
LoRA-drop: Efficient LoRA Parameter Pruning based on Output
Evaluation

Anonymous ACL submission

Abstract

Low-Rank Adaptation (LoRA) introduces aux-001
iliary parameters for each layer to fine-tune the002
pre-trained model under limited computing re-003
sources. But it still faces challenges of resource004
consumption when scaling up to larger models.005
Previous studies employ pruning techniques by006
evaluating the importance of LoRA parame-007
ters for different layers to address the problem.008
However, these efforts only analyzed parameter009
features to evaluate their importance. Indeed,010
the output of LoRA related to the parameters011
and data is the factor that directly impacts the012
frozen model. To this end, we propose LoRA-013
drop which evaluates the importance of the pa-014
rameters by analyzing the LoRA output. We015
retain LoRA for important layers and the LoRA016
of the other layers share the same parameters.017
Abundant experiments on NLU and NLG tasks018
demonstrate the effectiveness of LoRA-drop.019

1 Introduction020

Parameter-efficient fine-tuning (PEFT) methods021

have attracted more and more attention with the022

development of large language models (LLM) (Li023

and Liang, 2021a; Lester et al., 2021a). Among024

various PEFT methods, LoRA (Hu et al., 2021) has025

been particularly prevalent in recent studies. LoRA026

freezes the pre-trained parameters and introduces027

auxiliary trainable parameters ∆W for each layer028

as shown in Figure 1. LoRA significantly reduces029

the training cost while achieving impressive results.030

To further improve the parameter efficiency of031

LoRA, previous studies employ pruning techniques032

by evaluating the importance of LoRA parame-033

ters for different layers. Sparse Adapter (He et al.,034

2022) evaluates the importance of LoRA based035

on different parameter features such as parame-036

ter count, parameter size, and parameter gradient.037

AdaLoRA (Zhang et al., 2022) designs importance038

criteria based on the singular value decomposition039

(SVD) of ∆W to prune unimportant singular val-040
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Figure 1: The diagram of LoRA

ues. All of these efforts only focused on analyzing 041

parameter features to evaluate their importance. 042

Indeed, the output of LoRA related to the pa- 043

rameters and data is the factor that directly impacts 044

the frozen model. In each layer of the pre-trained 045

model, the LoRA adds a bias term ∆Wx to the 046

frozen model. Intuitively, if the norm of ∆Wx 047

is large, the LoRA of this layer has an important 048

impact on the frozen model. 049

Our preliminary experiment shows that the 050

LoRA for some layers always has little impact on 051

a specific task. Thus we could prune these LoRA 052

parameters. To this end, we propose LoRA-drop 053

which evaluates the importance of parameters by 054

analyzing the LoRA output for each layer. First, 055

we sample specific task datasets and then utilize the 056

sampled data to perform a limited number of up- 057

dates to LoRA. The importance of LoRA at various 058

layers is determined based on ∆Wx. We retain 059

the LoRA of layers with a large importance score, 060

and the LoRA of the other layers share the same 061

parameter. Finally, We fine-tune the model under 062

the new LoRA setting. 063

We conducted comprehensive experiments on 064

multiple NLU and NLG tasks with different sizes 065

of the pre-trained model, showing that LoRA-drop 066

achieves comparable results with origin LoRA with 067

50% of LoRA parameters. Analysis experiments 068

demonstrate the effectiveness of LoRA-drop. 069
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Figure 2: The frequency distribution of the squared norm of query LoRA output ∆Wixi on the RTE task.

2 Preliminary Experiment070

LoRA utilizes the product of two low-rank matrices071

to simulate incremental updates to a full-rank ma-072

trix. During training, the pre-trained parameters are073

frozen and do not receive gradient updates, while074

the two low-rank matrices are trained. Let Wi de-075

note the query/key/value matrix of ith transformer076

layer and xi denote the input of the ith transformer.077

The two low-rank matrices are Ai and Bi. Thus,078

the query/key/value vector is as following:079

hi = Wixi +∆Wixi = Wixi +BiAixi (1)080

where ∆Wixi is the bias introduced by the LoRA081

paramerters.082

Indeed, the ∆Wixi is the factor that directly083

influences the frozen pre-trained model. The larger084

∆Wixi, the more important the LoRA is. However,085

the ∆Wixi is related to the LoRA parameter and086

the hidden state. Previous work prunes LoRA by087

only analyzing its parameters, ignoring the feature088

of the hidden state.089

We fine-tune the RoBERTa-base model with090

LoRA on the RTE task and statistic the distribution091

of the squared norm of the LoRA output ∆Wixi.092

Following the setting of (Hu et al., 2021), the LoRA093

is added to the query and value matrix. The distri-094

bution of query LoRA is shown in Figure 2. The095

distribution of value LoRA is shown in Figure 4.096

As seen, the squared norm of ∆Wixi of some097

layers is always small, indicating that these lay-098

ers have almost no impact on the frozen model. 099

Thus we could prune the LoRA to improve the 100

paramerter efficiency according to ∆Wixi. 101

3 Methodology 102

In this section, we introduce LoRA-drop, a novel 103

parameter-efficient fine-tuning method by pruning 104

based on LoRA output. Concretely, we perform 105

stratified sampling on the downstream task dataset 106

to obtain a subset of training data. The sampling 107

ratio is set to α, where 0<α<1. Then the LoRA 108

parameters are updated with a limited number of 109

steps using this subset. 110

Then we compute the squared norm of LoRA 111

output ∆Wixi for each layer. The squared norms 112

are averaged over training dataset to get the impor- 113

tance score of ith layer gi. To indicate the relative 114

importance, we normalize the score yi =
gi∑
i
gi

. 115

After obtaining the importance of each layer, we 116

sort the layers according to yi. We select the layers 117

from the most important to least important until 118

the sum importance of the selected layer reaches 119

a threshold T . The LoRA of these selected layers 120

will be retained during training, while the LoRA 121

of the other layers will be replaced by a shared 122

parameter. The hyper-parameter T controls the 123

number of the selected layers. 124

Finally, we fine-tune the model under the new 125

LoRA setting using the training dataset. The over- 126

all workflow of LoRA-drop is shown in Figure 3. 127
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Model
RoBERTa-base

#Tr.
Params

RTE
(Acc)

MRPC
(Acc)

STS-B
(Spea.)

CoLA
(Matt.)

SST-2
(Acc)

QNLI
(Acc)

MNLI
(Acc)

QQP
(Acc)

Avg.

Full-FT* 125M 78.7 90.2 91.2 63.6 94.8 92.8 87.6 91.8 86.3
LoRA 0.29M 80.8±1.5 89.1±0.6 91.2±0.1 62.4±0.7 94.3±0.3 93.0±0.2 87.5±0.2 90.3±0.1 86.1
Sparse Adapter 0.15M 78.7±1.1 88.0±0.5 89.5±0.4 60.1±0.7 94.1±0.1 92.8±0.1 87.1±0.2 89.6±0.1 85.0
VeRA 0.03M 78.0±1.1 88.4±0.1 89.8±0.2 60.9±0.5 93.7±0.1 89.6±0.1 83.7±0.1 86.8±0.1 83.9
Tied-LoRA 0.15M 80.0±0.9 89.1±0.6 90.3±0.1 62.0±0.8 94.1±0.3 91.6±0.4 86.9±0.1 89.7±0.1 85.5
LoRA-drop (ours) 0.15M 81.4±0.5 89.5±0.5 91.0±0.1 62.9±0.2 94.5±0.2 93.1±0.1 87.3±0.2 90.1±0.1 86.2

Table 1: Results of the RoBERTa-base with different training strategies on the GLUE benchmark. The results are
averaged from three seeds to produce solid results. The subscript is the standard deviation. Bold and underline
indicate the first and second best results in the corresponding regime. #Tr. refers to trainable. * refers to the results
directly from their original paper, in which Full-FT is derived from (Liu et al., 2019).

4 Experiments128

4.1 Setup129

Datasets. We evaluate our model on both Natu-130

ral Language Understanding (NLU) and Natural131

Language Generation (NLG) tasks.132

For NLU, we evaluate our method on the GLUE133

benchmark (Wang et al., 2018), which consists of134

eight datasets: CoLA, SST-2, MRPC, QQP, STS-B,135

MNLI, QNLI, and RTE. We use Matthew’s correla-136

tion coefficient, Spearman’s correlation coefficient,137

and overall accuracy (for both matched and mis-138

matched sentences) to evaluate the CoLA, STS-B,139

and MNLI datasets. For the remaining datasets, we140

apply accuracy as the evaluation metric.141

The NLG tasks in our experiments include the142

table-to-text datasets E2E (Dušek et al., 2020) and143

DART (Nan et al., 2021), as well as the summa-144

rization dataset DialogSum (Chen et al., 2021). We145

evaluate both NLG tasks using BLEU (Papineni146

et al., 2002) and Rouge-L (Lin, 2004) scores.147

Baselines. The following methods are chosen148

as baselines: FULL-FT updates all model param-149

eters which need a lot of computing resources.150

LoRA (Hu et al., 2021) represents the original151

LoRA method. Sparse Adapter (He et al., 2022)152

apply typical pruning methods to LoRA and re-153

duce the trainable parameters. VeRA (Kopiczko154

et al., 2023) shares and freezes randomly initial-155

ized LoRA and introduces trainable vectors for156

each layer to reduce the parameters of LoRA.157

Tied-LoRA (Renduchintala et al., 2023) makes158

the frozen LoRA in VeRA trainable.159

More implementation details can be found in160

Section A.1.161

4.2 Main Results162

The main results of RoBERTa-base with different163

training strategies on the GLUE benchmark are164

shown in Table 1. With an approximately 50%165

Model #Tr. Dialogsum
Llama2 7b Params BLEU ROUGE-L
Full-FT 6.6B 46.27 43.07
LoRA 8.4M 44.60 41.12
LoRA-drop (ours) 5.2M 44.34 40.96

Table 2: Results of Llama2-7b with different training
strategies on the summarization dataset Dialogsum.

reduction in standard LoRA parameters, our pro- 166

posed LoRA-drop achieves an average score of 167

86.2, on par with Full-FT (86.3) and LoRA (86.1). 168

This indicates the effectiveness of our proposed 169

LoRA-drop. 170

Moreover, LoRA-drop achieves 1.2, 2.3, and 0.7 171

improvement in terms of average score compared 172

to Sparse Adapter, VERA, and Tied-LoRA respec- 173

tively. The results demonstrate that the output of 174

LoRA is a superior strategy to evaluate the im- 175

portance and reduce trainable parameters, thereby 176

enhancing parameter efficiency. 177

The results of RoBERTa-large and Llama2-7b 178

with different training strategies on the GLUE 179

benchmark are presented in Table 3 and Table 4. It 180

is noted that we use Llama2-7b to obtain the token 181

representation, rather than generate the answer. On 182

both models, our method utilizes about 52% of the 183

standard LoRA parameters and achieves average 184

scores of 89.1 and 88.6 for RoBERTa-large and 185

Llama2-7b respectively, outperforming LoRA and 186

Full-FT. This demonstrates the effectiveness of our 187

method across models of different scales. 188

The NLG results including table2text and sum- 189

marization are shown in Tables 5 and Table 2. On 190

Llama2-7b, our method achieves results on par 191

with the original LoRA while using approximately 192

50% and 62% of the original LoRA parameters for 193

table2text and summarization respectively. This 194

confirms the effectiveness of our approach across 195

both NLU and NLG tasks. 196
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4.3 Analysis197

Adaptation to different downstream task data.198

The insight of our approach is to derive LoRA im-199

portance adapted to the distribution of different200

task data, enabling the simplification of LoRA pa-201

rameters. To further validate the rationality of this202

insight, we plotted line charts depicting the distri-203

bution of LoRA importance y for four different204

datasets in GLUE on RoBERTa and Llama2.205

The results are presented in Figure 9 and Fig-206

ure 10. We observed that the importance distri-207

butions differed across datasets, indicating that208

the relative importance assigned by LoRA is data-209

dependent. This also demonstrates the rationale210

behind LoRA-drop, which calculates importance211

scores based on both the LoRA parameters and the212

LoRA output.213

The influence of LoRA share. In our approach,214

the layers with low importance are shared with the215

same LoRA parameters. We investigate the influ-216

ence after the LoRA parameters are shared. Fol-217

lowing the LoRA share operation on the RoBERTa-218

base model trained on 20% of the RTE training219

set data for 4 epochs, we plotted the importance220

distribution for each layer of the model.221

The results of query and value distribution are222

shown in Figure 7 and Figure 8. It shows that the223

importance distribution of LoRA at each layer re-224

mains almost consistent with the original LoRA225

after the LoRA parameters are shared. This sug-226

gests that the LoRA of layers with low importance227

could be shared. The importance distribution of228

other layers is not affected, thereby maintaining229

good performance in fine-tuning the model.230

The influence of sample proportion. We inves-231

tigate the influence of the sample proportion when232

calculating the importance of LoRA. We sample233

ten different-sized datasets from the RTE dataset.234

We train the RoBERTa-base model using LoRA235

for the same number of steps and obtain the LoRA236

importance scores for each sample proportion.237

The results are shown in Figure 11. The relative238

importance order of each layer remains consistent239

across various sample proportions, indicating that240

this operation is insensitive to the size of the sam-241

pled data and exhibits robustness.242

Selection of threshold T . LoRA-drop intro-243

duces a hyper-parameter T to control the number244

of selected layers. We selected four datasets from245

GLUE to analyze the impact of threshold T .246

The results are shown in Table 6. When T is less247

than 0.9, the model performance increases with 248

T , and when T equals 0.9, approximately half of 249

the layers’ LoRA are selected on average. If T 250

continues to increase, the model performance no 251

longer shows significant improvement. Hence in 252

our experiments, we default to setting T as 0.9. 253

4.4 Ablation Study 254

In this subsection, we conduct ablation experiments 255

to verify the following two questions: Q1: Is re- 256

placing LoRA at layers with small y with shared 257

parameters better than directly removing them? Q2: 258

Does retaining LoRA with large y is reasonable? 259

To demonstrate this, we compare LoRA-drop 260

with the following variants on the RoBERTa-base 261

model, where k refers to the number of LoRA re- 262

tained by LoRA-drop. 263

LoRA-drop (w/o share) directly removes the 264

low-importance layers of LoRA without using 265

additional shared parameters. As opposed to 266

LoRA-drop, LoRA-drop (∆Wx inv) replace 267

high-importance layers of LoRA with shared LoRA 268

and retain the other LoRA. LoRA-drop (random) 269

randomly selects k layers that retain LoRA param- 270

eters. (Houlsby et al., 2019) found that lower lay- 271

ers often have small impact on performances, so 272

LoRA-drop (top k) selects the top k layers of the 273

12 layer model. We experiment with these four set- 274

tings on the validation set of the GLUE benchmark. 275

The results are shown in Table 7. Regarding Q1, 276

we observed that sharing a LoRA among the lay- 277

ers with small importance is necessary, achieving 278

better results compared to removing them directly. 279

Regarding Q2, LoRA-drop yields better perfor- 280

mance compared to all the other three variants. It 281

confirms the reasonableness for retaining the LoRA 282

of layers with large importance. 283

5 Conclusion 284

In this paper, we propose a new parameter-efficient 285

fine-tuning method LoRA-drop based on LoRA. 286

We calculate the importance of LoRA for each layer 287

by analyzing their output. The LoRA parameters 288

of layers with large importance are retained and the 289

other layers share the same parameter, resulting in 290

a significant reduction in the number of parameters 291

that need to be trained compared to the original 292

LoRA. Abundant experiments on multiple NLU 293

and NLG datasets show that LoRA-drop achieves 294

comparable results with origin LoRA with 50% of 295

LoRA parameters. 296
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Limitations297

The applicability of our method to different tasks298

and architectures is not extensively analyzed in299

this paper, it can be explored in future research300

by investigating the distribution patterns of LoRA301

importance when fine-tuning different pre-training302

models on various tasks and conducting in-depth303

analysis of the underlying mechanisms.304
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A Appendix445

A.1 Implementation Details446

Our LoRA configuration aligns with the experi-447

mental setup of (Hu et al., 2021), where LoRA is448

applied to the query and value matrices in each449

self-attention module. We each use a shared LoRA450

in place of the low importance query LoRA and451

value LoRA.452

The low-rank matrix A of the LoRA architecture453

is initialized using Kaiming initialization (He et al.,454

2015), while matrix B is initialized with zeros.455

Unless specified otherwise, the default rank for456

LoRA is set to 8.457

We conducted NLU experiments on the GLUE458

benchmark using RoBERTa-base (Liu et al., 2019).459

The data sampling ratio α is set to 0.1, the number460

of training epochs n is set to 3, and the threshold461

T for LoRA-drop is set to 0.9. To ensure con-462

sistency in the trainable parameter count between463

the baseline and our method, we set the sparsity464

rate of Sparse Adapter to 0.5. We set the prun-465

ing method of Sparse Adapter to the performance-466

optimal SNIP (Lee et al., 2018). The rank of Tied-467

LoRA is set to 56. The design characteristics of the468

VeRA method determine that its trainable parame-469

ter count cannot reach the same order of magnitude470

as LoRA; otherwise, VeRA would no longer be471

a low-rank matrix. Therefore, we set the rank of472

VeRA to 512 based on the best hyperparameters473

provided in the original paper.474

To evaluate the effectiveness of our method475

on larger-scale models, we also conducted NLU476

experiments on the GLUE benchmark using the477

larger models RoBERTa-large (Liu et al., 2019) and478

Llama 7b (Touvron et al., 2023). We performed479

3 runs with different random seeds and recorded480

the best results for different seeds. The averaged481

results and the standard deviation are calculated.482

To evaluate the effectiveness of our method on483

generation tasks, we conducted NLG experiments484

using the Llama2 7b on the table2text datasets: E2E485

and DART, as well as the summarization dataset486

DialogSum. For the table2text tasks, we set the487

rank of LoRA to 8, while for the summarization488

task, we set the rank of LoRA to 16.489

A.2 Related Work490

Parameter-efficient fine-tuning (PEFT) is the main-491

stream method for the current fine-tuning of pre-492

trained models, which can be broadly categorized493

into addition-based methods and specification- 494

based methods (Ding et al., 2022). 495

A.2.1 Addition-based Methods 496

Addition-based methods introduce additional train- 497

able neural modules into pre-trained models. 498

Adapter (Houlsby et al., 2019) and LoRA (Hu et al., 499

2021) are two of the most typical methods. Prefix- 500

tuning (Li and Liang, 2021b) inserts trainable to- 501

kens into the input and hidden states of each Trans- 502

former layer. Prompt-tuning (Lester et al., 2021b) 503

adds only a continuous learnable vector to the input 504

layer. 505

To improve the parameter efficiency, many stud- 506

ies focus on reducing the trainable parameters of 507

LoRA (Zhang et al., 2022; Dettmers et al., 2023). 508

S2-LoRA (Liu et al., 2023) shares the LoRA param- 509

eters, and introduces trainable scaling vectors with 510

inter-layer variations. VeRA (Kopiczko et al., 2023) 511

and Tied-LoRA (Renduchintala et al., 2023), fur- 512

ther reduce the parameter count by sharing param- 513

eters for all layers and modules of LoRA. Sparse 514

adapter (He et al., 2022) enhances the parameter ef- 515

ficiency of LoRA and other Adapters using network 516

pruning methods. Adapter Drop (Rücklé et al., 517

2021) empirically removes lower-layer Adapters 518

that are generally considered to have a small impact 519

on task performance. 520

A.2.2 Specification-based Methods 521

Specification-based methods make a small subset 522

of parameters in the pre-trained model trainable 523

while keeping the rest frozen. BitFit (Zaken et al., 524

2022)only fine-tunes the bias parameters of each 525

FFN. (Lee et al., 2019) fine-tunes only the last quar- 526

ter of BERT and RoBERTa’s final layer, achiev- 527

ing 90% of the performance of full-parameter fine- 528

tuning. HiFi (Gui and Xiao, 2023) fine-tunes atten- 529

tion heads that are highly informative and strongly 530

correlated for a specific task. 531

A.3 More figures and tables 532
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Datasets

Sample

Subset

Subset

LoRA

1. Sampling a small-scale subset of dataset.

2. Conducting limited-step LoRA tuning on a pre-
trained model using the small-scale subset.

3. Calculate LoRA importance.

Subset

Forward 

Layer 0 - 11 Lora Importance

Query

Value

4. Selecting the positions to retain LoRA based on 
the LoRA importance and threshold T.

Retain LoRA Do not retain LoRA
5. Insert LoRA into the pre-trained model, replace 
positions without LoRA with shared LoRA  ��, �� .

Pre-trained model

�� �� �� �� �0

�� �� �� �6 ��

�� �1 �2 �3 �4

�7 �� �� �8 �9

�5 ��

�10�11

Query

Value

Layer 0 - 11 

Figure 3: The overall workflow of LoRA-drop.

Figure 4: The frequency distribution of the squared norm of value LoRA output ∆Wixi after fine-tuning on the
RTE task.

Model
RoB-large

#Tr.
Params

RTE
(Acc)

MRPC
(Acc)

STS-B
(Spea.)

CoLA
(Matt.)

SST-2
(Acc)

QNLI
(Acc)

MNLI
(Acc)

QQP
(Acc)

Avg.

Full-FT* 355M 86.6 90.9 92.4 68.0 96.4 94.7 90.2 92.2 88.9
LoRA 0.79M 88.5±0.7 90.1±0.8 92.4±0.1 67.8±1.3 96.0±0.1 94.8±0.1 90.6±0.0 91.4±0.1 88.9
LoRA-drop (ours) 0.41M 88.8±0.7 89.9±0.3 92.2±0.1 68.5±1.7 96.2±0.1 94.9±0.1 90.7±0.1 91.3±0.5 89.1

Table 3: The performance of the RoBERTa-large on GLUE benchmark. * refers to the results directly from their
original paper, in which Full-FT is derived from (Liu et al., 2019).

Model
Llama2 7b

#Tr.
Params

RTE
(Acc)

MRPC
(Acc)

STS-B
(Spea.)

CoLA
(Matt.)

SST-2
(Acc)

QNLI
(Acc)

MNLI
(Acc)

QQP
(Acc)

Avg.

Full-FT 6.6B 83.4 88.7 89.8 67.9 92.3 93.6 86.3 91.7 86.7
LoRA 4.2M 89.2±0.5 89.7±0.5 89.9±0.1 70.6±0.7 96.8±0.2 94.7±0.2 90.9±0.2 91.6±0.1 89.2
LoRA-drop (ours) 2.2M 91.0±0.5 90.2±0.3 90.1±0.1 69.0±1.2 96.8±0.2 94.8±0.2 90.6±0.1 91.6±0.3 89.3

Table 4: The performance of the Llama2-7b on GLUE benchmark.
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Figure 5: The frequency distribution of the squared norm of query LoRA output ∆Wixi after fine-tuning on the
MRPC task.

Figure 6: The frequency distribution of the squared norm of value LoRA output ∆Wixi after fine-tuning on the
MRPC task.

Model #Tr. E2E DART
Llama2 7b Params BLEU ROUGE-L BLEU ROUGE-L
Full-FT 6.6B 55.65 39.19 59.68 47.18
LoRA 4.2M 53.70 35.94 57.42 42.92
LoRA-drop 2.1M 53.49 35.92 57.17 42.21

Table 5: The performance of Llama2-7b on two table2text datasets including E2E and DART. For both metrics,
BLEU and ROUGE-L, higher is better.
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Figure 7: The query LoRA output ∆Wixi squared norm frequency distribution of LoRA and LoRA-drop.

Figure 8: The value LoRA output ∆Wixi squared norm frequency distribution of LoRA and LoRA-drop.

Threshold
Avg. layer num RTE

(ACC)
CoLA
(Matt.)

QNLI
(ACC)

QQP
(ACC)

Avg. score
W_query W_value

1(LoRA) 12 12 82.3 61.9 93.1 90.4 82.0
0.95 6 9 83.0 62.6 93.1 90.2 82.2
0.9 5 7 81.9 63.1 93.2 90.2 82.1
0.8 5 5 80.9 63.1 93.2 89.6 81.7
0.7 4 4 78.3 62.1 92.5 89.3 80.6

Table 6: The influence of the threshold T and its equivalent average number of layers.
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Figure 9: The relative magnitudes of LoRA outputs across different layers of RoBERTa-base on various datasets,
for display, the value of the largest layer’s LoRA output is normalized to 1 for each dataset.
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Figure 10: The relative magnitudes of LoRA outputs across different layers of Llama2-7b on various datasets, for
display, the value of the largest layer’s LoRA output is normalized to 1 for each dataset.
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Figure 11: The effect of the sample proportion on the importance scores during the pre-processing stage. The lines
of different colors represent sampling from varying proportions of training data.
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Model
(RoB-base)

RTE
(Acc)

MRPC
(Acc)

STS-B
(Spea.)

CoLA
(Matt.)

SST-2
(Acc)

QNLI
(Acc)

MNLI
(Acc)

QQP
(Acc)

Avg.

LoRA-drop* 81.9 90.0 91.1 63.1 94.7 93.2 87.5 90.2 86.5
LoRA-drop(w/o share) 80.4 88.9 90.7 62.8 94.1 92.9 86.9 89.7 85.8
LoRA-drop(∆Wx inv) 79.1 89.7 90.4 60.5 94.3 92.9 87.3 89.9 85.5
LoRA-drop(random) 79.1 89.2 90.2 62.0 94.6 92.7 86.9 89.8 85.6
LoRA-drop(top k) 81.9 89.2 90.7 62.3 94.5 93.0 86.8 89.8 86.0

Table 7: Ablation experiments
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