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Abstract

Graph Neural Networks (GNNs) have achieved great success but are often consid-
ered to be challenged by varying levels of homophily in graphs. Recent empirical
studies have surprisingly shown that homophilic GNNs can perform well across
datasets of different homophily levels with proper hyperparameter tuning, but the
underlying theory and effective architectures remain unclear. To advance GNN uni-
versality across varying homophily, we theoretically revisit GNN message passing
and uncover a novel smoothness-generalization dilemma, where increasing hops
inevitably enhances smoothness at the cost of generalization. This dilemma hinders
learning in high-order homophilic neighborhoods and all heterophilic ones, where
generalization is critical due to complex neighborhood class distributions that are
sensitive to shifts induced by noise or sparsity. To address this, we introduce
the Inceptive Graph Neural Network (IGNN) built on three simple yet effective
design principles, which alleviate the dilemma by enabling distinct hop-wise gen-
eralization alongside improved overall generalization with adaptive smoothness.
Benchmarking against 30 baselines demonstrates IGNN’s superiority and reveals
notable universality in certain homophilic GNN variants. Our code and datasets
are available at https://github.com/galogm/IGNN.

1 Introduction

Graph Neural Networks (GNNs) [1–4] have attracted substantial attention, achieving notable success
across various domains [5–8]. Broadly, GNNs are classified into homophilic GNNs (homoGNNs) [9]
and heterophilic GNNs (heteroGNNs) [10]. HomoGNNs operate under the homophily assumption,
which posits that adjacent nodes tend to share similar labels. In contrast, heteroGNNs are tailored for
heterophilic graphs, where connected nodes are more likely to have differing labels.

However, real-world graphs do not exhibit a clear dichotomy between homophily and heterophily,
but instead present a continuous spectrum. As illustrated in Figure 1a and 1b, varying homophily
appears within a single graph across hops and nodes. Therefore, it is essential to develop GNNs that
generalize to different levels of homophily, rather than making separate designs for homophily and
heterophily as in existing methods. Recent studies [11] have empirically shown that homoGNNs, after
hyperparameter tuning with residual connections and dropout, can outperform advanced methods
designed for heterophily. This suggests that homoGNNs possess an inherent potential to adapt to
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varying homophily, but the underlying theory and effective architectures remain unclear. A question
arises: What enables universality across varying homophily in GNNs, or even in homoGNNs?
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Figure 1: Varying homophily across (a) hops or (b) nodes.
Conceptual illustration of the theoretical insight: (c)
Smoothness-Generalization dilemma identified in GNNs;
(d) Expected adaptive capabilities for varying homophily.

To gain a deeper understanding, we theo-
retically revisit the classic GNN message-
passing process and identify a novel
smoothness-generalization dilemma, as
depicted in Figure 1c. Here, smoothness
refers to the alignment of node represen-
tations within neighborhoods, while gen-
eralization denotes the ability to handle
distribution shifts across neighborhoods.
As the number of hops increases, smooth-
ness inevitably rises, while generalization
correspondingly declines due to the in-
trinsic trade-off between the two. This
dilemma is negligible in low-order ho-
mophilic neighborhoods, where strong
homophily naturally aligns with smooth-
ness, rendering generalization less criti-
cal. However, it becomes detrimental in
higher-order homophilic neighborhoods
and all heterophilic ones. We show that
strong generalization is crucial in these
cases to address complex neighborhood
class distributions, which are highly sensi-
tive to shifts induced by noise or sparsity. Yet, it remains constrained by the increasing smoothness
imposed by the dilemma. This insight suggests that resolving the smoothness-generalization dilemma
can benefit both homophilic and heterophilic settings without requiring separate designs (Figure 1d),
thereby unlocking the full potential of classic GNNs and paving the way toward achieving universality.

“More is in vain when less will serve, for Nature is pleased with simplicity” [12], echoing Sir
Isaac Newton, we seek to make minimal changes to classic GNNs to reveal the dilemma as a
fundamental impediment to universality. We introduce Inceptive Graph Neural Network (IGNN),
where the term inceptive [13] signifies concurrent learning of multiple receptive fields. IGNN is
built upon three minimal design principles: separative neighborhood transformation (SN), inceptive
neighborhood aggregation (IN), and neighborhood relationship learning (NR). Theoretically and
empirically, we demonstrate that these changes alleviate the dilemma from two perspectives: First,
inceptive neighborhood relationship learning, IN &NR, enable GNNs to approximate arbitrary graph
filters for adaptive smoothness capabilities. Second, incorporating SN allows distinct hop-wise
generalization and improved overall generalization. Our main contributions are:

• Theoretical Insights. We advance the theoretical understanding of GNN universality across
varying levels of homophily by uncovering the smoothness-generalization dilemma, providing a
foundation for theoretically grounded universal designs.

• Universal Framework. We introduce IGNN, a universal message-passing framework based on
three minimal yet effective design principles. IGNN mitigates the dilemma without relying on
specialized modules tailored for either homophilic or heterophilic graphs.

• Benchmark and Empirical Findings. We establish a comprehensive benchmark consisting of 30
representative baselines to assess the effectiveness of our design principles. Our results demonstrate
that not only can classic GCNs enhanced with these principles achieve state-of-the-art (SOTA)
performance, but also that certain existing homoGNNs inherently possess universal capabilities.

2 Related Works

Homophilic Graph Neural Networks. GNNs have demonstrated remarkable abilities in managing
graph-structured data, particularly under the assumption of homophily. Traditional GNNs can be
broadly categorized into two categories. Spectral GNNs, such as the GCN [2], leverage various
graph filters to derive node representations. In contrast, spatial GNNs aggregate information from
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neighboring nodes and combine it with the ego node to update representations, employing methods
such as attention mechanisms [3] and sampling strategies [9]. Unified frameworks [14, 15] have been
proposed to integrate and elucidate these diverse message-passing approaches. Several multi-hop
techniques were proposed to address the limitations of long-range dependencies, such as residual
connections [16] and jumping knowledge [17]. However, these homophilic methods are often
considered less effective when dealing with heterophilic settings, while a recent empirical study shows
its potential to universality [11] but lacks a theoretical understanding.

Heterophilic Graph Neural Networks. Addressing the challenges posed by heterophily, several
innovative approaches have been proposed: (1) Neighborhood extension: Techniques such as high-
order neighborhood concatenation [10, 18], neighborhood discovery [19], neighborhood refinement
[20], and global information capture [21]. (2) Neighborhood discrimination: Methods including
ordered neighborhood encoding [22], ego-neighbor separation [10], and hetero-/homo-phily neighbor-
hood separation [23]. (3) Fine-grained information utilization: Strategies such as multi-filter signal
usage [24, 25], intermediate layer combination [10], and refined gating or attention mechanisms
[26]. These methods generally retain the practice of message passing [27] that aggregates multi-hop
neighborhood information. However, these methods often treat homophily and heterophily separately,
leading to a paradox: effectively separating them would require prior knowledge of node labels,
while it is precisely the labels that need to be learned. A holistic understanding is needed to guide
the development of an architecture that adapts to both settings without different treatments.

Oversmoothing, Heterophily and Generalization. Early studies [28–30] investigate oversmoothing
or generalization without considering varying homophily, while later works reveal that oversmooth-
ing and heterophily are often intertwined leaving generalization unexamined. Bodnar et al. [31]
attribute both oversmoothing and heterophily to the underlying graph geometry using a sheaf-based
formulation. Park et al. [32] counter the two by reversing the diffusion process, yet their approach
remains architecturally motivated without theoretical insight into generalization. Meanwhile, sev-
eral heterophily-oriented models [22, 25, 33] have been shown to alleviate oversmoothing, while
oversmoothing-focused designs [16, 34] also perform well under heterophily. In contrast, Ma et al.
[35] explore the link between heterophily and generalization while omitting oversmoothing. In sum-
mary, existing studies have examined all pairwise combinations among oversmoothing, heterophily,
and generalization, yet no unified framework has bridged all three. We fill this gap through a unified
theoretical lens, demonstrating that the issues of oversmoothing, poor generalization, and heterophily
all stem from a shared underlying trade-off between smoothness and generalization, thereby offering
a principled foundation for a unified understanding and guides the design of more universal GNNs.

3 Notations and Preliminaries

Given an undirected graph G(V,X, E ,A) with the node set V = {v1, . . . , vN} and feature matrix
X = [x0, . . . ,xN ]⊤ ∈ RN×D, the edge set E is represented by the adjacency matrix A ∈ RN×N .
Aij = 1 if (vi, vj) ∈ E , otherwise Aij = 0. The degree matrix is D = diag(d1, . . . , dN ) ∈ RN×N ,
di =

∑N
j Aij . The re-normalization of A is Â = D̂− 1

2 (A+ IN )D̂− 1
2 , where IN is the identity ma-

trix. The symmetrically normalized graph Laplacian matrix is L̂ = IN−Â. Edge and node homophily
are computed as: he = (1/|E|)

∑
(vi,vj)∈E I(ci = cj), hn = 1/N

∑
vi∈V

∑
(vi,vj)∈E I(ci = cj)/di.

3.1 Smoothness of GNNs

Oono and Suzuki [29] describe the smoothness characteristic of GNNs with information loss from X
on asymptotic behaviors of GNNs from a dynamical systems perspective. They demonstrate that when
it extends with more layers, the GNN representation (i.e., H(k)

G = σ(ÂH(k−1)W(k)), see Section 4)
exponentially approaches information-less states, which is a subspace M in Definition 3.1.

Definition 3.1 (subspace). Let M :=
{
EB | B ∈ RM×D

}
be an M -dimensional subspace in

RN×D, where E ∈ RN×M is orthogonal, i.e. ETE = IM , and M ≤ N .

Following their notations, we denote the maximum singular value of W(l) by sl and set s :=
supl∈N+

sl. Denote the distance that induced as the Frobenius norm from X to M by dM(X) :=

infY∈M ∥X−Y∥F = D. The following Corollary 3.2 shows the information loss as layer l goes.
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Corollary 3.2 (Oono and Suzuki [29]). Let λ1 ≤ · · · ≤ λN be the eigenvalues of Â, sorted in
ascending order. Suppose the multiplicity of the largest eigenvalue λN is M(≤ N), i.e., λN−M <

λN−M+1 = · · · = λN and the second largest eigenvalue is defined as λ := maxN−M
n=1 |λn| < |λN | =

1. Let E to be the eigenspace associated with λN−M+1, · · · , λN . Then we have λ < λN = 1, and

dM

(
H(l)

)
≤ slλdM

(
H(l−1)

)
, (1)

where M :=
{
EB | B ∈ RM×D

}
. If slλ < 1, the l-th layer output exponentially approaches M.

Greater smoothness with larger information loss is indicated by a smaller distance dM(H(l)) from
the representations to the subspace M [29]. This is because the subspace denotes the convergence
state of minimal information retained from the original node features X, with the only information
of the connected components and node degrees of Â. This means that for any Y ∈ M, if two
nodes vi, vj ∈ V are in the same connected component and their degrees are identical, then the
corresponding column vectors of Y are identical, i.e., they cannot be distinguished.

3.2 Generalization of GNNs

GNN generalization can be governed by the Lipschitz constant as discussed in existing works [36, 37]:
Definition 3.3 (Lipschitz constant). A function f : Rn → Rm is called Lipschitz continuous if there
exists a constant L such that ∀x, y ∈ Rn, ∥f(x)− f(y)∥2 ≤ L∥x− y∥2, where the smallest L for
which the previous inequality is true is called the Lipschitz constant of f and denoted L̂.

Better generalization is exhibited by GNNs with a smaller Lipschitz constant L̂ [38]. This paper
does not discuss generalization on graph domain adaption [39], but discusses generalization regarding
inherent structural disparity [40] and data distribution shifts from training to test sets [38].

4 Theoretical Analysis of Classic GNNs

Generally, most GNNs capture multi-hop information by stacking message-passing (MP) layers [41]:

h(0)
v = xv, m

(k)
v = AGG(k)({h(k−1)

u | u ∈ N (v)}), h(k)
v = COM(k)(h(k−1)

v ,m(k)
v ), (2)

where h(k)
v is the hidden representation and m

(k)
v is the message for node v in the k-th layer. AGG(·)

and COM(·) denote the aggregation and combination function, while N (v) is the set of neighbors
adjacent to node v. Denoting H(k) = [h

(k)
0 ,h

(k)
1 , · · · ,h(k)

N ]⊤ ∈ RN×F , the widely used GCN
implementation can be written as H(k)

G = σ(ÂH(k−1)W(k)), where σ(·) is the activation function.

4.1 Smoothness-Generalization Dilemma

The following Theorem 4.1 reveals a dilemma in classic GCNs of k layers. See proof in Appendix A.1.
Theorem 4.1. Given a graph G(X,A), let the representation obtained via k rounds of GCN message
passing on symmetrically normalized Â be denoted as H(k)

G = σ(ÂH(k−1)W(k)), and the Lipschitz
constant of this k-layer graph neural network be denoted as L̂G. Given the distance from X to the
subspace M as dM(X) = D, then the distance from H

(k)
G to M satisfies:

dM(H
(k)
G ) ≤ L̂Gλ

kD, (3)

where L̂G = ∥
∏k

i=0 W
(i)∥2, and λ < 1 is the second largest eigenvalue of Â.

Corollary 4.2. ∀L̂G, ϵ > 0,∃k∗ = ⌈(log ϵ
L̂GD )/ log λ⌉, such that dM(H

(k∗)
G ) < ϵ, where ⌈·⌉ is the

ceil of the input.

Remark. As D is constant with respect to X, we observe that the distance is upper-bounded by three
factors: the second largest eigenvalue λ of Â, the Lipschitz constant L̂G corresponding to the norm
of the product of all W(i), and the layer depth k. Several conclusions can be drawn.
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First, there exists a smoothness-generalization dilemma. Since limk→∞ λk = 0, L̂G has to rise
when k increases to prevent dM(H

(k)
G ) from convergent to 0. This is evidenced by the upper bound

of the Lipschitz constant continuing to increase as training progresses [37]. However, a large L̂G

implies reduced generalization, leading to a significant performance gap between training and test
accuracy [38]. Consequently, either oversmoothing or poor generalization will occur at large k.

Second, from Corollary 4.2, we see that for any given L̂G, there exists a k such that the distance
from the representations to the subspace is smaller than any arbitrarily small ϵ. Thus, extremely small
distance with indistinguishable representations becomes inevitable for sufficiently large k, as L̂G

computing from weight matrices can not be infinitely large due to the finite computational precision.

In summary, although oversmoothing has been associated with generalization before [29], this
dilemma reveals a more intricate balance in an either-or situation. When the classic GCN attempts
to counter oversmoothing and recover discriminative representations from the over-smoothed AkX
by increasing the spectral norm of W(i), the resulting larger Lipschitz constant inevitably worsens
generalization. Conversely, constraining the norm of W(i) to maintain a low Lipschitz constant
and preserve generalization prevents the model from effectively reversing the over-smoothed AkX,
yielding indistinguishable node embeddings. This interplay constitutes the core of the smooth-
ness–generalization dilemma: efforts to improve one aspect inherently compromise the other.

4.2 How this Dilemma Hinders Performance across Varying Homophily

Next, we bridge the smoothness-generalization dilmma with varying homophily to elucidate the
intrinsic relationship among oversmoothing, generalization, and heterophily. In essence, graph
learning requires adaptive capabilities in both smoothness and generalization for neighborhoods of
varying homophily. Table 1 summarizes these dilemma impacts.

Table 1: Dilemma Impacts. S. and G. are short for
smoothness and generalization, while +, – and ∼ denote
strong, poor and adaptive capability. ⃝ means inconse-
quential (when S. aligns with the homophily bias).

Homophily Oversmoothing Low Orders High Orders
Heterophily Mixed he S. G. he S. G.

Classic MP Capability + – + –
Learning Homo high + ⃝ low/varying – / ∼ +

Requirements Hetero low/varying – / ∼ + low/varying – / ∼ +

In homophilic settings, the dilemma pri-
marily affects high-order neighborhoods,
whereas low-order ones are less impacted.
This can be intuitively understood as
smoothness and generalization aligning
in low-order homophilic neighborhoods,
which always favors pulling together
the representations of same-label nodes
within these hops. However, smoothness
begins to conflict with generalization in
high orders of low or varying homophily, as bringing closer nodes of different labels in these neigh-
borhoods is detrimental. This discrepancy in generalization is clearly exemplified in PMLP [42].

#0

#1

#2

Sparsity

#hop sparsified class I class II class III

Sparsity

𝒔𝒉𝒐𝒎𝒐𝟐 =0

𝒔𝒉𝒐𝒎𝒐𝟐 =2

𝒔𝒉𝒆𝒕𝒆𝒓𝒐𝟐 =17

𝒔𝒉𝒆𝒕𝒆𝒓𝒐𝟐 =6

(a) Homophily (b) Heterophily

𝐆𝟏 𝐆′𝟏 𝐆𝟐 𝐆′𝟐

Figure 2: Toy Example of the Sparsity Influence. Three
nodes at the same positions are sparsified from the (a)
homo- and (b) hetero-philic neighborhoods of the same
structure. Statistics of the neighborhood information and
NCD shift variances s2 are presented as:

Neigbors G1 NCD Neigbors G′
1 NCD Neigbors G2 NCD Neigbors G′

2 NCD
class I II III [I, II, III] I II III [I, II, III] I II III [I, II, III] I II III [I, II, III]
hop 1 3 0 0 [1,0,0] 2 0 0 [1,0,0] 1 1 1 [ 13 , 13 , 13 ] 1 1 0 [ 12 , 12 ,0]
hop 2 8 1 1 [0.8,0.1,0.1] 4 1 0 [0.8,0.2,0] 1 3 6 [0.1,0.3,0.6] 1 2 2 [0.2,0.4,0.4]
hop 1 s2homo = ∥[1, 0, 0]− [1, 0, 0]∥2 ∗ 100 = 0 s2hetero = ∥[ 13 ,

1
3 ,

1
3 ]− [ 12 ,

1
2 , 0]∥

2 ∗ 100 = 17
hop 2 s2homo = ∥[0.8, 0.1, 0.1]− [0.8, 0.2, 0]∥2 ∗ 100 = 2 s2hetero = ∥[0.1, 0.3, 0.6]− [0.2, 0.4, 0.4]∥2 ∗ 100 = 6

In heterophilic settings, the dilemma ex-
hibits negative effects across both low-
and high-order neighborhoods. First,
the complex neighborhood class distribu-
tion (NCD) [35] in heterophilic neighbor-
hoods makes it easy for noise or even
sparsity to result in mismatched or in-
complete NCDs for nodes of the same
label, which requires strong generaliza-
tion ability to mitigate. A toy example
in Figure 2 demonstrates that heterophilic
neighborhoods suffer from larger NCD
shifts caused by the same sparsity, as ev-
idenced by larger distribution variances
s2hetero both in hop 1 and 2 compared
to those s2homo of homophilic neighbor-
hoods. Second, there is a greater struc-
tural inconsistency between the training
and test sets in heterophilic graphs compared to homophilic ones [40], as heterophilic graphs exhibit
a mixture of homophilic and heterophilic patterns, which also requires good generalization.
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In summary, the core insight is that challenges are posed by the smoothness-generalization dilemma
in both homophily and heterophily, resulting in the absence of universality across varying homophily.

5 Making Classic GNNs Strong Baselines: Inceptive Message Passing

An intuitive approach to addressing the dilemma is to (1) decouple smoothness and generalization
from a rigid trade-off, endowing them with the capacity to adapt independently to varying homophily;
and (2) preserve the embeddings of low/medium orders, acknowledging that oversmoothing is
inevitable at sufficiently large hops. To this end, we propose a unified message-passing architecture
termed Inceptive Graph Neural Networks (IGNN), which is designed to realize this adaptivity with
minimal cost. Instead of introducing additional complex modules, IGNN can easily empower even
the classic GNNs by addressing the dilemma through three simple yet effective design principles.

5.1 Inceptive GNN Framework (IGNN)

Separative Neighborhood Transformation (SN) avoids sharing or coupling transformation layers
across neighborhoods: h

(k)
v = f (k)(xv) = xvW

(k), where f (k)(·) is the transformation for the
k-th neighborhood. The absence of SN implies all k-hop neighborhood transformations either share
the same parameters Wθ or are cascade-coupled in a multiplicative manner, such as

∏k
i W

i (see
Appendix D.1). This design aims to capture the unique characteristics of each neighborhood, enabling
personalized generalization capability with distinct Lipschitz constants for each neighborhood.

Inceptive Neighborhood Aggregation (IN) simultaneously embeds different receptive fields:
m

(k)
v = AGG(k)

(
{h(k)

u | u ∈ N (k)
v }

)
, where AGG(k)(·) represents the neighborhood aggrega-

tion function of the k-th hop. The simplest approach involves partitioning the k-th order rooted tree of
neighborhoods into k distinct neighborhoods N (k)

v = Nv(A
k) with N (0)

v = {v}. The inceptive na-
ture of the architecture preserves the embedding of low orders and prevents high-order neighborhood
representations from being computed based on low-order ones, which avoids cascading the learning
of different hops and propagating errors if one becomes corrupted. Moreover, it prevents the product-
type amplification of the Lipschitz constant (Theorem 4.1 and 5.3), which would otherwise limit the
generalization ability. Notably, some dynamic message-passing methods [18, 43] unconstrained by
the fixed neighborhood structure A can be viewed as advanced variants of inceptive architectures
with skip connections [17, 44]. However, as our goal is to enhance classical GNNs with minimal
overhead rather than adopt complex dynamic aggregations, we do not employ them in IGNN.

Neighborhood Relationship Learning (NR) adds a neighborhood-wise relationship learning module
to learn the correlations among neighborhoods: hv = REL

(
{m(k)

v | 0 ≤ k ≤ K}
)
, where REL(·)

is the relationship learning function of multiple neighborhoods. The relationships among various
neighborhoods represent a new characteristic in IGNN, extending the combination field from a single
neighborhood of ego and neighboring nodes in COM(·) to multiple neighborhoods of various hops in
REL(·). Based on the learning mechanism of relationships, IGNN can be divided into three variants.

Table 2: Three IGNN variants with GCN AGG(·).

SN - h(k)
v IN - m(k)

v NR
r-IGNN No SN. Coupled

or shared W(k).
∑

σ(Âk
v,uh

(k−1)
u )

h
(k)
v = σ(m

(k)
v W(k)) + h

(k−1)
v

a-IGNN h
(k)
v = α

(k)
v m

(k)
v + (1− α

(k)
v )h

(k−1)
v

c-IGNN xvW
(k)

∑
σ(Âk

v,uh
(k)
u ) hv = σ

(
(||ki=0σ(m

(i)
v ))W

)

A brief overview of the variants is pre-
sented in Table 2 with a comparison
in Appendix D.1. The classic GCN
AGG(·) is consistently used, and lay-
ers formed by these three principles
can be further stacked. Other AGG(·)
can be applied, but as long as they can
achieve GCN, the introduced advan-
tages of IGNN always hold. Table 9 and 10 illustrates how existing works falls into IGNN variants.

Residual r-IGNN variants leverage the residual connection [45] as: h(k)
v = σ(m

(k)
v W(k))+h

(k−1)
v ,

whose matrix format is H(k) = σ(ÂH(k−1)W(k))+H(k−1). It is easy to observe that the expansion
of H(k) covers all Âi, 0 < i < k (see Appendix A.2), which is an inceptive variant with IN &NR
designs. Besides, some methods [46, 16] adopt an initial residual connection, constructing connections
to the initial representation H(0) (see Appendix D.2). Luo et al. [11] empirically demonstrated that this
variant equipped with dropout and batch normalization establishes a strong baseline, but the theoretical
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rationale remains unclear. Our work extends this understanding by explaining its effectiveness under
varying homophily through the lens of the smoothness-generalization dilemma. We first prove
its adaptive smoothness capability in Theorem 5.1 and further expose its inherent generalization
limitations via quantitative analysis in Section 5.2.3, thereby elucidating the necessity of dropout and
batch normalization, which can improve generalization and prevent feature collapse [47].

Attentive a-IGNN variants leverage the attention mechanism to realize node-wise personalized
neighborhood relationship learning, defined as: h

(k)
v = α

(k)
v m

(k)
v + (1 − α

(k)
v )h

(k−1)
v , where

α
(k)
v = g(k)(m

(k)
v ,h

(k−1)
v ), and g(k)(·) is the mechanism function. Several methods, such as

DAGNN [48], GPRGNN [33], ACMGCN [24], and OrderedGNN [22], employ different attention
mechanisms yet unintentionally share the same IN &NR design.

Concatenative c-IGNN variants concatenate multi-neighborhoods with a learnable transformation:
hv = σ

(
(||ki=0σ(m

(i)
v ))W

)
, where || means concatenation. A c-IGNN with GCN AGG(·) is

HIG,k = σ((||ki=0σ(Â
iXW(i)))W), W(i) ∈ RD×F , and W ∈ RkF×F ′

. Although simple, its
power is strong, as it can achieve various relationships, such as general layer-wise neighborhood mix-
ing, personalized and generalized PageRank as in Proposition 5.2. Notably, when SN is incorporated
in c-IGNN, the REL(·) becomes optional, as the SN and NR transformations can be merged.

5.2 Theoretical and Empirical Analysis of Dilemma Alleviation

5.2.1 IN &NR: Adaptive Smoothness Capabilities

Theorem 5.1. Inceptive neighborhood relationship learning (IN &NR) can approximate arbitrary
graph filters for adaptive smoothness capabilities extending beyond simple low- or high-pass ones,
expressing the K order polynimial graph filter (

∑K
i=0 θiL̂

i) with arbitrary coefficients θi , including
c-IGNN (SN, IN and NR), as well as r-IGNN and a-IGNN (IN &NR).
Proposition 5.2. IGNN-s can achieve (1) SIGN, (2) APPNP with personalized PageRank, (3) MixHop
with general layerwise neighborhood mixing, and (4) GPRGNN with generalized PageRank.

Remark. Wu et al. [49] found that the vanilla GCN essentially simulates a K-order polynomial
filter [50] with predetermined coefficients, limited to a low-pass filter. However, many works
has highlighted the significance of high-frequency signals for heterophily [24, 51]. The inceptive
neighborhood relationship learning module (IN +NR) benefits IGNN with the expressive power
beyond simple low-pass or high-pass filters as in Theorem 5.1, achieving the K-order polynomial
graph filter with arbitrary coefficients, which has been proven able to approximate any graph filter [52].
Consequently, many existing methods are just simplified cases of IGNN as in Proposition 5.2.

5.2.2 SN: Improved Hop-wise and Overall Generalization

Theorem 5.3. Let the representation of c-IGNN incorporating the SN principle be denoted as
HIG,k = σ((||ki=0σ(Â

iXW(i)))W), and the Lipschitz constant of it be denoted as L̂IG. Given

dM(X) = D and W =
[
W0
···
Wk

]
, then the distance from HIG,k to M satisfies:

dM(HIG,k) ≤

∥∥∥∥∥
k∑

i=0

λiW(i)Wi

∥∥∥∥∥
2

D, (4)

where λ < 1 is the second largest eigenvalue of Â, and L̂IG = ∥
∑k

i=0 W
(i)Wi∥2.

Remark. Theorem 5.3 demonstrates the mitigation of the dilemma from two perspectives. From
the local perspective, each i-th hop has a distinct Lipschitz constant with isolated transformations
(W(i)Wi), allowing for a separate handle of its own generalization expectations. High-order
homophilic neighborhoods with extremely small λi demand large Lipschitz constants to mitigate
massive information loss from oversmoothing, while low-order or heterophilic ones can enjoy
small Lipschitz constants to guarantee good generalization. From the global perspective, the entire
network’s Lipschitz constant is effectively shrunk from cascade multiplication to summation, avoiding
the extreme decline in overall generalization ability. The overall Lipschitz constant is a summation
of individual multiplication of each layer transformation (L̂IG = ∥

∑k
i=0 W

(i)Wi∥2) in c-IGNN,
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Figure 3: Quantitative Analysis on the Cora (Homophily) and Squirrel (Heterophily) Datasets.

whose increase in magnitude will be much smaller than that of cascade multiplication L̂G =

∥
∏k

i=0 W
(i)∥2 in the traditional framework, which will grow exponentially as the layer increases

since each high-order neighborhoods suffering from oversmoothing all demand large W(i).

5.2.3 Quantitative Analysis on Smoothness-Generalization Delimma

We conducted a quantitative study of the dilemma using three GNNs on the Cora and Squiirel
dataset: (1) vanilla GCN, (2) r-IGNN (IN and NR), and (3) c-IGNN (IN, NR, and SN). The trends of
dM(H(k)) and Lipschitz constant L̂, computed following Cong et al. [53], are presented in Figure 3.

First, as k increases in vanilla GCN, dM(H(k)) initially decreases (indicating increased smoothness)
before rising again due to strong supervision from the classifier. In contrast, L̂ follows an inverse
pattern. This behavior aligns with the smoothness–generalization dilemma. Second,while r-IGNN
alleviates oversmoothing, as evidenced by the increased dM(H(k)), it exhibits a steadily increasing
L̂, suggesting degraded generalization. Finally, c-IGNN, which integrates all three principles,
demonstrates stable and moderate trends in both dM(H(k)) and L̂, indicating its ability to preserve
generalization while avoiding excessive smoothness. See Appendix C for more details.

6 Experiments

Research questions are: RQ1: How does IGNN perform compared to SOTA methods? RQ2: What
are the contributions of the three principles? RQ3: How is the dilemma resolved across various hops?

6.1 Datasets, Baselines and Settings

Datasets: Following recent works [54], we select 13 representative datasets of various sizes, excluding
those too small or class-imbalanced [27]: (i) Heterophily: Roman-empire, BlogCatalog, Flickr, Actor,
Squirrel-filtered, Chameleon-filtered, Amazon-ratings, Pokec; (ii) Homophily: PubMed, Photo,
wikics, ogbn-arxiv, ogbn-products. The statistics are in Table 3 and 4.

Baselines: We selected 30 representative baselines, as shown in Table 11. These models are
categorized into four types: graph-agnostic models, homophilic GNNs, heterophilic GNNs, and graph
transformers. GNNs are further divided into Non-inceptive and Inceptive ones.

Settings: We randomly construct 10 splits with proportions of 48%/32%/20% for training/valida-
tion/testing, which is guided by our theoretical emphasis on generalization. Prior work [40] has
shown that different splitting strategies can lead to substantial variations in structural distributions,
thereby influencing generalization behavior. To mitigate this, we adopt a unified split scheme [19, 22],
reducing variance across datasets that may arise from the heterogeneous splitting policies used
in earlier studies. For the large-size datasets (ogbn-arxiv, Pokec, and ogbn-products), we use the
public splits. The network is optimized using the Adam [55], with hyperparameter settings provided
in Appendix E.2. Our code with best hyperparamter settings and search scripts are available at
https://github.com/galogm/IGNN. Additional results and code for public splits are also provided in
the repository. We report the mean and standard deviation of classification accuracy across splits,
with complexity, paramter count and runtime analysis and comparison documented in Appendix B.
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Table 3: Overall Performance of Node Classification. The best results are in bold, and the second-best
results are underlined. A.R is the average of all ranks across datasets. OOM means out of memory.

Dataset Actor Blog Flickr Roman-E Squirrel-f Chame-f Amazon-R Pubmed Photo Wikics

A.R.
he 0.2163 0.4011 0.2386 0.0469 0.2072 0.2361 0.3804 0.8024 0.8272 0.6543

#Nodes 7,600 5,196 7,575 22,662 2,223 890 24,492 19,717 7,650 11,701
#Edges 33,544 171,743 239,738 32,927 46,998 8,854 93,050 44,338 238,162 431,206
#Feats 931 8,189 12,047 300 2,089 2,325 300 500 745 300
MLP 34.69±0.71 93.08±0.63 89.41±0.73 62.12±1.79 34.00±2.44 35.00±3.29 42.25±0.73 87.68±0.51 86.73±2.20 73.51±1.18 29.5

H
om

op
hi

lic

N
on

. SGC 29.46±0.96 72.85±1.15 59.02±1.48 42.90±0.50 39.75±1.85 42.42±3.28 41.32±0.80 87.14±0.57 92.38±0.49 77.63±0.88 27.2
GCN 30.82±1.41 77.28±1.43 69.06±1.70 36.23±0.57 37.06±1.42 41.46±3.42 44.96±0.40 87.70±0.58 94.88±2.08 78.59±1.07 26.7
GAT 30.94±0.95 85.36±1.37 57.87±2.22 62.31±0.93 34.22±1.41 40.69±3.20 47.41±0.80 87.64±0.54 94.72±0.52 76.92±0.81 28.0

GraphSAGE 34.52±0.64 95.73±0.53 91.74±0.58 66.39±2.16 34.83±2.24 41.24±1.65 46.71±2.83 88.71±0.65 94.52±1.27 80.85±1.00 23.2

In
ce

p.

APPNP 35.09±0.79 96.13±0.58 91.21±0.52 71.76±0.34 34.18±1.68 41.12±3.25 47.72±0.54 87.97±0.62 95.05±0.43 83.04±0.94 21.9
JKNet-GCN 30.49±1.71 84.25±0.71 71.72±1.47 69.61±0.42 40.11±2.54 43.31±3.12 48.15±0.93 87.41±0.38 94.39±0.40 83.80±0.65 23.0
IncepGCN 35.69±0.75 96.67±0.48 90.42±0.71 80.97±0.49 38.27±1.36 43.31±2.18 52.72±0.80 89.32±0.47 95.66±0.40 85.22±0.48 12.0

SIGN 36.76±1.00 96.06±0.68 91.81±0.58 81.56±0.57 42.13±1.99 44.66±3.46 52.47±0.95 90.29±0.50 95.53±0.43 85.59±0.79 7.7
MixHop 36.82±0.98 96.05±0.48 89.78±0.63 79.39±0.40 41.35±1.04 44.61±3.16 47.91±0.53 89.40±0.37 94.91±0.45 83.15±0.96 15.8
FAGCN 35.98±1.34 96.67±0.35 92.74±0.79 75.65±1.01 40.83±3.08 42.70±3.33 50.14±0.76 90.24±0.51 95.31±0.45 85.02±0.51 10.6
ωGAT 34.66±0.97 94.95±0.61 90.20±1.13 80.98±1.00 34.07±2.16 41.07±4.23 48.81±0.92 89.58±0.50 95.19±0.47 85.17±0.83 19.1

DAGNN 35.04±1.03 96.73±0.61 92.18±0.73 73.94±0.45 35.62±1.48 40.96±2.91 50.44±0.52 89.76±0.55 95.70±0.40 85.07±0.73 14.2
GCNII 35.69±1.08 96.25±0.61 91.36±0.68 80.55±0.82 38.43±2.10 42.13±2.04 47.65±0.48 90.00±0.46 95.54±0.34 85.15±0.56 13.7

H
et

er
op

hi
lic N

on
.

H2GCN 32.74±1.23 96.32±0.62 91.33±0.59 68.70±1.66 33.89±1.01 38.09±2.63 36.65±0.73 89.50±0.43 91.56±1.49 74.76±3.39 25.5
GBKGNN 35.74±4.46 OOM OOM 66.10±4.61 34.58±1.63 41.52±2.36 41.00±1.62 88.66±0.43 93.39±2.00 81.85±1.83 26.7

GGCN 35.72±1.48 96.09±0.55 90.17±0.76 OOM 36.04±2.61 38.54±3.99 OOM 89.19±0.43 95.32±0.27 83.67±0.75 23.1
GloGNN 35.82±1.27 92.53±0.80 88.18±0.85 70.87±0.89 35.39±1.70 40.28±2.91 49.01±0.74 88.14±0.25 92.15±0.33 84.20±0.55 23.6

HOGGCN 36.05±1.06 95.79±0.59 90.40±0.64 OOM 35.10±1.81 38.43±3.66 OOM OOM 94.48±0.50 83.57±0.63 25.5

In
ce

p.

GPRGNN 35.79±1.04 96.26±0.62 91.52±0.56 72.36±0.38 38.00±1.58 41.63±2.86 46.07±0.78 89.45±0.61 95.51±0.39 83.16±1.23 17.6
ACMGCN 35.68±1.17 96.01±0.53 68.63±1.87 72.58±0.35 37.60±1.70 43.03±3.08 50.51±0.66 89.95±0.50 92.35±0.39 84.13±0.66 19.1

OrderedGNN 36.95±0.85 96.39±0.69 91.13±0.59 82.65±0.91 36.27±1.95 42.13±3.04 51.58±0.99 90.01±0.40 95.87±0.24 85.60±0.77 9.9
N2 37.41±0.60 94.72±0.57 91.08±0.79 75.32±0.41 39.35±2.39 38.60±1.12 48.08±0.76 89.16±0.24 95.92±0.27 84.07±0.39 16.4

CoGNN 37.52±1.66 96.41±0.56 89.91±0.93 87.57±0.46 37.89±2.23 40.45±2.48 52.89±0.81 89.49±0.53 95.15±0.55 85.70±0.71 12.6
UniFilter 36.11±1.04 96.53±0.47 91.89±0.75 74.90±0.91 42.40±2.58 46.07±4.74 49.36±0.98 90.15±0.39 94.91±0.62 85.43±0.67 9.8

NodeFormer 36.10±1.09 94.28±0.67 89.05±0.99 70.24±1.58 38.38±1.81 38.93±3.68 42.67±0.77 88.36±0.43 93.81±0.75 80.98±0.84 23.7
DIFFormer 36.13±1.19 96.50±0.71 90.86±0.58 79.36±0.54 41.12±1.09 41.69±2.96 49.33±0.97 88.90±0.47 95.67±0.29 84.27±0.75 13.6
SGFormer 37.36±1.11 96.98±0.59 91.62±0.55 75.71±0.44 42.22±2.45 44.44±3.01 51.60±0.62 89.75±0.44 95.84±0.41 84.72±0.72 8.4

GOAT 35.90±1.31 95.20±0.54 89.43±1.28 79.41±0.81 36.27±2.13 44.10±4.06 51.47±0.96 89.85±0.57 95.48±0.33 85.56±0.72 14.3
Polynormer 37.27±1.52 96.73±0.45 91.98±0.74 92.46±0.43 40.13±2.28 43.60±3.29 53.35±1.06 89.98±0.44 95.75±0.22 84.76±0.82 6.5

O
ur

s

In
ce

p. r-IGNN 37.58±1.39 96.49±0.39 92.32±0.66 90.36±0.43 44.67±2.08 46.63±3.80 52.10±1.02 89.76±0.49 95.53±0.42 85.20±0.61 6.5
a-IGNN 38.04±1.00 96.77±0.42 93.24±0.73 90.96±0.53 45.01±2.65 47.53±3.09 52.22±0.66 90.22±0.52 95.73±0.38 85.75±0.59 3.2
c-IGNN 38.51±0.94 97.24±0.34 93.27±0.40 90.97±0.36 45.71±2.13 50.79±4.92 53.03±0.61 90.41±0.59 95.91±0.29 86.37±0.44 1.3

6.2 Performance Analysis (RQ1)

Table 4: Performance on Large Datasets.

Dataset ogbn-arxiv pokec ogbn-products
he 0.66 0.44 0.81
#Nodes 169,343 1,632,803 2,440,029
#Edges 1,166,243 30,622,564 123,718,280
#Feats 128 65 100
MLP 55.50±0.23 63.27±0.12 61.06±0.12

GCN 71.74±0.29 74.45±0.27 75.45±0.16

GAT 71.74±0.29 72.77±3.18 79.45±0.28

SGC 70.74±0.29 73.77±3.18 74.78±0.17

SIGN 70.28±0.25 77.98±0.14 77.60±0.13

GPRGNN 71.40±0.32 78.62±0.15 78.23±0.25

NodeFormer 67.72±0.52 70.12±0.42 71.23±1.40

DIFFormer 69.85±0.34 72.89±0.56 74.16±0.32

SGFormer 72.62±0.18 73.24±0.54 76.24±0.45

r-IGNN 72.63±0.23 82.74±0.41 80.92±0.19

a-IGNN 72.60±0.31 82.09±0.25 78.89±0.47

c-IGNN 73.26±0.10 82.09±0.11 82.04±0.45

From Table 3 and 4, it is evident that IGNN incorporating
all three principles consistently outperforms baselines.

A subset of homoGNNs, which happen to be inceptive vari-
ants, outperform many recent heteroGNNs, highlighting
the strength of inceptive architectures in addressing the
dilemma hindering universality. Specifically, the average
ranks of inceptive homoGNNs exceed those of all non-
inceptive heteroGNNs, and in many cases, surpass those
of inceptive heteroGNNs. These homoGNNs have been
largely overlooked previously, as their designs are not
tailored for heterophily. Only DAGNN and GCNII have
specific features to mitigate oversmoothing. Surprisingly,
the mere incorporation of inceptive designs is sufficient to
achieve superior performance. This strongly suggests that
the key factor limiting universality is the dilemma.

Inceptive heteroGNNs demonstrate better performance compared to non-inceptive heteroGNNs, while
graph transformers also show relatively strong performance. First, inceptive heteroGNNs are mostly
attentive variants employing different attention mechanisms. Interestingly, these models exhibit
significant differences in performance, indicating that the design of the attention mechanism plays
a critical role. Second, graph transformers excel likely because they move beyond the traditional
message passing process, which utilizes the global attention mechanisms. Notably, Polynormer
shows a great advantage on roman-empire which is not observed in other datasets. Upon examination,
we found it was a long-chain graph derived from words, aligning with the inherent strengths of
transformers in natural language processing. Nevertheless, we observe an interesting insight for
language graphs: for the same receptive field size k, they achieve better performance when stacking
k IGNN layers than when using a single IGNN layer with RN across k hops. As we focus on general
graphs and the A.R. of IGNN-s show consistent advantages, we leave such graphs to future studies.

IGNN outperforms all baselines with or without inceptive architectures, while inceptive GNNs also
vary in performance, suggesting that the effectiveness is significantly influenced by whether all
principles are integrated and how they are implemented. In particular, concatenative variants (e.g.,
c-IGNN, SIGN, and IncepGCN) generally outperform residual and attentive ones, with the ordered
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Table 5: Ablation of Three Principles. A.R. denotes the average of all ranks across datasets.
GCN AGG(·)+ Equivalent Actor Blog Flickr Roman-E Squirrel-f Chame-f Amazon-R Pubmed Photo Wikics A.R.SN IN NR Variant

1 GCN 30.82±1.41 77.28±1.43 69.06±1.70 36.23±0.57 37.06±1.42 41.46±3.42 44.96±0.40 87.70±0.58 94.88±2.08 78.59±1.07 5.7
2 ✓ SIGN w/o SN 36.32±1.03 96.89±0.29 91.81±0.76 79.77±0.95 42.52±2.52 44.10±4.24 51.72±0.69 89.63±0.54 95.74±0.41 85.67±0.70 3.2
3 ✓ JKNet-GCN 30.49±1.71 84.25±0.71 71.72±1.47 69.61±0.42 40.11±2.54 43.31±3.12 48.15±0.93 87.41±0.38 94.39±0.40 83.80±0.65 5.3
4 ✓ ✓ SIGN 36.76±1.00 96.06±0.68 91.81±0.58 81.56±0.57 42.13±1.99 44.66±3.46 52.47±0.95 90.29±0.50 95.53±0.43 85.59±0.79 3.0
5 ✓ ✓ r-IGNN 37.58±1.39 96.49±0.39 92.32±0.66 90.36±0.43 44.67±2.08 46.63±3.80 52.10±1.02 89.76±0.49 95.53±0.42 85.20±0.61 2.6
6 ✓ ✓ ✓ c-IGNN 38.51±0.94 97.24±0.34 93.27±0.40 90.97±0.36 45.71±2.13 50.79±4.92 53.03±0.61 90.41±0.59 95.91±0.29 86.37±0.44 1.0

gating mechanism of OrderedGNN standing out as evidence that order information is crucial for
capturing neighborhood relationships. However, two concatenative variants show low performance
due to unique designs: original JKNet does not include ego features without propagation, and MixHop
requires stacking layers, reintroducing transforamtion decoupling. Furthermore, most inceptive GNNs
fail to incorporate all three principles, thereby not fully resolving the dilemma and degrading their
performance on universality. See a detailed comparison of inceptive GNNs in Appendix D.1

6.3 Ablation Studies of SN, IN and NR (RQ2)
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Figure 4: Performance of Different Hops

Table 5 presents the ablation of the three prin-
ciples. It is important to note that SN cannot
be applied without IN, so the ablations do not
include any combinations of SN without IN. Sev-
eral key conclusions can be drawn: First, the
best performance is achieved when all princi-
ples are applied, as c-IGNN obtains the high-
est average rank (Rank 1) (line 6 vs. others).
Second, JKNet-GCN shows a significant per-
formance gap depending on IN (line 3 vs. line
5), where the difference lies in whether each
hop is aggregated independently with the ego
feature transformation included. This indicates
that incorporating IN and the ego representation
into the final representation enhances generaliza-
tion. Third, SN and NR demonstrate excellent
synergy, yielding significantly improved results
when used together. Although IN is incorpo-
rated in lines 4–6, adding either SN or NR alone (lines 4, 5) does not lead to the best improvement
compared to incorporating both, as seen in c-IGNN (line 6).

6.4 Performance of Different Neighborhood Hops (RQ3)

Figure 4 illustrates various method performance across different hops. In the homophilic context
(photo), many inceptive methods effectively mitigating the oversmoothing issue, such as GCNII,
GPRGNN, IGNN and OrderedGNN. Conversely, in the heterophilic scenario (squirrel), most of them
consistently struggle with high-order neighborhoods, as evidenced by a trend of initial improvement
followed by a decline in performance. In contrast, c-IGNN exhibits a notable increase in perfor-
mance that stabilizes thereafter, highlighting the effectiveness of incorporating all three principles in
improving hop-wise and overall generalization as well as alliviating the dilemma.

7 Conclusion

This paper advances GNN universality across varying homophily by identifying the smoothness-
generalization dilemma, which impairs learning in high-order homophilic neighborhoods and all
heterophilic ones. We propose the Inceptive Graph Neural Network (IGNN), a unified message-
passing framework built on three key design principles: separative neighborhood transformation,
inceptive neighborhood aggregation, and neighborhood relationship learning. These principles
alleviate the dilemma by enabling distinct hop-wise generalization, improving overall generalization,
and approximating arbitrary graph filters for adaptive smoothness. Extensive benchmarking against
30 baselines demonstrates IGNN ’s superiority and reveals notable universality in certain homophilic
GNN variants. For limitation discussion, please refer to Appendix F.
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A Proofs of Theoretical Results

A.1 Proofs of Theorems 4.1 and Corollary 4.2

Restatement of Theorem 4.1. Given a graph G(X,A), let the representation obtained via k rounds
of GCN message passing on symmetrically normalized Â be denoted as H(k)

G = σ(ÂH(k−1)W(k)),
and the Lipschitz constant of this k-layer graph neural network be denoted as L̂G. Given the distance
from X to the subspace M as dM(X) = D, then the distance from H

(k)
G to M satisfies:

dM(H
(k)
G ) ≤ L̂Gλ

kD, (5)

where L̂G = ∥
∏k

i=0 W
(i)∥2, and λ < 1 is the second largest eigenvalue of Â.

proof of Theorem 4.1. To prove Theorem 4.1, we need to borrow the following notations and Lemmas
from Oono and Suzuki [29]. For N,D,F ∈ N+, Â ∈ RN×N is a symmetric matrix and W(k) ∈
RD×F for k ∈ N+. For M ≤ N , let U be a M -dimensional subspace of RN . We assume U

and Â satisfy the following properties that generalize the situation where U is the eigenspace
associated with the smallest eigenvalue of the graph Laplacian L̂ = IN − Â (that is, zero). We
endow RN with the ordinal inner product and denote the orthogonal complement of U by U⊥ :={
u ∈ RN | ⟨u,v⟩ = 0,∀v ∈ U

}
. We can regard Â as a linear mapping Â

∣∣∣
U⊥

: U⊥ → U⊥.

Choose the orthonormal basis (em)m=M+1,...,N of U⊥ consisting of the eigenvalue of Â
∣∣∣
U⊥

. Let

λm be the eigenvalue of Â to which em is associated (m = M + 1, . . . , N). Note that since the
operator norm of Â

∣∣∣
U⊥

is λ, we have |λm| ≤ λ for all m = M +1, . . . , N . Since (em)m∈[N ] forms

the orthonormal basis of RN , we can uniquely write X ∈ RN×D as X =
∑N

m=1 em ⊗ωm for some
ωm ∈ RD with ⊗ denoting the Kronecker product. Then, we have

d2M(X) =

N∑
m=M+1

∥ωm∥22 , (6)
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where ∥ · ∥2 is the 2-norm. On the other hand, we have

ÂXW(k) =

N∑
m=1

(Âem)⊗ (W(k)⊤ωm)

=

M∑
m=1

(Âem)⊗ (W(k)⊤ωm) +

N∑
m=M+1

(Âem)⊗ (W(k)⊤ωm)

=

M∑
m=1

(Âem)⊗ (W(k)⊤ωm) +

N∑
m=M+1

em ⊗ (λmW(k)⊤ωm).

(7)

Since U is invariant under Â [29], for any m ∈ [M ], we can write Âem as a linear combination of
en(n ∈ [M ]). Therefore, we have

d2M

(
ÂXW(k)

)
=

N∑
m=M+1

∥∥∥λmW(k)⊤ωm

∥∥∥2
2
. (8)

Lemma A.1 (Oono and Suzuki [29]). For any X ∈ RN×D, we have dM(σ(X)) ≤ dM(X).

Based on Lemma A.1, by simplifying the GCNs by removing the nonlinear activation functions in
the intermediate layers [56, 49, 57] and retaining only the final activation function, we have

d2M

(
H

(k)

Â

)
=d2M

(
σ(ÂH

(k−1)

Â
W(k))

)
⩽d2M

(
ÂH

(k−1)

Â
W(k)

)
=d2M

(
Â2H

(k−2)

Â
W(k−1)W(k)

)
=d2M

(
ÂkXW(1)W(2) . . .W(k)

)
=

N∑
m=M+1

∥∥∥∥λk
m

(
W(1) . . .W(k)

)⊤
ωm

∥∥∥∥2
2

.

(9)

Lemma A.2 (Juvina et al. [58]). For any k-layer GCN with 1-Lipschitz activation functions (e.g.
ReLU, Leaky ReLU, SoftPlus, Tanh or Sigmoid), defined as H(k) = σ(ÂH(k−1)W(k)), the Lipschitz
constant becomes

L̂G =

∥∥∥∥∥
k∏

i=1

W(i)

∥∥∥∥∥
2

. (10)

We recall the the Lipschitz constant L̂G of GCN [58] as in Lemma A.2, and substitute Equation (10)
into Equation (9), we have:

d2M

(
H

(k)

Â

)
⩽

N∑
m=M+1

∥∥∥∥λk
m

(
W(1) . . .W(k)

)⊤
ωm

∥∥∥∥2
2

⩽
N∑

m=M+1

λ2k
m ∥ωm∥22

∥∥∥∥∥
k∏

i=1

W(i)

∥∥∥∥∥
2

2

=L̂2
G

N∑
m=M+1

λ2k
m ∥ωm∥22

⩽L̂2
Gλ

2k
N∑

m=M+1

∥ωm∥22 = L̂2
Gλ

2kd2M(X).

(11)
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Restatement of Corollary 4.2. ∀L̂G, ϵ > 0,∃k∗ = ⌈(log ϵ
L̂GD )/ log λ⌉, such that dM(H

(k∗)
G ) < ϵ,

where ⌈·⌉ is the ceil of the input.

proof of Corollary 4.2. In order to have dM(H
(k)

Â
) ≤ L̂Gλ

kD < ϵ, since L̂G >= 0, D >= 0 and
λ < 1, we have

dM(H
(k)

Â
) ≤ L̂Gλ

kD < ϵ ⇒ λk <
ϵ

L̂GD
,

⇒ k log λ < log
ϵ

L̂GD
,

⇒ k >
log ϵ

L̂GD
log λ

.

(12)

Therefore, there exists k∗ = ⌈
log ϵ

L̂GD
log λ ⌉, such that dM(H

(k∗)

Â
) ≤ L̂Gλ

k∗D < ϵ, where ⌈·⌉ is the ceil
of the input.

A.2 Proof of Theorem 5.1

In this subsection, we present the proofs for the concatenative (c-IGNN), residual (r-IGNN), and
attentive (a-IGNN) variants, demonstrating their expression capability of the K-order polynomial
graph filter with arbitrary coefficients.

Restatement of Theorem 5.1. Inceptive neighborhood relationship learning (IN &NR) can ap-
proximate arbitrary graph filters for adaptive smoothness capabilities extending beyond simple
low- or high-pass ones, expressing the K order polynimial graph filter (

∑K
i=0 θiL̂

i) with arbitrary
coefficients θi , including c-IGNN (SN, IN and NR), as well as r-IGNN and a-IGNN (IN &NR).

Proof of the Concatenative Variant c-IGNN. A polynomial graph filter [50] defined on Â is given
by:

Hp =

(
K∑

k=0

θkL̂
k

)
X =

(
K∑

k=0

θk(IN − Â)k

)
X. (13)

Expanding (IN − Â)k using the binomial theorem and rearranging the summation order yields:

Hp =

(
K∑

k=0

θk

(
k∑

i=0

(−1)i
(
k

i

)
Âi

))
X =

(
K∑
i=0

(
K∑
k=i

θk(−1)i
(
k

i

)
Âi

))
X. (14)

Meanwhile, the matrix formulation of c-IGNN can be expressed as:

H = σ

(
(

K

||
k=0

σ(ÂkXW(k)))W

)
= σ

(
K∑

k=0

σ(ÂkXW(k))Wk

)
, (15)

where W =

[
W0
···
Wk
···

WK

]
. By simplifying the above expression, omitting the non-linear layers, and setting

W(k) = I, Wk = (
∑K

i=k θi(−1)k
(
i
k

)
)I, we obtain:

H =

K∑
k=0

(ÂkXI)(

K∑
i=k

θi(−1)k
(
i

k

)
)I =

K∑
k=0

K∑
i=k

θi(−1)k
(
i

k

)
ÂkX. (16)

Swapping the notation of i and k, we get H =
∑K

i=0

∑K
k=i θk(−1)i

(
k
i

)
ÂiX, which matches the

polynomial graph filter form in Equation (13). Since coefficients (
∑K

i=k θi(−1)k
(
i
k

)
) can be arbitrary

to learn by each Wk, the concatenative variant (c-IGNN) is capable of expressing the K-order
polynomial graph filter with arbitrary coefficients.
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Proof of the Residual Variant r-IGNN. We begin by verifying, using mathematical induction, that
the residual variant H(k) = ÂH(k−1)W(k) +H(k−1) satisfies the general formula:

H(k) =

k∑
m=0

ÂmH(0)
∑

J⊆{1,2,...,k}
|J|=m

∏
j∈J

W(j), (17)

where k ≥ 0, and
∑

J⊆{1,2,...,k}
|J|=m

∏
j∈J W(j) = I if J = ∅.

(1) Base Case (k = 0). When k = 0, the recursive formula reduces to H(0) = H(0). The general
formula for k = 0 is: H(0) =

∑0
m=0 Â

mH(0)
∑

J⊆{1,2,...,0}
|J|=m

∏
j∈J W(j) = Â0H(0)I = H(0).

Thus, the base case holds.

(2) Inductive Hypothesis. Assume that the general formula holds for k − 1 ≥ 0, i.e.,

H(k−1) =

k−1∑
m=0

ÂmH(0)
∑

J⊆{1,2,...,k−1}
|J|=m

∏
j∈J

W(j). (18)

(3) Inductive Step. Using the recurrence relation: H(k) = ÂH(k−1)W(k) +H(k−1), substitute the
hypothesis for H(k−1):

H(k) = Â

 k−1∑
m=0

ÂmH(0)
∑

J⊆{1,2,...,k−1}
|J|=m

∏
j∈J

W(j)

W(k)+

k−1∑
m=0

ÂmH(0)
∑

J⊆{1,2,...,k−1}
|J|=m

∏
j∈J

W(j).

(19)

For the first term, let m′ = m + 1. The corresponding range of m′ is 1 ≤ m′ ≤ k as
0 ≤ m ≤ k − 1. When m = 0, we have J = ∅,

∑
J⊆{1,2,...,k}

|J|=m

∏
j∈J W(j) = I. Thus

the corresponding range of m′ can be safely expanded as 0 ≤ m′ ≤ k, and we obtain∑k
m′=0 Â

m′
H(0)

∑
J⊆{1,2,...,k−1}

|J|=m′−1

∏
j∈J W(j)W(k). After renaming back, the first term is:

k∑
m=0

ÂmH(0)
∑

J⊆{1,2,...,k−1}
|J|=m−1

∏
j∈J

W(j)W(k). (20)

Here, J ⊆ {1, 2, . . . , k − 1} with |J | = m− 1, and adding W(k) corresponds to all subsets where
|J | = m with k added. Since the second part is exactly the case where J ⊆ {1, 2, . . . , k}, |J | = m
and k /∈ J . Combining the two terms, we have:

H(k) =

k∑
m=0

ÂmH(0)
∑

J⊆{1,2,...,k}
|J|=m

∏
j∈J

W(j). (21)

Thus, the formula holds for k, completing the induction and verification.

We now prove the general formula can express the K order polynomial graph filter with arbitrary
coefficients. Let W(j) = (−1)γjI for 1 ≤ j ≤ k. Substituting this into the general formula gives:∑

J⊆{1,2,...,k}
|J|=m

∏
j∈J

W(j) =
∑

J⊆{1,2,...,k}
|J|=m

∏
j∈J

(−1)γjI

= (−1)m
∑

J⊆{1,2,...,k}
|J|=m

∏
j∈J

γjI.
(22)
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By substituting Equation (22) into Equation (21) and setting W(0) = γ0I,H
(0) = XW(0) = γ0X,

we have:

H(k) =

k∑
m=0

ÂmH(0)(−1)m
∑

J⊆{1,2,...,k}
|J|=m

∏
j∈J

γjI

=

 k∑
m=0

(−1)m

 ∑
J⊆{1,2,...,k}

|J|=m

∏
j∈J

γj

 Âm

H(0)

=

 k∑
m=0

(−1)m

 ∑
J⊆{1,2,...,k}

|J|=m

∏
j∈J

γj

 Âm

XW(0)

=

 k∑
m=0

(−1)m

γ0
∑

J⊆{1,2,...,k}
|J|=m

∏
j∈J

γj

 Âm

X.

(23)

Comparing this with the polynomial graph filter:

Hp =

(
K∑
i=0

(
K∑
k=i

θk(−1)i
(
k

i

)
Âi

))
X

=

(
k∑

m=0

(
k∑

t′=m

θt′(−1)m
(
t′

m

)
Âm

))
X

=

(
k∑

m=0

(−1)m

(
k∑

t′=m

θt′

(
t′

m

))
Âm

)
X,

(24)

in order to prove the residual variant representation H(k) can express the K order polynomial graph
filter representation Hp with arbitrary coefficients, we only need to show the following equation
system:

γ0
∑

J⊆{1,2,...,k}
|J|=m

∏
j∈J

γj =

k∑
t′=m

θt′

(
t′

m

)
, (25)

has a solution or good approximation for m = 0, . . . , k.

Case m = 0: Since J = ∅,
∑

J⊆{1,2,...,k}
|J|=m

∏
j∈J W(j) = I =⇒

∑
J⊆{1,2,...,k}

|J|=0

∏
j∈J γj = 1. We

have γ0 =
∑k

t′=0 θt′ .

Case m = 1, . . . , k: We can approximate it by

γ0

k∏
t′=k−m+1

γt′ =

k∑
t′=m

θt′

(
t′

m

)
, (26)

and solve by

γk−m+1 =

∑k
t′=m θt′

(
t′

m

)∑k
t′=m−1 θt′

(
t′

m−1

) , (27)

for m = 1, . . . , k. The above solution may fail when
∑k

t′=m−1 θt′
(

t′

m−1

)
= 0. Similar to the analysis

of the boundary conditions in Chen et al. [16], this case is rare as the K-order filter ignores all features
from the m-hop neighbors, and we can set γk−m+1 sufficiently large so that Equation (27) is still a
good approximation.
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Since coefficients can be arbitrary to learn by each W(j), we now proved that a residual variant
r-IGNN can express the K-th order polynomial filter with arbitrary coefficients. For the proof of the
initial residual variant being able to express the K-th order polynomial filter, please refer to the proof
of Theorem 2 in Chen et al. [16].

Proof of the Attentive Variant a-IGNN. For simplicity, we set all feature transformation matrices,
except those used in attention mechanisms, to the identity matrix I. Then the implementation of an
a-IGNN with the GCN AGG(·) (i.e., m(k)

v =
∑

σ(Âk
v,uh

(k−1)
u )) is defined as:

h(k)
v = α(k)

v

∑
u

Âv,uh
(k−1)
u + (1− α(k)

v )h(k−1)
v , (28)

where α
(k)
v = g(k)(

∑
u Âv,uh

(k−1)
u ,h

(k−1)
v ). We define:

α(k)
v = ([ÂH(k−1)]v || H(k−1)

v )W(k),H(k) ∈ RN×F ,W(k) ∈ R2F×1, (29)

where || is the concatenation operator, and [·]v represents the v-th row. Several activation functions
can be used to limit the range of attention values. Here we leave out the activation for simplicity.

Next we demonstrate that for any given αk,k ≥ 1, there exists a transformation W(k) such that
α
(k)
v = ([ÂH(k−1)]v || H(k−1)

v )W(k) = αk holds for all v. That is, (ÂH(k−1) || H(k−1))W(k) =
αk1.

We rewrite W(k) =

[
W1

W2

]
, where W

(k)
1 ,W

(k)
1 ∈ RF×1. Substituting, we obtain:

ÂH(k−1)W
(k)
1 +H(k−1)W

(k)
2 = αk1. (30)

Rearrange the equation: ÂH(k−1)W
(k)
1 = αk1 − H(k−1)W

(k)
2 . Let W(k)

2 be arbitrary, and
W

(k)
1 = (ÂH(k−1))†(αk1 − H(k−1)W

(k)
2 ), where (·)† denotes the pseudoinverse. For any αk,

there exists a W(k) of the following form that ensures α(k)
v = αk for all v:

W(k) =

[
(ÂH(k−1))†(αk1−H(k−1)W

(k)
2 )

W
(k)
2

]
. (31)

Under these conditions, the a-IGNN variant can be expressed as:

H(k) = αkÂH(k−1) + (1− αk)H
(k−1)

=

k∏
i=1

(
αiÂ+ (1− αi)I

)
H(0)

=

 k∑
m=0

 ∑
C⊆{1,2,...,k},|C|=m

∏
i∈C

αi

∏
i/∈C

(1− αi)

 Âm

H(0),

(32)

where
∑

C⊆{1,2,...,k},|C|=m

∏
i∈C αi

∏
i/∈C(1− αi) = 1 for m = 0.

Compared to the polynomial graph filter Hp =
(∑k

m=0(−1)m
(∑k

t′=m θt′
(
t′

m

))
Âm

)
X, since αk

is arbitrary, by setting α′
k = −αk,H

(0) = XW(0) = X(α0I), we arrive at:

H(k) =

 k∑
m=0

(−1)m

 ∑
C⊆{1,2,...,k},|C|=m

∏
i∈C

α′
i

∏
i/∈C

(1 + α′
i)

 Âm

Xα0I

=

 k∑
m=0

(−1)m

α0

∑
C⊆{1,2,...,k},|C|=m

∏
i∈C

α′
i

∏
i/∈C

(1 + α′
i)

 Âm

X.

(33)
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To satisfy the equality, we only need to show the following equation system:

α0

∑
C⊆{1,2,...,k},|C|=m

∏
i∈C

α′
i

∏
i/∈C

(1 + α′
i) =

k∑
t′=m

θt′

(
t′

m

)
, (34)

has a solution or good approximation for m = 0, . . . , k.

Case m = 0: When m = 0, given
∑

C⊆{1,2,...,k},|C|=m

∏
i∈C αi

∏
i/∈C(1 − αi) = I , we have

α0 =
∑k

t′=0 θt′ .

Case m = 1, . . . , k: We can approximate it by

α0

k∏
i=k−m+1

α′
i

k−m∏
i=1

(1 + α′
i) =

k∑
t′=m

θt′

(
t′

m

)
(35)

and solve by α′
i = 0, if i = 1, . . . , k −m,

α′
i =

∑k
t′=k−i+1

θt′(
t′

k−i+1)∑k
t′=k−i

θt′(
t′

k−i)
, if i = k −m+ 1, . . . , k.

(36)

for m = 1, . . . , k. Similar to the previous proof, the above solution may fail when∑k
t′=k−i θt′

(
t′

k−i

)
= 0, and this case is rare as the K-order filter ignores all features from the

m-hop neighbors. We can set α′
i sufficiently large so that Equation (36) is still a good approximation.

A.3 Proofs of Proposition 5.2

Here, we take c-IGNN as an variant example to demonstrate the proofs of Proposition 5.2. The proofs
of other variants can be achieved in a similar way.

Restatement of Proposition 5.2. IGNN-s can achieve (1) SIGN, (2) APPNP with personalized
PageRank, (3) MixHop with general layerwise neighborhood mixing, and (4) GPRGNN with general-
ized PageRank.

Proof 1: SIGN as a simplified case of c-IGNN. The architecture of SIGN can be trivially obtained
by omitting the NR function and replacing it with a non-learnable concatenation as

H =
K

||
k=0

σ(ÂkXW(k)) = HSIGN. (37)

Proof 2: APPNP as a simplified case of c-IGNN. The architecture of APPNP [46] is defined as fol-
lows:

H
(0)
APPNP = fθ(X) = XWθ,H

(k)
APPNP = (1− α)ÂH

(k−1)
APPNP + αH

(0)
APPNP, (38)

where α ∈ (0, 1] represents the teleport (or restart) probability. Consequently, H(k)
APPNP can be

expressed in terms of H(0)
APPNP as:

H
(k)
APPNP = (1− α)kÂkH

(0)
APPNP +

k−1∑
i=0

α(1− α)iÂiH
(0)
APPNP. (39)

According to Equation (15), by omitting all non-linearity and setting W(k) = Wθ, WK = (1−α)KI,
and Wk = α(1− α)kI for k ∈ [0,K − 1], we obtain a simplified case of IGNN as:

H = ÂKXWθ(1− α)KI+

K−1∑
k=0

ÂkXWθα(1− α)kI

= (1− α)KÂKXWθ +

K−1∑
k=0

α(1− α)kÂkXWθ

= H
(K)
APPNP.

(40)
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Proof 3: MixHop as a simplified case of c-IGNN. Here, we illustrate that c-IGNN can achieve the
general layer-wise neighborhood mixing of MixHop Abu-El-Haija et al. [34] by specializing the

weight matrix as W =

[
W0
···
Wk
···

WK

]
∈ RKF×F ′

:

H = σ

(
(

K

||
k=0

σ(ÂkXW(k)))W

)
= σ

(
K∑

k=0

σ(ÂkXW(k))Wk

)
, (41)

where W(k) ∈ RD×F , Wk ∈ RF×F ′
. Setting F ′ = F = D, W(k) = IF and Wk = αkIF results

in:

hv = σ

(
K∑

k=0

σ(ÂkXW(k))(αkIF )

)
= σ

(
K∑

k=0

αkσ(Â
kXW(k))

)

= σ

(
K∑

k=0

αkσ(Â
kX)

)
,

(42)

which represents a general layer-wise neighborhood mixing relationship demonstrated by Definition
2 of Abu-El-Haija et al. [34] to exceed the representational capacity of vanilla GCNs within the
traditional message-passing framework. We achieve this advantage through simple neighborhood
concatenation and non-linear feature transformation, eliminating the need to stack multiple layers of
message passing as done in Abu-El-Haija et al. [34], thus calling it Hop-wise Neighborhood Relation
rather than layer-wise.

Proof 4: GPRGNN as a simplified case of c-IGNN. Based on Equation (41), by sharing the param-
eters of all W(k) as W(k) = Wθ, setting Wk = γkI and leaving out all the non-linear layers of
REL(·), we have:

H =

K∑
k=0

(ÂkXW(k))Wk =

K∑
k=0

(ÂkXWθ)γkI =

K∑
k=0

γk(Â
kXWθ), (43)

which is the exact architecture of GPRGNN [33].

Proof 5: mean/sum pooling as a simplified case of c-IGNN. Based on Equation (41), by setting
Wk = 1

K I, we obtain H = σ
(∑K

k=0
1
Kσ(ÂkXW(k))

)
, which corresponds to mean pooling.

Alternatively, by setting Wk = I, we have H = σ
(∑K

k=0 σ(Â
kXW(k))

)
, which corresponds to

sum pooling.

A.4 Proof of Theorem 5.3

Restatement of Theorem 5.3. Let the representation of c-IGNN incorporating the SN principle be
denoted as HIG,k = σ((||ki=0σ(Â

iXW(i)))W), and the Lipschitz constant of it be denoted as L̂IG.

Given dM(X) = D and W =
[
W0
···
Wk

]
, then the distance from HIG,k to M satisfies:

dM(HIG,k) ≤

∥∥∥∥∥
k∑

i=0

λiW(i)Wi

∥∥∥∥∥
2

D, (44)

where λ < 1 is the second largest eigenvalue of Â, and L̂IG = ∥
∑k

i=0 W
(i)Wi∥2.
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Proof of Theorem 5.3. We first derive the inequality:

d2M(HIG,k) = d2M

(
σ
(
(∥ki=0σ(Â

iXW(i)))W
))

= d2M

(
σ

(
k∑

i=0

σ(ÂiXW(i))Wi

))

⩽ d2M

(
k∑

i=0

ÂiXW(i)Wi

)
,W =

[
W0
···
Wi
···
Wk

]
.

(45)

Given U invariant under Â, U is also invariant under Âi. Similar to the derivation of Equation (8),
we have

d2M(HIG,k) ⩽ d2M

(
k∑

i=0

ÂiXW(i)Wi

)

=

N∑
m=M+1

∥∥∥∥∥
k∑

i=0

λi
m(W(i)Wi)

⊤ωm

∥∥∥∥∥
2

2

⩽
N∑

m=M+1

∥∥∥∥∥
k∑

i=0

λi(W(i)Wi)
⊤ωm

∥∥∥∥∥
2

2

⩽
N∑

m=M+1

∥ωm∥22

∥∥∥∥∥
k∑

i=0

λiW(i)Wi

∥∥∥∥∥
2

2

=

∥∥∥∥∥
k∑

i=0

λiW(i)Wi

∥∥∥∥∥
2

2

N∑
m=M+1

∥ωm∥22

=

∥∥∥∥∥
k∑

i=0

λiW(i)Wi

∥∥∥∥∥
2

2

d2M(X)

=

∥∥∥∥∥
k∑

i=0

λiW(i)Wi

∥∥∥∥∥
2

2

D2.

(46)

Recall the Theorem 3.1 in Juvina et al. [58] as following Theorem A.3. Similar to Equation (45), we
can obtain HIG,k = σ(

∑k
i=0 σ(Â

iXW(i))Wi). Since λK = 1 for Âi, applying Theorem A.3 to
IGNN, we have

L̂IG = φ (1) = ∥
k∑

i=0

W(i)Wi∥. (47)

Theorem A.3 (Juvina et al. [58]). Consider a generic graph convolutional neural network like
H(k) = σ(H(k−1)W

(k)
0 + MH(k−1)W

(k)
1 ) with M symmetric (corresponding to an undirected

graph) with non-negative elements. Let λK ≥ 0 be its maximum eigenvalue. Assume that, for every
i ∈ {1, . . . , k}, matrices W(i)

0 and W
(i)
1 have non-negative elements, W(i)

0 ≥ 0 and W
(i)
1 ≥ 0. Let

(∀µ ∈ R) φ(µ) =
∥∥∥(W(k)

0 + µW
(k)
1

)
· · ·
(
W

(1)
0 + µW

(1)
1

)∥∥∥
s
. (48)

Then, a Lipschitz constant of the network is given by

L̂ = φ (λK) . (49)

B Model Analysis

The computational complexity and parameter count of vanilla GCN, r-IGNN, a-IGNN, c-IGNN and
Fast c-IGNN are presented in Table 6. Several key observations are:
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Table 6: Comparison of Computational Complexity and Parameter Count
Model Per-layer Complexity Total Training Complexity Parameter Count

Vanilla GCN O(NDF + |E|F +NF 2) O(NDF +K(|E|F +NF 2)) O(DF +KF 2)
r-IGNN O(NDF + |E|F +NF 2) O(NDF +K(|E|F +NF 2)) O(DF +KF 2)
a-IGNN O(NDF + |E|F +NF ) O(NDF +K(|E|F +NF )) O(DF +K · 2F )
c-IGNN O(NDF + |E|F +NF 2) O(NDF +K(|E|F +NF 2)) O(DF +KF 2)

Fast c-IGNN Preprocessing: O(K|E|D),
Training: O(KNDF +KNF 2)

O(K(NDF +NF 2)) O(K(DF + F 2))

1. r-IGNN: The residual connection does not significantly change the complexity compared to GCN.
If the representation of the previous hop also has a transformation in the residual connection, then
it will require more parameters.

2. a-IGNN: The model adaptively determines α(k)
v for each node, which slightly reduces the param-

eter count. Its per-layer complexity is lower than others, but still scales with the number of edges
and nodes.

3. c-IGNN: The explicit multi-hop aggregation increases computational cost compared to GCN. The
complexity grows with K, making it more expensive as the number of hops increases. However, it
better captures long-range dependencies and enjoys hop-wise distinct generalization and overall
generalization, which holds significance in GNN universality across varying homophily.

4. Fast c-IGNN (see Appendix B.1): By decoupling aggregation into preprocessing, it shifts the
expensive aggregation operations outside training, making training complexity independent of the
aggregation. This makes it scalable for large graphs. Among these models, Fast c-IGNN achieves
the best scalability by precomputing multi-hop information. In contrast, a-IGNN and r-IGNN
require more computational resources due to their recursive neighborhood aggregation.

B.1 Complexity Analysis

Complexity of Baseline - Vanilla GCN :

H(k) = σ(ÂH(k−1)W(k)). (50)

Complexity per layer: (1) Pre linear transformation: O(NDF ) (2) Aggregation: O(|E|F ) (assum-
ing a sparse adjacency matrix with |E| edges); (3) Transformation: O(NF 2); (4) Total training
complexity: O(NDF + |E|F +NF 2).

Therefore, the total complexity (K layers) of the vanilla GCN is: O(NDF +K(|E|F +NF 2)).

Complexity of r-IGNN :

H(k) = σ(ÂH(k−1)W(k)) +H(k−1). (51)

Complexity per layer: (1) Pre linear transformation: O(NDF ) (2) Aggregation: O(|E|F ) ; (3)
Transformation: O(NF 2); (4) Total training complexity: O(NDF + |E|F +NF 2).

Therefore, the total complexity (K layers) of r-IGNN is the same as the vanilla GCN: O(NDF +
K(|E|F +NF 2)).

Complexity of a-IGNN :

h(k)
v = α(k)

v

∑
u

Âv,uh
(k−1)
u + (1− α(k)

v )h(k−1)
v . (52)

α(k)
v = ([ÂH(k−1)]v || H(k−1)

v )W(k). (53)

Complexity per layer: (1) Pre linear transformation: O(NDF ) (2) Aggregation: O(|E|F ); (3)
Computation of α(k)

v : O(NF ); (3) Total training complexity: O(NDF + |E|F +NF ).

Therefore, the total complexity (K layers) of a-IGNN is lower since it does not use a full weight
matrix but instead relies on a gating mechanism: O(NDF +K(|E|F +NF )).
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Complexity of original c-IGNN :

H = σ

(
K∑

k=0

σ(ÂkXW(k))Wk

)
. (54)

Complexity: (1) Pre linear transformation: O(NDF ) (2) Multi-hop propagation: O(K|E|F ); (3)
Feature transformation: O(KNF 2); (4) Summation and final transformation: O(KNF ); (5) Total
training complexity: O(NDF +K(|E|F +NF 2)).

Complexity of the Fast c-IGNN :

To enhance IGNN’s efficiency, we employ a preprocessing technique to decouple expensive ag-
gregation operations from training. By examining the matrix formulation of IGNN: HIG,k =

σ((||ki=0σ(Â
iXW(i)))W), we observe that the aggregations ÂiX for different hop neighborhoods

are independent and can be computed in parallel. To optimize this, we preprocess these aggrega-
tions mi = ÂiX and store them prior to training. This approach reduces both the time spent on
aggregations and the memory overhead during training.

The overall time complexity can thus be divided into two components:

1. Preprocessing: This involves recursively computing ÂiX for K hops, with a complexity of
O(K|E|D) for sparse cases;

2. Training: During training, the complexity of the operation (||Ki=0σ(m
iW(i)))W,mi ∈

RN×D,W(i) ∈ RD×F ,W ∈ RKF×F is O(KNDF +KNF 2)

The only aggregation operation occurs during preprocessing, ensuring that training efficiency is
decoupled from the edges. This design makes IGNN scalable and efficiency.

B.2 Parameter Count Analysis

Parameter Counts are presented as:

• r-IGNN: Since each layer has a weight matrix W(k) ∈ RF×F , the total number of parameters for
K layers are O(DF +KF 2).

• a-IGNN: Each layer has a weight matrix W(k) ∈ R2F×1. Thus, the total parameters for K layers
are O(DF +K · 2F ).

• c-IGNN: As each layer has W(k) ∈ RF×F and Wk ∈ RF×F , the total parameters are O(DF +
KF 2).

• Fast c-IGNN: The total parameters are O(KDF +KF 2).

B.3 Runtime Efficiency Evaluation

We empirically evaluated the training efficiency of the 10 top models listed in Table 3, using a
consistent hidden dimensionality of 512 across all methods to ensure a fair comparison. To provide a
comprehensive analysis, we measured the average training time (in seconds) over 100 epochs under
two representative settings:

• Squirrel (heterophilic, 2223 nodes, full-batch): hop sizes of 2, 8, 16, and 32.
• OGB-Arxiv (homophilic, 169,343 nodes, full-batch): hop sizes of 2 and 10.

The average training runtimes under each setting are reported. The three most efficient models per
benchmark are emphasized in bold.

These results demonstrate that our IGNN variants—particularly fast c-IGNN—consistently achieve
competitive or superior training efficiency across both heterophilic and homophilic graph settings. The
runtime advantages are especially pronounced under large-hop configurations, owing to fast c-IGNN’s
use of precomputation and caching strategies for efficient neighborhood aggregation. This design
enables fast c-IGNN to scale effectively without compromising expressiveness or generalization
capability. Note that all results reported for c-IGNN in Table 3 correspond to the fast c-IGNN variant.
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Table 7: Training time (in seconds) on Squirrel dataset across different hop sizes.
Model / Hop 2 8 16 32 Avg. Rank
IncepGCN 1.6±0.1 10.2±0.4 34.7±1.5 130.9±5.3 8.75
SIGN 1.0±0.1 1.6±0.3 2.7±0.1 4.7±0.3 1.00
DAGNN 1.6±0.3 2.4±0.2 3.2±0.1 5.4±0.3 2.62
GCNII 1.8±0.2 3.9±0.1 6.4±0.1 10.3±0.2 5.88
OrderedGNN 2.0±0.2 4.6±0.3 7.6±0.9 15.8±1.3 8.25
DIFFormer 4.5±0.2 10.5±0.5 18.4±0.6 36.7±2.7 9.75
SGFormer 4.3±0.1 10.9±0.1 21.5±4.8 50.2±6.0 10.25
a-IGNN 1.7±0.1 4.2±0.1 7.5±0.1 12.6±0.2 6.75
r-IGNN 1.6±0.1 3.3±0.1 6.0±0.2 11.2±0.5 4.75
c-IGNN 1.9±0.1 3.4±0.1 5.6±0.1 10.3±0.2 5.38
fast c-IGNN 1.4±0.1 2.4±0.1 3.5±0.4 6.9±0.1 2.62

Table 8: Training time (in seconds) on OGB-Arxiv dataset. OOM indicates out-of-memory errors.
Model/Hop 2 10 Avg. Rank
IncepGCN OOM OOM -
SIGN 6.3±0.0 19.0±0.1 2.0
DAGNN 4.0±0.0 5.9±0.0 1.0
GCNII 33.1±1.1 141.9±0.4 7.5
OrderedGNN 29.5±0.0 OOM 7.0
DIFFormer 50.7±0.3 OOM 9.0
SGFormer 66.2±0.1 OOM 10.0
a-IGNN 20.2±1.7 80.4±0.1 5.5
r-IGNN 21.6±1.3 78.3±0.3 5.5
c-IGNN 16.0±1.0 42.7±0.1 4.0
fast c-IGNN 15.1±0.7 38.5±0.4 3.0

C Additional Quatitative Analysis

We conducted additional quantitative experiments to evaluate the smoothness–generalization dilemma
by measuring the smoothness dM(H(k)) and the empirical Lipschitz constant L̂ following the
implementation in Cong et al. [53] across different models: vanilla GCN, c-IGNN (integrating all
three proposed principles), and r-IGNN (adopting only the IN and RN principles), as shown in
Figures 5 and 6.

The results provide strong empirical support for our theoretical claims regarding the dilemma.

Key Observations:

1. Vanilla GCN and the Dilemma. While dM(H(k)) initially increases (indicating reduced smooth-
ness) for k ≤ 10 (Figure 5), this trend does not persist for larger hops. Specifically, for k ≥ 32
(Figure 6), dM(H(k)) greatly decreases (reflecting increased smoothness), followed by a subse-
quent rise—likely due to the transition from approximation to classifier supervision. Meanwhile,
L̂ exhibits an inverse trend, in alignment with our theoretical predictions of the smoothness-
generalization dilemma.

2. r-IGNN. Although r-IGNN alleviates oversmoothing by yielding higher dM(H(k)), it also shows
a continuous increase in L̂, suggesting that generalization capability deteriorates as hop count
increases.

3. c-IGNN. By incorporating all three design principles, c-IGNN sustains stable and moderate
trends in both L̂ and dM(H(k)), thereby ensuring robust generalization while avoiding excessive
smoothing.
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Figure 5: Additional Quantitative Experiments (1).

Table 9: Comparison of Inceptive GNNs in incorporating three principles.
Methods APPNP JKNet-GCN IncepGCN SIGN MIXHOP DAGNN GCNII GPRGCNN ACMGCN OrderedGNN r-IGNN a-IGNN c-IGNN

SN ✓ ✓ ✓ ✓
IN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
NR ✓ ✓ merged into SN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D Additional Theoretical Analysis

D.1 Exisiting GNNs with Partial Inceptive Architectures

Table 9 shows the comparison of inceptive GNN variants in incorporating three principles, while
Table 10 demonstrates the detailed SN,IN, and NR architectures of each variant. Except for c-IGNN,
the other methods lack at least one principle. The best performance of c-IGNN shows that the
combination of all three principles can best eliminate the dilemma.

D.2 Analysis of the Initial Residual IGNN Variant

The initial residual connection in Chen et al. [16] can be formulated as: H(k) = σ(ÂH(k−1)W(k))+
H(0), where H(0) = σ(XW(0)). Leaving out all non-linearity for simplicity, we can derive the
expression for H(k) in terms of X as:

H(k) =

k∑
i=0

Âk−iXW(0)

 k∏
j=i+1

W(j)

 . (55)

This formulation is also an inceptive variant of IN design. It avoids an excessive increase in the
parameter W(k) for low-order neighborhoods when k is small, as in original residual connection,
thereby preventing the smoothing effect caused by multiplications of W(k). This distinction may
provide insight into why initial residual connections offer greater relief to over-smoothing, as low-
order neighborhood representation remains the performance of its lower-order GNN counterparts.

E Experimental Settings and Additional Empirical Results

E.1 Varying Homophily across Hops and Nodes

Figure 7 demonstrates the varying edge and node homophily inherent within a single graph.
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Figure 6: Additional Quantitative Experiments (2).

Varying Homophily across Hops We compute the edge homophily of each i-th hop based on Ai

with self-loops removed (Figure 7a) or added (Figure 7b). The edge homophily levels across hops all
show diverse trends, including upward, downward, and oscillating, although the trends appear to be
more stable after adding the self-loop.

Varying Homophily across Nodes We compute the node homophily of N nodes in each i-th hop
based on Ai with self-loops removed. From Figure 7c to 7e, two conclusions can be safely drawn
that the node homophily levels (1) show a continuous variation from 0 to 1 among all nodes, and (2)
display an overall declining trend with fluctuations when the hop order increases.

E.2 Best Hyperparameters and Search Spaces

We present the optimal hyperparameter settings for all IGNN-s in our public code repository:
https://github.com/galogm/IGNN.

E.2.1 Search Spaces of Baseline models

The code for all 30 baselines in Table 11 is in https://github.com/galogm/IGNN/tree/master/benchmark.
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Table 10: Comparison of inceptive GNNs variants. The following notations are used only to
illustrate the relevant forms and do not necessarily conform to the actual expressions. γk denotes
learnable coefficients, and K is the network depth. s(·) refers to the softmax function, while g(·)
represents the ordered gating attention function. Wa is the weight matrix for the attention, and
WI/WL/WH/Wmix denote weight matrices of full-/low-/high-pass/mixed signals, respectively.

Model Subtype SN (W of k-th hop) IN &NR (weight of k-th hop)

APPNP Residual Wθ
α(1− α)k,

(1− α)K , α ∈ (0, 1]

JKNet Concatenative
∏k

i=0 W
(i) —

IncepGCN Concatenative
∏k

i=0 W
(i) —

SIGN Concatenative W(k) —
MixHop Concatenative W(k) —
DAGNN Attentive Wθ σ(ÂkXWθWa)

GCNII Residual
∏K

i=K−k+1 W
(i) implicit γk

GPRGNN Attentive Wθ explicit γk

ACMGCN Attentive

(∏k
i=0 W

(i)
L/H ·∏K

i=K−k+1 W
(i)
I

) s
(
([H

(k)
I/L/HW

(k)
I/L/H ]/T )

W
(k)
mix

)
OrderedGNN Attentive Wθ g(m

(k)
v ,h

(k−1)
v )

r-IGNN Residual
∑

J⊆{1,2,...,k}
|J|=m

∏
j∈J W(j) implicit γk

a-IGNN Attentive Wθ explicit γk
c-IGNN Concatenative W(k) implicit γk
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Figure 7: Varying homophily across hops and nodes.

• If a baseline has its own folder, a search.py script is included for hyperparameter tuning with
optuna. See the README.md in the folder for details.

• If a baseline does not have its own folder, it can be run with a provided script baselines.py, which
can conveniently derive the corresponding search.py script.

• All search spaces used in the experiments are documented in
https://github.com/galogm/IGNN/blob/master/configs/search_grid.py
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Table 11: Baselines. Incep. and Non. are inceptive or not.
Type Subtype Model
Graph-agnostic MLP

Homo.
GNNs

Non. GCN [2], SGC [49], GAT [3], GraphSAGE [9]

Incep.
APPNP [46], SIGN [57], JKNet [17], MixHop [34],
FAGCN [51], ωGAT [59], IncepGCN [60],
DAGNN [48], GCNII [16]

Hetero.
GNNs

Non. H2GCN [10], GBKGNN [26], GGCN [20],
GloGNN [21], HOGGCN [61],

Incep. GPRGNN [33], ACMGCN [24], OrderedGNN [22],
N2 [18], CoGNN [43], UniFilter [25]

Graph Transformer NodeFormer [62], DIFFormer [63], SGFormer [64],
GOAT [65], Polynormer [66],

F Limitation Discussion

This work contributes to advancing the universality of Graph Neural Networks (GNNs) under varying
levels of homophily by identifying the smoothness–generalization dilemma, which poses fundamental
challenges to learning in both higher-order homophilic and heterophilic settings. While our findings
provide a unified theoretical and empirical foundation for this dilemma, we acknowledge the following
limitations: (1) Use of existing architectural components. Our proposed framework is constructed by
revisiting and systematically organizing existing design principles rather than introducing entirely
new architectural modules. This choice is intentional: by building on widely adopted components, our
framework offers a practical and interpretable foundation for diagnosing and addressing smoothness-
generalization related failures in GNNs. Nonetheless, the absence of newly designed modules may
be seen as a limitation from a pure architectural perspective. (2) Scope of theoretical analysis.
Our theoretical formulation is grounded in the classical GCN setting to ensure analytical clarity
and generality. While this enables clean and interpretable derivations, it does not explicitly cover
more complex GNN architectures such as adaptive message-passing models. However, we believe
the identified dilemma and derived principles are broadly applicable, and extending the theoretical
analysis to more expressive GNNs represents a promising direction for future work.
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