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Abstract

The complexities of chats pose significant chal-001
lenges for machine translation models. Recog-002
nizing the need for a precise evaluation met-003
ric to address the issues of chat translation,004
this study introduces Multidimensional Qual-005
ity Metrics for Chat Translation (MQM-Chat).006
Through the experiments of five models using007
MQM-Chat, we observed that all models gen-008
erated certain fundamental errors, while each009
of them has different shortcomings, such as010
omission, overly correcting ambiguous source011
content, and buzzword issues, resulting in the012
loss of stylized information. Our findings un-013
derscore the effectiveness of MQM-Chat in014
evaluating chat translation, emphasizing the015
importance of stylized content and dialogue016
consistency for future studies.017

1 Introduction018

Neural machine translation (NMT) has experienced019

significant development in recent years (Bahdanau020

et al., 2014), leading to notable improvements in021

the performance of machine translation systems,022

especially in translating formatted documents such023

as news, academic papers, and else (Maruf and Haf-024

fari, 2018; Barrault et al., 2019, 2020; Nakazawa025

et al., 2019; Ma et al., 2020). However, despite the026

success of translating documents, current methods027

still face substantial challenges when translating028

chats (Tiedemann and Scherrer, 2017; Maruf et al.,029

2018; Farajian et al., 2020) due to their higher de-030

grees of ambiguity and speaker-specific stylized031

contents, including sentiments, personalities, and032

cultural nuances (Baldwin et al., 2013; Eisenstein,033

2013; Uthus and Aha, 2013; Xu et al., 2014; Läubli034

et al., 2018; Toral et al., 2018; Farajian et al., 2020).035

To enhance chat translation, it is important to036

thoroughly understand the qualities and limitations037

of existing translation models in handling chats.038

Traditional automatic evaluation metrics such as039

BLEU (Papineni et al., 2002) and COMET (Rei040

et al., 2022a,b) focus primarily on accuracy but fail 041

to capture the nuances of chats. Thus, a refined 042

error categorization framework assessing semantic 043

accuracy while preserving the speaker’s stylized 044

nuances is better suited for identifying the specific 045

problems of chat translation (Gehman et al., 2020). 046

To address this need, we propose the Multidi- 047

mensional Quality Metrics for Chat Translation 048

(MQM-Chat) in this research. Based on the ex- 049

isting Multidimensional Quality Metrics (MQM) 050

framework1 (Burchardt, 2013; Mariana, 2014), 051

MQM-Chat encloses seven error types: mistransla- 052

tion, omission or addition, terminology or proper 053

noun issue, unnatural style, ambiguity and disam- 054

biguation, buzzword or loanword issue, and dia- 055

logue inconsistency, where the latter three are de- 056

signed specifically for chats. We applied MQM- 057

Chat to evaluate the chat translation abilities of 058

five models in the experiments: the large language 059

models (LLMs) GPT-4 (Achiam et al., 2023) and 060

LLaMA3 (Touvron et al., 2024), the commercial- 061

ized model DeepL2, the bilingual model produced 062

by team SKIM in WMT23 (Kudo et al., 2023), 063

and the multilingual model produced by Facebook 064

in WMT21 (Tran et al., 2021). The experiments, 065

held in Chinese⇒English and Japanese⇒English, 066

included short but noisy chats to ensure the buz- 067

zwords and ambiguous content, and longer but 068

cleaner chats to provide a comparison. Proficient 069

bilingual annotators were invited to label the trans- 070

lations using the error types and severity levels 071

from MQM-Chat. 072

The Overall Quality Score (OQS) calculations 073

indicate that GPT-4 outperformed the other models. 074

On the other hand, the severity percentage of each 075

error type shows that there are usually more severe 076

mistranslations, buzzword or loanword issues, and 077

dialogue inconsistency errors in chat translations. 078

1https://themqm.org/
2https://www.deepl.com/translator
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Without the severity penalties, the number of er-079

rors shows that all five models exhibited common080

tendencies toward mistranslation errors. Buzzword081

issues and dialogue inconsistency are considerably082

important, especially in short chats. MQM-Chat083

helped to qualify the strengths and weaknesses of084

the five models, emphasizing the significance of085

preserving the stylized contents in chats.086

In summary, this research contributes to chat087

translation with a novel evaluation metric designed088

to assess the quality of chat translations, MQM-089

Chat. Five state-of-the-art translation models were090

evaluated with MQM-Chat in handling chat con-091

tent. The experiments also helped to build an-092

notated Chinese⇒English and Japanese⇒English093

chat translation data. These contributions enhance094

the understanding of chat translation, providing095

valuable resources for further advancements.096

2 Related Work097

Chat Translation Tasks While formal docu-098

ments follow standardized structures, chats often099

include slang, idiomatic expressions, and personal-100

ized styles, adding complexity to translation (Bald-101

win et al., 2013; Eisenstein, 2013; Xu et al., 2014).102

High accuracy in translating chats is important,103

but preserving speaker-specific content, like buz-104

zwords and speaking style, is sometimes even more105

crucial (Hovy, 2015; Salganik, 2020).106

The first workshop specifically focused on chat107

translation was WMT2020 (Barrault et al., 2020;108

Farajian et al., 2020), which laid the groundwork109

for further exploration in this domain. It was fol-110

lowed by WMT2022 (Kocmi et al., 2022; Far-111

inha et al., 2022) and continues by WMT2024.112

WMT shared tasks have primarily concentrated113

on customer service chats, which are relatively114

structured and standardized. The emphasis has115

been on evaluating the overall performance of chat116

translation models with a strong focus on syntax117

accuracy. WMT2022 shared task started to ad-118

dress chat-specific issues, while Liang’s team, as a119

continuation of WMT2020, improved models for120

chat translation, highlighting the importance of co-121

herence, fluency, and speaker personalities (Liang122

et al., 2021a,b, 2022).123

WMT and derivative studies have gradually rec-124

ognized the importance of source content issues125

and preserving the speaker’s style in chat transla-126

tions. MQM was adapted in the WMT2022 shared127

task, but it remained too broad with 31 error types,128

most of which were about accuracies, and rela- 129

tively superficial analyses. Liang’s studies focused 130

on personality and sentiment but did not consider 131

source issues. Previous research has typically uti- 132

lized binary classification for chat translation evalu- 133

ation, focusing on coherence (Li et al., 2022, 2023), 134

which did not capture the complexity of chat trans- 135

lations either. 136

With the foundations, we have refined the eval- 137

uation by differentiating the source issues within 138

chat translations into ambiguity issues and cultural 139

nuances issues such as buzzwords, and emphasiz- 140

ing the importance of dialogue consistency. Addi- 141

tionally, we de-emphasized grammatical accuracy, 142

as it is not always the highest priority in every- 143

day conversations. To make MQM-Chat broadly 144

applicable to general chats, we chose data cover- 145

ing a wide range of topics, including news, sports, 146

hobbies, daily life, social media, and others. Ad- 147

ditionally, we included Japanese data, a language 148

not extensively studied in chat translation tasks. 149

The comparison between our research and previous 150

studies is shown in Table 1. 151

Translating with LLMs Several studies have 152

demonstrated that GPT performs well in transla- 153

tion tasks (Hendy et al., 2023; Zhang et al., 2023), 154

particularly in scenarios involving literary transla- 155

tion (Thai et al., 2022; Karpinska and Iyyer, 2023). 156

These studies suggest that LLM translations might 157

be favored over traditional neural machine transla- 158

tion (NMT) models when the input domain is likely 159

to contain noisy, ill-formed sentences. Despite 160

these promising findings, no dedicated research 161

specifically addresses chat translation using LLMs. 162

This gap highlights the need for focused studies on 163

applying LLMs to the unique challenges of chat 164

translation. 165

3 Multidimensional Quality Metrics for 166

Chat Translation (MQM-Chat) 167

In this research, we define high-quality chat trans- 168

lation as maintaining accuracy while capturing and 169

conveying the speaker’s personality, styles, and cul- 170

tural nuances. We refined the Multidimensional 171

Quality Metrics (MQM) framework and introduced 172

customized categories for chat translations. MQM- 173

Chat focuses on seven error types: mistranslation, 174

omission or addition, terminology or proper noun 175

issues, unnatural style, ambiguity and disambigua- 176

tion, buzzwords or loanwords issues, and dialogue 177

inconsistency. The latter three (*) are customized 178
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Chat Domain Human
Evaluation Method Evaluation Focus Fine-grained

Analysis Language Pairs

WMT 2020
Chat Translation Custom Service Segment Rating

+ Document Context Pronoun (it). △ en⇔de

WMT 2022
Chat Translation Custom Service Adapted MQM*

Accuracy,
Linguistic Conventions,
Terminology, ...
MT Hallucination,
Source Issue.

△
en⇔de,
en⇔fr,
en⇔pt_br

CPCC Custom Service,
TV series Customized Preference, Coherence,

Consistency, Fluency. ⃝ en⇔de,
en⇔zh

CSA-NCT Custom Service,
TV series Customized Coherence, Speaker,

Fluency. ⃝ en⇔de,
en⇔zh

SML Custom Service,
TV series Question-based Coherence, Fluency. ⃝ en⇔de,

en⇔zh

MQM-Chat
Annotation

Various
(news, sports,
hobbies, daily life,
social media, etc.)

MQM-Chat

Source Issue→Disambiguation,
Consistency→Dialogue Consistency,
Speaker→Stylized Contents,
Cultural Contents,
Buzzwords and Loanwords.

⃝ zh⇒en
ja⇒en

Table 1: Comparison of our research with previous studies across several dimensions: data domain, human evaluation
method, evaluation focus, granularity of results, and language pairs studied. WMT2020 and WMT2022 analyses
are considered less detailed due to the Segment Rating + Document Context method and lack of fine-grained
explanations on terminal nodes.

typologies tailored for chat translation. These error179

types are evaluated with three severity levels for a180

detailed and accurate assessment.181

3.1 Error Types182

Mistranslation Mistranslation denotes funda-183

mental inaccuracies in the translation process, in-184

cluding untranslated source segments, incorrect lex-185

ical choice or grammar that distorts the meaning,186

under-translation, and over-translation. These er-187

rors are critical as they directly impact the compre-188

hensibility and accuracy of the translation.189

Omission or Addition Missing source contents190

(omission) or additional content not present in the191

source (addition) are Omission or Addition errors.192

Such errors can significantly mistake the intended193

message and disrupt the coherence of the translated194

text, leading to potential misunderstandings.195

Terminology and Proper Noun Issues Termi-196

nology and Proper Noun Issues pertain to inaccura-197

cies in translating specialized vocabulary, inherent198

terms, and proper nouns from the source text. Mis-199

interpretations in this category can undermine the200

reliability of the translation, especially in profes-201

sional and academic contexts.202

Unnatural Style Unnatural Style refers to gram-203

matically correct translations that are not natural in204

the target language. These errors affect the read-205

ability and acceptability of the translation, making206

it appear awkward or stilted to native speakers. 207

Ambiguaty and Disambiguation* Ambiguity 208

and Disambiguation errors occur when the ambi- 209

guities or errors in the source text, such as typo- 210

graphical errors, omissions, unclear abbreviations, 211

and erroneous punctuation, are not faithfully re- 212

flected in the translation. Deviations from this prin- 213

ciple are considered errors, highlighting the need 214

to accurately translate the speaker-specific stylized 215

content into corresponding errors in the target lan- 216

guage. This category emphasizes the importance 217

of maintaining the authenticity of the source text, 218

including its imperfections. Examples are shown 219

in Table 2. 220

Buzzword or Loanword Issues* Buzzword or 221

Loanword Issues arise when such terms are not 222

translated accurately according to their usage in 223

the source and target languages. This includes the 224

incorrect translation of popular sayings, newly cre- 225

ated words, internet slang, and memes. If there is 226

no corresponding term in the target language, the 227

original pronunciation should be retained and writ- 228

ten in the target language. Failure to do so results 229

in error translations that obscure the source text’s 230

intended meaning and cultural nuance. Examples 231

are shown in Table 2. 232

Dialogue Inconsistency* Dialogue Inconsis- 233

tency occurs when translations fail to maintain con- 234

sistency based on context, particularly when the 235
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Ambiguity and Disambiguation

Source (zh, ja) Possible Good Translation (en) Bad Translation (en)

队啊！你应该试试！ Yaas! You should try! Team ah! You should try!

知ってｒ？昨日、ヘレンとあったよ！ u know waht, I saw Helen yesterday! You know what, I saw Helen yesterday!

Buzzword or Loanword Issues

Source (zh, ja) Possible Good Translation (en) Bad Translation (en)

鼠的，真的累死了 Yaap, I’m really tired Damn it, I’m really exhausted

草wwwwww lol grass

Table 2: Examples of ambiguity and disambiguation errors, buzzword or loanword issues. Translations in blue are
possibly expected, and translations in red are bad.

speakers change within the chat. This includes in-236

appropriate handling of demonstrative pronouns,237

personal references, or definite articles. Maintain-238

ing consistency in dialogue is crucial to ensure239

coherence and avoid confusing the reader.240

3.2 Error Severity Levels241

We provided three levels of severity for each er-242

ror to evaluate the translations comprehensively:243

major for errors that significantly impact the un-244

derstandability of the content; minor for errors that245

do not impact the overall understandability but de-246

tract from the quality; neutral for errors requiring247

additional revision but do not pose significant risks.248

Severity penalty multipliers are 5 for major, 1 for249

minor, and 0 for neutral.250

4 Experiments251

We conducted experiments to evaluate the effec-252

tiveness of MQM-Chat by translating chats from253

Japanese (ja) and Chinese (zh) into English (en)254

and having proficient bilingual annotators evaluate255

the translations using MQM-Chat.256

4.1 Datasets257

We selected 200 chat data from the Open 2ch Di-258

alogue Corpus (Inaba, 2019) to be the short but259

noisy data for the ja⇒en translations, which fea-260

tures ambiguous content and popular sayings from261

Japan’s well-known online community 2channel.262

Similarly, we chose 200 data from the LCCC-base263

dataset (Wang et al., 2020) for the zh⇒en transla-264

tions. To provide a comparison and a broader range265

of contents, we included 100 longer and cleaner266

chat data from BPersona-chat (Sugiyama et al.,267

2021; Li et al., 2022) for ja⇒en, and 100 from268

the NaturalConv (Wang et al., 2021) for zh⇒en.269

Statistics of selected chats are listed in Table 6 of270

Appendix C.271

4.2 Translation Models 272

We employed four models for each language pair: 273

GPT-4, LLaMA3 (70B-Instruct), DeepL and Face- 274

book@WMT21 for zh⇒en; GPT-4, LLaMA3, 275

DeepL and SKIM@WMT23 for ja⇒en. The 276

models represented diverse approaches, includ- 277

ing sentence-to-sentence transformers-based mod- 278

els (Vaswani et al., 2017), large language models 279

(LLMs), and commercialized systems. GPT-4 and 280

LLaMA3 were used in zero-shot learning config- 281

urations (Romera-Paredes and Torr, 2015; Wang 282

et al., 2019) with prompts designed on methodolo- 283

gies proposed by Hendy et al. (2023) and recent 284

studies (Farinhas et al., 2023; Peng et al., 2023)3. 285

4.3 Crowdsourcing and Annotating Tasks 286

We recruited six professional annotators proficient 287

in Japanese and English and six in Chinese and En- 288

glish through crowdsourcing. Annotators identified 289

translation errors and assigned severity levels based 290

on MQM-Chat specifications. We chose Label Stu- 291

dio4 (Tkachenko et al., 2020-2022) as the online 292

annotation tool due to its user-friendly interface 293

and robust functionality. Annotators were provided 294

with detailed guidelines to ensure error labeling 295

and severity assessment consistency. Details of the 296

annotation tasks could be found in Appendix B. 297

4.4 Overall Quality Scores 298

OQS =
(
1− APT

EWC

)
× 100 (1) 299

As shown in Equation 1, we calculated the 300

Overall Quality Scores (OQS) by the Evaluation 301

Word Count (EWC) and the Absolute Penalty To- 302

tal (APT) to provide a quantifiable measure of the 303

translation quality and a comprehensive evaluation 304

3Prompts and parameters of the models are in Appendix A.
4https://labelstud.io/
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Chinese→English

Short Long

GPT-4 OQS 88.99 96.66
Error Counts 246 434

LLaMA3 OQS 79.70 96.54
Error Counts 416 345

DeepL OQS 77.08 91.18
Error Counts 460 756

Facebook OQS 55.93 89.50
Error Counts 658 851

Japanese→English

Short Long

GPT-4 OQS 86.36 94.17
Error Counts 495 807

LLaMA3 OQS 58.71 85.44
Error Counts 994 940

DeepL OQS 76.83 89.24
Error Counts 761 1030

SKIM OQS 49.80 73.75
Error Counts 1097 1365

Table 3: The overall quality score (OQS) and number of
errors (error counts) of translation models for different
datasets and language pairs.

of different models, highlighting their strengths and305

weaknesses in chat translations.306

5 Results and Analysis307

5.1 Overall Performance308

We calculated the average OQS (eq. 1) and counted309

the total number of errors, as shown in Table 3.310

OQS and error counts suggest that models perform311

better when translating longer chats than shorter312

ones since selected long chats have fewer buz-313

zwords and ambiguities, making the translation314

task closer to traditional document translation. The315

results demonstrate that zh⇒en translations have316

higher overall quality and considerably fewer er-317

rors than ja⇒en. GPT-4 surpassed all other mod-318

els, while the NMT models performed the worst319

in their respective languages. LLaMA3 is slightly320

better than DeepL when translating Chinese but has321

significantly lower scores than DeepL when trans-322

lating Japanese, especially in short chats. Possible323

reasons could be the lack of Japanese training data324

and language transfer capabilities.325

5.2 Severity Analysis326

To investigate the severity distribution for each327

error type, we analyzed the number of errors at328

each severity level across different models, data329

types, and languages. The results are presented as330

heatmaps in Figure 1.331

Accuracy The results show that there are usu- 332

ally more severe mistranslations, omissions, and 333

additions. Mistranslations in the translations of 334

ja⇒en long chats tend to be minor, while zh⇒en 335

translations have fewer omission or addition er- 336

rors than ja⇒en, likely due to the omission of sub- 337

jects, objects, and sub-sentences in the Japanese 338

language. Translations of terminologies and proper 339

nouns also show major to minor issues, indicating 340

the need for better translation of proper nouns and 341

specialized terminology for general chats crossing 342

various topics. 343

Stylized Nuances Errors categorized as unnat- 344

ural style are primarily neutral to minor, related 345

to the definitions where errors are grammatically 346

correct but not natural. Ambiguous content issues 347

are usually average in zh⇒en translations but tend 348

to be more neutral in ja⇒en, suggesting that dis- 349

ambiguation’s significance may differ according to 350

different languages. Notably, translations of buz- 351

zwords or loanwords consistently contain a high 352

proportion of major errors in all cases, highlight- 353

ing the critical challenge in chat translation. For 354

Japanese short data, buzzwords are either major 355

issues or neutral issues. 356

Dialogue inconsistency errors are usually major 357

or minor errors, indicating that sentence reference 358

within dialogues remains a significant issue. How- 359

ever, this problem is less generated in the transla- 360

tions of Chinese long chats, possibly due to the 361

well-generated data in the NaturalConv dataset. 362

The heatmaps also point out that the overall per- 363

formance of ja⇒en is worse than zh⇒en, espe- 364

cially for short and noisy chats. The distribution 365

shows that not all error types mainly contain major 366

errors, with many neutral errors present. 367

5.3 Error Counts Analysis 368

Since neutral errors are not calculated for the OQS, 369

a detailed analysis is required based on the number 370

of errors. In this section, we counted the number of 371

errors for each type without severity levels to com- 372

prehensively understand each model’s strengths 373

and weaknesses, shown in Figure 2. 374

Similarly to the analysis in previous sections, all 375

models generated the most mistranslations, with 376

ja→en translations performing worse than zh→en. 377

GPT-4 consistently generated the fewest omissions 378

and additions and was good at resolving dialogue 379

consistency issues, terminology, proper nouns, buz- 380

zwords, and loanwords, relating to its extensive 381
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Figure 1: The heatmap showing distributions of major, minor, and neutral errors for different error types, across
various language pairs and data types.

training data and contextual learning capabilities.382

LLaMA3 produced fewer errors in Chinese long383

chats than GPT-4, but its OQS indicates that its384

translations contained fewer but more severe er-385

rors. LLaMA3 and DeepL performed similarly,386

with DeepL exhibiting more disambiguation and387

terminology errors. In zh→en translations, DeepL388

showed more buzzword and ambiguity issues,389

whereas, in ja→en translations, LLaMA3 struggled390

with terminology, proper nouns, dialogue consis-391

tency, and natural style.392

The Facebook model had significantly more mis-393

translations, omissions, and additions than others.394

Similarly, the SKIM model exhibited the fewest395

ambiguity and buzzword errors but had the high- 396

est mistranslation and omission errors, suggesting 397

these contents may be mistranslated or omitted, not 398

having a chance to be considered as other errors. 399

In conclusion, LLMs performed better but strug- 400

gled with ambiguous source contents, especially 401

in short and noisy chats. The analysis underscores 402

GPT-4’s strengths in handling various error types 403

across contexts and emphasizes the need to im- 404

prove traditional NMT models. 405

5.4 Tone Words 406

Based on feedback from annotators, we identified 407

models’ behavior where declarative or exclama- 408
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Figure 2: The heatmap of the number of errors for different error types, across various language pairs and types of
data. The darker the color, the higher the number of errors.

Tone Word Count

GPT-4 LLaMA3 DeepL NMT

zh→en 6 7 9 3
ja→en 13 61 13 6

Explanation Count

GPT-4 LLaMA3 DeepL NMT

zh→en 2 2 0 0
ja→en 5 5 1 1

Table 4: The number of tone words and additional ex-
planations of models for different language pairs.

tory sentences were translated as interrogative sen-409

tences. This typically involved adding interrog-410

ative questions like “right?” or “isn’t?” at the411

end of translations. The results of the counted412

occurrence of this error are presented in Table 4,413

suggesting that LLaMA3 exhibits a significantly414

higher frequency of this behavior when translating415

short Japanese chats than any other model. We416

consider this largely due to the lack of sufficient417

Japanese data, which likely impairs LLaMA3’s418

ability to accurately comprehend and represent419

Japanese expressions and sentence structures, lead-420

ing to this misinterpretation. Examples are shown421

in Appendix D.422

5.5 Additional Explanations 423

We observed that when the model translates cul- 424

turally specific terms from the source language, it 425

occasionally adds corresponding explanations in 426

parentheses to aid understanding. For example, 427

when translating “Yu E Bao” , the translation in- 428

cluded “savings” in parentheses to clarify the term, 429

as it is a unique saving method currently prevalent 430

in China. We have also quantified the occurrence 431

of these additional explanations. Results are illus- 432

trated in Table 4, with examples in Appendix D. 433

According to the results, although this addi- 434

tional explanatory behavior is present to some ex- 435

tent, it is not overly prevalent overall. DeepL and 436

SKIM added the same explanation for “Shogi” as 437

“Japanese chess” in long Japanese chats, which may 438

be related to the training data used by DeepL and 439

SKIM. On the other hand, the additional explana- 440

tions provided by LLMs varied significantly. It 441

is important to note that we did not explicitly in- 442

struct the LLMs to include such explanations when 443

prompting them. We believe that the additional 444

explanatory behavior of LLMs stems from their 445

contextual learning abilities and the extensive train- 446

ing data they have been exposed to. 447
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GPT-4 LlaMA3 DeepL NMT

ja→en short 2 6 39 17

Table 5: The number of translations of buzzwords or
loanwords that are omitted during the Japanese to En-
glish translation process for short chat data.

5.6 Lost Buzzwords448

The Japanese Open2ch data used in this study449

contains considerably more buzzwords than other450

datasets, many of which are not Japanese charac-451

ters but emoticons, emojis, or the “w” character452

used in Japanese internet culture to denote laughter453

(“lol”). For the Japanese short chats, we specifi-454

cally quantified the number of buzzwords lost in455

translation, as illustrated in Table 5, with examples456

in Appendix D.457

The figure shows that DeepL lost the most buz-458

zwords during translation compared to other mod-459

els. We hypothesize that this phenomenon may be460

due to DeepL’s translation process, which poten-461

tially omits non-source language characters after462

identifying the source text language. Meanwhile,463

the traditional NMT model produced by SKIM also464

ignored buzzwords in its translating process. Notic-465

ing that this model was training for news transla-466

tions, we consider that it prefers to read formatted467

contexts that do not contain non-Japanese words.468

The Chinese short chats from the LCCC-base do469

not contain many buzzwords in non-Chinese char-470

acters; further experiments are needed to confirm471

whether DeepL and traditional NMT models sys-472

tematically filter out non-Chinese characters.473

5.7 Discussions474

In conclusion, models perform worse on Japanese475

data compared to Chinese data. GPT-4 demon-476

strates the best performance among all the mod-477

els. Conversely, the traditional NMT models,478

SKIM and Facebook, exhibit the worst perfor-479

mance, which is expected because the NMT mod-480

els are not specifically trained for chat transla-481

tion. DeepL’s performance falls in the mid-range.482

Meanwhile, LLaMA3 shows varied performance483

across different languages. For zh⇒en translations,484

LLaMA3 performs slightly better than DeepL but485

worse than GPT-4; however, for ja⇒en, LLaMA3486

performs worse than GPT-4 and DeepL. All mod-487

els generate the most mistranslations, but their488

strengths vary depending on different experimen-489

tal settings. The refined error types from MQM-490

Chat—ambiguity issues, buzzword problems, and 491

dialogue inconsistency—provided deeper insights 492

into the shortcomings of chat translation. 493

The differing models’ performances on these as- 494

pects suggest potential solutions for further chat 495

translation tasks. For instance, GPT-4’s success in 496

handling terminologies, proper nouns, buzzwords, 497

and loanwords indicates that training with more 498

diverse and real-life conversational data and trans- 499

lating with the support of common knowledge may 500

improve the performance of chat translation. Its 501

good performance of resolving dialogue consis- 502

tency and including buzzwords indicates the impor- 503

tance of understanding the source contents. Using 504

prompts may help LLMs improve the stylized con- 505

tent issues in the future; from this point of view, 506

LLMs may be better suited for chat translation at 507

this moment than existing NMT models. These 508

insights guide future improvements in chat transla- 509

tion, aiming to develop models that better capture 510

the intricacies of everyday conversations. 511

6 Conclusion 512

This research evaluated chat translation models 513

using the Multidimensional Quality Metrics for 514

Chat Translation (MQM-Chat). The zh⇒en and 515

ja⇒en experiments on GPT-4, LLaMA3, DeepL, 516

SKIM from WMT23, and Facebook from WMT21 517

showed that GPT-4 consistently outperforms other 518

models, particularly in handling dialogue incon- 519

sistencies and managing buzzwords or loanwords. 520

Traditional NMT models SKIM and Facebook per- 521

formed the worst, while DeepL performed inter- 522

mediately. LLaMA3 performed well for zh⇒en 523

but struggled with ja⇒en translations.The sever- 524

ity of errors varies in languages and data types. 525

LLMs sometimes added explanations for culturally 526

specific terms, reflecting their contextual learning 527

abilities, while DeepL and NMT models ignore 528

buzzwords when translating Japanese short chats. 529

Our findings highlight the need for tailored train- 530

ing for chat translation models, especially in han- 531

dling culturally specific content and maintaining 532

dialogue consistency with the usage of MQM-Chat. 533

Overall, this study provides valuable insights into 534

the capabilities and limitations of current chat trans- 535

lation models, laying a foundation for future re- 536

search and development in this field. 537
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Limitations538

With data limited to translations from Chinese and539

Japanese to English, the result of our experiments is540

relatively narrow. Future research may extend the541

MQM-Chat evaluation to more language pairs and542

bidirectional translations to better understand chat543

translation across different languages. The high544

frequency of mistranslation errors in our results545

indicates that this error type needs further refine-546

ment. We plan to conduct more detailed reviews547

of the annotations to identify if additional nodes of548

mistranslation are necessary.549

In summary, MQM-Chat has laid a solid foun-550

dation for this type of research, opening up many551

possible directions for improving and expanding552

chat translation evaluation.553

Ethical Considerations554

The crowdsourcing experiments employed in this555

study adhere to stringent ethical guidelines to en-556

sure participant privacy and data protection. The ex-557

periments deliberately avoid collecting any person-558

ally identifiable information from the participants.559

No restrictions or enforcement of work hours were560

imposed upon participants, thereby eliminating un-561

due influence or coercion. Given the absence of562

personal data collection and voluntary participa-563

tion, the data is not subject to ethics review at the564

organization. Consequently, the data collection565

procedures adhere to the ethical standards and reg-566

ulations governing research practices.567
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A Machine Translation Parameters904

A.1 GPT-4 and LLaMA3905

The prompts used in GPT-4 and LLaMA3’s re-906

quests were structured as follows:907

You are a professional Chinese to En-908

glish translator. This is a Chinese to En-909

glish chat translation task. Please trans-910

late each line of the chat from Chinese911

into English. Each line of the chat is912

considered a message sent by a different913

speaker.914

Notice that the source language would915

change to Japanese in the Japanese to En-916

glish translation requests. Models were set917

to gpt-4 and Meta-Llama-3-70B-Instruct,918

respectively. Other parameters were set to919

temperature=1, top_p=1.0, max_token=500,920

and defaults.921

A.2 Facebook@WMT21922

The neutral machine translation model used for Chi-923

nese to English translations was the multilingual924

model submitted to WMT 2023 by Facebook (Tran925

et al., 2021; Akhbardeh et al., 2021). The model926

can directly translate text from 7 languages: Hausa927

(ha), Icelandic (is), Japanese (ja), Czech (cs), Rus-928

sian (ru), Chinese (zh), German (de) to English.929

For Chinese to English, it was trained on 166M930

bitext data from the WMT shared task, and 123M931

monolingual data from Commoncrawl5 which are932

news-domain. The model consists of a 24-layer933

encoder/decoder with an embedding size of 2,048934

and a feedforward size of 16,384 and 32 attention935

heads, resulting in 4.7B total parameters. Trainings936

were taken on 32 Volta 32GB GPUs. Fore more de-937

tails, please refer to the original paper (Tran et al.,938

2021).939

A.3 SKIM@WMT23940

We used a neural machine translation system sub-941

mitted to WMT 2023 by team SKIM (Kudo et al.,942

2023), who achieved the best accuracy among the943

participants in WMT23 (Kocmi et al., 2023). The944

model was trained on publicly available Japanese-945

English parallel data of around 31M sentences and946

a synthetic parallel corpus of 681M sentences. The947

model consists of a 9-layer encoder/decoder with948

an embedding size of 1,024 and a feedforward size949

5http://data.statmt.org/cc-100/

of 8,192, and 16 attention heads, resulting in 547M 950

total parameters. Training took around four days 951

with eight NVIDIA RTX A6000 GPUs. For more 952

details of training settings, please refer to the origi- 953

nal paper (Kudo et al., 2023). 954

B Crowdsourcing Annotation Tasks 955

Crowdsourcing Annotators Considering that 956

chat translation requires not only proficiency in two 957

languages but also an understanding of the source 958

text, we called for native Chinese or Japanese 959

speakers who are fluent in English to be the an- 960

notators through crowdsourcing platforms. We pre- 961

pared qualifications for the candidates to determine 962

their suitability for the task, which consisted of five 963

short chats and three long chats. Participants who 964

showed a better understanding of both the source 965

and target languages were considered to meet our 966

expectations better and were selected as annotators. 967

All annotators are aware that their annotations will 968

be used for academic research, not commercial. 969

Annotating Instructions Annotators were pro- 970

vided with detailed instructions in English, Chinese, 971

and Japanese. The instructions include the labeling 972

descriptions with Label Studio and the definitions 973

of error types and severities. Each error type and 974

severity level was provided with 1-5 detailed ex- 975

amples to help annotators understand. Annotators 976

are instructed and required to report offensive data 977

when the source contains extremely offensive con- 978

tent as well. The reported data are removed to avoid 979

having toxic contents in the annotated dataset. 980

Annotating Payments We paid each annotator 981

an extra 30-35 USD to familiarize them with the 982

instructions and operations. Being familiar with 983

the instruction and operation of Label Studio, the 984

annotator took about 3-5 minutes to complete one 985

short chat and about 5-8 minutes for a long chat. 986

Depending on the length of data, each annotator 987

was paid about 0.5-1.5 USD per short chat and 988

0.7-2 USD per long chat, with the final payment 989

fluctuating according to the exchange rate. In con- 990

clusion, every annotator was paid around 18-22 991

USD per hour. 992

C Datasets 993

Translation Data The statistical information of 994

the selected monolingual data and their translations 995

are shown in Table 6. The NLTK package (Bird 996
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LCCC-base NaturalConv Open2ch Dialogue BPersona-chat

Source Language Chinese Chinese Japanese Japanese
# of chats selected 200 100 200 100
Avg.turns 5 21 5 12
Avg. # of char (src) 52 423 101 490
Avg. # of words (GPT-4) 38 248 52 214
Avg. # of words (LLaMA3) 37 235 50 203
Avg. # of words (DeepL) 36 247 49 218
Avg. # of words (NMT) 37 272 45 182

Table 6: The number of average turns, average source words, average worse in translations of the selected data.

and Loper, 2004) was used to calculate the word997

counts.998

Licenses All four datasets used in this research999

come with a license allowing non-commercial and1000

academic usage. To be specific, the licenses are:1001

MIT License for LCCC-base (Wang et al., 2020);1002

Tecent AI Lab NaturalConv Dataset Terms and1003

Conditions for NaturalConv (Wang et al., 2021);1004

CC BY-SA 4.0 for Open2ch Dialogue Corpus (In-1005

aba, 2019); and CC BY-NC 4.0 for BPersona-1006

chat (Sugiyama et al., 2021; Li et al., 2022). The1007

annotated data of this research will also be pub-1008

lished in CC BY-NC 4.0 for non-commercial usage1009

in the future.1010

D Error Examples1011

Table 7 shows the examples of annotated errors.1012
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Error Type Source (zh, ja) Translation (en)

Tone Word Issue 怎么可能那么快啊反正这个周五之前啦 How is it possible that it’s so fast? Anyway, it’s
before this Friday, right?

Tone Word Issue それとこれとは別だろう That’s different from this, isn’t it?

Additional Explanation 不要以为我不知道你余额宝里的巨款！ Don’t think I don’t know about the large sum of
money in your余额宝 (savings)!

Additional Explanation 排了两个小时队弄到的。。。。这个七
夕礼物喜欢不

I lined up for two hours to get it..... I like this
Qixi gift!* (Note: "七夕" (Qixi) refers to the
Qixi Festival, which is a traditional Chinese fes-
tival celebrating the mythological story of the
Weaving Maiden and the Cowherd.)

Additional Explanation よくアニメを見てますよ。まとまった休
みがとれたら、聖地巡礼ってやつをする
のが楽しくてね。あなたは？

I often watch anime. If I get a big chunk of time
off, I enjoy going on what they call "pilgrim-
ages to holy sites" (visiting real-life locations of
anime scenes). How about you?

Lost Buzzword Issue やったことあるw I’ve done it before.

Table 7: Examples of annotated errors. * indicates another type of error.
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