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ABSTRACT

While explicit positional encodings such as RoPE are a primary source of posi-
tional information in Transformer decoders, the causal mask also provides po-
sitional information. In this work, we prove that the causal mask can induce
position-dependent patterns in attention scores, even without parameters or causal
dependency in the input. Our theoretical analysis indicates that the induced at-
tention pattern tends to favor nearby query-key pairs, mirroring the behavior of
common positional encodings. Empirical analysis confirms that trained models
exhibit the same behavior, with learned parameters further amplifying these pat-
terns. Notably, we found that the interaction of causal mask and RoPE distorts
RoPE’s relative attention score patterns into non-relative ones. We consistently
observed this effect in modern large language models, suggesting the importance
of considering the causal mask as a source of positional information alongside
explicit positional encodings.

1 INTRODUCTION

Transformer decoders (Vaswani et al., 2017 with rotary positional embeddings (RoPE) (Su et al.,
2024)) have been widely adopted in recent large language models (LLMs) (Grattafiori et al., 2024;
Abdin et al. [2024; |[Yang et al.| 2025a). The way positional information is provided to a model is
known to be closely tied to model performance (Dufter et al., 2022)) and its length generalization
ability (Zhao et al., 2024). Consequently, recent work has sought to improve LLMs, in terms of both
LLM performance (Barbero et al., 2025) and length generalization (Peng et al., |2024; |Chen et al.,
2023} |Liu et al.} 2024])), by analyzing and modifying RoPE.

However, these models contain another source of positional information: the causal mask. It is
commonly viewed as a mechanism that blocks access to future tokens, but it also provides posi-
tional information. Although the exact mechanism remains unclear (Zuo et al.,[2025)), recent studies
have shown that models without explicit positional encodings can still model sequential data and
even achieve performance comparable to models with RoPE (Haviv et al.| 2022} Kazemnejad et al.,
2023). Similar to RoPE, analyzing how the causal mask encodes positional information and its
properties is crucial for understanding model behavior, as well as its implications for performance
and length generalization.

Although several recent studies have attempted to analyze how the causal mask encodes positional
information (Haviv et al.} 2022; (Chi et al., 2023} [Kazemnejad et al., |2023)), its exact nature remains
unclear (Zuo et al.| [2025)). Thus in this paper, we first prove that even without parameters, causal in-
put dependencies, or a feedforward network, the causal mask can induce position-dependent patterns
in attention scores (Figure[I)). These patterns consistently favor closer keys to each query, assign-
ing them higher attention scores. This behavior closely resembles that of many explicit positional
encoding schemes (Press et al.|[2022;|Su et al., [2024} [Vaswani et al., [2017)).

Through empirical analysis, we then demonstrate that our explanation aligns well with practical out-
comes and uncovers several useful characteristics. First, by simulating a Transformer decoder with-
out parameters and without explicit positional encoding, we confirm that our explanation accurately
captures how positional information emerges. We also find that the resulting position-dependent
attention patterns exhibit properties similar to positional encodings, yet quite differ qualitatively
from both conventional absolute and relative forms. Furthermore, training a Transformer decoder
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Figure 1: Causal mask induces positional information even in the absence of causal input dependen-
cies, feed-forward networks, or parameters. (a) With the input assumption, the first-layer attention
scores collapse to 1 on the diagonal and O elsewhere. (b) The attention output is then computed as
a weighted sum of the a:ﬁ‘” (we omit the superscript (°) and simply write z; in place of J]EO)). ©
After {5 normalization, (d) subsequent-layer attention scores reveal a clear position-dependent pat-
tern, assigning higher weights to nearby query—key pairs, a behavior similar to common positional
encodings.

on a web corpus without explicit positional encodings shows that the emergence of positional in-
formation in practice is consistent with our explanation. However, while the underlying mechanism
matches, we observe that in the real model the position-dependent attention patterns are strongly
influenced by the learned parameters.

In addition to our theoretical and empirical analysis on the properties of the causal mask, we study
how it interacts with RoPE inside modern LLMs, which typically use both together. Simulations of a
parameter-free Transformer show that when combined with RoPE, the causal mask distorts RoPE’s
relative attention pattern into a non-relative one. Our analysis further reveals that this non-relative
pattern arises only in the presence of the causal mask. We consistently observe this phenomenon at
a non-negligible scale in modern LLMs that use RoPE, including Llama-3.1-8B (Grattafiori et al.,
2024), Phi-4 (Abdin et al.}2024)), and Qwen3-8B (Yang et al.,[2025a)).

Our contributions are as follows:

* We prove that the causal mask can induce position-dependent patterns in attention scores, even
in the absence of parameters, causal input dependencies, or a feedforward network.

» Through empirical analysis, we demonstrate that our explanation accounts for the behavior of
Transformer decoders without explicit positional encoding.

* We show that the causal mask biases RoPE’s relative attention pattern toward a non-relative one,
and we observe this bias in modern LLMs.

These results suggest that future research on positional information in Transformer decoders should
account for the joint effects of both RoPE and the causal mask.

2 RELATED WORKS

A typical way to inject positional information into Transformers is through positional encodings.
They generally encourage higher attention scores for query—key pairs that are closer together (Press
et al.,[2022; |Su et al.| 2024; Vaswani et al., [2017). Broadly, there are two types of positional encod-
ings. Absolute positional encodings assign information based on each token’s fixed position in the
sequence, such as sinusoidal encoding and learnable absolute positional encodings (Vaswani et al.,
2017). Relative positional encodings represent positions based on the distance between tokens, such
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as T5 relative PE (Raffel et al.| 2020), ALiBi (Press et al.,2022)), and RoPE (Su et al., 2024). Among
these, RoPE has become widely adopted in recent LLMs (Abdin et al., 2024; Grattafiori et al., 2024;
Yang et al.,|2025a), and its properties have inspired methods that improve both language modeling
performance (Barbero et al., 2025} |Yang et al.,[2025b)) and length generalization (Peng et al.| |2024;
Chen et al., 2023 |L1u et al., [2024).

Although positional encoding is typically considered the sole source of positional information in
Transformer decoders, recent work has shown that the causal mask can also play this role. [Haviv
et al.[(2022) first demonstrated that a Transformer decoder can model natural language without ex-
plicit positional encodings, achieving performance comparable to the model with RoPE. Because the
causal mask is typically viewed simply as a mechanism for blocking access to future tokens, several
works have attempted to uncover how it encodes positional information. In the same work, Haviv
et al.| (2022) hypothesized that the causal mask enables counting of predecessor tokens, though they
did not provide a proof. They also suggested that the positional information induced by the causal
mask resembles absolute positional encoding. |Kazemnejad et al.|(2023) later proved that the causal
mask can represent both absolute and relative encodings under a specific parameter configuration.
Also, they showed that the attention pattern without positional encoding is closely resemble to those
of TS’s relative positional embeddings. (Chi et al.[(2023) offered the first mathematical explanation,
showing that the causal mask increases the variance of hidden states with token position. However,
they did not clarify how Transformers exploit variance from a single hidden state. More recently,
Zuo et al.|(2025) empirically showed that nearby hidden states exhibit higher cosine similarity than
distant ones, and that this tendency is much stronger than variance change. Extending this line of
work, we explain how the causal mask can encode positional information, thereby justifying the
pattern observed by [Zuo et al.| (2025). We also show that the positional information from causal
mask behavior quite differs from both absolute and relative positional encodings.

3 THEORETICAL ANALYSIS

3.1 PRELIMINARIES

Let the input token embeddings be X (0 = [zgo), e chlo)] € R™*4, where n is the number of input
tokens and d is the model hidden size. Superscripts indicates layers; when clear from context, we
omit them. Formally, a single-head, pre-LN (Xiong et al., 2020) Transformer decoder layer without
bias is a function f : R"*¢ — R"*4 with X = (X (=1)) is defined as:

YW = LayerNorm(X~Y), Q =YWy, K=YWg, V =YWy,
QK"

Vd
X = FFN(LayerNorm(0®)) + 0®

A = Softmax(Causal( ), O=(AV)Wp+ X1,

Where W, Wi, Wy, Wo € R?*4 are parameters, and operation Causal(-) applies a strictly upper-
triangular mask to prevent attention to future positions.

3.2 How DOESs CAUSAL MASK ENCODE POSITIONAL INFORMATION?

Here, we show that the causal mask can induce a position-dependent pattern in attention score, even
when the input sequence has no causal dependency, no parameters, and no feed-forward module.
In addition, we show the pattern allocates higher attention scores to closer query-key pairs, akin
to the behavior of typical positional encodings (Press et al., 2022} [Su et al., 2024} Vaswani et al.,
2017). Figure || sketches the high-level mechanism by which the causal mask encodes positional
information.

To simplify the derivation, we employ £ normalization (without the v/d term) as the normalization
technique, and later show that LayerNorm (with the v/d term) exhibits analogous behavior. We
assume each input embedding vector x,t(-o) has unit norm, and for i # j, ]E((xgo),mgo)” = a.
Note that this assumption does not impose causal structure on the inputs and includes an i.i.d. case

(v = 0). While o = 0 is sufficient for our core claim, we allow 0 < « < 1 to better explain the
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trained model’s behavior (Section . Under these simplifications, a single layer f(X) acts as:
f(X) = Softmax(Causal(YY"))Y + X, Y = L2Norm(X), (1)

where L2Norm denotes row-wise £5 Normalization. The operator Causal(-) applies the strictly upper
triangular mask so that a query at position ¢ only attends to keys at position j < 7, and Softmax is

taken row-wise. Formally, our goal is to show that the pairwise inner product after normalization

<y§2), yj(-2)> is a function of the indices 7 and j (i.e. not constant across positions).

Since each input has unit norm, (xl(o), x50)> =1, we have Y1) = X () The Gram matrix of inner

products and those after applying the causal mask is:

L (i=7)
yWy T, . = { o 2
( = e #9)
1 (i =17)
Causal(Y VYWY = L —inf (i <)
a (i>])
The row-wise softmax then gives
(i.9) © U=
Softmax(Causal(Y My M1y, = — "= —— where f(i,j) = {0 (i <)
e+ (t—1e e (i> )
Accordingly,
i . 0 0)
1) Dope1 f(z,k)x,(c) 0  (2e+(i—1)e*)x; © 4 St e ack
¢ e+ (i—1)e ¢ e—i—(z—l)ea

(1) (1)>

We first compute the raw inner product (z; and then normalize by ||x( )||2 and ||z )Hg to

obtain (y*), y*)).
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Figure 2: Simulation of a Transformer without parameter and explicit positional encoding results.
We visualized averaged attention scores for each layer with o = 0 and 0.2. The y-axis represents
query indices, and the x-axis represents key indices.

Put everything together, we can get
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Thus, (yz(?), y](?)) is not constant across query-key indices ¢, 7. This shows that the causal mask
alone induces a position-dependent inner product structure in the normalized representations, even
without any causal assumptions on input, without parameters, and without feed-forward network. In
other words, causal mask itself can serve as a mechanism for encoding positional information.

Next, we show that the position-dependent attention pattern induced by the causal mask at the second
layer behaves similar to typical positional encodings. Typical positional encodings infuse a bias into
the attention score, making queries more strongly associated with nearby keys than with distant ones
(Press et al.| 2022; [Su et al., 2024; Vaswani et al., [2017)). Formally, we show the attention score in
the second layer strictly increases on the key index j < ¢ over fixed query index ¢. From Equation[4]
for such an i, the g(i)/h(i) term becomes constant, so the score depends only on 1/h(j). We can
compute h(j + 1) — h(j) and verify that h(j) decreases strictly with j (see Appendix |A.1)). As a
result,the attention score at the second layer increases strictly with j, as long as j < <. In the case
7 =1 — 1, since the inner product of two normalized vectors with different directions is always less
than 1, we obtain
w2 < ) =

Therefore, for any fixed ¢, the attention score increases strictly with j on the range j < i in layer
2. In other words, closer keys receive higher scores, matching the behavior of common positional
encodings. We empirically show the behavior of later layers in the following section.

4 EMPIRICAL ANALYSIS

4.1 TRANSFORMER SIMULATION WITHOUT PARAMETERS

We further examine the behavior of positional information from the causal mask through simulation
of a Transformer without parameters and without positional encodings, as defined in Equation [I}
Spec1ﬁca11y, we sampled 50 vectors with d = 64 that satisfy Equation [2] in expectation. Each
vector is generated by combining a shared Gaussian component with an independent Gaussian noise
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component, ensuring the desired inner-product structure without introducing causal dependency.
Figure 2] presents the simulated attention scores across layers for &« = 0 and a = 0.2, averaged over
100,000 simulations. We also conducted the same experiment with {5 Normalization replaced by
LayerNorm, and observed similar tendencies, as confirmed in Appendix [B]

First, consider the case o = 0, corresponding to the first row of Figure 2| Under our standing as-
sumption, the attention matrix of the first layer has ones on the diagonal and zeros elsewhere. In the
second layer, a position-dependent pattern begins to emerge, consistent with our earlier derivations.
Notably, the attention score strictly increases for 7 < ¢ with fixed ¢, consistent with our theoretical
analysis. However, as shown in Figure[I] the exact across-position differences are still small at this
stage, yielding only a faint pattern in the upper-left of the matrix. By layers three and four, the
pattern becomes more pronounced, and also strictly increasing for 7 < ¢ with fixed 7, resembling
the behavior of common positional encodings. This attention pattern aligns with Figure 1 in [Zuo
et al.|(2025), which illustrates that cosine similarity between hidden states in a Transformer decoder
without positional encoding is higher for closer ¢, j pairs. Our analysis explains this phenomenon,
since cosine similarity is equivalent to the inner product after > normalization.

Next, we examine the case o = 0.2, illustrated in the second row of Figure While a strict increase
in the attention score for j < ¢ (with ¢ fixed) also occurred, the overall pattern is a bit different. At
the second layer, the position-dependent pattern is much clearer compared to the o = 0 case, but the
pattern seems nearly independent of 7. This effect occurs because, when « # 0, the numerator and
denominator share identical highest-order terms in g(i), causing rapid convergence to a fixed value.
The same saturation is more evident in the later layers.

In both cases, we observed that the attention scores within each off-diagonal band (i.e., excluding
the main diagonal) were highly non-uniform. Since relative positional encodings inject information
based on the token distance, attention scores within the diagonal are expected to remain uniform
when the input is zero-mean Gaussian noise without learnable parameters (see Appendix Figure
for an example with RoPE). This discrepancy indicates that the causal mask behaves quite differently
from relative positional encodings. On the other hand, [Wang & Chen| (2020} showed that absolute
positional encodings, including sinusoidal and learnable embeddings, yield attention score heatmaps
symmetric along the bottom-left to top-right axis. In the case of the causal mask, however, the
heatmap does not satisfy such symmetry. Taken together, the behavior of positional information
from the causal mask quite differs from both typical absolute and relative positional encodings.

4.2  ANALYSIS OF A TRAINED MODEL WITHOUT POSITIONAL ENCODING

We conducted an empirical study to examine whether similar attention patterns arise when training
a Transformer decoder without positional encoding. To this end, we trained a model based on the
Llama-3 architecture (Grattafiori et al.,|2024) having 1.5B parameters (22 layers, hidden dimension
2048, head dimension 64) on 20 billion tokens from the Fineweb-Edu corpus (Penedo et al., [2024).
The model was trained with an AdamW optimizer (Loshchilov & Hutter, [2019)), a cosine learning-
rate scheduler with warmup, a peak learning rate of 3 x 10™%, a global batch size of 1M tokens,
and a context length of 1024. Since input embeddings in the language model contain no positional
information (Dufter et al., 2022), we analyze the representations from the input embeddings up to
the Q' KT in order to examine how position-dependent attention score patterns emerge. Figure
presents the Gram matrix heatmap of inner products of the attention intermediates. The attention
patterns from later layers are shown in Appendix Figure[8] For those figures, we used 1,000 snippets
sampled from a held-out set drawn from Fineweb-Edu, each consisting of the first 50 tokens of a
document.

First, because most embeddings are nearly orthogonal to one another, their inner products after
LayerNorm are close to zero except along the main diagonal (a). This corresponds to the case
a = 0 in our earlier formulation. According to the simulation results in the previous section (Figure
[2), under this condition the position-dependent patterns in the second-layer attention scores should
appear only faintly. In contrast, the trained model exhibits a much stronger, ¢-independent pattern in
Q@K ®@T (i), which more closely resembles the a # 0 case. This is due to the learned parameters
affect the position-dependent pattern induced by the causal mask.

Moving from (a) to (b), we observe that the ratio of off-diagonal to diagonal values increases sub-
stantially. This effect is attributed to the influence of W and Wi, as have a similar effect to



Under review as a conference paper at ICLR 2026

(a) YDyt (b) Q(l)K(l)TNE 4.0 (c) (A(l)v(l))(A(l)v(l)) T 450
(Y =LN(X)) (Q =WpY, K= WY) (A = Softmax(Causal(QK")))

1000

._.
o
=
1)

w

o

N
S
N
)
~
n

Query Position
Query Position

Query Position
w
8

w
S

20 30 20 30 20 30
Key Position Key Position 0.5 Key Position

(d) (e) oMW1 160
(ADVOWD)(ADYVOW)T 2000 (0=AVWo +X) 2000 (f) LN(O'M)LN(O*) T

"
S
=
S

1900 1900

~
S
~
S

1800 1800

Query Position
Query Position

w
8
Query Position

w
S

1700 1700

20 30 20 30 20 30
Key Position 1600 Key Position 1600 Key Position

(g) XWx@T1
(X =FFN(LN(O)) +O) (h) YRy@T 1450 (i) Q®KAT//d

4500

=
S
=
1S

1400

4000

~
S
~
1S3

1350

Query Position
Query Position
Query Position

3500

30 30

1300

3000

20 30 1250

Key Position

20 30

20 30
Key Position Key Position

2500

Figure 3: Inner-product Gram matrix heatmap of a trained Transformer decoder without positional
encoding. We sample 1,000 sequences of length 50 from the held-out set, compute attention inter-
mediates, and then calculate averaged inner products across heads and samples.

increasing . Although a vivid line appear at the Oth column, it can be interpreted as an attention
sink phenomenon (Xiao et al.,[2024), the analysis of which is beyond the scope of this paper.

After applying the causal mask, the softmax, and multiplying by V, the resulting attention map in
(c) shows that the main diagonal values decrease with increasing ¢, j, while the off-diagonal values
remain nearly uniform across positions. The diagonal corresponds to h(i)? with the residual term
removed, while the off-diagonal corresponds to g(i) with the residual term removed. We denote
these by h/(4) and ¢'(4), respectively. Both can be computed in a manner similar to h(i) and g(i),
and they exhibit analogous properties (Appendix . In particular, h'(7) decreases strictly with
i, accounting for the decline along the diagonal, whereas ¢’(¢) is nearly independent of j and only
weakly dependent on ¢, explaining the uniformity of the off-diagonal elements.

In case of (d), the ratio between the diagonal and off-diagonal elements is significantly increased
compared to (c). This can also be interpreted as the effect of Wy, analogous to the relationship
between (a) and (b).

After adding the residual (e), the trend is almost identical to (d). This behavior can be explained in
terms of h(¢) and g(7).
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Figure 4: Simulation of a Transformer without parameters using RoPE. We visualize the attention
scores across layers, where the y-axis denotes query indices and the x-axis denotes key indices.
The top row shows the raw attention scores, while the bottom row shows scores normalized by
subtracting the mean of each diagonal.

Once LayerNorm is applied (f), the pattern closely matches the theoretical and simulation results,
where attention increases strictly with j for fixed i.

Passing through the feedforward network and applying the residual (g) appears to laterally invert
the pattern, whereas a subsequent LayerNorm restores it (h). Since we excluded the feedforward
network from our theoretical analysis, we cannot account for why it inverted the relationship, nor
for how LayerNorm reversed it. However, note that the position-dependent pattern has already
emerged at (f), and therefore does not conflict with our theoretical analysis.

Finally, in the second-layer self-attention (i), we clearly observe the expected pattern of strict in-
crease with ¢, in agreement with our theoretical analysis.

Although the behavior of (g) and (h) remains unexplained, our analysis shows how positional infor-
mation emerge from a trained Transformer without explicit positional encoding. Also, we confirmed
that the positional patterns induced by the causal mask are strongly parameter-dependent.

5 INTERACTION BETWEEN CAUSAL MASK AND ROPE

In the previous section, we showed that the causal mask can induce position-dependent attention
patterns. Building on this, we now analyze how RoPE, widely used in modern LLMs, interacts with
the causal mask. We first use simulations to examine the attention patterns that emerge from this
interaction, and then check whether the same patterns appear in modern LLMs.

5.1 TRANSFORMER SIMULATION WITHOUT PARAMETERS

We extended our earlier simulation in Section [4.1] by applying RoPE, with fg,pr = 10000 and
« = 0. The results with non-zero « are provided in Appendix Figure[0] As shown in the first row
of Figure ] the first layer behaves as described by Barbero et al] (2025): when the input is inde-
pendent Gaussian noise, RoPE alone does not affect the inner products. However, from the second
layer onward, a vivid relative pattern emerges due to the mixing of the input vectors caused by the
first layer’s self-attention operation. By the third layer, this relative pattern becomes even clearer.
Notably, similar to our earlier experiments without explicit positional encoding, the left portion of
the attention maps appears darker than other regions. To highlight this effect, we averaged attention
score along each diagonal and subtracted them and displayed on the second row, which revealed
the pattern even more distinctly. Importantly, because RoPE is a relative positional encoding, such
patterns do not appear without a causal mask (as in Transformer encoders; see Appendix Figure
[TO). This indicates that the causal mask biases the relative attention pattern from RoPE toward a
non-relative one.
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Figure 5: Diagonal-normalized attention heatmap of LLMs (first 4 layers). Attention scores were
computed for 1,000 sequences of length 1,024 and averaged across sequences and heads. The At-
tention Sink effect flattens the overall pattern, so the color scale is adjusted using the 1% and 99%
quantiles. The y-axis denotes query indices, and the x-axis denotes key indices.

5.2 ANALYSIS OF LLMSs

We analyze whether the same phenomenon is observed in modern LLMs trained with RoPE, includ-
ing Llama-3.1 8B [Grattafiori et al|(2024), Phi-4 2024), and Qwen3-8B
[20254). Using the same setup as done at section 4.2} we performed inference on 1,000 samples
from the same Fineweb-Edu (Penedo et al.l [2024) held-out set, except increased sample length of
1024. Figure [5] shows the averaged attention scores for the first four layers of each model. Addi-
tional results, including the normalized and original scores for all layers, are provided in Appendix
Consistent with our simulation, we can observe the non-relative pattern among the models except
for the first layer. Also, considering the typical attention score of these models are in [—10%, 10}]
scale (Appendix@) and the non-relative patterns in [—1, 1] scale, this effect could not be dismissed
as negligible. This confirms that the attention patterns in practice are influenced by both RoPE and
the causal mask, meaning that the Transformer Decoder trained with RoPE both relies on the po-
sitional information from RoPE and the causal mask. Since this pattern non-uniformly emphasizes
the first few keys, it may potentially negatively affect length generalization.

6 CONCLUSION

Positional information is crucial for both the performance and length generalization of Transformer
decoder—based models. While positional encodings are typically regarded as the primary source of
positional information, the causal mask also conveys such information. In this work, we show how
the causal mask encodes positional information and that its behavior is closely tied to common posi-
tional encodings. We further show that the causal mask influences the positional information derived
from RoPE. Our study, however, has two key limitations. First, although Transformer decoder lay-
ers include feed-forward networks and learnable parameters, their effects have been only limitedly
analyzed. Second, it remains unclear whether the interaction between RoPE and the causal mask
directly affects performance and length generalization. Overall, our findings highlight the causal
mask as a critical source of positional information, alongside explicit positional encodings such as
RoPE. Exploring methods to jointly leverage the causal mask and explicit positional encodings may
yield additional gains in LLM performance and length generalization.
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A ADDITIONAL DERIVATIONS

A.1 STRICTLY DECREASING OF h(j) ON j

From Equation 3|

(2e+ (j — De*)2 +2(2e + (j — De)e®a(j — 1) +e22(j — 1)(1 + (j — 2)a)
(e+(j —1)e)?

h(j)? =

((2e 4 je*)? +2(2e + je*)e¥aj + (1 + (j — D)) (e + (j — 1)e)?
—((2e+(j —1)e*)*+2(2e+ (j — De*)e*a(j — 1) +e**(j — 1)(1+ ( — 2)a))

WG+ 172 — hj)? = (eI

(e +je)* e+ (j —1)e)?
((a=1)e**+2(a—1)e3* )2+ ((2a—6)e* P +2(a—1)e3* T + (a—1)e*) j
_ (20 —4)e? + (“2a + 4)e?F?

(e+je)?(e+(j — 1)e*)?
Since 0 < « < 1, each coefficient (of j 2, 7, and the constant term) is negative. The denominator is

trivially positive, hence h(j + 1)% — h(j)? < 0,50 h(j + 1) — h(j) < 0 (. h(j) > 0). Thus, h(j)
is strictly decreasing on j.

A2 h'(i) AND ¢'(7)
Without residual network, a single layer f(X) acts as:

f(X) = Softmax(Causal(YY " )Y
Accordingly,

i , 0 (0 (0
2 = St F Rz el + 550 ey
! e+ (i—1)e e+ (i—1)ex

In a same manner with above calculation, we can finally get
ORICRRTS
_ea+e(1+ai—2)
B e+ (i—1)e
h/(i)Q = (a! (1) (1)>
e? + 2el+°‘ (i—1)+e2(i—1)(1+a(i —2)
(e+ (i —1)ex)?
We also can confirm h/(4) is strictly decreasing on i, by showing
(@ —1)e*(2e3 — 22T — 1) + e3%i(i — 1))
(e +ie*)?(e+ (i —1)e>)?

< 0.

R (i+1)2=h(i) =
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B EXTENDED CAUSAL MASK POSITIONAL INFORMATION PATTERN
ANALYSIS

First, Figure [6] displays extension of Figure [2] with additional o values. With higher a value, the
pattern faster saturate rapidly to a constant on j.

Next, we conducted the same experiment using LayerNorm with v/d scaling, instead of ¢, normal-
ization without scaling. The results are shown in Figure[7] Since LayerNorm normalizes vectors
to have a norm of v/d, the inner product after v/d scaling becomes v/d times larger than with £,
normalization. This makes the softmax distribution sharper than in the /5 case, thereby reducing the
influence of positional information introduced by the causal mask. However, simply changing the
scaling factor from v/d to d recovers behavior similar to £, normalization, validating our findings.
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Figure 6: Extended result of Figure 2}
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Figure 7: Simulation of a Transformer without parameter and explicit positional encoding results,
with LayerNorm. We replaced /5 normalization to LayerNorm, and applied v/d scaling (first and

second row) and d scaling (third and fourth row).
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C ATTENTION PATTERN OF A TRAINED TRANSFORMER WITHOUT EXPLICIT
POSITIONAL ENCODING

Layer 1 Layer 2 Layer 3 Layer 4 1.0

N

o
S
N
S
w
s
IS
S

S

o
IS
S

Layer 9 Layer 10 Layer 11 6 Layer 12

°

y

o
-
5
N
S
w
S
N
S

Layer 13 Layer 14 Layer 15 Layer 16

y
y

Layer 17 Layer 18 Layer 19 Layer 20

o

S
w

w

i
%
A

T 00O EEETT 00000 O BT e 000
EEEETTT T 00O EEETT 000 T 000

Layer 21 3 Layer 22

y
y

Figure 8: Attention pattern of a trained Transformer without explicit positional encoding. The plots
are drawn with a same manner to Figure 3]
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Figure 9: The extended result of Figure d with o = 0.5
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Figure 16: Qwen-8B Attention Pattern (Normalized)
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