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ABSTRACT

Counting properties (e.g. determining whether certain tokens occur more than
other tokens in a given input text) have played a significant role in the study of
expressiveness of transformers. In this paper, we provide a formal framework for
investigating the counting power of transformers. We argue that all existing results
demonstrate transformers’ expressivity only for (semi-)linear counting properties,
i.e., which are expressible as a boolean combination of linear inequalities. Our
main result is that transformers can express counting properties that are highly
nonlinear. More precisely, we prove that transformers can capture all semialgebraic
counting properties, i.e., expressible as a boolean combination of arbitrary multi-
variate polynomials (of any degree). Among others, these generalize the counting
properties that can be captured by C-RASP softmax transformers, which capture
only linear counting properties.
To complement this result, we exhibit a natural subclass of (softmax) transformers
that completely characterizes semialgebraic counting properties. Through connec-
tions with the Hilbert’s tenth problem, this expressivity of transformers also yields
a new undecidability result for analyzing an extremely simple transformer model
— surprisingly with neither positional encodings (i.e. NoPE-transformers) nor
masking. We also experimentally validate trainability of such counting properties.

1 INTRODUCTION

Transformers Vaswani et al. (2017) have emerged in recent years as a powerful model with a plethora
of successful applications including (among others) natural language processing, computer vision,
and speech recognition. Despite the success of transformers, the question of what transformers can
express is still not well-understood and has in recent years featured in a rich body of research works
(e.g. Strobl et al. (2024); Hahn (2020); Pérez et al. (2021); Hao et al. (2022)). In particular, formal
language theory provides a formal framework in understanding expressivity issues for sequential
models like transformers and Recurrent Neural Networks (RNNs).

One recurring theme when studying the expressibility of transformers is the counting power of
transformers. Intuitively, counting amounts to asserting an arithmetic relationship between the
numbers of occurrences of various tokens in a given text. Counting properties are essentially the class
of properties for textual data under consideration in the well-known Vector Space Model (VSM) Salton
et al. (1975); Wong et al. (1985); Shawe-Taylor & Cristianini (2004), or the similar Bag-of-Words
(BoW) model Harris (1954), which are known from the information retrieval community to be able to
measure text similarity, among others. A simple example of a counting property can be found in a
sentiment analysis application1: the number of positive words exceeds the number of negative words
in a text. In the formal language theory, such a counting property can be formalized as the following
language

MAJ := {w ∈ {a, b}∗ : |w|a > |w|b}, (1)

which is often referred to as majority. Here, |w|a (resp. |w|b) refers to the number of occurrences of
a (resp. b) in the string w. For example, aab ∈ MAJ but abb /∈ MAJ. Note that “tokens” in NLP
are synonymous to “letters” in formal language theory. Another counting property that plays an
important role in the theory of expressibility of transformers is parity language:

PARITY := {w ∈ {a, b}∗ : a occurs an even number of times in w}. (2)

1https://medium.com/data-science/sentiment-analysis-with-text-mining-13dd2b33de27
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Multiple theoretical and empirical results (e.g. Hahn & Rofin (2024); Chiang & Cholak (2022);
Huang et al. (2025); Hahn (2020); Hao et al. (2022); Bhattamishra et al. (2020); Anil et al. (2022);
Delétang et al. (2023)) have shown that, while transformers can be efficiently trained for MAJ, this is
not the case for PARITY. Several theoretical explanations have been offered, e.g., sensitivity by Hahn
& Rofin (2024) and length generalization admitted by limit transformers by Huang et al. (2025)).

Thus far, existing results have touched only upon semilinear counting properties. For example,
defining MAJ requires only a linear inequality (i.e. |w|a > |w|b). In fact, logical languages, which
were devised in Barceló et al. (2024); Yang & Chiang (2024); Huang et al. (2025) epitomizing
languages expressible by transformers, permit only linear expressions (e.g. |w|a + |w|b > 2.|w|c).
However, polynomial expressions (cf. Shawe-Taylor & Cristianini (2004)) are also used to express
co-occurrence of terms/tokens in a text. For example, using a higher-degree monomial such as

#(nvidia)×#(intel)×#(deal),

where #(w) counts the number of occurrences of a word w in the text, one can emphasize the
co-occurrence of “nvidia”, “intel” and “deal” in a text. This motivates the following question:

Research Question. What counting properties are expressible on transformers? Can they express
nonlinear counting properties?

The main contribution of this paper is the following result.

Theorem 1.1. Transformers can capture all semialgebraic counting properties, i.e., those expressible
as a boolean combination of inequalities between multivariate polynomials, where each variable
counts the number of occurrences of a specific token in the text.

This means that transformers can capture expressions involving higher-degree polynomials like:

7#(nvidia)×#(intel)×#(deal) + 2#(shares)− 8#(war) > 10,

or boolean combinations (i.e. unions/intersections) of similar polynomial expressions. We provide a
rigorous proof of this result (using softmax transformers) and experimentally validate this claim. In
particular, our proof requires the use of neither positional encodings nor positional masking.

The next question we address is an attempt to better understand the expressivity of softmax transform-
ers for capturing counting properties: which class of softmax transformers capture semialgebraic
counting properties? To this end, we provide a rather surprising characterization involving average
hard attention Hao et al. (2022); Pérez et al. (2021), which was devised to “approximate” soft
attention by attending to all positions with maximum attention score and forwarding their average.
In particular, Average Hard Attention Transformers (AHATs) with only uniform layers (written
AHAT[U]) — that is, where maximum attention score is achieved at every position — immediately
form a subclass of SoftMax Attention Transformers (SMAT). In the sequel, we write NoPE-AHAT
(resp. NoPE-AHAT[U]) to mean AHAT (resp. AHAT[U]) that do not use Positional Encodings (PEs)
(also no positional masking).

Theorem 1.2. NoPE-AHAT and NoPE-AHAT[U] capture precisely semialgebraic counting proper-
ties. In particular, as far as expressing counting properties, NoPE-AHAT is a subset of SMAT.

This theorem is a surprising result, especially because it is still a major open problem whether AHAT
can be captured by SMAT Yang & Chiang (2024); Hahn (2020); Yang et al. (2024b) for general (not
necessarily) counting properties.

A corollary of Theorem 1.1, combined with Matiyasevich’s celebrated solution to the notorious
Hilbert’s 10th Problem Matiyasevich (1993), is a kind of universality (i.e. Turing-completeness)
of transformers. More precisely, any recursively enumerable counting property P ⊆ Σ∗ can be
represented in terms of a program that, given an input string w ∈ Σ∗, feeds each string wv (where
v ∈ Γ∗, for some Γ ∩ Σ = ∅) into a transformer T and accepts if T accepts some wv. In this case,
we say that P is a projection of the language accepted by T . In fact, we show that transformers T
with only two attention layers are sufficient and necessary to achieve this result:

Theorem 1.3. Every recursively enumerable counting property is a projection of a language recog-
nized by a NoPE-AHAT[U], and thus by an SMAT. Here, two attention layers in NoPE-AHAT[U]
and SMAT are sufficient.
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Figure 1: Visualization of our results.

Similarly, our results also imply a new undecidability result for analyzing an extremely simple
transformer model—surprisingly with neither positional encodings (i.e. NoPE-transformers) nor
masking:

Theorem 1.4. Given a NoPE-AHAT[U] or SMAT (with just two attention layers), it is undecidable
whether its language is empty.

Recent results on this, established by Sälzer et al. (2025), require a substantially more complex
architecture, including non-trivial, idealised components, to achieve such an undecidability result,
i.e., with powerful positional encoding and average hard attention.

Finally, how do general transformers compare with other machine learning models as far as capturing
counting properties? To this end, let us discuss two models. First is the class of polynomial separators
that can be generated by mapping to a higher dimension and look for a linear separator in this higher
dimension. This is a standard technique in classical machine learning literature, where one can
apply techniques like Support Vector Machines (SVM) (e.g. using polynomial kernel) in the Vector
Space Model (VSM) Salton et al. (1975); Wong et al. (1985) (also see Chapter 10 of Shawe-Taylor
& Cristianini (2004)). Our result shows that transformers generalize such counting properties, in
that not only polynomial counting properties can be captured, but also boolean combinations thereof.
Second is the model called C-RASP Huang et al. (2025), which is a simple declarative language
that formalizes the so-called RASP-L conjecture Zhou et al. (2024) capturing “efficiently learnable”
properties on transformers. In particular, C-RASP allows only inequalities over linear counting terms.
We prove that C-RASP can capture only linear counting properties. Our experiments supporting
Theorem 1.1 reveals that counting properties like

Lk := {w ∈ {a, b}+ : |w|ka ≥ |w|b}

are also efficiently learnable for k ≥ 2. This suggests that C-RASP provides only a partial characteri-
zation of efficiently learnable properties.

Organization. We recall transformer models and define our framework for studying counting
properties in Section 2. We then show how to capture semialgebraic counting properties using
transformers in Section 3. In Section 4, we provide a natural subclass of softmax transformers that
completely characterizes semialgebraic counting properties. In Section 5, we show applications of
our semialgebraic results for a better understanding of expressiveness of transformers, e.g., universal-
ity/undecidability and comparison to work on C-RASP transformers. We report our experimental
results in Section 6 and conclude in Section 7. Some details have been relegated into the Appendix.

2 FRAMEWORK: TRANSFORMERS AND COUNTING PROPERTIES

In this section, we define a formal framework for investigating the expressive power of transformers
for counting properties.

Formal language theory primer We assume some basic understanding of formal language theory
(at the level of a standard undergraduate textbook by Sipser (2013)) and will only fix some notation.

For an alphabet Σ = {a1, . . . , am}. A language is a set of strings over Σ. We Σ∗ (resp. Σ+) to mean
the set of all strings (resp. all nonempty strings) over Σ. We write |w| to denote the length of w. For
each a ∈ Σ, we write |w|a to mean the number of occurrences of a in w. A language K ⊆ Σ∗ is a
projection of a language L ⊆ Σ∗ if there is a subalphabet Γ ⊆ Σ such that K is obtained from L by
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deleting all occurrences of letters in Γ from words in L. For a class C of languages, by Proj(C), we
denote the class of projections of languages in C.

We will touch upon regular languages and recursively enumerable languages (see Sipser (2013) for
details). In summary, regular languages are languages that can be described by regular expressions.
Recursively enumerable languages are those that are recognized by (possibly nonterminating) Turing
machines. The class of such languages is denoted RE. In particular, a machine model is said to be
Turing-complete if it can capture all recursively enumerable languages.

For an alphabet Σ = {a1, . . . , am}, we define the Parikh image (a.k.a. Parikh map) as the function
Ψ: Σ∗ → Nm, where Ψ(w)[i] := |w|ai is the number of ai’s in w. Intuitively, Parikh image of a
word w provides the letter counts in w, e.g., over Σ = {a, b}, we have Ψ(abaa) = (3, 1). The Parikh
map can also be extended to a language L; that is, Ψ(L) = {Ψ(w) : w ∈ L} ⊆ N|Σ|. For example,
if L = {anbnan : n ≥ 0} is a language over Σ = {a, b}, we have Ψ(L) = {(2n, n) : n ≥ 0}.

2.1 TRANSFORMERS

We now recall the formal definition of transformers. Loosely speaking, a transformer is a composition
of finitely many attention layers, each converting a sequence σ of Rd-vectors into another sequence
σ′ of Rk-vectors, for some d and k. To turn a transformer T into a language recognizer, we have
to embed any letter in the finite alphabet Σ as a Rd-vector, where d is smaller than the dimension
of the first attention layer. For example, Σ = {a, b, c}, and the one-hot embeddings of a, b, c are
(respectively) (1, 0, 0), (0, 1, 0), and (0, 0, 1). Finally, to determine acceptance, we simply run T on
the embeddings of the input string w into a sequence of vectors (possibly expanded with positional
information) and check if the last vector v satisfies that the dot product v.t is greater than 0 (for some
pre-defined vector t of weights). In particular, w is accepted by T iff v.t > 0.
Example. Suppose we are given the input string w = abac. Additionally, suppose we use the
positional embedding p : n 7→ 1/n. Then, checking whether T accepts w amounts to running T on
the sequence σ:

(1, 0, 0, 1)(0, 1, 0, 1/2)(1, 0, 0, 1/3)(0, 0, 1, 1/4).

After running T on σ, the resulting sequence is of the form v1,v2,v3,v4. Determining whether T
accepts w amounts to checking whether t.v1 > 0. For example, v1,v2,v3,v4 could be:

(1, 1, 7, 1, 1)(2, 3, 1, 10, 1/2)(1, 8, 0, 8, 1/3)(0, 0, 1,−1, 1/4)
which will be accepted, whenever t = (1, 0, 0, 1, 0).

Next we formalize the definition of transformers by defining how each attention layer functions.

ReLU networks. We first define ReLU networks, which are used inside an attention layer. A
ReLU node v is a function Qm → Q, where m ∈ N is referred to as the input dimension, and is
defined as v(x1, . . . , xm) = max(0, b +

∑n
i=1 wixi), where wi ∈ Q are the weights, and b ∈ Q

is the bias. [In practice, GeLU and SwiGLU are also used instead of ReLU, which we do not
consider in this paper.] A ReLU layer ℓ is a tuple of ReLU nodes (v1, . . . , vn), all having the same
input dimensionality, computing a function Rm → Rn, where n ∈ N is referred to as the output
dimension. Finally, a ReLU network N is a tuple of ReLU layers (ℓ1, . . . , ℓk), such that the input
dimension of ℓi+1 is equal to the output dimension of ℓi. It computes a function Qm1 → Qnk , given
by N (x1, . . . , xm1

) = ℓk(· · · ℓ1(x1, . . . , xm1
) · · · ).

Attention layers Each attention layer involves a weight normalizer wt : R∗ → R∗, which turns
any d-sequence of weights into another such d-sequence. Two widely used weight normalizers are:

1. The softmax normalizer softmax. That is, given a sequence σ = x1, . . . , xn ∈ R, define
softmax(σ) := y1, . . . , yn, where

yi :=
exi∑n
j=1 e

xj
.

2. The averaging hard attention normalizer aha. We define aha(σ) := y1, . . . , yn, where

yi :=

{
1/|P | if xi = max(σ),
0 or else.

4
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where P consists of positions i in σ such that xi is maximum in σ. That is, aha behaves
like softmax but maps all non-maximum weights to 0, and all maximum weights to 1/|P |.

One can also allow a temperature scaling τ > 0 to softmax, i.e., softmaxτ (σ) = y1, . . . , yn and set
yi :=

exi/τ∑n
j=1 exj/τ

. This is not so relevant in our paper since our proof works for any τ > 0.

An attention layer is a function λ : (Rd)∗ → (Re)∗, given by affine maps Q,K : Rd → Rm,
V : Rd → Rk (query, key, and value matrices) and a ReLU neural net N : Qd+k → Qe. Given
an input sequence x = (x1, . . . ,xn) ∈ (Qd)n, the output sequence y = (y1, . . . ,yn) ∈ (Qd)n is
computed as follows. First, one computes the sequences of key, query, and value vectors: ki =
Kxi, qi = Qxi, vi = V xi, for each i = 1, . . . , n, then we define

yi = N (xi,ai)

with ai =
∑n

j=1 w(j)vj , where w = wt({⟨ki, qj⟩}nj=1).

We say that λ is a softmax (resp. aha) layer if wt = softmax (resp. aha). We say that it is a
uniform-aha layer if it is an aha layer such that Kx = Qx = 0 for all x, i.e., ⟨Kx, Qy⟩ = 0 for all
x and y. Note that a uniform-aha is both an aha layer and a softmax layer since noting that

softmax(s1, . . . , sn) = softmaxτ (s1, . . . , sn) = aha(s1, . . . , sn) = [1/n, · · · , 1/n],
whenever s1 = · · · = sn, which can be guaranteed for uniform aha layers. This holds for all τ > 0.
Remark. Some papers (e.g. Yang et al. (2024a); Huang et al. (2025); Yang & Chiang (2024)) apply
strict future masking, which means that attention is only applied to positions up to the current position
i. Our work does not apply masking.

Defining transformers. To define a transformer and its language, we first extend the finite alphabet
Σ with an end marker $ /∈ Σ. That is, Γ := Σ ∪ {$}. A transformer with ℓ layers over a finite
alphabet Σ is then a function T : Σ+ → {0, 1}, given by: (i) the “input embedding” function
ι : Γ→ Qd1 , (ii) the positional encoding p : N2 → Rd1 , and (iii) a sequence of layers λ1 : (Rd1)∗ →
(Rd2)∗, . . . , λℓ : (Rdℓ)∗ → (Rdℓ+1)∗. Given an input word w = a1 · · · an ∈ Σn, the output T (w) is
computed as follows. First, we set x1 = ι(a1)+p(n+1, 1), . . . , xn = ι(an)+p(n+1, n), xn+1 =
ι($) + p(n+ 1, n). Then we compute (y1, . . . ,yn+1) = λℓ(λℓ−1(· · ·λ1(x1, . . . ,xn+1) · · · )), and
we set T (w) = 1 if and only if yn[1] > 0, and T (w) = 0 otherwise. The language L(T ) accepted
by T is defined as {w ∈ Σ∗ : T (w) = 1}. We say that T has no positional encoding (NoPE) if the
positional encoding is a constant function.
Remark. Several studies (e.g., Merrill & Sabharwal (2023b); Sälzer et al. (2025); Li & Cotterell
(2025)) consider the capabilities of transformers in the context of restricted precision, such as
assuming computations are carried out under the assumption of finite representation sizes. We do
not focus on these aspects, but note that it is easy to see that our key results, such as Proposition 3.1,
also apply under so-called log-precision assumptions (cf. (Merrill & Sabharwal, 2023b), also see
(Merrill & Sabharwal, 2023a)) for rational numbers. This means that the binary representation size of
a number p/q ∈ Q grows logarithmically with the length of the input.

A Softmax Attention Transformer is a transformer using only softmax layers whereas an AHA
Transformer is a transformer using only aha layers. By SMAT we denote the class of all languages
accepted by softmax attention transformers and by AHAT we denote the class of all languages
accepted by AHA transformers. To all classes we of transformer languages we append “[U]” to
denote languages of transformers with only uniform layers, e.g. AHAT[U]. We prepend “NoPE” to
denote only languages of transformers with no positional encoding, e.g. NoPE-AHAT[U]. Note that
all transformer models we are considering in this paper have only one attention head.

2.2 COUNTING PROPERTIES

We now define a framework for studying the counting ability of transformers. Intuitively, our
framework focuses on “counting properties”. As we shall see below, we can build many interesting
formal languages with the help of purely counting properties.

Given a permutation π : {1, . . . , n} → {1, . . . , n} and a string w = w1 · · ·wn of length n, the string
π(w) := wπ(1) · · ·wπ(n) is obtained by permuting the letters in w according to π.
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Definition 2.1. A counting property over the alphabet Σ is a permutation-closed language L, i.e., for
each w ∈ Σ∗, it is the case that w ∈ L iff π(w) ∈ L for each permutation π over {1, . . . , |w|}.

Examples of counting properties are MAJ and PARITY (see (1), (2)). We often identify a counting
property L with its set Ψ(w) ⊆ N|Σ| of letter counts (i.e. Parikh image). By PI, we denote the
class of counting properties over Σ. Counting properties are also called permutation-invariant or
“proportion-invariant” languages, e.g., see Pérez et al. (2021); Barceló et al. (2024).

Why counting properties? Certainly, many languages of interests have both a “counting com-
ponent” and an “order component”. Take, for example, the language L1 = {anbncn : n ≥ 0}.
Our framework focuses on purely counting properties for two reasons. Firstly, it abstracts away
non-counting components that cannot be captured by the model. Secondly, many formal languages
L of interests can be constructed by taking intersection of a counting property P and an order
(and counting-insensitive) language L′. For example, L1 above can be written as P ∩ L′, where
P = {w ∈ Σ∗ : |w|a = |w|b = |w|c} and L′ = a∗b∗c∗. Finally, multiple key languages in the
literature on the expressivity of transformers are in fact counting properties (e.g. MAJ and PARITY).

3 CAPTURING SEMIALGEBRAIC COUNTING PROPERTIES

A subset S ⊆ Nm is semi-algebraic if it is a Boolean combination of sets of the form Sp = {x ∈
Nm | p(x) > 0} for some polynomial p ∈ Z[X1, . . . , Xm]. A language L ⊆ Σ∗ is semi-algebraic if
there is a semi-algebraic set S ⊆ Nm and Σ = {a1, . . . , am} such that L = {w ∈ {a1, . . . , am}∗ |
Ψ(w) ∈ S}. Let SemiAlg denote the class of semi-algebraic languages. An example is

SQRT = {w ∈ {a, b}∗ | |w|a < |w|/
√
2}, , (3)

since |w|a < |w|/
√
2 if and only if 2|w|2a < |w|2. Likewise, extending the coefficients of our

polynomials to rational numbers does not increase the expressiveness of semialgebraic sets, e.g.,
7
3xy+y

2 > 8x−3 can be rewritten as 7xy+3y2 > 24x−9. Note that for every p ∈ Z[X1, . . . , Xm],
the set {x ∈ Nm | p(x) = 0} is semi-algebraic, because p(x) = 0 if and only if −p(x)2 + 1 > 0.
Thus, every solution set to polynomial equations is also semi-algebraic.

We show Theorem 1.1. Since AHAT[U] ⊆ SMAT, it sufices to construct a AHAT[U]. We will even
construct a NoPE-AHAT[U]. The key ingredient is:
Proposition 3.1. For every polynomial p ∈ Z[X1, . . . , Xm], the language Lp>0 = {w ∈
{a1, . . . , am}∗ | p(Ψ(w)) > 0} belongs to NoPE-AHAT[U]. Thus, Lp>0 is in SMAT.

Let us see why Proposition 3.1 implies SemiAlg ⊆ NoPE-AHAT[U]. First, the complement of each
language Lp>0 can be obtained, because p(x) > 0 is violated if and only if−p(x)+1 > 0. Moreover,
NoPE-AHAT is closed under union and intersection (we prove a stronger fact in Appendix A.2). We
can thus accept all Boolean combinations of languages of the form Lp>0, and hence SemiAlg.

To show Proposition 3.1, we will use polynomials that are homogeneous, meaning all monomials have
the same degree. Note that given an arbitrary polynomial p ∈ Z[X1, . . . , Xm] of degree d, we can
consider the polynomial q ∈ Z[X0, . . . , Xm] with q = Xd

0p(
X1

X0
, . . . , Xm

X0
), which is homogeneous.

It has the property that p(x1, . . . , xm) > 0 if and only if q(1, x1, . . . , xm) > 0. Therefore, from now
on, we assume that we have a homogeneous polynomial q ∈ Z[X0, . . . , Xm] and want to construct
an AHAT[U] for the language Kq = {w ∈ {a1, . . . , am}∗ | q(1,x) > 0 for x = Ψ(w)}.
To simplify notation, we denote the end marker by a0. Thus, the input will be a string w ∈
{a0, . . . , am}+ that contains a0 exactly once, at the end. Since |w|a0 = 1 is satisfied automatically,
our AHAT[U] only has to check that q(x0, . . . , xm) > 0, where xi = |w|ai . The input encoding is
the map {a0, . . . , am}∗ → Qm with ai 7→ ei, where ei ∈ Qm is the i-th unit vector.

Overall idea Roughly speaking, we implementing multiplication via averaging using the following
idea. For each letter ai, we have a gadget that can multiply an existing entry y ∈ [0, 1] (in each vector)
by xi

n+1 (recall that n is the overall word length). This is done by first multiplying the existing entries
either (i) by 1 if the current letter is ai or (ii) by 0 if the current letter is not ai. This is achieved using
a ReLU layer, by observing that for u ∈ [0, 1] and v ∈ {0, 1}, we have u · v = ReLU(u− (1− v)).

6
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After this, we take the average over the entire input in this component. Since we make sure that all the
entries we multiplied with 0 or 1 had the same value y ∈ [0, 1], taking the average will result in the
value y·xi

n+1 . If we do this repeatedly for a monomial xi1 · · ·xid , then we arrive at the value xi1
···xid

(n+1)d
.

Since our homogenization step ensured that all our monomials have the same degree d, adding up the
entries corresponding to the monomials will yield p(Ψ(w))

(n+1)d
. Finally, the latter quantity is positive if

and only if p(Ψ(w)) > 0.

Step I: Compute frequencies Our AHAT[U] first uses an attention layer to compute m+ 1 new
components, where i-th component holds xi

n+1 , where n+ 1 is the length of the input (including the
end marker). This is easily done by attending to all positions and computing the averages of the first
m+ 1 components. To simplify notation, we will index vectors starting with index 0.

Step II: Multiplication gadgets Second, we have a sequence of gadgets (each consisting of one
ReLU layer and one attention layer) that perform the multiplication. Each gadget introduces a new
component, and does not change the existing components. Between gadget executions, the following
additional invariants are upheld: (i) Overall, a gadget does not change existing components: it
introduces one new component. (ii) The components {0, . . . ,m} are called the initial components.
(iii) All other components are uniform, i.e. they are the same across all positions. (iv) The uniform
components carry values in [0, 1]. Thus, we will call components 0, . . . ,m the initial components;
and we call components > m the uniform components.

Our gadgets do the following. Suppose we have already produced ℓ additional components. For each
initial component i ∈ [0,m] and uniform component j ∈ [m+ 1,m+ 1 + ℓ], gadget omult(ℓ, i, j),
which introduces a new component, will carry the value xi·yj

n+1 , where yj is the value in component j
of all vectors. Recall that we use xi to denote the number of ai occurrences in the input for i ∈ [0,m].

We implement the gadget omult(ℓ, i, j) using some ReLU layers and an attention layer. Suppose that
before, we have the vector up ∈ Qm+1+ℓ in position p. First, using ReLU layers, we introduce a new
component that in position p has the value up[i] · up[j]. This can be achieved since up[i] is in {0, 1}
and up[j] ∈ [0, 1]: Notice that up[i] · up[j] = ReLU(up[j] − (1 − up[i])). Indeed, if up[i] = 1,
then this evaluates to up[j]; if up[i] = 0, then we get ReLU(up[j]− 1) = 0. We then use uniform
attention to compute the average of this new up[i] · up[j]-component across all vectors. Since there
are n+ 1 vectors, exactly xi of them have up[i] = 1, and also up[j] = yj , we get the desired xi·yj

n+1 .

Step III: Computing the polynomial We now use our gadgets to compute the value of the polyno-
mial. For each monomial of q, sayXi1 · · ·Xid , we use d−1 gadgets to compute xi1 · · ·xid/(n+1)d:
The frequency computation in the beginning yields xi1/(n+ 1), and then we use gadgets to compute
xi1xi2/(n+1)2, xi1xi2xi3/(n+1)3, etc. until xi1 · · ·xid/(n+1)d. Finally, we use a ReLU layer to
multiply each monomial with a rational coefficient, and compute the sum of all the monomials. Thus,
we have computed q(x0, . . . , xm)/(n+ 1)d. We accept if and only if q(x0, . . . , xm)/(n+ 1)d > 0.
Note that this is the case if and only if q(x0, . . . , xm) > 0.

This completes Proposition 3.1 and thus SemiAlg ⊆ NoPE-AHAT[U]. We remark that the embedding
dimension and the number of layers of our transformer in Proposition 3.1 depends on the degree d and
the number M of monomials in p. We require at most O(d) layers, each layer increasing the degree
of the computed monomials by one. In the appendix, we detailed that polynomials of degree d are
accepted by NoPE-AHAT[U] using at most d attention layers (see Proposition A.1). The embedding
dimension is O(dM) because we store the value of each monomial in a separate dimension.

4 CHARACTERIZING SEMI-ALGEBRAIC COUNTING PROPERTIES

We have shown that NoPE-AHAT[U] ⊆ SMAT can capture semi-algebraic counting properties. We
now prove that the subclass NoPE-AHAT[U] precisely characterizes SemiAlg.
Proposition 4.1. NoPE-AHAT ⊆ SemiAlg.
Proof. Suppose that Σ = {a1, . . . , am} is our alphabet, a0 the end marker, and xi ∈ N the number
of occurrences of ai in the input. We say that a position p is an ai-position if the input holds ai at
position p. Notice that an AHAT without positional encoding cannot distinguish vectors that come
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from the same input letter. This means, in any layer, any two ai-positions will hold the same vector.
Thus, the vector sequence on layer ℓ is described by rational vectors uℓ,0, . . . ,uℓ,m, where uℓ,i is
the vector at all the ai-positions on layer ℓ. Moreover, for each i, the set of positions maximizing an
attention score also either contains all ai-positions, or none of them. Therefore, if the AHAT has a
attention layers, there are at most ((2m+1)m+1)a = 2(m+1)2a possible ways to choose the positions
of maximal score: On each attention layer, and for each i ∈ [0,m], we select a subset of the m+ 1
letters. For each ReLU node and each i, there are two ways its expression ReLU(v) can be evaluated:
as 0 or as v. Thus, if there are r ReLU nodes, then there are 2r ways to evaluate all those nodes.

For each of these 2r+(m+1)2a choices, we construct a conjunction of polynomial inequalities that
verify that (i) this choice actually maximized scores, (ii) the resulting vector at the right-most position
in the last layer satisfies the accepting condition. This is easy to do by building, for each layer
ℓ and each i, expressions in x1, . . . , xm for the vectors uℓ,i, assuming our choice above. These
expressions have the form p(x1, . . . , xm)/q(x1, . . . , xm) (averaging can introduce denominators).
Here, once we have expressions for uℓ,i, we can use them to build expressions for uℓ+1,i by following
the definition of AHAT. Checking (i) and (ii) is then also easy, because inequalities involving
quotients p(x1, . . . , xm)/q(x1, . . . , xm) can be turned into polynomial inequalities by multiplying
with common denominators. Finally, we take a disjunction over all 2r+(m+1)a conjunctions.

Inexpressibility of PARITY. Our characterization of NoPE-AHAT (i.e. Proposition 4.1) implies
an interesting inexpressibility result regarding PARITY (see (2):
Corollary 4.2. PARITY does not belong to NoPE-AHAT.

PARITY is known to be accepted by AHAT Barceló et al. (2024) and by SMAT Chiang & Cholak
(2022) (with PE). Inexpressibility of PARITY in a length-generalizable subclass of SMAT and
AHAT (with struct future masking and positional encodings) is known (Huang et al. (2025)). Simi-
larly, PARITY is not expressible by SMAT with strict future masking Hahn (2020). Corollary 4.2
complements these results and is an easy corollary of Proposition 4.1 (see Appendix A.3).

5 APPLICATIONS

5.1 UNIVERSALITY AND UNDECIDABILITY OF TRANSFORMERS

Let us discuss why universality/undecidability (i.e. Theorems 1.3 and 1.4) follow from Theorem 1.2.
First, by the well-known theorem “MRDP” theorem (Matiyasevich, 1993) due to Matiyasevich,
Robinson, Davis, and Putnam, every language in RE ∩ PI is a projection of a language of the form
Lp = {w ∈ {a1, . . . , am}∗ | p(Ψ(w)) = 0}, where p ∈ Z[X1, . . . , Xm] is a polynomial. Since
Lp belongs to NoPE-AHAT[U], we thus obtain Theorem 1.3. Furthermore, since our translation
from polynomials to NoPE-AHAT[U] (and thus SMAT) is effective, this also implies Theorem 1.4:
By the MRDP theorem (which is also effective), it is undecidable whether a given polynomial
p ∈ Z[X1, . . . , Xm] has a solution. Using our translations, we can turn such a p into a NoPE-AHAT
(or SMAT) that is non-empty if and only if p has a solution.

Using only two layers In fact, in Theorems 1.3 and 1.4, we even claim that two layers suffice
for universality and undecidability. Let us sketch this here. First, our construction above yields a
NoPE-AHAT[U] of at most ℓ layers, provided that the polynomials in the semialgebraic set all have
degree ≤ ℓ (see Appendix A). In particular, we show that for each ℓ, NoPE-AHAT[ℓ,U] is closed
under union and intersection (see Appendix A.2). Furthermore, we rely on the well-known fact that
the set of solutions of a polynomial equation p = 0 can always be written as the projection of the
set of solutions of a system of quadratic equations. Since by our stronger version of Theorem 1.2,
intersections of solution sets of quadratic equations only require a NoPE-AHAT[U] with ≤ 2 layers,
this yields the stronger versions of Theorems 1.3 and 1.4. See Appendix B for details (where we also
show that with just one layer, Theorems 1.3 and 1.4 do not hold).

5.2 COMPARISON WITH C-RASP AND LTL WITH COUNTING

C-RASP (Huang et al., 2025; Yang & Chiang, 2024) is a simple programming language that can be
converted into softmax transformers. In particular, it is a subset of the so-called LTL with Counting
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k Val. Perf. Test Perf. Gen. Perf.

1 0.015 0.016/0.99 0.301/0.95
2 0.024 0.033/0.99 0.324/0.94
3 0.023 0.021/0.99 0.299/0.96
4 0.019 0.020/0.99 0.099/0.97
5 0.020 0.024/0.99 0.107/0.96

1 2 3 4 5

100

10−1

10−2

10−3

k

L
os

s

Val. Perf. Test Perf. Gen. Perf.

Figure 2: Performance of softmax transformer classifiers for Lk (k = 1 to 5). Validation
Performance (Val. Perf.): BCEWithLogitsLoss on validation data. Test Performance (Test Perf.):
BCEWithLogitsLoss and Accuracy (separated by /) on test data. Generalization Performance (Gen.
Perf.): BCEWithLogitsLoss and Accuracy (separated by /) on generalization test set. The y-axis uses
a logarithmic scale to accommodate the different orders of magnitude in the results.

(Yang & Chiang, 2024; Barceló et al., 2024). For example, {w ∈ {a, b}∗ : |w|a = |w|b} can
be written as the following formula in LTL with Counting:

−→
#a =

−→
#b. In particular, only linear

expressions can be constructed in such formulas. We show in the appendix that LTL with Counting
(and therefore C-RASP) only capture (semi)linear counting properties, i.e., boolean combinations of
linear inequalities (and modulo arithmetics), so not languages like Lk := {w ∈ {a, b} : |w|ka ≥ |w|b}.

Proposition 5.1. LTL with Counting can define only (semi)linear counting properties.

6 EXPERIMENTS

In this section, we experimentally complement our main result (cf. Theorem 1.1) that transformers
can capture solutions of polynomial equations of higher degree. In particular, our results suggest that
softmax transformers should be able to learn languages encoding solutions of polynomial equations.

We test our hypothesis on extensions of MAJ with polynomial inequalities. That is, we define the
language Lk is defined by Lk = {w ∈ {a, b}+ | |w|b ≤ (|w|a)k}, representing the set of solutions
for the simple equation y ≥ xk.

Do softmax transformer classifiers perform well on language Lk? Additionally,
can we observe tendencies of length-generalization?

In other words, the task of the transformer is a binary classification such that T (w) accepts if w ∈ Lk

and it does not if w ̸∈ Lk.

We train softmax encoders without positional encoding and otherwise in line with the vanilla model,
introduced by Vaswani et al. (2017), as binary classifiers using components offered by Pytorch’s
nn.Module based on a balanced dataset of 5 · 105 data points sampled from Lk for k = 1, . . . , 5 of
words up to length 500 In all experiments, we conduct a single epoch and choosed the best model
conducting early stopping based on the binary-cross entropy loss combined with softmax, the typical
metric for models outputting a probability for binary classification, offered in a numerical stable
version by Pytorch’s nn.Module in form of BCEWithLogitsLoss , on a validation dataset
sampled from the same distribution and of the same size as the training dataset. To partially explore
the hyperparameter space, we conduct a grid search over number of layers 1 to 5, number of heads
per layer 1, 2 or 4. In all experiments, we fixed the input features to 32, the feedforward dimension to
64, the dropout rate to 0.3, and optimized using the AdamW optimizer with a learning rate of 10−4

and weight decay of 0.01 as, again, offered by Pytorch’s optim package.

Figure 2 presents the outcome of our experiments. The table on the left-hand side demonstrates the
best observed performance on the validation dataset (first column), a balanced test dataset derived
from the same distribution as the training and validation data (second column). This specifically
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implies that this dataset also only includes words of length up to 500. The final column represents
another balanced test dataset encompassing words from length 501 to 1000, used to potentially unveil
some length generalization performance. The plot on the right visualizes the same results.

Generally, we observe very high performance with an accuracy of ≥ 0.99 on the in-distribution
test dataset. Additionally, while the performance on the test dataset with longer words decreases, it
remains relatively high, with an accuracy of ≥ 0.94 in all instances. Especially, it is to be assumed
that with a more extensive experimental setup, this gap in performance will decrease. Therefore, we
infer that our trained encoders perform well and that length generalization is supported, indicating
that the model can capture the semantics of Lk. In Appendix D we report additional results, showing
strong performance, with a decrease in performance on longer inputs. In summary, the experiments
conducted in this study underscore that the theoretical results presented here, such as Proposition 3.1,
can imply practical performance, but also that extensive studies are warranted.

7 CONCLUDING REMARKS

Related Work. Lots of work have been done in recent years on the expressiveness of transformers
for general (not necessarily counting) properties (cf. see the recent survey by Strobl et al. (2024)).
Despite these, counting properties have played a central role in understanding the expressivity of
transformers, e.g., the languages PARITY and MAJ, which have frequently featured in transformers
expressivity research. Various theoretical transformer models have been used in the literature
employing different assumptions on the attention mechanisms (hardmax attention vs. softmax
attention), positional encodings, etc. For example, a large proportion of results use hardmax attention,
which is not used by practical transformers (which instead use softmax attention). In addition, some
works (e.g. Pérez et al. (2021); Barceló et al. (2024)) employ extremely complex positional encodings
with no restrictions. That said, several recent works have adopted more practical models. In particular,
the works of (Yang & Chiang, 2024; Huang et al., 2025; Yang et al., 2024b) employ softmax attention
transformers and simple classes of positional encodings (causal masking, local, etc.). Our results
also employ a similar model (AHAT[U] and SMAT); in fact, we proved that semialgebraic counting
properties can be captured by transformers without any positonal encodings.

Potential Applications in NLP. Since transformers are able to perform any polynomial counting,
it follows that they can also approximate any continuous function of the number of occurrences
of tokens (the set of polynomials is the universal approximator by the Weierstrass theorem). This
might be useful in practical NLP tasks that require computation of nonlinear statistics in the word
frequencies. Earlier we have mentioned that counting properties are tightly connected to Vector Space
Model (VSM) Salton et al. (1975); Wong et al. (1985) that has applications in text classification and
similarity analysis (a classic topic in information retrieval), where the standard method has been
to employ Support Vector Machines (SVM), together with kernel analysis (e.g. using polynomial
kernels). Our results imply that transformers are expressive enough to perform such tasks.

In VSM, a document D is a vector vD indexed by "terms" that may occur in D. That is, vD[t] is
a count on the number of occurrences of t in D. To compare similarity between two documents
D,D′, we may consider the Euclidean distance between vD and vD′ , which requires a polynomial.
Also, there are often challenges including "related terms" (e.g. husband, wife, and spouse), which
are missed when we only use the aforementioned metric. Thus, a similarity measure is often learned
(see Section 10.2.2 in Shawe-Taylor & Cristianini (2004), where VSM is used in combination with
polynomial kernels). Our results show that transformers can solve such a task. A related task is the
problem of determining proximity to a human written text, as dictated by Zipf (1935) stating that the
frequency of the k-th most frequent word is proportional to 1/k in a natural language. As above, we
may compare using Euclidean distance a document D with a predetermined Zipf-vector. This results
in a polynomial, and our results show this can be captured by transformers.

Future Work. We mention several open problems. Firstly, can softmax attention transformers
with causal masking capture counting properties beyond semialgebraic sets? Secondly, our work
has identified a gap in the formalization of the RASP-L conjecture by Huang et al. (2025). That is,
transformers can capture and efficiently learn semialgebraic counting properties, which are beyond
the language C-RASP. It is open whether the extension of C-RASP with inequalities over nonlinear
polynomials can still be captured by softmax transformers.
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A TRANSLATING SEMIALGEBRAIC SETS TO NoPE-AHAT

A.1 FINE-GRAINED ANALYSIS OF POLYNOMIAL DEGREE VS. DEPTH

In this subsection, we show the inclusion SemiAlg ⊆ NoPE-AHAT[U]. In fact, we show a stronger
statement (Proposition A.1), which requires some notation. By SemiAlg[≤ ℓ] we denote the restriction
of the class SemiAlg to the semi-algebraic languages L ⊆ Σ∗ such that the underlying semi-algebraic
set S ⊆ Nm is a Boolean combination of sets Sp where p ∈ Z[X1, . . . , Xm] are polynomials of
degree ≤ ℓ. In particular, we have SemiAlg[≤ 1] = QFPA. Our construction for SemiAlg ⊆
NoPE-AHAT[U] actually shows the following:
Proposition A.1. For each ℓ > 0 we have SemiAlg[≤ ℓ] ⊆ NoPE-AHAT[≤ ℓ,U].

For showing Proposition A.1, we need some more technical definitions. Let T be an AHAT with
input embedding ι : Σ→ Qd1 and layers λ1 : (Qd1)∗ → (Qd2)∗, . . . , λℓ : (Qdℓ)∗ → (Qdℓ+1)∗. We
define the function fT : Σ+ → Q as follows: for a word w = a1a2 . . . an ∈ Σ+, if λ1 ◦ · · · ◦
λℓ(ι(a1), . . . , ι(an)) = (y1, . . . ,yn), then fT (w) = yn[1]. In other words, we have fT (w) > 0 iff
T (w) = 1.
Proposition A.2. For every polynomial p ∈ Z[X1, . . . , Xm] of degree ℓ, the language Lp>0 = {w ∈
{a1, . . . , am}∗ | p(Ψ(w)) > 0} belongs to NoPE-AHAT[≤ ℓ,U].

To show Proposition 3.1, we will use polynomials that are homogeneous, meaning all monomials have
the same degree. Note that given an arbitrary polynomial p ∈ Z[X1, . . . , Xm] of degree ℓ, we can
consider the polynomial q ∈ Z[X0, . . . , Xm] with q = Xd

0p(
X1

X0
, . . . , Xm

X0
), which is homogeneous.

It has the property that p(x1, . . . , xm) > 0 if and only if q(1, x1, . . . , xm) > 0. Therefore, from now
on, we assume that we have a homogeneous polynomial q ∈ Z[X0, . . . , Xm] and want to construct
an AHAT for the language Kq = {w ∈ {a1, . . . , am}∗ | q(1,x) > 0 for x = Ψ(w)}.
To simplify notation, we denote the end marker $ by a0. Thus, the input will be a string w ∈
{a0, . . . , am}+ that contains a0 exactly once, at the end. Since |w|a0 = 1 is satisfied automatically,
our AHAT only has to check that q(x0, . . . , xm) > 0, where xi = |w|ai . The input encoding is the
map {a0, . . . , am}∗ → Qm with ai 7→ ei, where ei ∈ Qm is the i-th unit vector.

In a first lemma we show that each monomial of q can be computed by a NoPE-AHAT with ℓ uniform
attention layers.
Lemma A.3. For every monomial r ∈ Z[X0, X1, . . . , Xm] of degree ℓ, there is a NoPE-AHAT T
with ℓ uniform attention layers such that

fT (w) =
r(Ψ(w))

|w|ℓ

for each word w ∈ Σ∗. In particular, we have fT (w$) > 0 if and only if r(Ψ(w)) > 0.
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Proof. We use the word embedding ι : Σ→ Qm+1 with ι(ai) = ei for each i ∈ [0,m].

Step I: Compute frequencies Our AHAT first uses an attention layer to compute m + 1 new
components, where i-th component holds xi

n+1 , where n+ 1 is the length of the input (including the
end marker). This is easily done by attending to all positions and computing the averages of the first
m+ 1 components. To simplify notation, we will index vectors starting with index 0.

Step II: Multiplication gadgets Second, we have a sequence of gadgets (each consisting of one
uniform attention layer and one ReLU layer). Each gadget introduces a new component, and does not
change the existing components. Between gadget executions, the following additional invariants are
upheld: (i) Overall, a gadget does not change existing components: it introduces one new component.
(ii) The components {0, . . . ,m} are called the initial components. (iii) All other components are
uniform, i.e. they are the same across all positions. (iv) The uniform components carry values in
[0, 1]. Thus, we will call components 0, . . . ,m the initial components; and we call components > m
the uniform components.

Our gadgets do the following. Suppose we have already produced k additional components. For each
initial component i ∈ [0,m] and uniform component j ∈ [m+ 1,m+ 1 + k], gadget omult(k, i, j),
which introduces a new component, will carry the value xi·yj

n+1 , where yj is the value in component j
of all vectors. Recall that we use xi to denote the number of ai occurrences in the input for i ∈ [0,m].

We implement the gadget omult(k, i, j) using some ReLU layers and an attention layer. Suppose that
before, we have the vector up ∈ Qm+1+k in position p. First, using ReLU layers, we introduce a new
component that in position p has the value up[i] · up[j]. This can be achieved since up[i] is in {0, 1}
and up[j] ∈ [0, 1]: Notice that up[i] · up[j] = ReLU(up[j] − (1 − up[i])). Indeed, if up[i] = 1,
then this evaluates to up[j]; if up[i] = 0, then we get ReLU(up[j]− 1) = 0. We then use uniform
attention to compute the average of this new up[i] · up[j]-component across all vectors. Since there
are n+ 1 vectors, exactly xi of them have up[i] = 1, and also up[j] = yj , we get the desired xi·yj

n+1 .

Step III: Computing the monomial We now use our gadgets to compute the value of the monomial.
Let r(X0, . . . , Xm) = α ·Xi1 · · ·Xiℓ . We use ℓ− 1 gadgets to compute xi1 · · ·xiℓ/(n+ 1)ℓ: The
frequency computation in the beginning yields xi1/(n + 1), and then we use gadgets to compute
xi1xi2/(n+ 1)2, xi1xi2xi3/(n+ 1)3, etc. until xi1 · · ·xiℓ/(n+ 1)ℓ. Finally, we use a ReLU layer
to multiply xi1 · · ·xiℓ/(n+ 1)ℓ with α. Thus, we have computed r(x0, . . . , xm)/(n+ 1)ℓ.

A.2 COMBINING NoPE-AHAT[U] WITHOUT ADDITIONAL LAYERS

The following lemma states that two NoPE-AHAT with only uniform attention layers can be paral-
lelized resulting in a NoPE-AHAT with the same number of uniform layers. Their outputs can also
be combined via a ReLU neural network. In particular, NoPE-AHAT[≤ ℓ,U] is closed under union
and intersection.

Lemma A.4. Let T1, T2 be two NoPE-AHAT with ℓ uniform attention layers and let N be a ReLU
neural network computing a function N : Q2 → Q. Then there is a NoPE-AHAT TN with ℓ uniform
attention layers computing fTN (w$) = N (fT1

(w$), fT2
(w$)).

Proof. The idea of TN is, that it concatenates the components from T1 with those of T2 and keeps
the sets of components always disjoint. By uniformity we are able to apply the attention layers of T1
and T2 in parallel. In the last attention layer we can simply apply N to the first components of T1
and T2.

By ιi : Σ → Qd1,i we denote the word embedding of Ti. From this we construct a new word
embedding ι : Σ→ Qd1,1+d1,2 with ι(aj) = (ι1(aj), ι2(aj)) for each j ∈ [0,m].

Now, let λk,i : Qdk,i → Qdk+1,i be the kth layer of Ti for 1 ≤ k ≤ ℓ. By Ki, Qi, Vi, and Ni we
denote the parameters of λk,i. Since λk,i is uniform, the key and query mapsKi andQi are constantly
mapping to zero. We now construct a uniform layer λk : Qdk,1+dk,2 → Qdk+1,1+dk+1,2 composed of
λk,1 and λk,2: the key and query maps K and Q still map to zero. If Vi(xi) = Aix + bi then we

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

T1 :

ι1

0 ⇝ a⃗1

N1

T2 :

ι2

0 ⇝ a⃗2

N2

⇒

T : (
ι1
ι2

)

0 ⇝
(
a⃗1
a⃗2

)

(N1

1

) (
1
N2

)

Figure 3: Visualization of the proof of Lemma A.4.

define the new value map V by

V

(
x1

x2

)
=

(
A1 0
0 A2

)(
x1

x2

)
+

(
b1
b2

)
=

(
A1x1 + b1
A2x2 + b2

)
=

(
V1(x1)

V2(x2)

)
.

By this definition we obtain that the attention vectors aj in λk are the concatenation of the attention
vectors aj,1 and aj,2 in λk,1 resp. λk,2. Similarly, we build the composition of N1 and N2 resulting
in an FFN computing

(N1(xj,1,aj,1)
N2(xj,2,aj,2)

)
.

Finally, in the last layer, we add the FFN N ′ that takes the first components of the output of
Ni(xj,i,aj,i) and simulates N on these two numbers.

Recall that from a polynomial p ∈ Z[X1, . . . , Xm] we constructed a homogeneous polynomial
q ∈ Z[X0, X1, . . . , Xm] such that p(x) > 0 if and only if q(1,x) > 0 holds for all vectors
x ∈ Qm. Let r1, . . . , rk ∈ Z[X0, X1, . . . , Xm] be the monomials in q. Since q is homogeneous, all
monomials have the same degree ℓ. Lemma A.3 yields NoPE-AHATs T1, . . . , Tk that are computing
the monomials ri. Each of these AHATs has exactly ℓ uniform attention layers. Finally, we can apply
Lemma A.4 to construct a NoPE-AHAT T with ℓ uniform layers computing fT (w$) =

q(Ψ(w$))
|w$|ℓ

(since addition is an affine map). Then T acceptsw iff q(Ψ(w$))
|w$|ℓ > 0 iff q(Ψ(w$)) > 0 iff p(Ψ(w)) >

0. In other words, T accepts the language Lp>0.

A.3 INEXPRESSIBILITY OF PARITY

Proof of Corollary 4.2. By Theorem 1.2, it suffices to show that PARITY is not semi-algebraic.
Suppose it is. Then there is a disjunction of conjunctions of polynomial inequalities that characterizes
PARITY. The polynomials are over Z[X,Y ], where X is the variable for a’s and Y is the variable
for b’s. By plugging in Y = 0, we conclude that the set of even numbers is semi-algebraic.
Hence, there is a disjunction

∨n
i=1

∧m
j=1 pi,j(X) > 0 of conjunctions that is satisfied exactly for

the even numbers. This implies that for some i, there are infinitely many even numbers k such
that

∧m
j=1 pi,j(k) > 0. Therefore, for every j ∈ [1,m], the leading coefficient of pi,j must be

positive. But then,
∧m

j=1 pi,j(k) > 0 must hold for all sufficiently large k, not just the even ones, a
contradiction.

B PARAMETRIC ANALYSIS

In this section, we study how the expressive power of NoPE-AHAT[U] and SMAT depends on the
number of attention layers. In particular, we show that Theorems 1.3 and 1.4 hold already in the
case of two layers. The main insight of this proof is that the number of layers needed to express a
semialgebraic set depends on the degrees of the involved polynomials (see Proposition A.1): Note
that our sketch of an NoPE-AHAT for Lp>0 in Section 3 directly yields a NoPE-AHAT with ℓ layers,
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where ℓ is the degree of p. For Proposition A.1, one then has to show that Boolean combinations
of such sets can be expressed without growing the number of attention layers. See Appendix A for
details.

Capturing RE with two layers From Proposition A.1, we can now deduce the two-attention-layer
version of Theorems 1.3 and 1.4. The first ingredient is the following version of the MRDP theorem
on Diophantine sets Matiyasevich (1993):
Theorem B.1. Let Σ = {a1, . . . , am}. A language L ⊆ Σ∗ belongs to RE ∩ PI if and only if there is
a k ∈ N and a polynomial p ∈ Z[X1, . . . , Xm+k] such that L = πa1,...,am(K), where

K = {w ∈ {a1, . . . , am+k}∗ | p(Ψ(w)) = 0}.

In other words, every language in RE ∩ PI is a projection of a language of the form Lp = {w ∈
{a1, . . . , am}∗ | p(Ψ(w)) = 0}, where p ∈ Z[X1, . . . , Xm] is a polynomial. Thus, it suffices to
place Lp in Proj(NoPE-AHAT[≤ 2,U]). First observe that in Theorem 1.2, we use one attention
layer for each multiplication, so this avenue is closed if we want to stay within two attention layers.
Instead, we use that for every polynomial p ∈ Z[X1, . . . , Xm], there are quadratic (i.e. degree
≤ 2) polynomials q1, . . . , qr ∈ Z[X1, . . . , Xm+k] for some r, k ≥ 0 such that for x ∈ Nm, we
have p(x) = 0 if and only if there is some y ∈ Nk with q1(x,y) = 0, . . . , qr(x,y) = 0: Just
introduce a fresh variable for each multiplication in p and use the qi to assign these fresh variables.
Since the language K := {w ∈ {a1, . . . , am+k}∗ | q1(Ψ(w)) = · · · = qr(Ψ(w))} belongs to
SemiAlg[≤ 2] (since the qi have degree ≤ 2) and Lp is a projection of K, this means Lp belongs to
Proj(SemiAlg[≤ 2]). By Proposition A.1, Proj(SemiAlg[≤ 2]) ⊆ Proj(NoPE-AHAT[≤ 2,U]).

NoPE AHAT with a single layer The fact that two layers suffice for universality among counting
properties raises the question of whether this is even possible with a single attention layer. We show
here that this is not the case:
Theorem B.2. NoPE-AHAT[≤ 1] = NoPE-AHAT[≤ 1,U] = QFPA.

This means, with a single attention layer, NoPE-AHAT can recognize precisely those counting
properties expressible using quantifier-free Presburger formulas. Since satisfiability of Presburger
arithmetic is well-known to be decidable Haase (2018); Chistikov (2024), this implies that universality
and undecidability of NoPE-AHAT (as we have shown for two attention layers), do not hold with
just one attention layer. However, we leave open whether SMAT with one attention layer have a
decidable emptiness problem.

Before going into details, let us sketch the proof of Theorem B.2. For the inclusion
NoPE-AHAT[≤ 1] ⊆ QFPA, we proceed similarly to Proposition 4.1, while observing that the
inequalities we have to verify are all linear inequalities: This is because a single attention layer
averages only once. Conversely, for the inclusion QFPA ⊆ NoPE-AHAT[≤ 1,U] follows easily from
Proposition A.1.

Proof of Theorem B.2. We begin by proving that NoPE-AHAT[≤ 1] ⊆ QFPA. Let T be an AHAT
with input embedding ι : Σ ∪ {$} → Qd, a single AHA layer λ utilising affine maps Q,K ∈ Qm×d,
V ∈ Qk×d, given as matrices, and the ReLU network N : Qd+k → Qe. Our goal is to construct a
quantifier-free PA formula φT with variables xi for i ∈ {1, . . . , |Σ|} such that Ψ−1(JφK) = {w ∈
Σ∗ | T accepts w$}. In the following, we assume Σ = {a1, . . . , am} and denote Σ ∪ {$} by Σ′.

First, we observe that for all words w ∈ Σ∗, the output of T given w$ is computed by

N

ι($), 1

|w$|ai1
+ · · ·+ |w$|aih

h∑
j=1

|w$|aij
V ι(aij )

 ,

where Γ = {ai1 , . . . , aih} ⊆ Σ′ is exactly the subset of symbols aij occurring in w$ that maximise
⟨Qι(aij ),Kι($)⟩. We construct φT such that it mirrors exactly this computational structure. We
have φT =

∨
Γ⊆Σ′ φΓ, where

∨
ranges over those subsets Γ where ⟨Qι(aij ),Kι($)⟩ is maximal for

precisely the aij ∈ Γ. The subformula φΓ is defined as follows. For now, we assume that $ /∈ Γ and
introduce some auxiliary formulas. Throughout the following construction steps, we assume that
atomic formulas are normalised to the form c1x1 + · · ·+ cnxn ≤ b.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Given the ReLU network N , it is straightforward to construct a quantifier-free PA formula φN

such that JφN K exactly includes those x1, . . . , xd+k ∈ Nd+k satisfying N (x1, . . . , xd+k)1 > 0,
where N (·)1 denotes the first output dimension of N . The key idea here is that the computation
of a single ReLU node v(x1, . . . , xd+k) = y, with weights ci and bias b of N , is described by the
quantifier-free PA formula: (c1x1+ · · ·+cd+kxd+k+b ≤ 0∧0 = y)∨(c1x1+ · · ·+cd+kxd+k+b >
0 ∧ c1x1 + · · · + cd+kxd+k + b = y). Then, by nesting this construction iteratively from the last
layer to the first layer of N , and finally replacing = y with > 0 in the atomic formulas related to the
first output dimension of N , we achieve the construction of φN . This nesting and replacement also
ensures that φN includes only the variables x1, . . . , xd+k.

Let Γ ⊆ Σ such that Γ = {ai1 , . . . , aih}. Consider the ReLU network N , the value matrix V ,
and the embedding ι. We construct a quantifier-free PA formula φN ,V

Γ such that JφN ,V
Γ K exactly

includes those (xi1 , . . . , xih) ∈ Nh satisfying N (ι($), 1
xi1+···+xih

∑h
j=1 xijV ι(aij ))1 > 0. To do

so, we adjust the formula φN as described in the following. To account for the fixed input ι($), we
replace each occurrence of x1 to xd in φN by the respective entry of ι($). Furthermore, to handle
the specific form of the input 1

xi1+···+xih

∑h
j=1 xijV ι(aij ), we first replace each occurrence of xd+l

with l ∈ {1, . . . , k} in the already modified φN by:

(vl1ι(ai1)1 + · · ·+ vldι(ai1)d)xi1 + · · ·+ (vl1ι(aih)1 + · · ·+ vldι(aih)d)xih ,

where vlj are the respective entries of V . Lastly, we replace each atomic constraint c1xi1 + · · · +
chxih ≤ b in the adjusted formula with (c1 − b)xi1 + · · ·+ (ch − b)xih ≤ 0 to adjust for the factor

1
xi1

+···+xih
present in the input.

Now, we define φΓ as φN ,V,ι
Γ . If $ ∈ Γ, we adjust φN ,V,ι

Γ slightly. Assuming $ = aij ∈ Γ,
we replace the variable xij with the constant 1 in φN ,V,ι

Γ . Given this construction, it is clear that
Ψ−1(JφT K) = {w ∈ Σ+ | T accepts w$}, as φT mimics the computation of T for all possible
attention situations Γ.

For the inclusion QFPA ⊆ NoPE-AHAT[≤,U], we observe that QFPA ⊆ SemiAlg[≤ 1], and thus
the inclusion follows from Proposition A.1.

C COUNTING PROPERTIES EXPRESSIBLE BY OTHER MODELS

C.1 SEMILINEAR COUNTING PROPERTIES

A counting property P ⊆ Nd is said to be semilinear if can be defined as a boolean combination of
inequalities over linear arithmetic expressions (over variables x1, . . . , xd and integer constants) and
modulo arithmetic expressions of the form xi ≡ a (mod b), where a, b ∈ N are fixed constants. In
particular, semilinear counting properties cannot define semialgebraic counting properties involving
polynomials of degrees 2 or above.

It is also convenient to use quantifiers when defining semilinear sets. In particular, they do not
increase the expressive power since they can be eliminated. This results in the logic called Presburger
arithmetic (PA), which refers to the first-order theory of the structure ⟨N; +, 0, 1, <⟩; see (Haase,
2018; Chistikov, 2024).

C.2 PERMUTATION-INVARIANT LANGUAGES OF LTL WITH COUNTING

LTL[Count] has the following syntax:

ϕ ::= a | t ≤ t | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

t ::= k | k ·
←−
#ϕ | k ·

−→
#ϕ | t+ t

where a ∈ Σ and k ∈ Z. Next we define the semantics of LTL[Count]. For any word w =
a1a2 · · · aℓ ∈ Σ∗ with a1, a2, . . . , aℓ ∈ Σ, for each 1 ≤ i ≤ ℓ, and each formula ϕ ∈ LTL[Count]
we write w, i |= ϕ if the formula ϕ is satisfied in w at position i. Formally, this relation is defined
inductively as follows:
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• w, i |= a (for a ∈ Σ) iff ai = a,

• w, i |= ¬ϕ iff w, i ̸|= ϕ,

• w, i |= ϕ ∨ ψ iff w, i |= ϕ or w, i |= ψ,

• w, i |= Xϕ iff i < ℓ and w, i+ 1 |= ϕ,

• w, i |= ϕUψ iff there is i ≤ j ≤ k with w, j |= ψ and for all i ≤ k < j we have w, k |= ϕ,

• w, i |= t1 ≤ t2 iff Jt1K(w, i) ≤ Jt2K(w, i) where the semantics JtK : Σ∗ × N → Z of
a term t is defined as follows: JkK(w, i) = k, Jt1 + t2K(w, i) = Jt1K(w, i) + Jt2K(w, i),
Jk ·
←−
#ϕK = k · |{1 ≤ j < i | w, j |= ϕ}|, and Jk ·

−→
#ϕK = k · |{i ≤ j ≤ ℓ | w, j |= ϕ}|.

Our main result on LTL[Count] is the following:
Theorem C.1. Every permutation-invariant language definable in LTL[Count] has a semilinear
Parikh image.

Before we can prove Theorem C.1, we need a few more definitions. For an alphabet Σ write Σε for
the set Σ ∪ {ε}. A (d-dimensional) Parikh automaton is a tuple A = (Q,Σ, ι,∆, (Cq)q∈Q) where
Q is a finite set of states, Σ is the input alphabet, ι ∈ Q is an initial state, ∆ ⊆ Q× Σε × Nd ×Q
is a finite transition relation, and Cq ⊆ Nd are semilinear target sets. A word w ∈ Σ∗ is accepted
by A if there are a1, a2, . . . , aℓ ∈ Σε, states q0, q1, . . . , qℓ ∈ Q, and vectors v0,v1, . . . ,vℓ ∈ Nd

such that (i) q0 = ι and v0 = 0, (ii) for each 0 ≤ i < ℓ there is a transition (qi, ai,xi, qi+1) ∈ ∆
with vi+1 = vi + xi, and (iii) vℓ ∈ Cqℓ . The accepted language L(A) of A is the set of all words
accepted by A. It is a well-known fact that for each Parikh automaton A the accepted language L(A)
has a semilinear Parikh image. Observe that 0-dimensional Parikh automata are essentially NFA and,
hence, accept exactly the regular languages.

A Parikh transducer is a Parikh automaton with input alphabet Σε × Γε where Σ and Γ are two
alphabets. The accepted language L(A) ⊆ Σ∗ × Γ∗ of a Parikh transducer can also be seen as a
map: if (v, w) ∈ L(A) then we can see v as the input and w as the output of the transducer. Formally,
for an input language L ⊆ Σ∗ a Parikh transducer computes the output TA(L) = {w ∈ Γ∗ | ∃v ∈
L : (v, w) ∈ L(A)}. If L is accepted by a Parikh automaton then TA(L) is also accepted by a Parikh
automaton. To see this, we can take the synchronized product of the Parikh automaton B accepting
L and A (i.e., B reads the same letter from the input as A in its first component). Accordingly,
cascading of Parikh transducers is also possible, i.e., if A and B are Parikh transducers over Σε × Γε

and Γε ×Πε, we can also construct a Parikh transducer C over Σε ×Πε computing TC = TB ◦ TA.

With the definition of Parikh automata and Parikh transducers we are now able to prove Theorem C.1.

Proof. Let ϕ ∈ LTL[Count] be a formula such that the described language L(ϕ) is permutation-
invariant. We will prove by induction on the structure of ϕ that the Parikh image of L(ϕ) (or
actually a bounded subset of L(ϕ)) is semilinear. Here, a language L ⊆ Σ∗ is bounded if there are
letters a1, a2, . . . , an ∈ Σ with L ⊆ a∗1a

∗
2 · · · a∗n. So, let a1, a2, . . . , an ∈ Σ be distinct letters with

Σ = {a1, a2, . . . , an}. Then L(ϕ) ∩ a∗1a∗2 · · · a∗n is clearly bounded and has the same Parikh image
as L(ϕ).

For each subformula ψ of ϕ we construct a Parikh transducer that labels each position satisfying
ψ. In the base case, we decorate each letter a by b ∈ {0, 1}n where b[i] = 1 iff ai = a. Note that
this transducer handles all atomic formulas a ∈ Σ at once. For ψ = χ1 ∨ χ2 we add the decoration
b ∈ {0, 1} to each letter where b = 1 iff one of the decorations corresponding to χ1 and χ2 is 1.
There are similar transducers (which do not introduce counters) for the cases ψ = ¬χ, ψ = Xχ, and
ψ = χ1 Uχ2. Note that applying these transducers to a bounded language always yields another
bounded language.

Now, consider a counting subformula, i.e. ψ =
∑ℓ1

i=1 ki ·
←−−
#χi +

∑ℓ2
i=ℓ1+1 ki ·

−−→
#χi ≤ k. Observe

that the set of positions satisfying ψ is convex in the set of positions satisfying any χi. This is true
since we consider only a bounded input language. Hence, we can split the input word into three
(possibly empty) intervals: (i) the positions at the beginning of the input that do not satisfy ψ, (ii)
the positions where all positions satisfying a χi also satisfy ψ, and (iii) the positions at the end of
the input that do not satisfy ψ. We describe in the following a Parikh transducer with 3 · ℓ2 many
counters - one for each of these three intervals and each formula χi. The transducer guesses the three
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i, j Val. Perf. Test Perf. Gen. Perf.

1,3 0.016 0.02/0.99 0.03/0.99
3,2 0.002 0.003/0.99 0.60/0.93
3,3 0.001 0.002/0.99 2.26/0.85
4,2 0.001 0.001/0.99 0.26/0.96
5,1 0.004 0.004/0.99 0.03/0.99

1 2 3 4 5

100

10−1

10−2

10−3

k

L
os

s

Val. Perf. Test Perf. Gen. Perf.

Figure 4: Performance of softmax transformer classifiers for Li,j (for a selected set of i and j
combinations). Validation Performance (Val. Perf.): BCEWithLogitsLoss on validation data.
Test Performance (Test Perf.): BCEWithLogitsLoss and Accuracy (separated by /) on test data.
Generalization Performance (Gen. Perf.): BCEWithLogitsLoss and Accuracy (separated by /) on
generalization test set. The y-axis uses a logarithmic scale to accommodate the different orders of
magnitude in the results.

intervals (note that this is non-deterministic), counts positions satisfying a χi accordingly, decorates
only the positions in the second interval labeled with a χi with 1 (and everything else with a 0), and
validates in the end our choice of the intervals (via appropriate semilinear target sets ensuring that
the equation in ϕ is not satisfied in the first and third interval and is satisfied in the second interval).
Clearly, this all can be done in one (non-deterministic) Parikh transducer.

Finally, we have a cascade of (Parikh) transducers decorating each position in a bounded input word
with a Boolean value indicating whether ϕ holds in that position. If we use a∗1a

∗
2 · · · a∗n as input

language for our transducers (note that this language is regular) and intersect the output with all
words decorated with a 1 in the first position, we obtain a Parikh automaton accepting exactly the
language L(ϕ) ∩ a∗1a∗2 · · · a∗n. Since Parikh automata accept only languages with semilinear Parikh
image, we infer that L(ϕ) ∩ a∗1a∗2 · · · a∗n and, hence, L(ϕ) have a semilinear Parikh image.

D FURTHER EXPERIMENTAL VALIDATION

In this section, we report additional experiments addressing a similar research question as posed
in Section 6, namely, do softmax transformers perform well on formal languages with inherent
non-linear counting properties? Therefore, we consider the language

Li,j = {ambncm
inj

| m,n ∈ N≥1}
for selected values of i and j. Clearly, recognising this language requires non-linear counting
capabilities. Moreover, in contrast to Lk (see Section 6), this language poses a greater challenge in
learning tasks due to its structure (all b’s follow all a’s followed by all c’s) and larger alphabet size.

The experimental setup is identical to that presented in Section 6. The results are presented in
Figure 4 for five distinct combinations of i and j. Similar to our previous experiments, the table
on the left shows the highest observed performance on the validation dataset (first column) and the
best performance on a balanced test dataset derived from the same distribution as the training and
validation data (second column). This indicates that this dataset also contains only words of length
up to 500. The final column represents another balanced test dataset of words from length 501 to
1000, utilised to potentially reveal length generalisation performance. The plot on the right visualises
the results reported in the table.

We again observe very high performance of our trained softmax transformers on the in-distribution test
dataset (second column), which shares the same distribution as our training dataset. The performance
generally remains high on the generalisation test set (third column) as well. We witnessed a slight
decrease compared to the results on the in-distribution test in the case of L3,3 (accuracy of 0.85). A
general decrease in performance on longer inputs is expected and also witnessed in other studies (cf.
Huang et al. (2025)), but it also indicates that focused studies are essential to reveal rigorous insights
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into the relationship between the expressibility of polynomial counting properties we established and
their practical learnability.
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