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ABSTRACT

Bayesian Optimization (BO) has been widely applied to optimize expensive black-
box functions while retaining sample efficiency. However, scaling BO to high-
dimensional spaces remains challenging. Existing literature proposes performing
standard BO in several local trust regions (TuRBO) for heterogeneous model-
ing of the objective function and avoiding over-exploration. Despite its advan-
tages, using local Gaussian Processes (GPs) reduces sampling efficiency com-
pared to a global GP. To enhance sampling efficiency while preserving hetero-
geneous modeling, we propose to construct several local quadratic models using
gradients and Hessians from a global GP, and select new sample points by solving
the bound-constrained quadratic program. We provide a convergence analysis and
demonstrate through experimental results that our method enhances the efficacy
of TuRBO and outperforms a wide range of high-dimensional BO techniques on
synthetic functions and real-world applications.

1 INTRODUCTION

Bayesian Optimization (BO) has been one of the popular methods for the global optimization of
expensive black-box functions due to its high sampling efficiency. Applications include hyperpa-
rameter tuning for deep learning (Hvarfner et al., 2022), discovering new molecules for chemical
engineering (Gómez-Bombarelli et al., 2018), searching an optimal policy for reinforcement learn-
ing (Müller et al., 2021), and so on. BO is a sequential model-based approach consisting of two
main components: a surrogate model and an acquisition function. The surrogate model, typically
implemented as a Gaussian Process regression, is used to improve the sampling efficiency of BO
by modeling the objective function. The acquisition function is used to determine the next sample
point.

While BO performs well in optimizing low-dimensional functions, it struggles with high-
dimensional problems for several reasons. First, the surrogate model loses accuracy in the high-
dimensional space when estimating the objective function. This is because it is impossible to fill the
high-dimensional space with finite sample points, even with a large sample size (Györfi et al., 2002).
Second, the computational complexity of optimizing the acquisition function grows exponentially
with dimensions (Kandasamy et al., 2015).

Various methods have been proposed to address the curses of dimensionality in BO. The vast ma-
jority of the prior work assumes special structures in the objective function, such as additive struc-
ture (Kandasamy et al., 2015; Han et al., 2021) or intrinsic dimension (Wang et al., 2016; Letham
et al., 2020). However, these assumptions are often too restrictive for widespread application. Other
works directly improve the high-dimensional BO without additional assumptions, including TuRBO
(Eriksson et al., 2019), GIBO (Müller et al., 2021), and MPD (Nguyen et al., 2022).

This paper focuses on trust-region Bayesian Optimization (TuRBO). TuRBO is attractive because
it uses local GPs for heterogeneous modeling of the objective function and performs BO locally
in several trust regions to avoid over-exploration. However, using local GPs reduces sampling ef-
ficiency compared to a global GP. To overcome this limitation, we propose a new trust-region BO
method (TuRBO-D) that incorporates the derivatives of GPs. It constructs several local quadratic
models using gradients and Hessians from a global GP, enabling heterogeneous modeling of the ob-
jective function while maintaining the same sample efficiency of a global GP. To optimize globally, it
maintains multiple trust regions simultaneously. Our method consists of three main stages: building
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several local quadratic models using derivatives from a global GP, selecting new sample points by
solving the bound-constrained quadratic program in each trust region, and updating the trust region
radii based on new evaluations. In addition, we provide theoretical proof that our method converges
to stationary points with high probability. In summary, our main contributions are:

• Proposing a new trust-region BO method that incorporates GP derivatives to enhance sam-
pling efficiency while retaining heterogeneous modeling.

• Providing a convergence analysis guaranteeing the convergence of our proposed method.

• Empirically validating our method on synthetic and real-world applications, demonstrating
improved efficacy over TuRBO and outperforming various high-dimensional BO methods.

2 RELATED WORK

In the realm of high-dimensional BO, there are generally three kinds of methods. The first kind of
method assumes the existence of a lower-dimensional structure within objective functions, typically
employing a three-stage process: producing a low-dimensional embedding, performing standard
BO in this low-dimensional space, and projecting found optimal points back to the original space.
In REMBO (Wang et al., 2016), the low-dimensional embedding is achieved by using a random
projection matrix. But REMBO often produces points that fall outside the box bounds of the original
space, necessitating their projection onto the facet of the box and resulting in a harmful distortion.
Subsequently, several techniques are proposed to fix this problem (Letham et al., 2020; Binois et al.,
2020). In addition, the random low-dimensional embedding can be also achieved by randomized
hashing functions (Nayebi et al., 2019; Papenmeier et al., 2022). The key advantage of the hashing
functions lies in their ability to effortlessly map candidate points back to the original space, thus
circumventing the need for clipping to box-bound facets. Some works achieve linear embeddings
based on learning. For example, SIR-BO employs Sliced Inverse Regression to derive the linear
embeddings, while SI-BO (Djolonga et al., 2013) learns the linear embeddings via low-rank matrix
recovery. Garnett et al. (2014) learn the linear embeddings by maximizing the marginal likelihood
of GPs. Besides, nonlinear embedding techniques have also been explored, particularly those based
on Variational Autoencoders (Gómez-Bombarelli et al., 2018; Lu et al., 2018). However, these
approaches typically require a substantially larger sample size. In addition to embedding techniques,
some research has focused on variable selection methods (Kirschner et al., 2019; Li et al., 2017; Shen
& Kingsford, 2023; Song et al., 2022).

The second kind of method assumes the existence of an additive structure for the objective function.
The additive objective function can be modeled by additive GPs (Kandasamy et al., 2015), allowing
for more efficient maximization of the acquisition function. However, the true additive structure still
remains challenging to learn. Several works propose to learn the underlying additive structure from
training data. For example, Wang et al. (2017) proposed a method that employs the Dirichlet process
to assign input variables into distinct groups. Rolland et al. (2018) employ a dependency graph to
model the interactions between input variables, allowing for the assignment of input variables into
overlapping groups. Han et al. (2021) proposed a refinement that restricts the dependency graph
to a tree structure, reducing the computational complexity of maximizing acquisition functions. In
contrast to data-driven decomposition methods, RDUCB (Ziomek & Bou-Ammar, 2023) learns a
random tree-based decomposition to mitigate the potential mismatch between the objective function
and additive GPs.

The third kind of method focuses on direct enhancements to the BO process in high-dimensional
spaces, without relying on any other assumption. For example, TuRBO (Eriksson et al., 2019),
GIBO (Müller et al., 2021) and MPD (Nguyen et al., 2022) adopt local strategies for BO to avoid
over-exploration in high-dimensional spaces. Another set of approaches focuses on partitioning the
search space and identifying a promising region to perform BO more efficiently (Wang et al., 2014;
Kawaguchi et al., 2015; Wang et al., 2020). Researchers have also proposed better initialization
methods for optimizing high-dimensional acquisition functions efficiently (Rana et al., 2017; Zhao
et al., 2024).

GIBO and MPD are similar to ours, which also utilize gradients of GPs. In contrast to their work,
our work incorporates both gradient and Hessian information from GPs and provides a convergence
analysis.
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3 BACKGROUND

3.1 BAYESIAN OPTIMIZATION

Bayesian optimization considers an optimization problem minx∈X f(x) where f is a black-box
and derivative-free function over a hyper-rectangular feasible set X . As a sequential model-based
approach, BO comprises two main components: a surrogate model and an acquisition function. The
surrogate model approximates the objective function, while the acquisition function, based on this
model, determines the next sampling point. Gaussian Process regression is typically employed as the
surrogate model (Rasmussen & Williams, 2006), f ∼ GP(m(·), k(·, ·)) with a mean function m(·)
and a kernel k(·, ·). More specifically, GP assumes that evaluations of any finite number sampling
point x1:n follow a joint Gaussian distribution, f ∼ N (m(x1:n),K(x1:n,x1:n)). Given training
data Dn = {x1:n,y1:n} and a new point x∗, the joint distribution is given by[

y1:n

f(x∗)

]
∼ N

([
m(x1:n)
m(x∗)

]
,

[
K(x1:n,x1:n) + σ2

nI k(x1:n,x∗)
k(x∗,x1:n) k(x∗,x∗),

])
where σ2

n is the variance of Gaussian noise added to the observations. It follows from the
Sherman-Morrison-Woodbury formula that the posterior normal distribution for f(x∗) is given by
f(x∗)|Dn,x∗ ∼ N (µn(x∗), σ

2
n(x∗)) where

µn(x∗) = m(x∗) + k(x∗,x1:n)(K(x1:n,x1:n) + σ2
nI)
−1(y1:n −m(x1:n))

σ2
n(x∗) = k(x∗,x∗)− k(x∗,x1:n)(K(x1:n,x1:n) + σ2

nI)
−1k(x1:n,x∗)

Based on this posterior, an acquisition function α(·) is constructed to quantify the utility of sampling
points. Common choices include Expected Improvement (Jones et al., 1998) and Entropy Search
(Hennig & Schuler, 2012). The next sample point is determined by maximizing the acquisition
function, xn+1 = arg maxx∈X α(x). After evaluating the objective function at xn+1, the process
advances to the next iteration.

3.2 UNIFORM ERROR BOUNDS OF THE GP

Under the mild assumption of Lipschitz continuity for both the objective function and the kernel
function, a directly computable probabilistic uniform error bound can be established.
Assumption 1. The unknown objective function f is a sample from a Gaussian process
GP(0, k(x,x′)) and observations are perturbed by Gaussian noise, y = f(x) + ε, where ε ∼
N (0, σ2). The unknown function f is continuous with the Lipschitz constant Lf and the kernel k is
Lipschitz continuous with the Lipschitz constant defined as

Lk := max
x,x′∈X

∥∥∥∥∥
(
∂k(x,x′)

∂x1
, . . . ,

∂k(x,x′)

∂xD

)>∥∥∥∥∥
2

.

Theorem 1 (Theorem 3.1 in (Lederer et al., 2019)). Given an unknown function f satisfying As-
sumption 1, the posterior mean function µt from the GP fitted on the training data Dt is continuous
with the Lipschitz constant Lµt , and the standard deviation σt admits a modulus of continuity ωσt

on X , where

Lµt
≤ Lk

√
t‖(K + σ2

t I)
−1y‖2

ωσt
(τ) ≤

√
2τLk

(
1 + t‖(K + σ2

t I)
−1‖2 max

x,x′∈X
k(x,x′)

)
.

Moreover, given δ ∈ (0, 1), τ > 0, one has that

P
(
|f(x)− µt(x)| ≤

√
β(τ)σt(x) + γ(τ), ∀x ∈ X

)
≥ 1− δ, (1)

where

β(τ) = 2 log

(
M(τ,X )

δ

)
, γ(τ) = (Lµt

+ Lf )τ +
√
β(τ)ωσt

(τ),

and M(τ,X ) is the covering number that is the minimum number of spherical balls with radius τ
required to completely cover X .
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4 METHOD

In this section, we propose a novel trust-region BO method for optimizing high-dimensional black-
box functions. To address the reduced sampling efficiency of local GPs in TuRBO, we construct
several local quadratic models using gradients and Hessians from a global GP. This approach allows
for heterogeneous modeling of the objective function while maintaining the same sample efficiency
of a global GP. To achieve global optimization, we select new sample points by solving the bound-
constrained quadratic programs in multiple regions.

Local modeling. At iteration k, with xk as the best solution found so far, the local quadratic model
is defined as,

mk(xk + s) = f(xk) + g>k s +
1

2
s>Bks, (2)

where gk and Bk approximate the gradient and Hessian of the objective function, respectively. Since
the derivatives of the objective function f are unknown, we set

gk = ∇µk(xk), Bk = ∇2µk(xk) + λ∇2σk(xk),

where λ is a hyperparameter, µk(·) and σk(·) are the posterior mean and standard deviation of the
GP model.

Trust regions. To ensure the quadratic model mk accurately approximates f , xk + s needs to be
restricted to a trust region Bk defined as

Bk := {x ∈ RD | ‖x− xk‖ ≤ ∆k},

where ∆k is the trust-region radius, adjusted iteratively. It should be decreased when the optimizer
appears stuck and increased when the optimizer finds better solutions. When the radius falls below
a predetermined minimum threshold ∆min, it signals that the current region has been thoroughly
explored. At this point, the algorithm restarts in another region to promote global exploration.
In this paper, we adopt the same radius update strategy as TuRBO, which has proven effective in
balancing local exploitation and global exploration.

Trust regions in the ∞-norm. In BO, the search space is typically a rectangular box. Without
loss of generality, we assume that the box is [0, 1]D. Given this constraint, the trust region is defined
as

Bk := {x ∈ RD | ‖x− xk‖ ≤ ∆k, 0 ≤ x ≤ 1}.
When the trust region is in the Euclidean norm, Bk consists of the intersection of a sphere and a
rectangular (Jorge & Stephen, 2006), leading to more complex quadratic models. To simplify this,
we adopt the∞-norm for the trust region, which transforms Bk into a simple rectangular,

Bk := {x ∈ RD | −∆k1 ≤ x− xk ≤ ∆k1, 0 ≤ x ≤ 1}.

Then candidate is selected by solving the bound-constrained quadratic program,

minimize
s

mk(xk + s), subject to xk + s ∈ Bk. (3)

The above problem can be solved by gradient projection methods. However, the Hessian of the GP
is often nearly singular, which can lead to issues when using conjugate gradient iterations. Such
methods may require numerous iterations and yield only small reductions in each step. Instead, we
employ a gradient projection method using quasi-Newton iterations, specifically L-BFGS-B (Byrd
et al., 1995). This approach approximates the singular Hessian with a positive definite matrix, im-
proving the efficiency and robustness of the optimization process.

Derivatives vanish in the high-dimensional space. In general, our approach is effective for
medium-dimensional problems (typically D < 100). However, as the dimensionality increases be-
yond this range, the derivatives of GPs tend to vanish, posing a significant challenge to our method.
To mitigate this issue and ensure the derivatives remain informative, we choose d variables out of D

4
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variables randomly as the working setWk at each iteration. Then, a global GP is constructed on the
working set and the bound-constrained quadratic program is denoted as

minimize
s

mk(xk + s) = f(xk) + g>k s +
1

2
s>Bks,

subject to si = 0, ∀i /∈ Wk

xk + s ∈ Bk.

(4)

So far, we have detailed a single local BO strategy using a trust region. To achieve global optimiza-
tion in this framework, we maintain m trust regions simultaneously, selecting a candidate within
each trust region to form a batch ofm candidates. We denote our method as TuRBO-D, as presented
in Algorithm 1.

Algorithm 1: TuRBO-D
Input: n, T, M
Output: The sample points and their evaluations DT

1 D0 = {x1:n,y1:n} ← Randomly sample n points from the feasible set X and then evaluate
these points;

2 Initializations. Choose an initial radius for each trust region, {∆(`)
0 }M`=1, and determine an

initial point for each trust region, {x(`)
0 }M`=1 ⊂ D0;

3 for k ← 1 to T do
4 Build a global GP based on the training data Dk;
5 for `← 1 to M do
6 Build a local quadratic model m(`)

k (x
(`)
k + s) in the `-th trust region;

7 Select a candidate by minimizing the model within the `-th trust region according to
Eq.3;

8 Evaluate the candidate, y(`)k+1 ← f(x
(`)
k+1);

9 Update the trust-region radius ∆
(`)
k based on new evaluations;

10 Update the training data, Dk+1 ← Dk ∪ {x(`)
k+1, y

(`)
k+1}M`=1;

11 return DT

5 A CONVERGENCE ANALYSIS

Our method shares several key features with trust-region derivative-free optimization methods, in-
cluding the use of quadratic models to approximate the objective function and adaptive trust region
updates. However, a crucial distinction lies in the nature of the error between the quadratic model
and the objective function. This error is probabilistic in our approach, while it is typically deter-
ministic in derivative-free optimization methods using interpolation techniques. This probabilistic
aspect necessitates a verification of the coherence between the derivatives of GPs and those of the
objective function. This fundamental difference precludes the direct application of standard con-
vergence theory for derivative-free methods to our method. Consequently, we must reconsider the
convergence analysis in detail.

To maintain analytical simplicity, we adopt the same assumptions as (Conn et al., 1997) and follow
their trust region update strategy, as outlined in Algorithm 2.
Assumption 2. The objective function f : RD → R is twice continuously differentiable whose
gradient ∇f(x) and Hessian ∇2f(x) is uniformly bounded in the norm. In other words, there are
constants κfg > 0 and κfh > 0 such that

‖∇f(x)‖2 ≤ κfg, ‖∇2f(x)‖2 < κfh

for all x ∈ RD.
Assumption 3. The objective function is bounded below on RD.
Assumption 4. The approximate Hessians Bk are uniformly bounded in the norm. In other words,
there is a constant κmh > 0 such that ‖Bk‖2 ≤ κmh, ∀x ∈ Bk.

5
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Algorithm 2: The trust-region update strategy in derivative-free optimization
Input: sk, ∆k, 0 < η0 ≤ η1 < 1, 0 < β1 < 1 < β2, µ ≥ 1
Output: ∆k+1

1 Compute the ratio

ρk :=
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

if ρk ≥ η1 then
2

∆k+1 ← min{β2∆k, µ‖gk‖2}.

3 else if ρk < η0 then
4

∆k+1 ← β1∆k.

5 else
6 ∆k+1 ← ∆k;
7 return ∆k+1

Lemma 1 (Lemma 6 in (Conn et al., 1997)). At every iteration k, one has that

mk(xk)−mk(xk + sk) ≥ κmdc‖gk‖min

(
∆k,
‖gk‖
κh

)
,

for some constant κmdc ∈ (0, 1) independent of k, where κh = max{κfg, κfh, κmh}.
Theorem 2. Assume that Assumption 1, 2, and 4 hold. Then given δ ∈ (0, 1) there is κem such that

P
(
|f(x)−mk(x)| ≤ κem max{∆k,∆

2
k}, ∀x ∈ Bk ∀k

)
≥ 1− δ.

Proof. It follows from Taylor’s theorem that

f(xk + s) = f(xk) +∇f(xk)>s +

∫ 1

0

[∇f(xk + ts)−∇f(xk)]>sdt,

for some t ∈ (0, 1). Then

|mk(xk + s)− f(xk + s)|

=

∣∣∣∣[∇µk(xk)−∇f(xk)]>s +
1

2
s>∇2µk(xk)s−

∫ 1

0

[∇f(xk + ts)−∇f(xk)]>sdt

∣∣∣∣
≤ ‖∇µk(xk)−∇f(xk)‖2 ‖s‖2 + (κmh/2)‖s‖22 + κfh‖s‖22 (5)

It follows from Eq. 1 that

P
(
‖∇µk(xk)−∇f(xk)‖2 ≤

√
β(τ)‖∇σk(xk)‖2,∀k

)
≥ 1− δ.

In fact, assume without loss of generality that f(xk) − µt(xk) ≤
√
β(τ)σt(xk) + γ(τ), then

following the continuity of f(x), µt(x) and σt(x), there is ε ∈ (0, 1) such that ∀i ∈ {1, . . . , D}

f(xk + εei)− µt(xk + εei) ≤
√
β(τ)σt(xk + εei) + γ(τ).

Hence, combing the above two inequalities, one has that

f(xk + εei)− f(xk)

ε
− µt(xk + εei)− µt(xk)

ε
≤
√
β(τ)

σt(xk + εei)− σt(xk)

ε
.

Letting ε→ 0, one has that

∂f(xk)

∂xi
− ∂µt(xk)

∂xi
≤
√
β(τ)

∂σt(xk)

∂xi
.
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Similarly, if µt(xk)− f(xk) ≤
√
β(τ)σt(xk) + γ(τ), then

∂µt(xk)

∂xi
− ∂f(xk)

∂xi
≤
√
β(τ)

∂σt(xk)

∂xi
, ∀i ∈ {1 . . . D}.

Since then, it has been proved the event |f(xk) − µt(xk)| ≤
√
β(τ)σt(xk) + γ(τ) implies that

‖∇µk(xk)−∇f(xk)‖2 ≤
√
β(τ)‖∇σk(xk)‖2.

Since σk admits a modulus of continuity according to Theorem 1, there is κeg such that
‖∇σk(xk)‖2 ≤ κeg∆k. Then

P
(
‖∇µk(xk)−∇f(xk)‖2 ≤ κeg

√
β(τ)∆k,∀k

)
≥ 1− δ. (6)

Combining Eq. 5 and 6, one has that

P
[
|mk(xk + s)− f(xk + s)| ≤ (κeg

√
β(τ) + κmh/2 + κfh) max{∆k,∆

2
k}, ∀k

]
≥ 1− δ

Hence, κem = κeg
√
β(τ) + κmh/2 + κfh.

Lemma 2. Assume that Assumption 1-4 hold. In addition, assume that there is a constant κg > 0
such that ‖gk‖ ≥ κg for all k. Then given δ ∈ (0, 1) there is a constant κd such that

P (∆k > κd, ∀k) ≥ 1− δ.

Proof. It follows from Lemma 7 in (Conn et al., 1997) that if |f(x)−mk(x)| ≤ κem max{∆k,∆
2
k},

then ∀k, ∆k > κd, where

κd = β1 min

(
1,
κmdcκg(1− η1)

max(κh, κem)

)
.

And since it follows from Theorem 2 that

P
(
|f(x)−mk(x)| ≤ κem max{∆k,∆

2
k}, ∀x ∈ Bk ∀k

)
≥ 1− δ.

and hence, we obtain
P (∆k > κd, ∀k) ≥ 1− δ.

This property ensures that the radius cannot become too small with a high probability as long as the
gradient of the GP does not vanish.
Theorem 3. Assume that Assumption 1-4 hold. Then it holds that

lim inf
k→∞

‖gk‖2 = 0

Proof. We proceed by contradiction. Suppose there is κg > 0 such that ‖gk‖ ≥ κg for all k. It
follows from Theorem 9 in (Conn et al., 1997) that if ∆k > κd for all k, then

f(x0)− f(xk+1) ≥ 1

2
σkκgη0 min

(
κg
κh
, κd

)
where σk is the number of successful iterations up to iteration k. In our case, it follows from Lemma
2 that

P (∆k > κd,∀k) ≥ 1− δ.
This implies that

P
(
f(x0)− f(xk+1) ≥ 1

2
σkκgη0 min

(
κg
κh
, κd

))
≥ 1− δ.

And since limk→∞ σk = +∞, one has that ∀M ∈ R ∃k,

P (f(x0)− f(xk+1) > M) ≥ 1− δ,
which contradicts the fact that f is bounded.

7
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Lemma 3. Assume that Assumption 1-4 hold. If there is a subsequence {ki} such that
limi→∞ ‖gki‖ = 0, then given δ ∈ (0, 1) it holds that ∀ε ∈ (0, 1) ∃N ,

P (‖∇f(xki)‖2 < ε, ∀i > N) ≥ 1− δ.

Proof. It follows from Eq. 6 that

P
(
‖∇f(xki)− gki‖2 ≤ κeg

√
β(τ)∆ki , ∀i

)
≥ 1− δ.

And since ∆ki ≤ µ‖gki‖2 (according to Algo. 2), one has that

P
(
‖∇f(xki)− gki‖2 ≤ κeg

√
β(τ)µ‖gki‖2, ∀i

)
≥ 1− δ.

And since ‖∇f(xki)‖2 ≤ ‖gki‖2 + ‖∇f(xki)− gki‖2, one has that

P
(
‖∇f(xki)‖2 ≤ (1 + κeg

√
β(τ)µ)‖gki‖2, ∀i

)
≥ 1− δ.

Combining the limit limi→∞ ‖gki‖2 = 0 and the above equation, one has that ∀ε ∈ (0, 1) ∃N ,

P (‖∇f(xki)‖2 < ε,∀i > N) ≥ 1− δ.

Theorem 4. Assume that Assumption 1-4 hold. Then given δ ∈ (0, 1), there is a sequence of
iterations {xk} such that ∀ε ∈ (0, 1) ∃N ,

P
(

inf
k>N
‖∇f(xk)‖ = 0

)
≥ 1− δ.

Proof. The result immediately follows from Theorem 3 and Lemma 3.

The theorem ensures that our approach will converge to stationary points with a high probability.

6 EXPERIMENTAL RESULTS

In this section, we evaluate our method (TuRBO-D) on a wide range of benchmarks: 50-dimensional
synthetic functions, 100-dimensional synthetic functions, a 300-dimensional Lasso tuning problem,
a 180-dimensional Lasso tuning problem, and a 124-dimensional vehicle design problem.

We compare our method (TuRBO-D) to a broad selection of existing methods: linear embed-
ding methods (ALEBO (Letham et al., 2020), SIR-BO), nonlinear embedding methods (KSIR-BO
(Zhang et al., 2019)), BO using additive models (Add-GP-UCB (Kandasamy et al., 2015)), local-
search methods (TuRBO, GIBO), and quasirandom search (Sobol). For BO using embedding, we
take d = 10 for these experiments. For Add-GP-UCB, we take d = 4 for each group. TuRBO-D and
TuRBO maintain 5 trust regions simultaneously. In 100-dimensional synthetic functions, Lasso and
MOPTA08, we choose 50 variables randomly as the working set at each iteration for TuRBO-D to
ensure derivatives of GPs remain informative. We test all methods using 50 initial points and batch
size of q = 5.

6.1 SYNTHETIC EXPERIMENTS

First, we consider the 50-dimensional Ackley function in the domain [−5, 10]50, and the 50-
dimensional Griewank function in the domain [−300, 600]50. Both functions feature numerous
local minima and a global minimum, making them suitable for testing global optimization methods.
Fig. 1 shows that TuRBO-D enhances the efficacy of TuRBO and gets the best performance of all
methods on the mid-dimensional synthetic functions. The initialization strategy of ALEBO favors
sampling points away from the boundary, resulting in high-quality initial samples. However, the
optimizer of ALEBO tends to stagnate when objective functions lack lower-dimensional structure.
SIR-BO and KSIR-BO demonstrate poor performance in this problem, yielding results comparable

8
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Figure 1: We compare TuRBO-D to baseline methods on 50-dimensional functions and 100-
dimensional functions, showing (Top row) optimal values by each iteration averaged over 20 re-
peated runs, and (Bottom row) the distribution over the final optimal values over 20 repeated runs.
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Figure 2: We compare TuRBO-D to baseline methods on the Lasso-DNA tuning (D = 180), Lasso-
synt high tuning (D = 300) and MOPTA vehicle design (D = 124), showing (Top row) optimal
values by each iteration averaged over 20 repeated runs, and (Bottom row) the distribution over the
final optimal values over 20 repeated runs.

to random search. Add-GP-UCB also underperforms on this problem because objective functions
lack additive structure.
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Second, we consider the 100-dimensional Ackley function in the domain [−5, 10]100, and the 50-
dimensional Griewank function in the domain [−300, 600]100. Fig. 1 shows that TuRBO-D again
enhances the efficacy of TuRBO and gets the best performance among all methods on the high-
dimensional synthetic functions. GIBO always samples the midpoint of the domain after initial-
ization. It suffers from the vanishing gradients of GPs in the high-dimensional spaces, causing
it to become stuck at the midpoint. ALEBO once again encounters stagnation after initialization
due to the absence of lower-dimensional structure in these functions. SIR-BO, KSIR-BO and Add-
GP-UCB underperform on these high-dimensional functions without lower-dimensional structure or
additive structure.

6.2 REAL-WORLD PROBLEMS

Weighted Lasso Tuning. We consider the problem of tuning the Lasso (Least Absolute Shrink-
age and Selection Operator) regression models. LassoBench (Sehic et al., 2022) provides a set of
benchmark problems for tuning penalty terms for Lasso models. In Lasso, each regression coeffi-
cient corresponds to a penalty term, so the number of hyperparameters equals the number of features
in the dataset. We focus on two Lasso tuning problems: a 180-dimensional DNA dataset with 43
effective dimensions, and a 300-dimensional synthetic dataset with 15 effective dimensions.

Fig. 2 shows that TuRBO-D enhances the efficacy of TuRBO and achieves the best performance
among all methods on the Lasso-synt high problem. For the Lasso-DNA problem, TuRBO-D even-
tually attains optimal values comparable to GIBO while outperforming other methods. GIBO, after
initially sampling the midpoint, stagnates due to vanishing gradients of GPs in high-dimensional
spaces. Its performance is primarily attributed to this initial midpoint sampling. ALEBO also be-
comes stuck after initialization, despite the existence of lower-dimensional structure in these prob-
lems. SIR-BO and KSIR-BO perform poorly, yielding results comparable to random search. Inter-
estingly, Add-GP-UCB shows better performance than SIR-BO and KSIR-BO, despite LassoBench
lacking the additive structure that Add-GP-UCB typically exploits.

Vehicle Design. We consider the vehicle design problem with a soft penalty as defined in (Eriksson
& Jankowiak, 2021). The objective is to minimize the mass of a vehicle characterized by 124
design variables describing materials, gauges, and vehicle shape. This results in a 124-dimensional
optimization problem.

Fig. 2 shows that TuRBO-D enhances the efficacy of TuRBO and achieves the best performance
among all methods on the MOPTA08 problem. In this problem, the midpoint is not close to the
optimal point, resulting in initial strategies of GIBO and ALEBO performing comparably to random
search. ALEBO outperforms the other embedding approaches on the MOPTA08, while GIBO stag-
nates and performs worse than random search. SIR-BO, KSIR-BO and Add-GP-UCB underperform
on the MOPTA08 due to its lack of lower-dimensional structure or additive structure.

7 CONCLUSION

In this paper, we introduce TuRBO-D, a novel trust-region BO method that incorporates the deriva-
tives of GPs for enhancing the sampling efficiency of TuRBO. This novel scheme is realized by (1)
constructing several local quadratic models using gradients and Hessians from a global GP, enabling
heterogeneous modeling of the objective function while maintaining the same sample efficiency of a
global GP, and (2) selecting new sample points by solving the bound-constrained quadratic program
in multiple trust regions. Comprehensive experimental evaluations demonstrate that TuRBO-D sig-
nificantly enhances the efficacy of TuRBO and outperforms a wide range of high-dimensional BO
methods on a set of synthetic functions and three real-world applications. Furthermore, we provide
a convergence analysis for our method.

While we mitigate the problem of vanishing derivatives using working sets, we will focus on devel-
oping better schemes to address this challenge in the future.
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nando Pérez-Cruz (eds.), International Conference on Artificial Intelligence and Statistics, AIS-
TATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, volume 84
of Proceedings of Machine Learning Research, pp. 298–307. PMLR, 2018. URL http:
//proceedings.mlr.press/v84/rolland18a.html.

Kenan Sehic, Alexandre Gramfort, Joseph Salmon, and Luigi Nardi. Lassobench: A high-
dimensional hyperparameter optimization benchmark suite for lasso. In Isabelle Guyon, Marius
Lindauer, Mihaela van der Schaar, Frank Hutter, and Roman Garnett (eds.), International Confer-
ence on Automated Machine Learning, AutoML 2022, 25-27 July 2022, Johns Hopkins University,
Baltimore, MD, USA, volume 188 of Proceedings of Machine Learning Research, pp. 2/1–24.
PMLR, 2022. URL https://proceedings.mlr.press/v188/sehic22a.html.

Yihang Shen and Carl Kingsford. Computationally efficient high-dimensional bayesian optimiza-
tion via variable selection. In Aleksandra Faust, Roman Garnett, Colin White, Frank Hutter, and
Jacob R. Gardner (eds.), Proceedings of the Second International Conference on Automated Ma-
chine Learning, volume 224 of Proceedings of Machine Learning Research, pp. 15/1–27. PMLR,
12–15 Nov 2023. URL https://proceedings.mlr.press/v224/shen23a.html.

Lei Song, Ke Xue, Xiaobin Huang, and Chao Qian. Monte carlo tree search based vari-
able selection for high dimensional bayesian optimization. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,

13

https://proceedings.neurips.cc/paper/2021/hash/ad0f7a25211abc3889cb0f420c85e671-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ad0f7a25211abc3889cb0f420c85e671-Abstract.html
http://proceedings.mlr.press/v97/nayebi19a.html
http://papers.nips.cc/paper_files/paper/2022/hash/555479a201da27c97aaeed842d16ca49-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/555479a201da27c97aaeed842d16ca49-Abstract-Conference.html
https://openreview.net/forum?id=e4Wf6112DI
http://proceedings.mlr.press/v70/rana17a.html
https://www.worldcat.org/oclc/61285753
http://proceedings.mlr.press/v84/rolland18a.html
http://proceedings.mlr.press/v84/rolland18a.html
https://proceedings.mlr.press/v188/sehic22a.html
https://proceedings.mlr.press/v224/shen23a.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b6a171867138c80de2a35a6125d6757c-Abstract-Conference.html.

Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning search space parti-
tion for black-box optimization using monte carlo tree search. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.),
Advances in Neural Information Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
e2ce14e81dba66dbff9cbc35ecfdb704-Abstract.html.

Zi Wang, Chengtao Li, Stefanie Jegelka, and Pushmeet Kohli. Batched high-dimensional bayesian
optimization via structural kernel learning. In Doina Precup and Yee Whye Teh (eds.), Pro-
ceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pp. 3656–
3664. PMLR, 2017. URL http://proceedings.mlr.press/v70/wang17h.html.

Ziyu Wang, Babak Shakibi, Lin Jin, and Nando de Freitas. Bayesian multi-scale optimistic op-
timization. In Proceedings of the Seventeenth International Conference on Artificial Intel-
ligence and Statistics, AISTATS 2014, Reykjavik, Iceland, April 22-25, 2014, volume 33 of
JMLR Workshop and Conference Proceedings, pp. 1005–1014. JMLR.org, 2014. URL http:
//proceedings.mlr.press/v33/wang14d.html.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando de Freitas. Bayesian opti-
mization in a billion dimensions via random embeddings. J. Artif. Intell. Res., 55:361–387, 2016.
doi: 10.1613/JAIR.4806. URL https://doi.org/10.1613/jair.4806.

Miao Zhang, Huiqi Li, and Steven W. Su. High dimensional bayesian optimization via supervised
dimension reduction. In Sarit Kraus (ed.), Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pp. 4292–
4298. ijcai.org, 2019. doi: 10.24963/IJCAI.2019/596. URL https://doi.org/10.24963/
ijcai.2019/596.

Jiayu Zhao, Renyu Yang, SHENGHAO QIU, and Zheng Wang. Unleashing the potential of acqui-
sition functions in high-dimensional bayesian optimization. Transactions on Machine Learn-
ing Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=
0CM7Hfsy61.

Juliusz Krysztof Ziomek and Haitham Bou-Ammar. Are random decompositions all we need in
high dimensional bayesian optimisation? In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Confer-
ence on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pp. 43347–43368. PMLR, 2023. URL
https://proceedings.mlr.press/v202/ziomek23a.html.

14

http://papers.nips.cc/paper_files/paper/2022/hash/b6a171867138c80de2a35a6125d6757c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b6a171867138c80de2a35a6125d6757c-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2020/hash/e2ce14e81dba66dbff9cbc35ecfdb704-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e2ce14e81dba66dbff9cbc35ecfdb704-Abstract.html
http://proceedings.mlr.press/v70/wang17h.html
http://proceedings.mlr.press/v33/wang14d.html
http://proceedings.mlr.press/v33/wang14d.html
https://doi.org/10.1613/jair.4806
https://doi.org/10.24963/ijcai.2019/596
https://doi.org/10.24963/ijcai.2019/596
https://openreview.net/forum?id=0CM7Hfsy61
https://openreview.net/forum?id=0CM7Hfsy61
https://proceedings.mlr.press/v202/ziomek23a.html

	Introduction
	Related Work
	Background
	Bayesian Optimization
	Uniform Error Bounds of the GP

	Method
	A convergence analysis
	Experimental Results
	Synthetic Experiments
	Real-World Problems

	Conclusion

