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ABSTRACT

Bayesian Optimization (BO) has been widely applied to optimize expensive black-
box functions while retaining sample efficiency. However, scaling BO to high-
dimensional spaces remains challenging. Existing literature proposes performing
standard BO in several local trust regions (TuRBO) for heterogeneous model-
ing of the objective function and avoiding over-exploration. Despite its advan-
tages, using local Gaussian Processes (GPs) reduces sampling efficiency com-
pared to a global GP. To enhance sampling efficiency while preserving hetero-
geneous modeling, we propose to construct several local quadratic models using
gradients and Hessians from a global GP, and select new sample points by solving
the bound-constrained quadratic program. We provide a convergence analysis and
demonstrate through experimental results that our method enhances the efficacy
of TuRBO and outperforms a wide range of high-dimensional BO techniques on
synthetic functions and real-world applications.

1 INTRODUCTION

Bayesian Optimization (BO) has been one of the popular methods for the global optimization of
expensive black-box functions due to its high sampling efficiency. Applications include hyperpa-
rameter tuning for deep learning (Hvarfner et al.| |2022), discovering new molecules for chemical
engineering (Gomez-Bombarelli et al.,[2018), searching an optimal policy for reinforcement learn-
ing (Miiller et al.l 2021)), and so on. BO is a sequential model-based approach consisting of two
main components: a surrogate model and an acquisition function. The surrogate model, typically
implemented as a Gaussian Process regression, is used to improve the sampling efficiency of BO
by modeling the objective function. The acquisition function is used to determine the next sample
point.

While BO performs well in optimizing low-dimensional functions, it struggles with high-
dimensional problems for several reasons. First, the surrogate model loses accuracy in the high-
dimensional space when estimating the objective function. This is because it is impossible to fill the
high-dimensional space with finite sample points, even with a large sample size (Gyorfi et al.,[2002).
Second, the computational complexity of optimizing the acquisition function grows exponentially
with dimensions (Kandasamy et al., 2015)).

Various methods have been proposed to address the curses of dimensionality in BO. The vast ma-
jority of the prior work assumes special structures in the objective function, such as additive struc-
ture (Kandasamy et al., 2015} [Han et al., |2021) or intrinsic dimension (Wang et al., 2016; |[Letham!
et al.| [2020). However, these assumptions are often too restrictive for widespread application. Other
works directly improve the high-dimensional BO without additional assumptions, including TuURBO
(Eriksson et al.; 2019), GIBO (Miiller et al.,2021), and MPD (Nguyen et al., [2022)).

This paper focuses on trust-region Bayesian Optimization (TuRBO). TuRBO is attractive because
it uses local GPs for heterogeneous modeling of the objective function and performs BO locally
in several trust regions to avoid over-exploration. However, using local GPs reduces sampling ef-
ficiency compared to a global GP. To overcome this limitation, we propose a new trust-region BO
method (TuRBO-D) that incorporates the derivatives of GPs. It constructs several local quadratic
models using gradients and Hessians from a global GP, enabling heterogeneous modeling of the ob-
jective function while maintaining the same sample efficiency of a global GP. To optimize globally, it
maintains multiple trust regions simultaneously. Our method consists of three main stages: building
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several local quadratic models using derivatives from a global GP, selecting new sample points by
solving the bound-constrained quadratic program in each trust region, and updating the trust region
radii based on new evaluations. In addition, we provide theoretical proof that our method converges
to stationary points with high probability. In summary, our main contributions are:

* Proposing a new trust-region BO method that incorporates GP derivatives to enhance sam-
pling efficiency while retaining heterogeneous modeling.

* Providing a convergence analysis guaranteeing the convergence of our proposed method.

* Empirically validating our method on synthetic and real-world applications, demonstrating
improved efficacy over TURBO and outperforming various high-dimensional BO methods.

2 RELATED WORK

In the realm of high-dimensional BO, there are generally three kinds of methods. The first kind of
method assumes the existence of a lower-dimensional structure within objective functions, typically
employing a three-stage process: producing a low-dimensional embedding, performing standard
BO in this low-dimensional space, and projecting found optimal points back to the original space.
In REMBO (Wang et al. |2016)), the low-dimensional embedding is achieved by using a random
projection matrix. But REMBO often produces points that fall outside the box bounds of the original
space, necessitating their projection onto the facet of the box and resulting in a harmful distortion.
Subsequently, several techniques are proposed to fix this problem (Letham et al.,|2020; |Binois et al.,
2020). In addition, the random low-dimensional embedding can be also achieved by randomized
hashing functions (Nayebi et al.,|2019; [Papenmeier et al.||2022). The key advantage of the hashing
functions lies in their ability to effortlessly map candidate points back to the original space, thus
circumventing the need for clipping to box-bound facets. Some works achieve linear embeddings
based on learning. For example, SIR-BO employs Sliced Inverse Regression to derive the linear
embeddings, while SI-BO (Djolonga et al.,|2013) learns the linear embeddings via low-rank matrix
recovery. |Garnett et al.|(2014) learn the linear embeddings by maximizing the marginal likelihood
of GPs. Besides, nonlinear embedding techniques have also been explored, particularly those based
on Variational Autoencoders (Gomez-Bombarelli et al., 2018 [Lu et al.l 2018]). However, these
approaches typically require a substantially larger sample size. In addition to embedding techniques,
some research has focused on variable selection methods (Kirschner et al.,[2019; L1 et al.,|2017;|Shen
& Kingsford, 2023 |Song et al., |2022)).

The second kind of method assumes the existence of an additive structure for the objective function.
The additive objective function can be modeled by additive GPs (Kandasamy et al.,|2015)), allowing
for more efficient maximization of the acquisition function. However, the true additive structure still
remains challenging to learn. Several works propose to learn the underlying additive structure from
training data. For example, Wang et al.|(2017) proposed a method that employs the Dirichlet process
to assign input variables into distinct groups. Rolland et al.| (2018) employ a dependency graph to
model the interactions between input variables, allowing for the assignment of input variables into
overlapping groups. Han et al.| (2021) proposed a refinement that restricts the dependency graph
to a tree structure, reducing the computational complexity of maximizing acquisition functions. In
contrast to data-driven decomposition methods, RDUCB (Ziomek & Bou-Ammar, 2023) learns a
random tree-based decomposition to mitigate the potential mismatch between the objective function
and additive GPs.

The third kind of method focuses on direct enhancements to the BO process in high-dimensional
spaces, without relying on any other assumption. For example, TURBO (Eriksson et al.l [2019),
GIBO (Miiller et al., 2021) and MPD (Nguyen et al.| |2022)) adopt local strategies for BO to avoid
over-exploration in high-dimensional spaces. Another set of approaches focuses on partitioning the
search space and identifying a promising region to perform BO more efficiently (Wang et al., 2014;
Kawaguchi et al., [2015; [Wang et al., |2020). Researchers have also proposed better initialization
methods for optimizing high-dimensional acquisition functions efficiently (Rana et al., 2017} [Zhao
et al., [2024).

GIBO and MPD are similar to ours, which also utilize gradients of GPs. In contrast to their work,
our work incorporates both gradient and Hessian information from GPs and provides a convergence
analysis.
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3 BACKGROUND

3.1 BAYESIAN OPTIMIZATION

Bayesian optimization considers an optimization problem minyey f(x) where f is a black-box
and derivative-free function over a hyper-rectangular feasible set X'. As a sequential model-based
approach, BO comprises two main components: a surrogate model and an acquisition function. The
surrogate model approximates the objective function, while the acquisition function, based on this
model, determines the next sampling point. Gaussian Process regression is typically employed as the
surrogate model (Rasmussen & Williams|, [2006), f ~ GP(m(-), k(-,-)) with a mean function m(-)
and a kernel k(-,-). More specifically, GP assumes that evaluations of any finite number sampling
point x1.,, follow a joint Gaussian distribution, f ~ A (m(x1.,), K(X1.,X1.)). Given training
data D,, = {X1.n,y1.n} and a new point X, the joint distribution is given by

]~ (] s Sns))

where o7 is the variance of Gaussian noise added to the observations. It follows from the
Sherman-Morrison-Woodbury formula that the posterior normal distribution for f(x,) is given by
F(x)| Doy s ~ N (pin(x4), 02 (x4)) where

}LT,(X*) = m(X*) + k(x*yxlzn)(K(Xl:n, Xl:n) + UTQLI)il(YLn - m(xlzn))
o2 (X*) = k‘(X*,X*) - k(X*7X1:TL)(K(X12’VL7X11’n) + UTQLI)ilk(Xlinvx*)

n

Based on this posterior, an acquisition function «/(+) is constructed to quantify the utility of sampling
points. Common choices include Expected Improvement (Jones et al., [1998) and Entropy Search
(Hennig & Schuler, 2012). The next sample point is determined by maximizing the acquisition
function, x,,11 = arg max,cy a(x). After evaluating the objective function at X,1, the process
advances to the next iteration.

3.2 UNIFORM ERROR BOUNDS OF THE GP

Under the mild assumption of Lipschitz continuity for both the objective function and the kernel
function, a directly computable probabilistic uniform error bound can be established.

Assumption 1. The unknown objective function [ is a sample from a Gaussian process
GP(0,k(x,x")) and observations are perturbed by Gaussian noise, y = f(x) + € where € ~
N(0,0?). The unknown function f is continuous with the Lipschitz constant Ly and the kernel k is
Lipschitz continuous with the Lipschitz constant defined as

( Ok(x,x') Ok(x,x') ) T

Ox1, 7 Oxp

L := max
x,x'€eX

2
Theorem 1 (Theorem 3.1 in (Lederer et al.l [2019)). Given an unknown function f satisfying As-
sumption|[I] the posterior mean function p, from the GP fitted on the training data Dy is continuous
with the Lipschitz constant L,,,, and the standard deviation oy admits a modulus of continuity w,
on X, where

Ly, < LVt (K + 071~ 'y]l2

We, (1) < \/QTLk (1 +t)|(K+ o21)~ 1|2 max, k(x, X’)) .
x,x'€
Moreover, given § € (0,1), 7 > 0, one has that

B (1£(x) = pe(x)| < VBTIor(x) + (7). ¥x € X) =13, (M
where

8(r) = 210g (M5 ) 20 = (L + L7+ VBT, (1),

and M (7, X) is the covering number that is the minimum number of spherical balls with radius T
required to completely cover X.
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4 METHOD

In this section, we propose a novel trust-region BO method for optimizing high-dimensional black-
box functions. To address the reduced sampling efficiency of local GPs in TuURBO, we construct
several local quadratic models using gradients and Hessians from a global GP. This approach allows
for heterogeneous modeling of the objective function while maintaining the same sample efficiency
of a global GP. To achieve global optimization, we select new sample points by solving the bound-
constrained quadratic programs in multiple regions.

Local modeling. At iteration k, with x;, as the best solution found so far, the local quadratic model
is defined as,

1
me(x, +8) = f(x) + gl s+ 5sTBks, 2)

where g and By, approximate the gradient and Hessian of the objective function, respectively. Since
the derivatives of the objective function f are unknown, we set

gr = Viur(xk), Br = V2ur(xk) + AV20,(xp),

where A is a hyperparameter, 4 (-) and o (-) are the posterior mean and standard deviation of the
GP model.

Trust regions. To ensure the quadratic model my, accurately approximates f, x5 + s needs to be
restricted to a trust region By, defined as

Bk = {X S RD | HX — Xk” < Ak},

where Ay, is the trust-region radius, adjusted iteratively. It should be decreased when the optimizer
appears stuck and increased when the optimizer finds better solutions. When the radius falls below
a predetermined minimum threshold A, it signals that the current region has been thoroughly
explored. At this point, the algorithm restarts in another region to promote global exploration.
In this paper, we adopt the same radius update strategy as TuRBO, which has proven effective in
balancing local exploitation and global exploration.

Trust regions in the co-norm. In BO, the search space is typically a rectangular box. Without
loss of generality, we assume that the box is [0, 1]”. Given this constraint, the trust region is defined
as

By ::{XGRD\Hx—kagAk, 0<x<1}.

When the trust region is in the Euclidean norm, By, consists of the intersection of a sphere and a
rectangular (Jorge & Stephen), [2006)), leading to more complex quadratic models. To simplify this,
we adopt the co-norm for the trust region, which transforms By, into a simple rectangular,

By, ::{XGRD | —Apl <x—xp SAkl, 0<x< 1}
Then candidate is selected by solving the bound-constrained quadratic program,

minimize mg(x; + ), subject to xi +s € B. 3)
S

The above problem can be solved by gradient projection methods. However, the Hessian of the GP
is often nearly singular, which can lead to issues when using conjugate gradient iterations. Such
methods may require numerous iterations and yield only small reductions in each step. Instead, we
employ a gradient projection method using quasi-Newton iterations, specifically L-BFGS-B (Byrd
et al.| [1995). This approach approximates the singular Hessian with a positive definite matrix, im-
proving the efficiency and robustness of the optimization process.

Derivatives vanish in the high-dimensional space. In general, our approach is effective for
medium-dimensional problems (typically D < 100). However, as the dimensionality increases be-
yond this range, the derivatives of GPs tend to vanish, posing a significant challenge to our method.
To mitigate this issue and ensure the derivatives remain informative, we choose d variables out of D
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variables randomly as the working set Wy, at each iteration. Then, a global GP is constructed on the
working set and the bound-constrained quadratic program is denoted as

1
minimize my(xy +8) = f(xx) + gL s+ §STBks,
subject to s; =0, Vi ¢ W “)
Xi + s € Bg.

So far, we have detailed a single local BO strategy using a trust region. To achieve global optimiza-
tion in this framework, we maintain m trust regions simultaneously, selecting a candidate within
each trust region to form a batch of m candidates. We denote our method as TuURBO-D, as presented
in Algorithm 1]

Algorithm 1: TuURBO-D
Input: n, T, M
Output: The sample points and their evaluations Dy

Do = {X1.n,¥1.n} < Randomly sample n points from the feasible set X and then evaluate
these points;

Initializations. Choose an initial radius for each trust region, {Agz)} M, and determine an

initial point for each trust region, {xff)};‘il C Do
for k < 1to T do
Build a global GP based on the training data Dy
for / < 1to M do
(€) (4. (6)

Build a local quadratic model m,, ' (x;,” + s) in the ¢-th trust region;
Select a candidate by minimizing the model within the ¢-th trust region according to

Eq

Evaluate the candidate, y,(ﬁl «— f (X,(fll);

Update the trust-region radius Aff) based on new evaluations;

| Update the training data, Dy <= Dy U {X,(ﬁl, y,g?_l Mo

return Dp

5 A CONVERGENCE ANALYSIS

Our method shares several key features with trust-region derivative-free optimization methods, in-
cluding the use of quadratic models to approximate the objective function and adaptive trust region
updates. However, a crucial distinction lies in the nature of the error between the quadratic model
and the objective function. This error is probabilistic in our approach, while it is typically deter-
ministic in derivative-free optimization methods using interpolation techniques. This probabilistic
aspect necessitates a verification of the coherence between the derivatives of GPs and those of the
objective function. This fundamental difference precludes the direct application of standard con-
vergence theory for derivative-free methods to our method. Consequently, we must reconsider the
convergence analysis in detail.

To maintain analytical simplicity, we adopt the same assumptions as (Conn et al., |1997) and follow
their trust region update strategy, as outlined in Algorithm

Assumption 2. The objective function f : RP — R is twice continuously differentiable whose
gradient V f (x) and Hessian V? f(x) is uniformly bounded in the norm. In other words, there are
constants kg > 0 and kg, > 0 such that

IVF)2 < krg,  IV2F)2 < #pn
forallx € RP.
Assumption 3. The objective function is bounded below on RP .

Assumption 4. The approximate Hessians By, are uniformly bounded in the norm. In other words,
there is a constant K., > 0 such that |Bg||2 < kmn, VX € By.
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Algorithm 2: The trust-region update strategy in derivative-free optimization
Input:sk7 Aku 0<770§771<1a 0<61<1<627 N/Zl

Output: Ay

Compute the ratio

f(xx) — f(xp +sk)

my(Xk) — mi (X, + i)

Pk =
if p;, > 1, then

Apy1 < min{BoAy, pl|grll2}-
else if p, < 1o then

Ak—i—l < BlAk

else
AVERIE AV

return Ay

Lemma 1 (Lemma 6 in (Conn et al.,[1997)). At every iteration k, one has that
. (el
My (Xg) — Mi(Xg + 8k) > Kmde||gr]| min | Ag, k)

for some constant k4. € (0,1) independent of k, where kj, = max{Kk g, Kb, Kmh }-
Theorem 2. Assume that Assumption! z 2l andH4| H hold. Then given § € (0, 1) there is Kep, such that

P (| f(x) — me(x)| < Kem max{Ay, A7}, Vx € By, Vk) > 1— 4.

Proof. 1t follows from Taylor’s theorem that

Fxi+s) = flxi) + Vf(xx) s + /Ol[Vf(Xk +ts) — Vf(xx)] " sdt,
for some ¢ € (0,1). Then
[mi(xk +5) = f(xk +5)|
= ([Viur(xx) = Vf(xp)] s + %STVQMk(Xk)S - /Ol[Vf(Xk +ts) — Vf(xx)] " sdt

< Van(xr) = VFxu) 2 lIsll2 + (mn/2) [s]13 + s pnlls]13 )

It follows from Eq. [I] that
P (| Vsak (k) = V f(xi)l2 < VB IVoi(xi) 2, V) =1 -8,

In fact, assume without loss of generality that f(xx) — pe(xk) < +/B(7)ot(xx) then
following the continuity of f(x), u:(x) and o.(x), there is € € (0, 1) such that Vi € {1 D}

f(xn +ce;) — pi(xx + ce;) </ B(T)ow(xk +ce;) + (7).

Hence, combing the above two inequalities, one has that

fxe tee) — f(xi)  pu(xi +ee;) — pe(xp) < VB2 o(Xk +ei) —ov(xi)
3 9 9

Letting € — 0, one has that

Of (xx)  Ope(x) 30’t (xk)
< /B .
axi 8(1}'1 axz
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Similarly, if p¢(xx) — f(xx) < /B(7)ot(xx) + v(7), then

au(;;:k) B 3];(;16) < m%ﬂ;‘k), Vie {l...D}.

Since then, it has been proved the event | f(xy) — ue(xx)| < +/B(7)ot(xk) + () implies that
IV (xi) = Vf(x)ll2 < /B(T)[Vor(x)]]2-

Since o} admits a modulus of continuity according to Theorem [I} there is ., such that
HVO']C(X]Q)HQ < KegAk. Then

P (| Vi (xi) = VS (k)2 < freg /B A, VE) =16, ©)
Combining Eq. [5|and[6] one has that

P [|mk(xk +58) — f(xk +5)| < (KegV/B(T) + Emn/2 + /@fh)max{Ak,Ai}, Vk| >1-96

Hence, Kem = Keg\/B(T) + Emn/2 + Kfh. O

Lemma 2. Assume that Assumptionhold. In addition, assume that there is a constant kg > 0
such that ||gi|| > kg4 for all k. Then given § € (0, 1) there is a constant kq such that

P(Ak > Kd, Vk) 2175

Proof. It follows from Lemma 7 in (Conn et al., 1997) that if | f (x) —mg (X)| < Kem max{Ag, A2},
then Vk, Ay > kg4, where

1—
Rqg = 61 min (1, —K/mdc/'@g( 771)) .

max(Kp, Kem)
And since it follows from Theorem [2] that
P (|f(x) — mp(X)| < Kem max{Ag, A}, Vx € By Vk) >1-4.

and hence, we obtain
]P)(Ak > Kd, Vk) >1-4.

O

This property ensures that the radius cannot become too small with a high probability as long as the
gradient of the GP does not vanish.

Theorem 3. Assume that Assumption[I}fd| hold. Then it holds that

lim inf ||gk||2 =0
k— o0

Proof. We proceed by contradiction. Suppose there is , > 0 such that ||gx|| > &, for all k. It
follows from Theorem 9 in (Conn et al} [1997) that if A, > x4 for all k, then

1 . K
f(x0) — f(xpg1) > §Uk/€g770 min (9 ’ Kd)
Kh

where o, is the number of successful iterations up to iteration k. In our case, it follows from Lemma
[l that
P(Ak > Hd,Vk) >1-4.

This implies that
1 . Kg
P f(x0) — f(xg+1) > iokngno min K—h, Kq >1-0.
And since limy,_, o, 0, = +00, one has that VM € R Jk,

P(f(x0) = f(%k41) > M) 21—,
which contradicts the fact that f is bounded. O
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Lemma 3. Assume that Assumption hold.  If there is a subsequence {k;} such that
lim; o ||gk, || = O, then given § € (0, 1) it holds that Ve € (0,1) 3N,

P(|Vf(xp )2 <€ Vi>N)>1—06.

Proof. 1t follows from Eq. [] that
P (va(xki) — 8k ll2 < FegV/B(T) Ak, Vi) >1-0.
2 (according to Algo. , one has that
P (V5 xk) — g ll2 < g /Bl
And since ||V f(x,)[l2 < llgk, l2 + [V f(xk;) — 8k, ||2, one has that
P (IVF (k)2 < (1+ kg VBl 2, ¥i) =16,

2 = 0 and the above equation, one has that Ve € (0,1) 3N,
Vi) <eVi>N)>1-4.

And since A, < p|gk,

) w) >1-4.

Combining the limit lim;_, ||gk,

P (|

O

Theorem 4. Assume that Assumption hold. Then given § € (0,1), there is a sequence of
iterations {xy } such that Ve € (0,1) 3N,

P (juf 197Gl =0) 215

Proof. The result immediately follows from Theorem 3|and Lemma 3] O

The theorem ensures that our approach will converge to stationary points with a high probability.

6 EXPERIMENTAL RESULTS

In this section, we evaluate our method (TuRBO-D) on a wide range of benchmarks: 50-dimensional
synthetic functions, 100-dimensional synthetic functions, a 300-dimensional Lasso tuning problem,
a 180-dimensional Lasso tuning problem, and a 124-dimensional vehicle design problem.

We compare our method (TuRBO-D) to a broad selection of existing methods: linear embed-
ding methods (ALEBO (Letham et al.| [2020), SIR-BO), nonlinear embedding methods (KSIR-BO
(Zhang et al.l [2019)), BO using additive models (Add-GP-UCB (Kandasamy et al.| [2015)), local-
search methods (TuRBO, GIBO), and quasirandom search (Sobol). For BO using embedding, we
take d = 10 for these experiments. For Add-GP-UCB, we take d = 4 for each group. TuURBO-D and
TuRBO maintain 5 trust regions simultaneously. In 100-dimensional synthetic functions, Lasso and
MOPTAO08, we choose 50 variables randomly as the working set at each iteration for TuRBO-D to
ensure derivatives of GPs remain informative. We test all methods using 50 initial points and batch
size of ¢ = 5.

6.1 SYNTHETIC EXPERIMENTS

First, we consider the 50-dimensional Ackley function in the domain [—5, 10]50, and the 50-
dimensional Griewank function in the domain [—300,600]°°. Both functions feature numerous
local minima and a global minimum, making them suitable for testing global optimization methods.
Fig. [I] shows that TuURBO-D enhances the efficacy of TURBO and gets the best performance of all
methods on the mid-dimensional synthetic functions. The initialization strategy of ALEBO favors
sampling points away from the boundary, resulting in high-quality initial samples. However, the
optimizer of ALEBO tends to stagnate when objective functions lack lower-dimensional structure.
SIR-BO and KSIR-BO demonstrate poor performance in this problem, yielding results comparable
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Ackley, D=50 Griewank, D=50 Ackley, D=100 Griewank, D=100
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Figure 1: We compare TuRBO-D to baseline methods on 50-dimensional functions and 100-
dimensional functions, showing (Top row) optimal values by each iteration averaged over 20 re-
peated runs, and (Bottom row) the distribution over the final optimal values over 20 repeated runs.
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m== TURBO-D TuRBO  =ss== ALEBO === KSIR-BO
Sobol GIBO SIR-BO Add-GP-UCB

Figure 2: We compare TuRBO-D to baseline methods on the Lasso-DNA tuning (D = 180), Lasso-
synt_high tuning (D = 300) and MOPTA vehicle design (D = 124), showing (Top row) optimal
values by each iteration averaged over 20 repeated runs, and (Bottom row) the distribution over the
final optimal values over 20 repeated runs.

to random search. Add-GP-UCB also underperforms on this problem because objective functions
lack additive structure.
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Second, we consider the 100-dimensional Ackley function in the domain [—5, 10]'°°, and the 50-
dimensional Griewank function in the domain [—300, 600]'%°. Fig. [1|shows that TURBO-D again
enhances the efficacy of TuRBO and gets the best performance among all methods on the high-
dimensional synthetic functions. GIBO always samples the midpoint of the domain after initial-
ization. It suffers from the vanishing gradients of GPs in the high-dimensional spaces, causing
it to become stuck at the midpoint. ALEBO once again encounters stagnation after initialization
due to the absence of lower-dimensional structure in these functions. SIR-BO, KSIR-BO and Add-
GP-UCB underperform on these high-dimensional functions without lower-dimensional structure or
additive structure.

6.2 REAL-WORLD PROBLEMS

Weighted Lasso Tuning. We consider the problem of tuning the Lasso (Least Absolute Shrink-
age and Selection Operator) regression models. LassoBench (Sehic et al., 2022)) provides a set of
benchmark problems for tuning penalty terms for Lasso models. In Lasso, each regression coeffi-
cient corresponds to a penalty term, so the number of hyperparameters equals the number of features
in the dataset. We focus on two Lasso tuning problems: a 180-dimensional DNA dataset with 43
effective dimensions, and a 300-dimensional synthetic dataset with 15 effective dimensions.

Fig. [2| shows that TuURBO-D enhances the efficacy of TuURBO and achieves the best performance
among all methods on the Lasso-synt_high problem. For the Lasso-DNA problem, TuRBO-D even-
tually attains optimal values comparable to GIBO while outperforming other methods. GIBO, after
initially sampling the midpoint, stagnates due to vanishing gradients of GPs in high-dimensional
spaces. Its performance is primarily attributed to this initial midpoint sampling. ALEBO also be-
comes stuck after initialization, despite the existence of lower-dimensional structure in these prob-
lems. SIR-BO and KSIR-BO perform poorly, yielding results comparable to random search. Inter-
estingly, Add-GP-UCB shows better performance than SIR-BO and KSIR-BO, despite LassoBench
lacking the additive structure that Add-GP-UCB typically exploits.

Vehicle Design. We consider the vehicle design problem with a soft penalty as defined in (Eriksson
& Jankowiakl |2021). The objective is to minimize the mass of a vehicle characterized by 124
design variables describing materials, gauges, and vehicle shape. This results in a 124-dimensional
optimization problem.

Fig. [2] shows that TURBO-D enhances the efficacy of TURBO and achieves the best performance
among all methods on the MOPTAOS8 problem. In this problem, the midpoint is not close to the
optimal point, resulting in initial strategies of GIBO and ALEBO performing comparably to random
search. ALEBO outperforms the other embedding approaches on the MOPTAO08, while GIBO stag-
nates and performs worse than random search. SIR-BO, KSIR-BO and Add-GP-UCB underperform
on the MOPTAOS due to its lack of lower-dimensional structure or additive structure.

7 CONCLUSION

In this paper, we introduce TuURBO-D, a novel trust-region BO method that incorporates the deriva-
tives of GPs for enhancing the sampling efficiency of TuURBO. This novel scheme is realized by (1)
constructing several local quadratic models using gradients and Hessians from a global GP, enabling
heterogeneous modeling of the objective function while maintaining the same sample efficiency of a
global GP, and (2) selecting new sample points by solving the bound-constrained quadratic program
in multiple trust regions. Comprehensive experimental evaluations demonstrate that TuURBO-D sig-
nificantly enhances the efficacy of TuURBO and outperforms a wide range of high-dimensional BO
methods on a set of synthetic functions and three real-world applications. Furthermore, we provide
a convergence analysis for our method.

While we mitigate the problem of vanishing derivatives using working sets, we will focus on devel-
oping better schemes to address this challenge in the future.
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