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ABSTRACT

We extend score-based generative modeling by incorporating Lie group actions
on the data manifold into the denoising diffusion process. Our approach yields
a Langevin dynamics whose infinitesimal transformations decompose as a di-
rect sum of Lie algebra representations, enabling generative processes that align
with the underlying symmetry properties of the data. Unlike equivariant models,
which restrict the space of learnable functions by quotienting out group orbits, our
method incorporates both global and local symmetries and can model any target
distribution. Standard score-matching, which minimizes the Fisher divergence,
emerges as a special case of our framework when the Lie group is the translation
group in Euclidean space. We prove that our generalized generative processes
arise as solutions to a new class of reverse-time stochastic differential equations
(SDEs), introduced here for the first time. We validate our approach through
experiments on diverse data types, demonstrating its effectiveness in real-world
applications such as SO(3)-guided molecular conformer generation and modeling
ligand-specific global SE(3) transformations for molecular docking. We show that
an appropriate choice of Lie group enhances learning efficiency by reducing the
effective dimensionality of the trajectory space and enables the modeling of tran-
sitions between complex data distributions, lifting the requirement of a Gaussian
prior. Additionally, we demonstrate the universality of our approach by deriving
how it extends to flow matching techniques.

1 INTRODUCTION

Deep probabilistic generative modeling amounts to creating data from a known tractable prior distri-
bution. Score-based models (Hyvärinen & Dayan, 2005; Sohl-Dickstein et al., 2015; Ho et al., 2020;
Huang et al., 2021) achieve this by learning to reverse a corruption process of the data. The sampling
process is realized by a Markov chain Monte Carlo (MCMC) using Langevin dynamics (Song et al.,
2021; 2020b), producing a probabilistic trajectory {xt}t=T,...,0 in the data space X guided by the
score function s(x) = ∇x log p(x): for each infinitesimal step xt+1 7→ xt−s(xt)+noise, the score
induces a small translation in X (Figure 1a), and the noise prevents the dynamics from collapsing
into local minima (Welling & Teh, 2011; Neal, 2010). The observation that translations are just one
of many transformations of Euclidean space leads to the central question of the present work: given
a group G acting on X , can we construct a score-based dynamics whose steps correspond to the
infinitesimal transformation of G?

We will prove that the answer is positive when G is a Lie group, as these are suitable to describe
local continuous transformations. Specifically, we construct a Langevin dynamics that decomposes
as a direct sum of representations of the Lie algebra g of G, where each step is driven by tangent
vectors associated with elements of g (Figure 1)c. This construction employs the formalism of Gen-
eralized Score Matching (GSM) (Lyu, 2009; Lin et al., 2016), whose aim is to estimate a probability
density p(x) = exp(−U(x))/Z through its generalized score function L log p(x), where L is a
suitable linear operator. As Figure 1b suggest, a generalized score enables the dynamics to follow
curved paths, a crucial feature for our scope since group orbits typically have nonzero curvature.
In this work we will systematically develop the connection between the transformation-generating
Lie group G and the linear operator L. We will also show that such generalized dynamics admits a
stochastic differential equations (SDE) interpretation: the G-induced generative process satisfies a
continuous-(reverse-) time SDE involving the generalized score function.
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Figure 1: Standard score-matching (a) vs. generalized score-matching (b); (c) Trajectories for G =
T (2) (dark blue, standard score-matching), and G = SO(2)× R+ (dark orange). (d) Illustration of
invariant, equivariant, standard and generalized score functions for a radial vector field in X = R2.

At this point, the attentive reader might wonder whether all we are achieving is to merely introduce
multiple ways, according to the choice of G, to achieve the same goal of generating samples from
a target distribution. So, what’s the real benefit? This lies in the ability to tailor G to the specific
transformation properties of the data and the learning task: the score components can be designed to
align with the true degrees of freedom of the data, enhancing interpretability, sampling steerability,
and enabling dimensionality reduction by leveraging the data’s inherent symmetries.

Figure 1d illustrates this in a simple but instructive case. Consider X = R2 and let the true score be
of the form s(x) = f(r, θ)r̂. This is neither invariant nor equivariant since f depends on both r, θ,
thus it cannot be learned by an invariant/equivariant network. A standard score function neglects the
problem’s symmetry and is required to inefficiently (and likely inaccurately) learn the correct point-
dependent linear combination of both Cartesian components of the score. A SO(2) generalized score
function, however, directly learns the radial component f(r, θ), effectively reducing the problem to
a 1-dimensional formulation, as the angular component may be omitted from the leaning procedure.

In short, we propose an exact SDE-based diffusion framework that enables Lie group-guided curved
dynamics while operating entirely in Euclidean space, thus combining the advantages of curved
dynamics with the theoretical and practical effectiveness of Euclidean diffusion. Our framework in
unconstrained, unlike equivariant models, but still leverages the information of the group action on
the data space. Ours is the first methods we are aware of that realizes simulation-free training of Lie
group-like diffusion models, and the first result of denoising score-matching result for general
non-Abelian groups (unlike De Bortoli et al. (2022) and Huang et al. (2022)).

More specifically, we summarize the main contributions of this manuscript as follows:
Generalized score matching via Lie algebras: We develop the mathematical foundations for ex-
tending score-based generative modeling to incorporate Lie group-induced dynamics. We spell out
the conditions for a suitable G (valid for any differentiable manifold X) and demonstrate that the
dynamics decomposes as a linear combination of Lie algebra representations. We also show that
standard score-matching is recovered as a specific case of our framework, corresponding to the
group G = T (n) of translations on X = Rn.

Exact solution of a novel class of SDEs: We introduce a new class of solvable SDEs that govern
symmetry-aware processes in Euclidean space, significantly expanding the range of processes that
can be addressed using diffusion modeling techniques. Additionally, we show that our approach
extends naturally to flow matching (see Appendix D).

Dimensionality reduction, bridging non-trivial distributions and trajectory disentanglement:
Through extensive experiments*, we demonstrate that: (1) our approach can estimate, regardless of
the choice of G, any probability density (Sections 5(2,3,4d distributions) and 5)(QM9); (2) by appro-
priately selecting G to align with the data structure, the learning process is significantly simplified,
effectively reducing its dimensionality (Section 5(MNIST)) (3) our framework enables solutions to
processes that are challenging or unfeasible with standard score matching, such as bridging between
complex data-driven distributions (Section 5(MNIST) and 5(CrossDocked));
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Figure 2: (a) Depiction of the fundamental vector field definition (1). Flow coordinates for a pair
of commuting (b) and not-commuting ones vector fields (c).

2 DIFFUSION DYNAMICS THROUGH LIE ALGEBRAS

We start this section by setting up notation and review the connection between vector fields and Lie
algebra actions on manifolds. A Lie group G is a group that is also a finite-dimensional differentiable
manifold, such that the group operations of multiplication · : G × G → G and inversion are C∞-
functions†. A Lie algebra g is a vector space equipped with an operation, the Lie bracket, [, ] :
g × g → g, satisfying the Jacobi identity. Every Lie group gives rise to a Lie algebra as its tangent
space at the identity, g = TeG, and the Lie bracket is the commutator of tangent vectors, [A,B] =
AB −BA. In this work, we are interested in how Lie groups and Lie algebras act on spaces. Given
a manifold X , a (left) group action of G on X is an associative map ρX : G × X → X such
that ρX(e) = IdX . Fundamental concepts associated with a group action are the ones of orbits and
stabilizers. The orbit of x ∈ X is the set of elements in X which can be reached from x through
the action of G, i.e., G · x = {ρX(g)(x), g ∈ G}. The stabilizer subgroup of G with respect to x
is the set of group elements that fix x, Gx = {g ∈ G|ρX(g)(x) = x}. The action of a Lie algebra
on X , A : g → Vect(X) is a Lie algebra homomorphism and maps elements of g to vector fields on
X such that the map g×X → TX, (A,x) 7→ A(A)(x) is smooth. Given A ∈ g and a group action
ρX , the flow on X induced by ρX is given by ξA : X × R → X, (x, τ) → ρX (exp(τA)) (x),
where the map exp : g → G is defined by exp(A) = γA(1), where γA : R → G is the unique
one-parameter subgroup of G whose tangent vector at the identity is A. The infinitesimal action of
g on X is defined as the differential of the map ρX , that is

dρX : g → Vect(X) : A 7→ d

dτ

∣∣∣∣
τ=0

ρX(exp(τA))(x) ≡ ΠA(x) . (1)

ΠA is called the fundamental vector field corresponding to A ∈ g. Given a fixed point x0 ∈ X ,
we denote τ = ξA(x0)

−1(x) the fundamental flow coordinate, which is the parameter such that
applying the flow to x0 gives x. Central to our discussion is the fact that any smooth vector field
V : X → TX on X can be interpreted as a differential operator acting on smooth functions
f : X → R. The operator V (f) represents the directional derivative of f at x ∈ X in the direction
of V (x). We denote LA = ΠA · ∇ the differential operator corresponding to ΠA. In the following
we will use both Πτ and ΠA interchangeably, when no potential confusion arises. When dim g > 1
we indicate as Π(x) = (ΠA1

ΠA2
· · ·) the matrix of the collection of fundamental vector fields.

Let us work out the example for X = R2 and G = SO(2), the group of rotations in the plane.

The Lie algebra so(2) consists of all matrices of the form Aα =

(
0 −α
α 0

)
, where α ∈ R, and

the Lie bracket is identically zero. The flow on X induced by ρX is given by the exponential map

ρR2(exp(τAα))(x) =

(
cos(ατ) − sin(ατ)
sin(ατ) cos(ατ)

)
x, and without loss of generality we can set α = 1.

The infinitesimal action is computed as

dρR2(A) =
d

dτ

∣∣∣∣
τ=0

(
cos τ − sin τ
sin τ cos τ

)(
x1

x2

)
=

(
−x2

x1

)
. (2)

*The code to reproduce our results will be open-sourced upon publication.
†We restrict ourselves here to real Lie groups. It would be interesting to extend the analysis presented here

to the complex case as well (Le et al., 2021).
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and thus the fundamental vector field defines the derivation LA(x) = −x2
∂

∂x1
+x1

∂
∂x2

. Let x0 ∈ R2

be a fixed point, then the flow equation x(τ) ≡ ξA(x0, τ) = ρR2(exp(τA),x0) gives a system of
two equations, which we can solve to find the expression of the fundamental flow coordinate{

x · x0 = |x0|2 cos τ ,

x× x0 = |x0|2 sin τ ,
⇒ τ = arctan

x× x0

x · x0
. (3)

where x×y = y2x1−x1y2. Note that ∂
∂τ = ∂x1

∂τ
∂

∂x1
+ ∂x2

∂τ
∂

∂x2
= −x2

∂
∂x1

+x1
∂

∂x2
= ΠA(x)

⊤∇ =
LA .

2.1 INTUITION BEHIND LIE GROUP-INDUCED GENERALIZED SCORE MATCHING

Score matching aims at estimating a (log) probability density p(x) by learning to match its score
function, i.e., its gradient in data space. Generalized score matching replaces the gradient operator
with a general linear operator L. The learning objective is given by minimizing the generalized
Fisher divergence

DL(p||qθ) =
∫
X

p(x) |L log p(x)− sθ(x)|2 dx , (4)

where sθ = L log qθ. The requirement on the choice of L is that it preserves all the information
about the original density. Formally, we require L to be complete, that is, given two densities p(x)
and q(x), Lp(x) = Lq(x) (almost everywhere *) implies that p(x) = q(x) (almost everywhere).

Given a Lie group G acting on X , the collection of fundamental fields Π corresponding to a choice
of basis A = (A1, A2, . . . ) of g is a linear operator, thus potentially suitable for score-matching. It is
then natural to set L to the derivation associated with the fundamental fields Π, i.e., L = Π(x)⊤∇.
It then follows that L log p(x) computes the directional derivatives of log p(x) with respect to the
fundamental flow coordinates τ , and provided that Π meets some consistency conditions (which we
will address in the next section), we can employ L log p(x) to sample from p(x) using Langevin
dynamics:

xt+1 = xt − sθ(xt)dρX(exp(τA))(xt) = xt −
∑
i

Li log pt(xt)︸ ︷︷ ︸
generalized scores

ΠAi
(xt)︸ ︷︷ ︸

Ai directions

∆t , (5)

where ∆t is the step size and we have temporarily set aside stochasticity and denoising aspects.
This process mirrors the example depicted in Figure 1c: each infinitesimal step of the dynamics
corresponds to infinitesimal transformations along the flow on X induces by the G-action, and each
component of the generalized score is learned through maximum likelihood over the orbits ξAi

of
the corresponding transformations.

2.2 SUFFICIENT CONDITIONS FOR LIE GROUP-INDUCED GENERALIZED SCORE MATCHING

We now address the properties our setup (X , G, g Π) must satisfy to meet the sufficient conditions
for score-matching and Langevin dynamics. We note that these result hold for any differentiable
manifold X . Proofs for these results can be found in Appendix B.

Condition 1: Completeness of Π. We start by establishing an algebraic-geometric condition for
Π’s completeness:

Proposition 2.1. The linear operator induced by Π is complete if Π is the local frame of a vector
bundle E over X whose rank is n ≥ dimX almost everywhere. If rank E = n everywhere, then
E = TX , the tangent bundle of X .

The following result specifies which Lie groups yield operators Π satisfying the above proposition:

Proposition 2.2. The operator Π induced by g is complete if and only if the subspace U ⊆ X such
that dim G

Gx
< n for x ∈ U , where n = dimX , has measure zero in X .

*Almost everywhere means everywhere except for a set of points of measure zero, where we assume the
standard Lebesgue measure.
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As an example, consider standard score-matching on mass-centered point clouds. Here X =

R3N−3, since the points’ coordinates satisfy
∑N

i=1 xi = 0. Without loss of generality, X can
be parametrized by x1,...,N−1, with xN determined by the center of mass condition. The group G =
T (3N) acts transitively on X , with a 3-dimensional stabilizer subgroup GX = {(0, . . . , 0,a)⊤ ∈
R3N} fixing the space. Thus, dimG/GX = n for all x ∈ X , satisfying Proposition 2.2.

Condition 2: Homogeneity of X . While the completeness of the operators is necessary for esti-
mating the target density, it is not sufficient to ensure that the Langevin dynamics (5) will behave ap-
propriately, as the following example illustrates. Let X = R, and G = R∗

+, the multiplicative group
of non-zero positive real numbers. The orbits under the action ρX(a, x) = ax are O+ = (0,∞),
O− = (−∞, 0), and O0 = {0}. If the dynamics begins within O+, it will be never be able to reach
values in O−, as G-transformations cannot move the system outside its initial orbit. We therefore
ask that each pair of points of X is connected through the G action. This amounts to require that
X is homogeneous for G, that is, ∀x,y ∈ X there exists a g ∈ G such that ρX(g)x = y. We
note that this condition solely ensures the generation outcome is independent of the initial sampling
condition. Beyond this, the formalism remains fully applicable in the non-homogeneous case.

Condition 3: Commutativity of Π. The final requirement is that Π forms a (locally) commuting
frame of vector fields, [LA,LB ]f(x) = 0 ∀A,B and ∀f ∈ C∞(X). In this case, the coordinates
τi’s are orthogonal, and their flows commute, meaning the orbits parametrized by τi correspond
to {τj = 0}j ̸=i. For non-commuting flows this is not the case, as Figure 2b-c illustrates: (b)
V1 = x1∂x1 + x2∂x2 , V2 = x1∂x2 − x2∂x1 satisfy [V1, V2] = 0, and the orbits parametrized by
τ1 = r correspond to subspaces with constant τ2 = θ; (c) W1,2 = V1,2/|x| do not commute, and
the loci θ = const no longer coincide with the r-orbits, causing θ to vary along these, despite the
fact that r, θ are still orthogonal at each point. This last condition ensures that the updates governed
by the different elements Ai of g in (5) remain independent of one another. Notably, this does not
exclude non-Abelian groups; even if A1,2 ∈ g do not commute in the Lie algebra, their flows on X
can, as shown in the g = so(3) example in Appendix A.3.

3 LIE ALGEBRA SCORE-BASED GENERATIVE MODELING VIA SDES

In this section we formalize the framework we developed above from the point of view of SDEs and
derive a Lie group curved dynamics in Euclidean space. Namely, we show that there exists a class of
SDEs, which, when reversed, can generate data according to dynamics similar to (5), guided by the
generalized score of the fundamental vector fields of the Lie algebra g. Our main result is provided
by the following
Theorem 3.1. Let G be a Lie group acting on X satisfying the conditions of Section 2.2, and let g
be its Lie algebra. The pair of SDEs

dx =

[
β(t)Π(x)f(x) +

γ(t)2

2
ρX(Ω)

]
dt+ γ(t)Π(x)dW , (6)

dx =

[
β(t)Π(x)f(x)− γ2(t)

2
ρX(Ω)− γ2(t)Π(x)∇⊤ ·Π(x)

−γ(t)2Π(x)L log pt(x)
]
dt+ γ(t)Π(x)dW , (7)

where β, γ : R → R are time-dependent functions, Π : Rn → Rn×n the fundamental vector
fields, f : Rn → Rn the drift, Ω =

∑
i A

2
i is known as the quadratic Casimir element of g, and

L = Π(x)⊤∇, is such that

1. The forward-time SDE (6) is exactly solvable, with solution

x(t) =

(∏
i

Oi(τi(t))

)
x(0) =

(
n∏

i=1

eτi(t)Ai

)
x(0) , (8)

where Oi = eτi(t)Ai is the finite group action and τ (t) is the solution to the SDE

dτ (x) = β(t)f(x)dt+ γ(t)dW . (9)

5
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2. The SDE (7) is the reverse-time process of (6).

3. The Langevin dynamic of the above SDEs decomposes as a direct sum of g infinitesimal
actions (1), each defining an infinitesimal transformation along the flows ξτ .

𝜗𝑟(𝜃)

Π𝜃

(c) (d)

𝒙

Π𝜃(𝐱)𝜌𝑋(Ω)

𝜗𝑟′(𝜃)

Figure 3: Quadratic
Casimir for G = SO(2).

We refer to Appendix C for the proof of the above result. Here we limit
ourselves to a few comments regarding the extra terms that appear in
the SDEs. The appearance of the Casimir element (we assume the
identity as bilinear form on g (Kac & Kac, 1983)) compensates for the
deviation of the tangent vector from the orbit due to the curvature of
the flow coordinates. This can be seen in the example of SO(2) acting
on R2 (which will be discussed thoroughly below). An infinitesimal
transformation along the θ direction, represented by Πθ, moves any
point x along a vector tangent to its SO(2) orbit, a circle of radius
r =

√
x2
1 + x2

2. Due to the orbit’s non-zero curvature, this movement
would shift the point to an orbit of radius r′ > r. The term ρX(Ω)
compensates for this displacement, ensuring the final point remains
close to the original orbit. This is illustrated in Figure 3.

With this result at hand we can formulate our procedure for our Lie
group-induced score-based generative modeling with SDEs.

Perturbing data through the SDE. The forward-time SDE (6) defines a noising diffusion process
respecting the decomposition of the Lie algebra g infinitesimal actions on X . In fact, given a data
sample x(0) ∼ p0, the solution (8) takes the form of a product of finite group element actions
Oi on x(0), where the specific order is irrelevant since the Lie algebra generators commute. For
each factor, we first determine τ (0) = τ (x(0)), and employ these as initial conditions for the
forward SDE (9). By choosing appropriately the drift terms f ′

is, for instance, to be affine in the
flow coordinates τi, we can solve for τ (t) with standard techniques (Särkkä & Solin, 2019), as
this will follow a Gaussian distribution. Alternatively, we can sample from τ (t) by first simulating
(9), then performing sliced score matching Song et al. (2020a); Pang et al. (2020) to sample from
pt(x(τ (t))|x(0)).

Generating samples through the reverse SDE. The time-reverse SDE (7) guides the generation
of samples x(0) ∼ p0(x) starting from samples x(T ) ∼ pT (x), provided we can estimate the
generalized score L log pt(x) of each marginal distribution. To sample from pT , we use the fact that
the distribution in the flow coordinates τ is tractable (with an appropriate choice of the drift terms
and time-dependent functions β, γ in (6)), and that (since pt(x)dx = pt(τ )dτ )

pt(x) = pt(τ )

∣∣∣∣∂τ∂x
∣∣∣∣ = pt(τ )

∣∣Π−1(x)
∣∣ , (10)

where the extra term corresponds to the determinant of the Jacobian of the coordinate transformation
induced by the fundamental flow coordinates. In particular, when f(τ ) is affine, it follows that
pT (τ ) = N (τ | 0,Σ), where Σ = diag(σ2

1 , σ
2
2 , . . . , σ

2
n). Thus, we can sample τ (T ) ∼ pT (τ )

simply as a collection of independent Gaussian random variables, and use the flow map to obtain
x(T ) = ξA(τ (T ),x0), which will follow the distribution (10) for t = T .

Estimating the generalized score. Analogously to standard score-matching, we train a time-
dependent neural network sθ(x(t), t) : Rn × R → Rn to estimate the generalized score
L log pt(x(t)|x(0)) at any time point, that is, we minimize the objective

Et

{
w(t)Ex(0)∼p0(x)Ex(t)∼pt(x|x(0))

[∣∣sθ(x(t), t)−L log pt(x(t)|x(0))
∣∣2]} , (11)

where w : [0, T ] → R+ is a time-weighting function. Now, from Condition 3 above and the
property that LAi

computes the direction derivative along the flow of ΠAi
(x), it follows that

L log pt(x(t)|x(0)) = ∇τ (t) log pt(x(τ )(t)|x(τ )(0)). Under the above assumptions, pt(τ ) =
N (τ |µ(x(0), t),Σ(t)), where the form of the mean and the variance depends on the explicit form
of (9). Using the parametrization τ (t) = µ(x(0), t) +

√
Σ(t)ηt, where ηt ∼ N (0, I), we obtain

L log pt(x(t)|x(0)) = −Σ−1(τ (t)− µ(x(0), t) = −
√
Σ(t)

−1
ηt . (12)

6
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Figure 4: Lie algebra so(2) ⊂ so(3) dynamics for torsion (a,b) and bond angles (c,d) in molecular
conformers.

3.1 EXAMPLES

Standard Score Matching. Standard score matching can be recovered as a special case of our
formalism by choosing X = Rn and G = T (n). As we show explicitly in Appendix A.1, we have
L = ∇ and the Lie algebra action Π(x) = I , the identity on X . Since Π is x-independent, its
divergence vanishes, as well as the quadratic Casimir (T (N) is Abelian), so that the SDEs (6) take
the known form

dx = β(t)f(x)dt+ γ(t)dW , dx =
[
β(t)f(x)− γ(t)2∇ log pt(x)

]
dt+ γ(t)dW . (13)

G = SO(2) × R+. A simple but non-trivial case in given by G = SO(2) × R+ describing
rotations and dilations acting on X = R2. A basis for the 2-dimensional Lie algebra g = so(2)⊕R

is given by Ar = I and Aθ =

(
0 −1
1 0

)
, yielding Π(x) =

(
x −y
y x

)
, which satisfies all the

conditions of section 2.2. Following our discussion above and in Appendix A.1 we have (since
ρ(Ω) = A2

r +A2
θ = I − I = 0)

dx = β(t) (fr(r)Arx+ fθ(θ)Aθx) dt+ γ(t) (dWrArx+ dWθAθx) , (14)

and we see that the SDE splits into contributions from the two Lie algebra summands. To find an
explicit solution, let γ(t) =

√
β(t) and fr = − 1

4 log(x
2 + y2), fθ = − 1

2 arctan
y
x . This choice

corresponds, in the flow coordinates system, to a 2d Ornstein-Uhlenbeck system (Gardiner, 1985)

which has a Gaussian solution with mean
(
r(0)
θ(0)

)
e−

∫ t
0
β(s)ds and variance

(
1− e−

∫ t
0
β(s)ds

)
I .

Let us define σ(t) =
√
1− e−

∫ t
0
β(s)ds, such that r(t) = r(0) + λ(t) = r(0)− r(0)σ(t)2 + σ(t)ηr

and similarly θ(t) = θ(0) + φ(t) = θ(0) − θ(0)σ(t)2 + σ(t)ηθ where ηr, ηθ ∈ N (0, 1), then it is
an easy calculation to show that(

x(t)
y(t)

)
=

(
er(t) cos(θ(t))
er(t) sin(θ(t))

)
=

(
eλ(t) 0
0 eλ(t)

)(
cosφ(t) − sinφ(t)
sinφ(t) cosφ(t)

)(
x(0)
y(0)

)
. (15)

We can look at the asymptotic behavior of the solution. Assuming that β(t) is a monotonous in-
creasing function, that is, β(t+ ϵ) > β(t) for ϵ > 0, then limt→∞ σ(t) = 1 and hence

lim
t→∞

x(t) = e−r0+ηr

(
cos θ0 sin θ0
− sin θ0 cos θ0

)(
cos ηθ sin ηθ
− sin ηθ cos ηθ

)(
er0 cos θ0
er0 sin θ0

)
=

(
eηr cos ηθ
eηr sin ηθ

)
,

where θ0 = θ(0), r0 = r(0). Note that, even if (16) is not Gaussian, we can still easily draw
samples from it by sampling the two Gaussian variables ηr,θ.

Dihedral and bond angles. The above formalism can be applied to obtain transformations of
physically meaningful quantities, as bond and torsion angles for molecules’ conformations. Let γi be
the dihedral angle between the planes identified by the points {xi−1,xi,xi+1} and {xi,xi+1,xi+2},
respectively (Figure 4a). The Lie algebra element corresponding to an infinitesimal change in γi is
given by a 3N × 3N -dimensional 3× 3-block diagonal matrix, whose j = 1, . . . , N block is given
by H(j − (i + 1))x̂i+1,i · A), where A = (Ax, Ay, Az) is the vector of the Lie algebra basis for
so(3), x̂i+1,i = (xi+1 − xi)/|xi+1 − xi)| and H(i) = 1 if i > 0 and 0 otherwise is the Heaviside
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(d)

(e)

(a) (b) (c) (f) (g) (f)

Figure 5: (a) 2d mixture of Gaussians (top: ground truth, bottom: generated); (b) generating process
using single scores for the subgroups SO(2),R+ with the corresponding vector field generating
scores (c) (d,e) one-dimensional learning for a symmetric distributions; 3d-distributions: torus (f)
and Möbius strip (g) (top: ground truth, bottom: generated);(f) 4d mixture of Gaussian for the group
G = SO(4)× R+.

step function. For bond angles βi (Figure 4c) we construct the corresponding so(2) ∈ so(3) algebra
element blocks as H(j − i)(xi+1,i × xi−1,i) · A. Examples of the dynamics generated by these
operators are presented in Figure 4(b,d). This shows that the approach of Corso et al. (2023); Jing
et al. (2022); Ketata et al. (2023) can be recovered as a particular case of our general formalism.
Notably, our approach performs diffusion in a flat, rather than a curved Riemannian manifold.

4 RELATED WORK

Representation theory applied to neural networks has been studied both theoretically (Esteves, 2020;
Chughtai et al., 2023; Puny et al., 2021; Smidt, 2021) and applied to a variety of groups, architecture
and data type: CNNs (Cohen & Welling, 2016; Romero et al., 2020; Liao & Liu, 2023; Finzi et al.,
2020; Weiler & Cesa, 2019; Weiler et al., 2018), Graph Neural Networks (Satorras et al., 2021),
Transformers, (Geiger & Smidt, 2022; Romero & Cordonnier, 2020; Hutchinson et al., 2021), point
clouds (Thomas et al., 2018), chemistry (Schütt et al., 2021; Le et al., 2022a). On the topic of dis-
entanglement of group action and symmetry learning, Pfau et al. (2020) factorize a Lie group from
the orbits in data space, while Winter et al. (2022) learn through an autoencoder architecture in-
variant and equivariant representations of any group acting on the data. Fumero et al. (2021) learns
disentangled representations solely from data pairs. Dehmamy et al. (2021) propose an architec-
ture based on Lie algebras that can automatically discover symmetries from data. Xu et al. (2022)
predict molecular conformations from molecular graphs in an roto-translation invariant fashion with
equivariant Markov kernels.

Partially related to our study is the field of diffusion on Riemannian manifolds. De Bortoli et al.
(2022) propose diffusion in a product space – a condition which is not a necessary in our framework –
defined by the flow coordinates in the respective Riemannian sub-manifolds. When the Riemannian
manifold is a Lie group, their method yields dynamics similar to ours, as illustrated in an example
in Section 3.1. In fact, our formalism could be integrated with their approach to create a unified
framework for diffusion processes on the broader class of Riemannian manifolds admitting a Lie
group action. These techniques has been applied in a variety of use cases (Corso et al., 2023; Ketata
et al., 2023; Yim et al., 2023) for protein docking, ligand and protein generation. The works Zhu
et al. (2024); Kong & Tao (2024) leverage trivialized momentum to perform diffusion on the Lie
algebra (isomorphic to Rn) instead of the Lie group, thereby eliminating curvature terms, although
their approach is to date only feasible for Abelian groups. An interesting connection with our work
is the work of Kim et al. (2022): the authors propose a bijection to map a non-linear problem to a
linear one, to approximate a bridge between two non-trivial distributions. Our case can be seen as a
bijection between the (curved) Lie group manifold and the (flat) Euclidean data space.

In the context of interpreting the latent space of diffusion models, Park et al. (2023) explores the
local structure of the latent space (trajectory) of diffusion models using Riemannian geometry. Sim-
ilarly, Haas et al. (2024) propose a method to uncover semantically meaningful directions in the
semantic latent space (h-space) (Wang et al., 2023) of denoising diffusion models (DDMs) by PCA.
Wang et al. (2023) propose a method to learn disentangled and interpretable latent representations
of diffusion models in an unsupervised way. We note that the aforementioned works aim to extract
meaningful latent factors in traditional DDMs, often restricting to human-interpretable semantic
features and focusing on image generation.
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(a)

Ours
Generated

BBDM
Generated

Original
!(0)

Rotated
!(%)

(b)

!!(#)

Ours

BBDM

𝑡 = 0 𝑡 = 𝑇

Figure 6: (a) Original and rotated MNIST samples with generated samples from our model and
BBDM. (b) Reverse diffusion trajectories of our model against BBDM. Intermediate samples from
BBDM resemble interpolation of mixed digits. For the last case, the 9-digit transitions into a 4-digit.

5 EXPERIMENTS

2d, 3d and 4d distributions. In Figure 5 we illustrate the framework for a variety of d = 2, 3-
dimensional distributions. In all cases we take G = SO(d)×R+. Figure 5(a,b,c) displays a mixture
of Gaussians: in (a) (bottom) we see that our generalized score-matching can learn any distribution,
regardless of its inherent symmetry; (b) shows the output of the generation process using only one
score (top g = so(2), bottom g = r+), while (c) shows the vector fields corresponding to the
scores, where we color-coded the field directions. In Figure 5, we illustrate the framework for
various d = 2, 3-dimensional distributions, and we choose G = SO(d) × R+. Figure 5(a,b,c)
shows a mixture of Gaussians: (a) demonstrates that our generalized score-matching can learn any
distribution, regardless of its symmetry; (b) shows the output of the generation process using a
single score (top g = so(2), bottom g = r+) and in (c) we display the corresponding vector fields.
Figures 5(d,e) depicts radial and angular distributions, where the score is learned using the respective
Lie algebra elements. This reflects the ability to leverage the symmetry properties of the data and
perform diffusion in a lower-dimensional space. We also show in Figure 5f (G = SO)(4) × R+)
that our method can be applied to higher dimensional Lie groups.

Rotated MNIST. In this experiment we show that our framework can be applied to effectively
learn a bridge between two non-trivial distributions, adopting however only techniques from score-
matching and DDM. Let pT (x) be the rotated MNIST dataset and p0(x) the original (non-rotated)
MNIST dataset. We can learn to sample from p0 starting from element of pT by simply modeling
a SO(2) dynamic. Some examples of our results are shown in Figure 6. Notice that our formalism
allows us to reduce the learning to a 1-dimensional score Lθ = x1∂x1

− x2∂x2
, which reflects

the true dimensionality of the problem. We trained the model with T = 100 time-steps, but for
sampling it suffices to set T = 10. As it can be seen in the example trajectories 6b, the model starts
converging already at t/T ∼ 0.5. We employ a CNN which processes input images x(t), and the
resulting feature map is flattened and concatenated with a scalar input t, then passed through fully
connected layers to produce the final output. We compare our approach to the Brownian Bridge
Diffusion Model (BBDM) (Li et al., 2023). Unlike our method, BBDM operates unconstrained in
the full MNIST pixel space (R28×28), where intermediate states represent latent digits. As shown
in Figure 6a, this can result in incorrect transitions, such as adding extraneous pixels or altering the
original digit, sometimes generating entirely different digits (Figure 6b). Further modeling details
can be found in Appendix E.

QM9. We use our framework to train a generative model pθ(X|M) for conformer sampling of
small molecules M from the QM9 dataset (Ramakrishnan et al., 2014). We only keep the lowest en-
ergy conformer as provided in the original dataset, that is, for each molecule only one 3D conformer
is maintained. Here X = R3N and we choose G = (SO(3) × R+)

N , where each factor acts on
the space R3 spanned by the Cartesian coordinates of the molecule’s atoms, respectively. As Figure
7a shows, our generative process yields conformers that are energetically very similar to the ground
truth conformers, while showing some variability, as it can be seen in the last example where the tor-
sion angle is differently optimized. We train another model pγ(X|M) via standard Fisher denoising
score-matching, i.e., choosing G = T (3)N as in Sec. 3.1, and generate 5 conformers per molecule
for both models pθ, pγ . We then compute the UFF energy (Rappe et al., 1992) implemented in the
RDKit for all generated conformers and extract the lowest energy geometry as generated sample.
To compare against the reference geometry, we compute the energy difference ∆ = Utrue − Ugen
for both models. Figure 7b shows that both diffusion models tend to generate conformers that have
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generated

ground
truth

(a) (b)

Figure 7: (a) Generated 3D conformer for several molecules from the QM9 validation set (top row)
and ground truth conformer (bottom row). (b) Energy difference distribution between diffusion
models (pθ, pγ) compared to the ground-truth energy. Both diffusion models generate conformers
that have a similar ∆ energy distribution.

lower energies than the ground true conformer according to the UFF parametrization, while the dif-
fusion model that implements the dynamics according to G = (SO(3) × R+)

N (colored in blue)
achieves slightly lower energy conformers, mean ∆θ = −0.2159 against mean ∆γ = −0.2144 for
the standard diffusion model (colored in orange).

(a) (b)

Figure 8: (a) Generated SE(3) trajectories for molecular docking. (b) Comparison with RSGM.

CrossDocked2020: Global E(3) and Protein-Ligand Complexes. In this final experiment, we
train a generative model for global SE(3) transformations acting on small molecules. Specifically,
given a pair consisting of a compound and a protein pocket in space, our goal is to generate the
trajectory by which the ligand best fits into the pocket. Importantly, the internal structure of the
compound remains fixed, which presents a challenge when using standard diffusion processes. Thus,
while the SE(3) transformations are global with respect to the ligand, they do not represent global
symmetries of the overall system. We derive in appendix A.4 the relevant operators that guide
the dynamics (6), (7). Figure 8a shows examples of docked molecules using SE(3)-guided score-
matching diffusion. The true and generated molecules at different generation steps are visualized as
point clouds, showing a good agreement. Figure 8b shows that our model achieves a lower RMSD
(2.9± 1.0 Å vs 5.6± 1.2 Å) for the docked ligands than the method from RSGM (De Bortoli et al.,
2022; Corso et al., 2023) (for implementation details we refer to Appendix E.2.1).

6 CONCLUSIONS AND OUTLOOK

We presented a framework for generative modeling that respects the action of any Lie group G and
derived its mathematical foundation. Our framework generates a curved Lie group diffusion dy-
namics in flat Euclidean space, thus without the need to transform the data and of performing
group projections. Specifically, we introduced a new class of exactly-solvable SDEs that guide the
corruption and generation processes. Traditional diffusion score-matching emerges as a special case
when the group G is set to the translation group in Euclidean space. Thus, our framework does not
merely complement existing methods, but expands the space of exactly solvable diffusion processes.
Our framework is particularly relevant given recent findings (Abramson et al., 2024) showing that
unconstrained models outperform equivariant ones: with our framework there is no need of a trade-
off, as we retain the expressivity of unconstrained models with the benefits of group inductive bias.
Moreover, our techniques descend quite straightforwardly to flow matching (Lipman et al., 2022)
through the Diffusion Mixture Representation Theorem (Peluchetti, 2023; Brigo, 2008). We spell
out the connection in appendix D and we plan to expand on this in future work.
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Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction
of tensorial properties and molecular spectra. In International Conference on Machine Learning,
pp. 9377–9388. PMLR, 2021.

Tess E Smidt. Euclidean symmetry and equivariance in machine learning. Trends in Chemistry, 3
(2):82–85, 2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach
to density and score estimation. In Uncertainty in Artificial Intelligence, pp. 574–584. PMLR,
2020a.

13

https://dx.doi.org/10.1088/2632-2153/acb314
https://dx.doi.org/10.1088/2632-2153/acb314
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1021/ja00051a040


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2020b.

Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in neural information processing systems, 34:1415–
1428, 2021.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018.

Yingheng Wang, Yair Schiff, Aaron Gokaslan, Weishen Pan, Fei Wang, Christopher De Sa, and
Volodymyr Kuleshov. Infodiffusion: Representation learning using information maximizing dif-
fusion models. In International Conference on Machine Learning, pp. 36336–36354. PMLR,
2023.

Maurice Weiler and Gabriele Cesa. General e (2)-equivariant steerable cnns. Advances in neural
information processing systems, 32, 2019.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S Cohen. 3d steerable
cnns: Learning rotationally equivariant features in volumetric data. Advances in Neural Informa-
tion Processing Systems, 31, 2018.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th International Conference on International Conference on Machine
Learning, ICML’11, pp. 681–688, Madison, WI, USA, 2011. Omnipress. ISBN 9781450306195.

Robin Winter, Marco Bertolini, Tuan Le, Frank Noé, and Djork-Arné Clevert. Unsupervised learn-
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A EXAMPLES OF LIE GROUPS AND LIE ALGEBRA ACTIONS

In this appendix we list some important Lie groups and Lie algebra actions, their corresponding
fundamental vector fields as well as the fundamental flow coordinates. These will be useful in the
main text.

A.1 T (N)

Let X = RN and G = T (N), the group of translations in N -dimensional space. Element of T (N)
are represented by a vector v = (v1, v2, . . . , vN )⊤ ∈ RN , where vi are the translation components
along the xi axes for i = 1, . . . , N , thus T (N) ≃ RN . Explicitly, for a x ∈ X its action is given by
ρRN (v,x) = x+ v.

The corresponding Lie algebra t(N) is also isomorphic to RN , and it consists of vectors a =
(a1, a2, . . . , aN )⊤ ∈ RN . The Lie bracket of any two elements in t(N) vanishes, as T (N) is
Abelian.

To derive the infinitesimal action, we first note that the exponential map is trivial, exp(τA) = τA.
Hence, we have

ΠA(x) =
d

dτ

∣∣∣∣
τ=0

ρRN (τA,x) =
d

dτ

∣∣∣∣
τ=0

(x+ τA) = A . (16)

Thus, the fundamental vector field ΠA corresponding to A ∈ t(N) is the constant vector field:

ΠA = a1
∂

∂x1
+ a2

∂

∂x2
+ · · ·+ aN

∂

∂xN
= A · ∇ .

A.2 X = RN , G = R∗
+ (GROUP OF DILATIONS)

Let us consider X = RN and G = R∗
+, the group of dilations in N -dimensional space. The group

R∗
+ consists of all positive scaling factors. Each element of G = R∗

+ can be represented by a scalar
λ > 0 that scales all vectors in RN by this factor.

The action of G = R∗
+ on RN is a dilation, meaning that every vector x = (x1, x2, . . . , xN )⊤ ∈ RN

is scaled by the factor λ. Explicitly, the group action is given by

ρRN (λ,x) = λx . (17)

The Lie algebra g = R corresponding to the dilation group G = R∗
+ consists of real numbers

representing the logarithm of the scaling factor. Specifically, an element A ∈ g corresponds to a
generator of the dilation, and the exponential map exp : g → G is given by:exp(τA) = eτA, where
τ is a real parameter.

The infinitesimal action corresponds to taking the derivative at τ = 0. For a vector x ∈ RN and
A ∈ g, the fundamental vector field ΠA is computed as:

dρRN (A) =
d

dτ

∣∣∣∣
τ=0

ρRN (eτA,x) =
d

dτ

∣∣∣∣
τ=0

(
eτAx

)
= Ax , (18)

and
ΠA(x) = Ax · ∇ .

Now, solving the equation

x = eτAx0 (19)

in terms of τ we obtain

τ =
1

A
log

|x|2

x · x0
=

1

A
log

|x|2

|x||x0|
=

1

A
log

|x|
|x0|

=
1

2A
log

|x|2

|x0|2
. (20)
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In the usual case of A = 1 (generator of the Lie algebra), x0 = 1√
N
(1, 1, . . . , 1)⊤ to be the unit

vector we obtain the usual expression

τ =
1

2
log(x2

1 + x2
2 + · · ·+ x2

N ) . (21)

A.3 X = R3 , G = SO(3)× R∗
+

The dilation part is solved in the previous section, so we actually just focus on the action of SO(3)
on R3. The orbits are given by spheres centered at the origin, and we can decompose the action of
SO(3) by variying the azimuthal or the polar angle defined by a vector x. Namely, we have the two
actions

ρR3(φ,x) =

(
cosφ − sinφ 0
sinφ cosφ 0
0 0 1

)(
x
y
z

)
,

ρR3(θ,x) =

[
I + sin θ

(
0 0 cosφ
0 0 sinφ

− cosφ − sinφ 0

)

+(1− cos θ)

 − cos2 φ − cosφ sinφ 0
− cosφ sinφ − sin2 φ 0

0 0 −1

(xy
z

)
. (22)

If we take the differentials

dρR3(φ,x)|φ=0 =

(− sinφ − cosφ 0
cosφ − sinφ 0
0 0 0

)(
x
y
z

)∣∣∣∣∣
φ=0

=

(
0 −1 0
1 0 0
0 0 0

)(
x
y
z

)
= Azx ,

dρR3(θ,x) =

[
cos θ

(
0 0 cosφ
0 0 sinφ

− cosφ − sinφ 0

)

− sin θ

 cos2 φ cosφ sinφ 0
cosφ sinφ sin2 φ 0

0 0 1


θ=0

(
x
y
z

)

=

(
0 0 cosφ
0 0 sinφ

− cosφ − sinφ 0

)(
x
y
z

)
= (cosφAy − sinφAx)x , (23)

where

Ax =

(
0 0 0
0 0 −1
0 1 0

)
Ay =

(
0 0 1
0 0 0
−1 0 0

)
Az =

(
0 −1 0
1 0 0
0 0 0

)
(24)

form a basis for so(3). The corresponding differential operators are

Lφ = x∂y − y∂x , Lθ =
1√

x2 + y2

[
zx∂x + zy∂y − (x2 + y2)∂z

]
, (25)

and it is an easy calculation to show that they commute [Lφ,Lθ] = 0 . The attentive reader might
have noticed that the commutation does not hold at the matrices level. While this is expected, since
there is no 2-dimensional commuting subalgebra in so(3), it is nonetheless quite puzzling since ev-
erything works out at the level of differential operators. This reflect the fact that the commutation
properties are necessary at the level of the action of g on X , and not necessarily at the Lie algebra
level. In this case, however, we can elegantly resolve the puzzle indem we found a matrix represen-
tation for the action dρR3(θ)x which does commute with the φ action. To do this we note that we
can rewrite

Lθ =
cos θ

sin θ
x∂x +

cos θ

sin θ
y∂y −

sin θ

cos θ
z∂z , (26)
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Figure 9: (a) The coordinates x̂µ are the coordinates in the coordinate system defined by x1, the
orthogonal projection of x2 with respect to x1. x2 ⊥ x1 = x2−x1 ·x2, and x2×x1. (b) Graphical
depiction of the global symmetry transformations parametrized by the three angles φ2, θ1, φ1.

which corresponds to simultaneous dilations, with different coefficient, in the z axis and x, y-plane.
The finite action takes the form

ρ̃R3(θ,x) = exp

[
log sin θ

(
1 0 0
0 1 0
0 0 0

)
+ log cos θ

(
0 0 0
0 0 0
0 0 1

)]
, (27)

and computing the first order term we obtain

dρ̃R3(θ,x) =

 cos θ
sin θ 0 0
0 cos θ

sin θ 0
0 0 − sin θ

cos θ

x . (28)

This matrix is diagonal and it trivially commutes with Az . The price we had to pay to realize a
system of commuting matrices is that in ρ̃ the flow parameter θ appear non-linearly, thus we traded-
off commutativity at the level of the Lie algebra matrices for the linearity of the flow parameters at
the group level. We remark that both give rise to the same differential operator on X , which is the
relevant object for our purposes.

A.4 X = R3N AND GLOBAL SO(3)

Let X = R3N be parametrized by xi=1,...,N . We can describe a global SO(3) action as follows

x1 = Rez
(φ1)Rey

(θ1)

(
0
0
ẑ1

)
,

x2 = Rez
(φ1)Rey

(θ1)Rez
(φ2)

(
x̂2

0
ẑ2

)
,

xµ=3,...,N = Rez
(φ1)Rey

(θ1)Rez
(φ2)x̂µ , (29)

where Ra(ω) represents a rotation of an angle ω around the axis a. We can then derive the operator
Π ∈ R3N×3N as follows. Let R′(ω) be the matrix where we take the partial derivative with respect
to ω of all elements of R. Then

Πφ1
=
(
[Azx1]

⊤ [Azx2]
⊤ · · · [AzxN ]⊤

)⊤
Πθ1 =


(cosφ1Ay − sinφ1Ax)x1

(cosφ1Ay − sinφ1Ax)x2

...
(cosφ1Ay − sinφ1Ax)xN



Πφ2
=


0

(sin θ1 cosφ1Ax + sin θ1 sinφ1Ay + cos θ1Az)x2

...
(sin θ1 cosφ1Ax + sin θ1 sinφ1Ay + cos θ1Az)xN

 (30)
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Notice that these do represent global rotations since it is easy to see that (sin θ1 cosφ1Ax +
sin θ1 sinφ1Ay + cos θ1Az)x1 = 0. Formally, the true Lie algebra elements are 3 × 3 matrices
of the form

Aφ =


Az 0 0 · · · 0
0 Az 0 · · · 0
0 0 Az · · · 0
...

...
...

. . .
...

0 0 0 · · · Az

 (31)

and similarly for the other operators. Now, for the inverse relations we have

θ1 = arccos
z1

(x2
1 + y21 + z21)

1/2
,

φ1 = sgn(y1) arccos
x1

(x2
1 + y21)

1/2
,

φ2 = arctan
ỹ2
x̃2

, (32)

where x̃2 = Rey
(θ1)

−1Rez
(φ1)

−1x2 = Rey
(−θ1)Rez

(−φ1)x2.

A.5 X = R4, G = SO(4)× R+

Now we look at the case of a higher dimensional Lie group, namely G = SO(4) × R+. The
parametrization is given by

x1 = er cosφ1 ,

x2 = er sinφ1 cosφ2 ,

x3 = er sinφ1 sinφ2 cosφ3 ,

x4 = er sinφ1 sinφ2 sinφ3 . (33)

The Lie algebra elements corresponding to the SO(4) flow coordinates are

Aφ1 =

 0 − cosφ2 − sinφ2 cosφ3 − sinφ2 sinφ3

cosφ2 0 0 0
sinφ2 cosφ3 0 0 0
sinφ2 sinφ3 0 0 0

 ,

Aφ2 =

0 0 0 0
0 0 − cosφ3 − sinφ3

0 cosφ3 0 0
0 sinφ3 0 0

 ,

Aφ3
=

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 . (34)
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A.6 G = SO(N)

We present here the formalism for the G = SO(N) for any N ≥ 4. The parametrization is given by
(Blumenson, 1960)

x1 = er cosφ1 ,

x2 = er sinφ1 cosφ2 ,

x3 = er sinφ1 sinφ2 cosφ3 ,

...
xj = er sinφ1 sinφ2 sinφ3 · · · sinφj−1 cosφj ,

...
xn−1 = er sinφ1 sinφ2 sinφ3 · · · sinφn−2 cosφn−1 ,

xn = er sinφ1 sinφ2 sinφ3 · · · sinφn−2 sinφn−1 . (35)
The corresponding Lie algebra elements are given by

Aφn−1
=


0 · · · 0 0

0
. . .

...
...

0 · · · 0 −1
0 · · · 1 0

 , Aφn−2
=


0 · · · 0 0 0

0
. . .

...
...

...
0 · · · 0 − cosφn−1 − sinφn−1

0 · · · cosφn−1 0 0
0 · · · sinφn−1 0 0

 ,

Aφn−3
=



0 · · · 0 0 0 0

0
. . .

...
...

...
...

0 · · · 0 − cosφn−2 − sinφn−2 cosφn−1 − sinφn−2 sinφn−1

0 · · · cosφn−2 0 0 0
0 · · · sinφn−2 cosφn−1 0 0 0
0 · · · sinφn−2 sinφn−1 0 0 0

 ,

...

Aφj =
1

xj



0 · · · 0 0 0 · · · 0

0
. . .

...
...

...
...

...
0 · · · 0 −xj+1 −xj+2 · · · −xn

0 · · · xj+1 0 0 · · · 0
0 · · · xj+2 0 0 · · · 0

0 · · ·
...

...
...

. . .
...

0 · · · xn 0 0 · · · 0


,

...

Aφ1
=

1

x1



0 −x2 −x3 −x4 · · · −xn

x2
. . .

...
...

...
...

x3 · · · 0 0 0 0
x4 · · · 0 0 0 0
... · · · 0 0 0 0
xn · · · 0 0 0 0


. (36)

B PROOFS OF CONDITION FOR SUITABLE LIE GROUP

Here we provide the statements with proofs of the results in Section 2.2.
Proposition B.1. The linear operator induced by Π is complete if Π is the local frame of a vector
bundle E over X whose rank is n ≥ dimX almost everywhere. If rank E = n everywhere, then
E = TX , the tangent bundle of X .
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Proof. We start by noting that, given the expression of the fundamental fields as derivations, we
can write L(x) = Π(x)⊤∇. Let π : E → X be the projection map, then rank π−1(x) =
min(rank Π(x), n), since rank ∇ = n. Now, consider L log p(x) = L log q(x), which implies
L log p(x)

q(x) = 0. Let U ⊆ X such that rank Π ≥ n ∀x ∈ U , and by assumption X \ U has mea-

sure zero. Then the above holds if and only if ∇ log p(x)
q(x) = 0, which implies p(x)

q(x) = c, constant
∀x ∈ U . Now, p(x) and q(x) are probability densities by assumption, thus c = 1, which proves the
claim.

Proposition B.2. The operator Π induced by g is complete if and only if the subspace U ⊆ X such
that dim G

Gx
< n for x ∈ U , where n = dimX , has measure zero in X .

Proof. First, we recall that the dimension of an orbit Ox of x ∈ X equals the dimension of the
image of the map dρx : g → TxX : A 7→ Π(x). Suppose first that Π is complete. Then, from
Proposition B.1 the rank of Π(x) is ≥ n almost everywhere, and therefore dimG/Gx ≥ n almost
everywhere, which implies one direction of the claim. The reverse is quite straightforward. Assume
that the rank of Π(x) is ≥ n almost everywhere. As Π represent the action of the infinitesiamal
transformations of G, it means that locally G cannot fix points in X , thus proving the claim.

C PROOF OF MAIN THEOREM

Here we provide the full proof of Theorem 3.1:
Theorem C.1. Let G be a Lie group acting on X satisfying the conditions of Section 2.2, and let g
be its Lie algebra. The pair of SDEs

dx =

[
β(t)Π(x)f(x) +

γ(t)2

2
ρX(Ω)

]
dt+ γ(t)Π(x)dW , (37)

dx =

[
β(t)Π(x)f(x)− γ2(t)

2
ρX(Ω)− γ2(t)Π(x)∇⊤ ·Π(x)

−γ(t)2Π(x)L log pt(x)
]
dt+ γ(t)Π(x)dW , (38)

where β, γ : R → R are time-dependent functions, Π : Rn → Rn×n the fundamental vector fields,
f : Rn → Rn the drift, Ω =

∑
i A

2
i is the quadratic Casimir element of g, and L = Π(x)⊤∇ is

such that

1. The forward-time SDE (37) is exactly solvable, with solution

x(t) =

(∏
i

Oi(τi(t))

)
x(0) =

(
n∏

i=1

eτi(t)Ai

)
x(0) , (39)

where Oi = eτi(t)Ai is the finite group action and τ (t) is the solution to the SDE

dτ (x) = β(t)f(x)dt+ γ(t)dW . (40)

2. The SDE (7) is the reverse-time process of (6).

3. The Langevin dynamic of the above SDEs decomposes as a direct sum of g infinitesimal
actions (1), each defining an infinitesimal transformation along the flows ξτ .

Proof. We start by proving 3. We start by rewriting (37) in terms of the fundamental flow coordi-
nates τi = ξ−1

Ai
(x0)(x) : X → R. For this we employ Itô’s Lemma for the multivariate case: given

the SDE (37) and a transformation τ (x), it is given by

dτ (x) = (∇xτ )
⊤
[
β(t)Π(x)f(x) +

γ2(t)

2
ρX(Ω)

]
dt+

γ2(t)

2
Tr
[
Π(x)⊤ (Hxτ)Π(x)

]
dt

+ γ(t)(∇xτ )
⊤Π(x)dW

= β(t)f(x) +
γ2(t)

2

[
(∇xτ )

⊤∆τx+Tr
[
Π(x)⊤ (Hxτ )Π(x)

]]
dt+ γ(t)dW (41)
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since ∇xτ = Π−1(x) as matrices. Now, the second term can be rewritten in components as{
(∇xτ )

⊤∆τx+Tr
[
Π(x)⊤ (Hxτ)Π(x)

]}
k,l

=
∑
i

∑
j

∂xj

∂τk

(
∂

∂xj

∂xi

∂τl

)
∂τ

∂xi
+
∑
i

∑
j

∂xj

∂τk

∂xi

∂τl

∂2τ

∂xi∂xj

=
∑
j

∂xj

∂τk

∂

∂xj

(∑
i

∂xi

∂τl

∂τ

∂xi

)

=
∂

∂τk

(∑
i

∂xi

∂τl

∂τ

∂xi

)

=
∂

∂τk

∂τ

∂τl
= Hττ , (42)

which vanishes. Thus we proved that

dτ (x) = β(t)f(x)dt+ γ(t)dW , (43)

and provided that is chosen so that fi(x(τ )) = fi(τi), this corresponds to a system of independent
SDEs, as claimed.

Now, to prove 1, let τ (t) be a solution to (43) and x(t) as in (8). Then a Taylor expansion yields

x(t) =

I +∑
i

τi(t)Ai +
1

2

(∑
i

τi(t)Ai

)2

+O(τ3i )

x(0) (44)

since [Ai, Aj ] = 0 and where O(τ3i ) represents terms of third order in τi’s. Then taking the differ-
ential and dropping higher order terms

dx(t) =

∑
i

dτi(t)Ai +
1

2

(∑
i

dτi(t)Ai

)2
x(0)

=

∑
i

[β(t)f(x)dt+ γ(t)dW]Ai +
1

2

(∑
i

[β(t)f(x)dt+ γ(t)dWAi]

)2
x(0)

= [β(t)Π(x)f(x)dt+ γ(t)Π(t)dW] +
1

2

(∑
i

γ(t)dWAi

)2

x(0)

= [β(t)Π(x)f(x)dt+ γ(t)Π(t)dW] +
γ(t)2

2

(∑
i

A2
i dt

)
x(0)

=

[
β(t)Π(x)f(x) +

γ(t)2

2
ρX(Ω)

]
dt+ γ(t)Π(x)dW , (45)

which in the forward SDE (6), proving our claim, where we used the relations dW 2
i = dt and

dWidWj = 0 for j ̸= i.

Finally, we prove 2. To do this it suffices to apply Anderson’s result (Anderson, 1982)

dx =

[
β(t)Πi(x)f(x) +

γ2(t)

2
ρX(Ω)− γ2(t)∇ · (Π(x)Π(x)⊤)

−γ(t)2Π(x)Π(x)⊤∇x log pt(x)
]
dt+ γ(t)Π(x)dWi , (46)
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and note that Π(x)⊤∇x = L, the generalized score, and[
∇x · (Π(x)Π(x)⊤)

]
i
=

∂

∂xk
(ΠijΠkj)

=
∂

∂xk
(Πij)Πkj +Πij

∂

∂xk
Πkj

=
∂xk

∂τj

∂

∂xk

(
∂xi

∂τj

)
+Πij [∇⊤ ·Π(x)]j

=
∂

∂τj

(
∂xi

∂τj

)
+Πij [∇⊤ ·Π(x)]j

= [TrHτ (x)]i +Πij [∇⊤ ·Π(x)]j (47)

where we recall that the divergence of a matrix is a vector whose components are the divergence of
its rows. Recalling the relationship between the trace of the Hessian and the Laplacian we can write
in operator form

∇x · (Π(x)Π(x)⊤) = Π(x)∇⊤ ·Π(x) + ρX(Ω) , (48)

Plugging this back in into the previous expression we obtain our claim

dx =

[
β(t)Π(x)f(x)− γ2(t)

2
ρX(Ω)− γ2(t)Π(x)∇⊤ ·Π(x)

−γ(t)2Π(x)L log pt(x)
]
dt+ γ(t)Π(x)dW . (49)
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D LIE GROUP-INDUCED FLOW MATCHING MODELING

𝜗𝑟(𝜃)

Π𝜃(𝒙𝒕)

(c) (d)

𝒙𝒕

Π𝜃(𝐱)𝜌𝑋(Ω)

𝜗𝑟′(𝜃)

Π𝑟(𝒙𝒕)

𝒙𝟎
Π𝑟(𝒙𝒕)

𝑢𝐹𝑀(𝒙𝒕)

Figure 10: so(2) (green and
blue) vs. t(2) (orange) in-
duced flows.

We briefly summarize the formalism of flow matching. Given a
target distribution p0(x) and a vector field ut generating the distri-
bution pt(x), i.e., if it satisfies pt(x) = [ut]∗p0(x) where [ut]∗ is
the push-forward map, the flow matching objective is defined as

LFM(θ) = Et,xt∼pt(x) |vt;θ(xt)− ut(xt)|2 . (50)

Marginalizing over samples x0 ∼ p0(x) we obtain the conditional
flow matching objective

LCFM(θ) = Et,x0∼p0(x),xt∼pt(x|x0) |vt;θ(xt)− ut(xt|x0)|2 . (51)

Now, under the assumptions for learning the generalized
score through the objective 11 we have that pt(τ (x)) =
N (τ |µ(τ (0), t),Σ(t)), where τ (0) = x(τ )(0). Then the solution
of the SDE from Theorem 3.1

x(t) =

(
n∏

i=1

eτi(t)Ai

)
x(0) , (52)

is a flow inducing the distribution pt(τ (x)). Thus, the vector field that generates the conditional
probability path is obtained by differentiating the path above with respect to t, yielding

ut(x(t)|x(0)) =
d

dt
x(t) =

∑
i

∂x(t)

∂τi

∂τi
∂t

=
∑
i

Aix(t)
(
µ′
t,i(τi(0)) + σ′

t(τi(0))ηi
)

= Π(x(t))

[
µ′

t(τi(0)) +
σ′
t(τi(0))

σt(τi(0))
(τ (t)− µt(τ (0)))

]
, (53)

where we used the fact that

τ (t) = µt(τ (0)) + σt(τ (0))η , (54)

where η ∼ N (0,1). Thus, we see that the unique vector field that defines the flow (8) is again
proportional to the fundamental vector field Π(x) of the Lie algebra g of G. In figure 10 we illustrate
the flow generated by our formalism in the case of SO(2) in comparison with the traditional flow
matching of T (2). The orange path depicts the linear (in Euclidean metric) displacement given
by the traditional flow matching, assuming G = T (2). In green and blue we depicted the orbits
trajectories resulting from generalized flow matching with G = SO(2) × R+. Although the start
and end points are the same, the path is decomposed into transformations along the orbits of the two
group factors. This is particularly useful when these correspond to meaningful degrees of freedom in
the system. For example, when flowing between conformers of the same molecule, the intermediate
states produced by traditional flow matching are often unphysical, as they involve linear interpolation
between the Cartesian coordinates of the atoms. However, generalized score matching, following
the degrees of freedom given by bond and torsion angles as described in Section 3.1, would not only
yield efficient learning but also produce chemically meaningful intermediate states, as the path is
broken down into updates of chemically relevant degrees of freedom.

E EXPERIMENTS

In this final section we present some further details regarding our experiment in Section 5. We
provide the code to replicate our experiments in the Supplementary Information (SI). Following
publication we will open-source our code.
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E.1 MNIST

We parametrize the noising process through the SDE

dτ =
√

β(t)dW , (55)

where we set the drift term to zero. Notice that this choice is consistent with a 2d-rotation of a
function over the grid xi,j , given by f(xi,j) = fi,j , denoting the value of the pixel of image f
at the location i, j. We train a convolutional neural network (CNN) with three convolutional layers
followed by fully connected layers that outputs a single value, being the score for the flow coordinate
τ . For the specific details of the implementation we refer to the code-base in the SI. In sampling, we
apply a smoothing function to compensate interpolation artifacts due to rotations on a discretized
grid. We choose T = 100 time-steps in training but only need T = 10 time-steps during sampling.

E.1.1 BBDM

We implement the Brownian Bridge Diffusion Model (BBDM) (Li et al., 2023) and train it on the
rotated MNIST dataset. The BBDM operates on the full pixel space R784 of the 28 × 28 MNIST
digits and indicates a continuous time stochastic process conditioned on the starting x(0) and end
point x(T ) which are pinned together as paired data. In this case, we assume x(T ) ∼ p(xT ) to
be a randomly augmented MNIST digit obtained from an original MNIST digit x(0). During train-
ing, we sample an intermediate point x(t) ∼ N(xt|µt(x(0), x(T )),Σt) where the mean function
µt(t)(x(0),x(T )) is a linear interpolation between the endpoints (x(0),x(T )) and use the score-
network to predict the original data point x̂(0) = sθ(xt, t, xT ) as opposed to the noise or difference
paramterization proposed in the original BBDM paper. We noticed that predicting the original data
point led to better sampling quality including the inductive bias that MNIST digits are represented
as binary tokens. Furthermore, we observe that the sampling quality is also better when the prior
image xT is input as context into the score network, enforcing a stronger signal throughout the tra-
jectory. As opposed to our model, we trained the BBDM on T = 1000 diffusion timesteps using the
sin-scheduler from BBDM.

E.2 QM9 & CROSSDOCKED2020

QM9 The conformer generation tasks is about learning a conditional probabilistic map x ∼
pθ(X|M), where x ∈ R3N for a molecule with N atoms. We implement a variant of EQGAT
(Le et al., 2022b) as neural network architecture where input features for the nodes consist of atom
types and atomic coordinates, while edge features are encoded to indicate the existence of a single-,
double, triple or aromatic bond based on the adjacency matrix. We use L = 5 message passing
layers with sdim = 128 , vdim = 64 scalar and vector features, respectively. To predict the scores for
each atom, we concatenate the hidden scalar and vector embeddings s ∈ R128 , v ∈ R3×64 into one
output embedding o = R128+3∗64 which is further processed by a 2-layer MLP with three output
units. Notice that the predicted scores per atom are neither invariant nor equivariant since the scalar
and vector features are transformed with an MLP.

We choose the drift f with its scaling β and the diffusion coefficients γ in such way that the forward
SDE for the flow coordinates τ in (9) has the expression

dτ = −1

2
β(t)τdt+

√
β(t)dW , (56)

where for clarity we have omitted the dependency between the flow coordinates and the original data
in Cartesian coordinates, i.e. τ (x), since the coordinate transformations with Lie algebra represen-
tation are described in A.3. The forward SDE in (56) is commonly known as variance-preserving
SDE (Song et al., 2020b). We use the cosine scheduler proposed by Dhariwal & Nichol (2021) and
T = 100 diffusion timesteps.

CrossDocked For this experiment we adopt again an SDE of the form (56) for the three SO(3)
flow coordinates θ1, φ1, φ2 and the three T (3) center of mass Cartesian flow coordinates. The SO(3)
flow coordinates are always computed and applied in the ligand center of mass. In this way there
is no ambiguity regarding the non-commutativity of SE(3), as rotation around the origin commute
with translations of the system. We train a variant of EQGAT as in the QM9 case, but now including
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also node and edge features of the protein pocket. Specifically, the adjacency matrix for the GNN
is computed dynamically at each time step, according to the relative distance between ligand and
protein. For this, we choose a cut-off of 5 Å. We also use in this experiment a cosine scheduler
and T = 100 diffusion timesteps. Since this learning problem is 6-dimensional, we aggregate the
last layer’s node embeddings from the ligand atoms into a global representation through summation.
This embedding is fed as input into a 2-layer MLP to predict the six scores.

E.2.1 RSGM ON CROSSDOCKED

We utilized the framework of Riemannian Score-Based Generative Models (RSGM) by (De Bortoli
et al., 2022) to model rigid-body motions on G = (SO(3) × T (3)), in similar fashion to (Corso
et al., 2023; Yim et al., 2023) by choosing a variance exploding SDE for the rotation dynamics and
variance preserving SDE for the global translations. The terminal distribution for the rotation is
designed to converge to an isotropic Gaussian distribution on SO(3) (Leach et al., 2022), while the
terminal distribution for the translation component converges to an isotropic Gaussian in R3. To ob-
tain the tractable scores for rotation and translation, we use the code by the authors from DiffDock
and SE(3)-Diffusion for Protein Backbone Modeling in https://github.com/gcorso/
DiffDock/blob/main/utils/so3.py and https://github.com/jasonkyuyim/
se3_diffusion/blob/master/data/se3_diffuser.py and make sure that the score
outputs for rotation and translation are SO(3) equivariant using the same EQGAT model archi-
tecture. The (variance-preserving) scheduler for the translation dynamics is chosen in similar
fashion to our experiment using the cosine scheduler, while the (variance-exploding) scheduler
for the rotation dynamics is implemented as an linear increasing sequence in log10 space with
σmin = 0.001 and σmax = 2.0 and T = 100 discretized diffusion steps as σ(t) = 10t for
t ∈ (log10(σmin), log10(σmax)).

To compare both modeling approaches with respect to the dynamics using the same network archi-
tecture, we perform 5 dockings per protein-ligand complex in the CrossDocked test dataset compris-
ing 100 complexes and compute the mean RMSD between ground-truth coordinates and predicted
coordinates.

F FURTHER OUTLOOK

In the context of generative chemistry, particularly for modeling interactions within protein pockets,
our methods could be employed to decouple the intrinsic generation of ligands from the global trans-
formations required to fit the ligand into the pocket. This approach can also be extended beyond 3D
coordinates, for instance, by working with higher-order representations, such as modeling electron
density (Rackers et al., 2023).

Moreover, for more complex problems, it is feasible that an optimal generation process can be
achieved by combining different choices of G along the trajectory. In the context of ligand gener-
ation, we propose a time-dependent group action Gt = tT (3N) + (1 − t)(SO(3) × R+)

N : at
the beginning of the diffusion process, when the point cloud is still far from forming a recognizable
conformer, we can leverage the properties of a true Gaussian prior. As the point cloud is gradu-
ally optimized to “resemble a molecule”, we progressively transition to a generalized score-guided
process. This shift allows us to fine-tune chemically relevant properties, such as bonds and torsion
angles, ensuring that the intermediate and final conformers are chemically valid and accurate. This
will be the focus of our forthcoming work.
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