell_1} k_i \cdot \overleftarrow{\#\chi_i} + \sum_{i=\ell_1+1}^{\ell_2} k_i \cdot \overrightarrow{\#\chi_i} \leq k$. Observe that the set of positions satisfying ψ is convex in the set of positions satisfying any χ_i . This is true since we consider only a bounded input language. Hence, we can split the input word into three (possibly empty) intervals: (i) the positions at the beginning of the input that do not satisfy ψ , (ii) the positions where all positions satisfying a χ_i also satisfy ψ , and (iii) the positions at the end of the input that do not satisfy ψ . We describe in the following a Parikh transducer with $3 \cdot \ell_2$ many counters - one for each of these three intervals and each formula χ_i . The transducer guesses the three

i, j	Val. Perf.	Test Perf.	Gen. Perf.
1,3	0.016	0.02/0.99	0.03/0.99
3,2	0.002	0.003/0.99	0.60/0.93
3,3	0.001	0.002/0.99	2.26/0.85
4,2	0.001	0.001/0.99	0.26/0.96
5,1	0.004	0.004/0.99	0.03/0.99

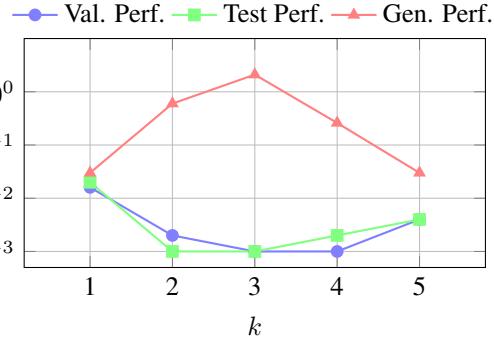


Figure 4: Performance of softmax transformer classifiers for $L_{i,j}$ (for a selected set of i and j combinations). **Validation Performance (Val. Perf.)**: BCEWithLogitsLoss on validation data. **Test Performance (Test Perf.)**: BCEWithLogitsLoss and Accuracy (separated by $/$) on test data. **Generalization Performance (Gen. Perf.)**: BCEWithLogitsLoss and Accuracy (separated by $/$) on generalization test set. The y-axis uses a logarithmic scale to accommodate the different orders of magnitude in the results.

intervals (note that this is non-deterministic), counts positions satisfying a χ_i accordingly, decorates only the positions in the second interval labeled with a χ_i with 1 (and everything else with a 0), and validates in the end our choice of the intervals (via appropriate semilinear target sets ensuring that the equation in ϕ is not satisfied in the first and third interval and is satisfied in the second interval). Clearly, this all can be done in one (non-deterministic) Parikh transducer.

Finally, we have a cascade of (Parikh) transducers decorating each position in a bounded input word with a Boolean value indicating whether ϕ holds in that position. If we use $a_1^*a_2^*\cdots a_n^*$ as input language for our transducers (note that this language is regular) and intersect the output with all words decorated with a 1 in the first position, we obtain a Parikh automaton accepting exactly the language $L(\phi) \cap a_1^*a_2^*\cdots a_n^*$. Since Parikh automata accept only languages with semilinear Parikh image, we infer that $L(\phi) \cap a_1^*a_2^*\cdots a_n^*$ and, hence, $L(\phi)$ have a semilinear Parikh image. \square

D FURTHER EXPERIMENTAL VALIDATION

In this section, we report additional experiments addressing a similar research question as posed in Section 6, namely, do softmax transformers perform well on formal languages with inherent non-linear counting properties? Therefore, we consider the language

$$L_{i,j} = \{a^m b^n c^{m^i n^j} \mid m, n \in \mathbb{N}^{\geq 1}\}$$

for selected values of i and j . Clearly, recognising this language requires non-linear counting capabilities. Moreover, in contrast to L_k (see Section 6), this language poses a greater challenge in learning tasks due to its structure (all b 's follow all a 's followed by all c 's) and larger alphabet size.

The experimental setup is identical to that presented in Section 6. The results are presented in Figure 4 for five distinct combinations of i and j . Similar to our previous experiments, the table on the left shows the highest observed performance on the validation dataset (first column) and the best performance on a balanced test dataset derived from the same distribution as the training and validation data (second column). This indicates that this dataset also contains only words of length up to 500. The final column represents another balanced test dataset of words from length 501 to 1000, utilised to potentially reveal length generalisation performance. The plot on the right visualises the results reported in the table.

We again observe very high performance of our trained softmax transformers on the in-distribution test dataset (second column), which shares the same distribution as our training dataset. The performance generally remains high on the generalisation test set (third column) as well. We witnessed a slight decrease compared to the results on the in-distribution test in the case of $L_{3,3}$ (accuracy of 0.85). A general decrease in performance on longer inputs is expected and also witnessed in other studies (cf. Huang et al. (2025)), but it also indicates that focused studies are essential to reveal rigorous insights

1026 into the relationship between the expressibility of polynomial counting properties we established and
1027 their practical learnability.
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079