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Federated Client-Tailored Adapter for
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Abstract—Medical image segmentation in X-ray images is
beneficial for computer-aided diagnosis and lesion localiza-
tion. Existing methods mainly fall into a centralized learning
paradigm, which is inapplicable in the practical medical scenario
that only has access to distributed data islands. Federated
Learning has the potential to offer a distributed solution
but struggles with heavy training instability due to -client-
wise domain heterogeneity (including distribution diversity and
class imbalance). In this paper, we propose a novel Federated
Client-tailored Adapter (FCA) framework for medical image
segmentation, which achieves stable and client-tailored adaptive
segmentation without sharing sensitive local data. Specifically,
the federated adapter stirs universal knowledge in off-the-shelf
medical foundation models to stabilize the federated training
process. In addition, we develop two client-tailored federated
updating strategies that adaptively decompose the adapter into
common and individual components, then globally and indepen-
dently update the parameter groups associated with common
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client-invariant and individual client-specific units, respectively.
They further stabilize the heterogeneous federated learning
process and realize optimal client-tailored instead of sub-optimal
global-compromised segmentation models. Extensive experiments
on three large-scale datasets demonstrate the effectiveness and
superiority of the proposed FCA framework for federated med-
ical segmentation.

Index Terms—Federated learning, parameter-efficient fine-
tuning, medical image segmentation.

I. INTRODUCTION

EDICAL images segmentation plays a critical role in

various medical applications, such as epicardial fat
segmentation [1], brain tumor segmentation [2], facilitating
more accurate diagnoses and reducing the burden on health-
care professionals. Recent progress in deep learning and large
foundation models have significantly advanced the field of
medical image segmentation. The pioneer U-Net [3] utilizing
an encoder-decoder architecture is one of the most famous
approaches in medical image segmentation. Subsequently, its
variants based on various architectures have been designed
to handle medical image segmentation tasks, such as CNN-
based variants [3], [4], [5] and transformer-based variants
[6], [7]. In recent years, numerous large medical foundation
models [8], [9], [10] empowered with powerful capabilities
of cross-domain knowledge understanding, logical reasoning,
and language generation, have also significantly facilitated
the field of medical image segmentation. With the aid of
these approaches, medical image segmentation significantly
improves the accuracy of computer-aid diagnoses and effec-
tively streamlines clinical workflows.

Despite such huge success, existing medical image seg-
mentation methods mainly fall into a centralized learning
paradigm, where medical image data from different sources
(clients) are fully delivered to a central server to collectively
learn a single optimal segmentation model, as shown in
Fig. 1 (a). In practical medical scenarios, we usually only
have limited access to distributed “data islands” where sharing
local medical data among different clients (e.g. hospitals)
is forbidden [11] and only insensitive model weights are
allowed to be shared since various factors such as strict privacy
regulations in hospitals, limited network bandwidth, etc. Thus,
the existing centralized approaches are no longer suitable for
the distributed medical scenario.

Federated Learning (FL) is one typical decentralized train-
ing technique, which collectively learns a global model in
a central server from multiple distributed clients without
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Fig. 1. Conventional learning paradigms for tackling heterogeneous distributed medical data. (a) Centralized learning aggregates all data together to train a
single model. (b) Conventional federated learning trains a global-compromised model for all clients without sharing sensitive local data. (c) The proposed
client-tailored federated learning trains client-customized models for each client without sharing sensitive local data.

sharing the distributed local data [12], [13], [14]. It was
initially introduced in [15], aiming at leveraging distributed
training methodologies to accommodate data from various
users with disparate data scales. Since then, federated learning
has achieved rapid advancements and has been applied to
various fields in computer vision, such as image classification
[16] and image segmentation [17], [18]. When embracing
the federated learning principle, medical image segmentation
has the potential to capitalize on distributed data resources
while upholding privacy regulation. As shown in Fig. 1 (b),
conventional FL first uploads local model parameters in every
edge client to the global model in the central server, and
then each client downloads aggregating weights from the
server, eventually obtaining a global-compromised model for
all clients.

However, distributed medical “data island” typically
exhibits heavy client-wise heterogeneity including class imbal-
ance and distribution diversity (see Fig. 2 (a)). Class imbalance
in medical data is common for abundant reasons such as
different hospitals specializing in different diseases, differ-
ent anatomical regions having different probabilities being
examined in medical imaging equipment, etc. The distribu-
tion diversity is usually induced by diverse data collection
conditions (such as equipment, personnel, and environmental
factors). Our initial experiments indicate that directly applying
conventional FL methods to medical image segmentation
suffers from considerable instability and slow convergence (see
Fig. 2 (b)) since these client-wise heterogeneities. Besides,
the obtained global-compromised model from conventional
FL also deviates too far from the individual optimality of
each client due to such heterogeneity, thus largely suppressing
the advantage of utilizing distributed data for learning facil-
itation. Although there are a few pioneer works attempt to
customize models for different clients, they usually decouple
at coarse-grained levels [14], [19] and allocate parameter
groups [20], [21] statically and binarily, lacking enough adapt-
ability in tackling heterogeneous distributed medical image
segmentation.
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Fig. 2. (a) Client-wise heterogeneity in X-ray chest images consists of com-
mon class imbalance (long-tail distribution) and various distribution diversity.
(b) In heterogeneous distributed scenarios, conventional federated learning
(e.g. FedAvg* [15]) suffers from considerable instability and slow convergence
while our federated client-tailored adapter (FCA-SFU) effectively alleviates
this issue. The transparent lines represent the original experimental results,
while the solid lines represent smoothed results that facilitate visualization.

To move beyond such limitations, we propose a novel
Federated Client-tailored Adapter (FCA) framework to
achieve stable distributed medical segmentation without shar-
ing sensitive local data. Specifically, we first construct
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parameter-efficient federated adapters to distill the client-
invariant universal knowledge in off-the-shelf large medical
foundation models to stabilize heterogeneous distributed
medical image segmentation. In addition, we dynamically
decompose the fine-grained adapter parameters into com-
mon and individual units through binary or probabilistic
decomposition, as shown in Fig. 1 (c). The client-invariant
components undergo a global federated updating while the
client-specific individual components are updated client-
independently. The decomposed federated updating strategy
achieves two advantages: further stabilizing the heterogeneous
federated learning process and realizing optimal client-tailored
segmentation model for each client rather than sub-optimal
global-compromised segmentation model for all clients.

In summary, the main contributions of this paper could be
summarized as follows:

e We identify the training instability issue in conventional
federated learning induced by client-wise heterogeneity
(including class imbalance and distribution diversity) in
medical image segmentation and alleviate it by seeking
optimal client-tailored models rather than a sub-optimal
global-compromised model.

e We propose a Federated Client-tailored Adapter for med-
ical image segmentation, achieving stable and customized
federated segmentation without sharing sensitive local
data. It tightly couples parameter-efficient adapters with
FL, thus effectively distilling the universal (common)
knowledge in off-the-shelf medical foundation models to
stabilize heterogeneous federated learning.

e The innovative Client-tailored Federated Updating strate-
gies adaptively decompose the adapter units into common
and individual components, empowering a novel client-
tailored and parameter-efficient updating and further
stabilizing the heterogeneous federated training process.

e The proposed FCA achieves state-of-the-art performance
on three large-scale datasets, demonstrating its effective-
ness and superiority in tackling heterogeneous distributed
medical image segmentation.

II. RELATED WORKS
A. Medical Image Segmentation

Medical image segmentation is a crucial technique in
healthcare that involves assigning each pixel in medical
images with the corresponding class label. Existing approaches
for medical image segmentation primarily fall into three
paradigms: CNN-based, transformer-based, and hybridized
methods. Specifically, the CNN-based methods, represented
by the well-known U-Net and its variants (such as U-Net++
and nnUNet), [3], [4], [5] typically employ a U-shaped
encoder-decoder architecture with skip connections to pre-
serve detailed anatomical information. These methods have
demonstrated excellent performance on small-scale datasets,
significantly advancing the field of medical image segmenta-
tion. Transformer-based segmentation approaches, represented
by TransUnet [22], leverage the robust long-range informa-
tion acquisition capabilities of Vision Transformers (ViT)
[23], further improving representation capability and driving
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rapid advancements in medical image segmentation. Besides,
VM-UNet [24] integrates Vision-Mamba with the classical
U-Net, further introducing long-distance dependencies while
maintaining linear computational complexity simultaneously.

In past a few years, supervised pre-training and fine-
tuning paradigm was the mainstream methods for various
computer vision tasks [25], [26], [27], [28]. Beyond tradi-
tional supervised learning paradigm, segmentation approaches
that utilize foundation models and Parameter-Efficient Fine-
Tuning (PEFT) techniques have also significantly reshaped
and facilitated the image segmentation field. For instance,
the pioneer Segment Anything Model (SAM) [10] achieved
a notable breakthrough in image segmentation by introducing
a novel prompt-driven approach. The MedSAM [29] achieves
high-precision segmentation across various data modalities
and segmentation targets. The nnSAM [30] combines the
powerful capability of representation learning from SAM
with the adaptive configuration ability from classical nnUNet
[4], realizing effective dataset-specific representation learning
for medical image segmentation. Despite such huge success,
existing segmentation methods mainly fall into a centralized
learning paradigm [31], [32] and do not perform well in
distributed medical scenarios.

B. Federated Learning

Benefiting from the promising ability to leverage distributed
data while preserving privacy, federated learning has attracted
considerable attention in recent years. FedAvg [15], one
of the pioneering works in Federated Learning, offers the
most fundamental framework to this paradigm. It employs
a simple weighted averaging strategy to update a global
model in the central server. However, recent studies have
highlighted the phenomenon of client drift induced by client-
wise heterogeneity [18], [33], resulting in inconsistency issues
regarding optimal models for each client. Therefore, some
improvements have been developed to alleviate the client-wise
non-iid challenge. The FedProx [34], FedDC [33], FedSM
[35], and FedSeg [18] reform the federated aggregation strat-
egy or loss functions to seek more matchable global or local
models. FedNH [36] and Fed-CBS [37] alleviate client-wise
class imbalance by a client sampling strategy to generate
grouped class-balanced datasets and utilizing the uniformity
and semantics of class prototypes, receptively. Scaffold [38],
and FedNP [39] alleviate non-iid data issues by deliberately
handling distribution diversity in distributed datasets. FedST
[40] and FedA3I [41] enhance the contribution of high-quality
local models during aggregation, aiming to achieve superior
aggregated models. FSAR [42] divides the topology connec-
tion in the graph neural network into global and local parts,
realizing adaptive federated action recognition. FedNH [36]
improves the client drift phenomenon during aggregation by
enhancing the generalization of local models. Recently, there
are some pioneer works attempt to introduce large foundation
models into classical federated learning [43], [44], [45] but
without client-tailored consideration. In our work, we develop
a novel client-tailored federated updating strategy that adap-
tive and fine-grained decomposes global client-invariant and
local client-specific units, realizing optimal client-customized
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models for each client rather than a sub-optimal global-
compromised model for all clients.

III. METHOD
A. Preliminary

1) Conventional Federated Learning: We first introduce a
vanilla baseline under the umbrella of conventional federated
learning (FL) to demonstrate some preliminary knowledge,
illustrated in Fig. 1 (b). Consider a distributed medical scenario
with N edge clients and one central server, where each client
holds some private data that cannot be shared among clients
and the central server. During training, all clients collabo-
ratively update a shared segmentation model in the central
server. For each global updating round, every client trains its
latest local model received from the server for N, epochs based
on its private data. Then, each local client sends the updated
parameters to the central server for aggregating and updating
the global segmentation model. The updated global model
is subsequently distributed to each local client for parameter
replacement and waiting for the next updating round. As a
result, conventional FL usually leads to a global-compromised
segmentation model for all clients rather than client-tailored
segmentation models for each client, and each client utilizes
the same model during the reference period. Moreover, con-
ventional FL also encounters considerable instability and slow
convergence issues induced by client-wise heterogeneity (class
imbalance and distribution diversity) in distributed medical
data (see Fig. 2 (a) for details). In this paper, we proposed
a Federated Client-tailored Adapter (FCA) for medical image
segmentation to address these issues.

2) Medical Foundation Models: In the last few years,
large medical foundation models (MFMs) have significantly
advanced various tasks in the medical image processing field.
For example, one of the most famous MFMs is SAM-Med2D
[10], which fine-tunes conventional segmentation model SAM
[46] via Parameter-Efficient Fine-Tuning (PEFT) techniques
of adapter learning and prompt learning [47]. Most MFMs
for medical image segmentation (such as MedSAM [29] and
Med-SA [48]) usually follow a similar pipeline that includes
a transformer-based image encoder, a transformer-based mask
decoder, a prompt generator, and a prompt encoder. The
encoder layers are implemented with a Vision Transformer
(ViT) that extracts image features through multiple stacked
transformer layers. A prompt encoder encodes the information
of prompt hints generated from text, points, or boxes. Finally,
the mask decoder integrates the representations from the
image encoder and the prompt encoder to generate corre-
sponding segmentation masks. For simplicity, we take the
famous SAM-Med2D [10] as an example to demonstrate
our FCA framework in the method section and validate its
generalization ability in the experimental section (Section IV).
The off-the-shelf MFMs inherently contain abundant general
medical knowledge because of their huge model parameters
and massive training data. Therefore, it is potential to distill
the client-invariant universal knowledge from off-the-shelf
MFMs as one effective measure to stabilize the non-centralized
medical image segmentation.
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B. Overview

The overview pipeline of our Federated Client-tailored
Adapter (FCA) for tackling heterogeneous medical image
segmentation is shown in Fig. 3 (a). The basic segmentation
model in each local client consists of a large medical founda-
tion model (specified as the SAM-Med2D in Fig. 3 (a)) and
inserted adapter layers in each transformer layer of the MFMs
encoder. Most layers of the MFMs encoder are frozen, which
contain rich prior knowledge (including both client-specific
and client-invariant knowledge) inherited from off-the-shelf
MFMs. Only the lightweight adapter layers, prompt encoder,
and mask decoder with a few learnable parameters will go
through parameter-efficient fine-tuning. As a result, each local
client can efficiently distill client-specific dark knowledge in
the MFMs to facilitate its client-tailored knowledge learning
process. They also stir client-invariant general knowledge to
benefit and stabilize the sequential client-invariant federated
updating process.

Then, the central server and all edge clients fed with the
above basic segmentation models conduct federated learn-
ing with heterogeneous distributed medical “data islands”.
If directly applying conventional federated updating strategy
(Fig. 1 (b)), it could only obtain a global-compromised seg-
mentation model and also encounters considerable instability
and slow convergence. Therefore, we develop a Global-local
decompose mechanism (GLD) to adaptively decompose each
adaptor into client-invariant global units and client-specific
local units. Thereafter, the proposed client-tailored federated
updating strategies are explored to binary or smoothly to
update the adapters in the local clients and central server.
As a result, our FCA framework could obtain more optimal
client-tailored segmentation models for each client rather than
a sub-optimal global-compromised segmentation model for all
clients. Moreover, our client-tailored federated updating strate-
gies also alleviate training instability and slow convergence
issues during heterogeneous federated learning.

C. Adaptive Adaptor Decomposition

As shown in Fig. 3 (b), a typical adapter (borrowed from
[10]) for large MFMs usually consists of a series of fully
connected (FC) and convolutional (Conv) layers. We append
an auxiliary Global-local Decomposer (GLD) branch to each
Conv and FC layer to adaptively decompose the adaptor into
global and local units, which are denoted as GLD¢,,, and
GLDpc in Fig. 3 (b). The Global-local Decomposer aims to
decompose the units (channel for Conv layers or neuron for FC
layers) in each adapter layer into common client-invariant and
individual client-specific components. The parameters group
associated with global and local units will be updated globally
and locally thereafter. Taking the GLDc¢,,, as an example, we
describe its implementation details in Fig. 3 (c). The GLD¢y,
comprises a lightweight client discriminator that distinguishes
which client (domain) the input representation comes from.
Specifically, the side input representation F"(i) € RI*WxC
corresponding sample i first goes through a global average
pooling (GAP) layer along the spatial dimensions to obtain a
channel-wised presentation F' (i) € RC, where C is the channel
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Fig. 3. (a) Overview of the proposed federated client-tailored adapter (FCA) framework. (b) Detailed structure of the client-adaptive adapter. (c) The mechanism

of the Global-local decomposer (GLD).

number of the feature map. Then, we construct a pretext
task called client discrimination to dynamically distinguish the
representation source and determine the individual unit con-
tribution during each global communication round. The client
discriminator takes in representation from different clients
and will be trained to distinguish the representation source.
Given an input representation F™(i) of sample i from one
specific client, the client discriminator yields a classification
probability P(y,(i)|F 6)) voting it sources from the k-th client.
The train loss for this pretext task is defined as follows,

1 Ny K .
£y = 57 203 L log WHGAPGFL (D)) (1)
i=1 j=1

where N; and K are respectively the numbers of samples and
clients, and 1 denotes the indicator function. To ensure the
auxiliary branch does not affect the original training process
of the main branch in Fig. 3 (b), we elaborately insert a
Gradient Reversal Layer (GRL) before the client discriminator
to truncate the gradients from the above discrimination loss.
Taking one convolutional layer in the MFMs adapter as an
example, we treat each channel as a unit and let U = C.
Intuitively, the channels contributing more to client prediction
contain more client-specific information while those contribut-
ing less may contain more client-invariant global information.
Thus, we first quantify the contribution score Su,k(i) of each
channel (unit) u utilized for determining an input feature
F™(i) corresponding to sample i is sourced from client k

via its weighted activation and then weight it by predicted
client probability P(3%|F"(i)). The whole process of computing
weighted the contribu;ion score could be formulated as S, 4 ;(i)
=F Z(i) . Wik - P(3|F"(i)). For brevity, we rewrite the process
in matrix form, i.e.

8(i) = broadcast(F*(i)) © W¢ )

where S(i) € RU*K the function broadcast denotes element
duplicating for shape matching, W¢ € RU*X is the classifier
weight of the GLD (its various elements can represent the
contribution level of each unit judged as a certain category),
and © is element-wised multiplication. (i) represents the
contribution of each unit to determining whether the entire
feature belongs to a certain category. After weighing the
previous contribution score of each unit with the predicted
domain probability P(§/|F"(i)) € RX corresponding to the
input feature, we obtain the weighted contribution score matrix
S(i) corresponding sample i,

(i) = 8G) ® PG'IF" (i) 3)

where the weighted contribution score S(i) € RVXX*K and
® represents the outer product. Finally, we conduct a sample-
wise average to obtain the final matrix of contribution score,
ie. S = Zfi’l S(i), where N; is the number of samples. To
maintain brevity, we will exclude the sample index i for all
related matrices from here unless explicitly stated.
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As for the implementation of a Global-local Decomposer for
FC layers (GLDpc), we could treat it as a special convolution
layer with a kernel of 1 x 1. Then, the GLDpc could be
implemented similar as the GLDc,,,. Eventually, the final
contribution score S will be delivered to the central server
and then broadcast to every client for global and local unit
discrimination and client-tailored federated updating.

D. Client-Tailored Federated Updating

In this section, we split the adapter units into com-
mon client-invariant and individual client-specific components
according to the weighted contribution score S. Then, we
conduct global updating for common client-invariant units
and independent updating for individual client-specific units.
Specifically, we first establish a model copy in the cen-
tral server including all components of each local client
in Fig. 3 (a) except for the insertion of the client-tailored
adapters. Then, we devise two client-tailored federated updat-
ing strategies to conduct client-tailored federated learning,
including binary federated updating (BFU) and smooth fed-
erated updating (SFU). The SFU is conceptually built upon
BFU and could be treated as a generalized version of BFU.
Our experiments indicate that both strategies are very effective
in alleviating training instability and slow convergence issues
during heterogeneous federated learning, among which the
generalized strategy SFU achieves better performance. The
detailed algorithm is shown in Algorithm 1. We will introduce
the implementation details below.

1) Binary Federated Updating Strategy: In each round,
the Binary Federated Updating Strategy (BFU) binary dis-
tinguishes the adapter units in each local model into
client-specific local parts and client-invariant global parts
(Fig. 4 (a)). Then, the parameter group corresponding to
client-invariant global parts will communicate with the central
server for joint global updating while the parameter group
corresponding to client-specific local parts only be updated
locally. The weighted contribution score S contains the con-
tribution of each unit for client discrimination and serves as
a good indicator to determine whether the units should be
treated locally or globally. Intuitively, the adapter units that
contribute more to client prediction likely contain more client-
specific information. In contrast, the units that contribute less
contain more client-invariant global information. To determine
whether the parameter group in a unit should be treated
globally or locally, we examine the uniformity of its weighted
contribution scores for client discrimination. If the weighted
contribution scores are similar across all clients, it suggests
that the parameter group in this unit is client-specific and
thus can be considered a global parameter. In contrast, if
there are significant score differences across clients, it indicates
that the parameter group in the unit may be domain-specific
and should be treated locally. Therefore, we quantify the
client-wise uniformity of the weighted contribution score
by computing the normalized entropy of score distribution,
ie.

_ Entropy(Sux) Zle Sukj X 10gy Sk
k= EntropyU(1, K)) - log, K

“4)

u
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where D, ; represents the diversity degree of score distribution

Algorithm 1 Client-Tailored Federated Updating (FCA)
Input: The number of input samples N;, the number of clients
K, the learnable parameters of encoders in each client W,
the unit number in a adapter layer U
Output: Client-tailored adaptor for every client W7 *1(6, )
fort=1t0 T do
/| Update local models and get contribution score S
for k=1to K do
W 6,6) < Wi6,6) - n v (W})(6,6)
/| 8, 8 denotes global and local updating parameters
S(i) « broadcast(F(i)) © W¢ ® P(3|F"(i))
/Eq. 2 & Eq. 3
S — &30S0
end for
/| Binary Federated Updating Strategy (BFU)
if apply BFU Strategy then
for u, k = (1, IK) to (U,K) do
Zj:l Su,k,j X 10g2 Su,k,j

D, Eq. 4
k< log, K / Eq
M 1 Du,k >0 // Ea. 5
uk €< .
TN D<s T
end for

[/ Integration(W'(6), W5(8), - - - , W'(6))
for u,k = (1,1) to (U, K) do

if M,; == 1 then
Z/Ile M, x W,

With S M vk 1 Eq. 6
k=1 u,

end if
end for
end if
/] Smooth Federated Updating Strategy (SFU)
if apply SFU Strategy then
/ Integration(W'(6,0), W5(6,0), - -- , W'(6,0))
for u, j,=(1,1) to U,K do

K t
Wz+1 _ Zk:l Sll»k:j X Wu,k

u,j K
2 et Sukj
end for

end if
end for

N Eq. 7

for the unit u of the k-th client, and the U/ represents the uni-
form distribution. The log, K is the theoretical upper bound for
the entropy of client-wise score distribution when the distribu-
tion is a standard uniform distribution (i.e. Entropy(U(1, K)) =
log, K). As a result, the larger the diversity degree of a
unit, its distribution is closer to a uniform distribution, and
its parameter group is more likely to be global. Therefore,
we could conveniently distinguish whether each adapter unit
is global (client-invariant) or local (client-specific) through
binarizing D, ; with a threshold ¢ (see Fig. 4 (a) for details). If
D, for a unit u of client k is greater than d, the unit is treated
as a global unit. Otherwise, if D, is less than ¢, the unit is
treated as a local unit. The detailed formula is as follows:

1, Du>6 (Global Unir)

Mu,k = .
0, Dur<d (Local Unit)

(&)
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(b) Smooth Federated Updating Strategy (SFU)

Fig. 4. (a) The binary federated updating (BFU) strategy binary distinguishes
the adapter units in each client into local client-specific and global client-
invariant units and respectively updates them locally and globally. (b) The
smooth federated updating (SFU) strategy probabilistically distributes each
unit to all clients and thus each unit probabilistically participates in the
federated parameter updating of all clients.

where the mask M, ; denotes whether an adapter unit u of the
k-th client is global or not.

As shown in Algorithm 1, our binary federated updating
(BFU) strategy applies different updating processes for the
local and global units during federated updating. As for
global units (M, = 1) in a particular client, their parameter
group will be updated as conventional FL. Specifically, the
parameters in a local client will be uploaded to the central
server and averaged with corresponding parameters from other
clients. Then, the average value will be sent back to the local
client for updating. The updating process for global units could
be formulated as follows:

K t
Zk Mlhk X Wu,k

ZkK Mu,k

where ¢ represents the current updating round, and 7+ 1 repre-
sents next round. In contrast, if the unit is identified as a local
unit (M, ; = 0), its parameter group is only updated locally
and does not undergo any global updating process. Eventu-
ally, our BFS advances the conventional federated learning
approaches by enabling binary parameter categorization (i.e.
client-invariant global parameters and client-specific local
parameters), then realizing client-tailored federated learning
for heterogeneous medical image segmentation. The detailed
updating process of the proposed binary federated updating
(BFU) strategy is shown in Algorithm 1.

2) Smooth Federated Updating Strategy: Although the
above BFU strategy already realizes client-tailored federated

Wit = (6)
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learning through binary parameter categorization, it is some-
what rigid and not good enough for complex scenarios where
parameters simultaneously encapsulate complicated informa-
tion from multiple client domains. To solve such limitation,
we further proposed a Smooth Federated Updating (SFU)
strategy. It is conceptually built upon the above BFU and
could be treated as a more generalized version of BFU because
it utilizes a smoother parameter association substituting the
binary parameter categorization. Specifically, unlike the binary
strategy that assigns each unit exclusively to be local or global,
our smooth federated updating strategy considers each unit
probabilistically (rather than exclusively) belonging to a client.
As shown in Fig. 4 (b), we exploit the weighted contribution
score of each unit on different clients to weight the parameter
group of each unit on each client, generating a unit-wise
weighted model for each client. Then, each client exploits the
weighted models of all clients to update itself. Specifically,
when updating the parameter group wa- of unit # on client j
at updating round ¢, we use the probabilistic contribution score
for every client to weight the parameter updating from every

client k, i.e. p
t
Dok Sukj X Wi

Sk Suk

As a result, our SFU incorporates the weighted contribution
score regarding every client as smoothly adjusting weights
for federated aggregating, which enables a more adaptive
and dynamic updating of model parameters and realizes
smooth client-tailored segmentation for each client. It allows
the parameter update in a local client contributing to the
global aggregating in proportion to its relevance to other
clients.

In summary, our BFU strategy offers a straightforward
parameter categorization pipeline for heterogeneous federated
learning. The SFU further leverages probabilistic weighting
based on client-specific scores, providing a more nuanced
and flexible mechanism for parameter management during
federated updating, significantly enhancing the performance
of heterogeneous federated segmentation.

t+1 _
W, =

)

IV. EXPERIMENTS
A. Datasets

1) CXRS-HG Dataset: The CXRS-HG dataset is a het-
erogeneous distributed dataset constructed from the Chest
X-ray Segmentation (CXRS) dataset [53]. Original CXRS
is an in-house dataset comprising 1250 chest X-ray images
of 30 different anatomical structures (including 24 ribs, 2
clavicles, 2 scapulae, and 2 lungs) for medical image seg-
mentation, and each image is annotated with 30 anatomical
segmentation masks. We reform the centralized CXRS dataset
into a distributed dataset CXRS-HG containing client-wise
heterogeneity. Following the classical protocol for federated
learning in [54], we first distribute the image samples to
distributed clients following a standard Dirichlet distribution
to simulate the heterogeneity of class imbalance in a practical
medical scenario (as shown in Fig. 2 (a). Then, the distributed
X-ray images in different local clients will undergo different
image transformation strategies (original images for client;,
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3 x 3 mean blur filtering for client,, half down-sampling and
then restoring resolution for client;) to simulate the hetero-
geneity induced by various environmental factors (such as
surroundings and imaging devices). As a result, the distributed
CXRS-HG contains abundant client-wise heterogeneity includ-
ing class imbalance and distribution diversity which is highly
similar to non-centralized medical segmentation scenarios.
Following [40], [55], we employ the mean Dice Similarity
Coeflicient (mDice) as the metric to evaluate segmentation
performance on the CXRS-HG dataset, which is the class-wise
mean of the Dice Similarity Coefficient for each class.

2) HLS Dataset: To examine the proposed FCA frame-
work on real-world distributed medical dataset, we exploit
several public datasets released by different institutes for lung
segmentation in X-ray images, forming a heterogeneous lung
segmentation dataset (referred to as HLS). The HLS dataset
consists of four independent subsets, including COVID-19
x-ray dataset [56], covid-chestxray dataset [57], QaTa-COV19
dataset [58], and COVID-19 Chest X-ray Segmentation dataset
[59]. Specifically, the COVID-19 X-ray dataset [56] con-
tains 6500 images of chest X-rays with pixel-level polygonal
lung segmentation masks, among which 517 cases are from
COVID-19 patients. The COVID-19 covid-chestxray dataset
[57] contains 542 chest X-ray and CT images from COVID-19
patients or other viral and bacterial pneumonia (MERS, SARS,
and ARDS) patients. The QaTa-COV19 dataset [58] consists
of 9258 COVID-19 chest X-ray images collected by Qatar
University and Tampere University. The COVID-19 Chest
X-ray Segmentation [59] consists of a collection of a total
of 100 Chest X-ray images from the Novel Coronavirus
(COVID-19) cases. We assign each subset of HLS to different
clients forming multiple “data islands” containing real hetero-
geneous environmental factors (such as races, surroundings,
and imaging devices). The standard mDice serves as the metric
to evaluate the segmentation performance on this dataset.

3) AMD-SD-HG: The AMD-SD [60] dataset contains 3049
B-scan images from 138 patients with segmentation categories
of subretinal effusion, subretinal effusion, elliptical continu-
ity, subretinal hyperreflective material, and pigment epithe-
lium detachment. Similar to the above CXRS-HG dataset,
we transform it into a heterogeneous distributed dataset
AMD-SD-HG with the same transformation strategies to sim-
ulate client-wise heterogeneity in practical medical scenarios.
We use the standard mDice metric to evaluate the segmentation
performance on this dataset.

B. Implementation Details

The threshold ¢ for score binarization in our BFU strategy
(Eq. 5) is empirically set as 0.25. We employ the SAM-Med2D
[10] as an example of MFMs in Fig. 3 (a) to examine our
FCA framework if not specially mentioned. The layer number
N in the image encoder (Fig. 3 (a)) of SAM-Med2D is set
as 12. As for the training details, the standard Binary Cross-
Entropy (BCE) loss [3] is applied for the segmentation head,
and the Cross-Entropy loss is applied to optimize the client
discriminator. During federated learning, the global model in
the central server is updated in total for 7 = 60 rounds. During
each global round, the local clients are individually trained for
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N, local epochs (N, = 5 for the CXRS-HG dataset and N, = 3
for the HLS dataset), then the updated local parameters will
be uploaded to the central server for sequential integration,
which is similar to [15]. For fair comparisons, this setup is
applied to the proposed FCA and all comparisons. All the
models are trained via the Adam optimizer with a learning
rate of 0.001 and a weight decay of 0.0001 on 4 NVIDIA
RTX 3090 graphics cards.

C. Comparison With State-of-the-Art Methods

To validate the effectiveness and superiority of the proposed
federated client-tailored adapter (FCA) framework,we conduct
comparison experiments on three large-scale heterogeneous
distributed datasets for medical segmentation, including the
CXRS-HG, HLS and AMD-SD-HG datasets. We report the
mDice on three local clients and the average mDice across all
clients for comprehensive performance comparison.

We first compare our FCA framework with other state-
of-the-art FL methods, including the FedSeg [18], FedProx
[34], HarmoFL [49], IOP-FL [17], FedA3I [41], FedCross
[51], IOP-FL [17], PerFedAvg [50], and MAP [52]. For
fair comparison, we further re-implemented several enhanced
variants by enhancing them with the same MFMs (i.e.
SAM-Med2D) backbone, then training with the same protocols
as the proposed method. As shown in Table I, the re-
implemented MFMs enhanced variants perform significantly
better than those without MFMs since stirring universal prior
knowledge in MFMs helps to improve and stabilize hetero-
geneous federated learning (see Fig. 1 (b)). In addition, our
FCA respectively outperforms the second-best method [17]
equipped with the same MFMs by large margins of 3.51%,
1.65% on the CXRS-HG, HLS datasets mainly attributed to the
following reasons: (1) Unlike non-tailored FL. methods (i.e.,
FedAvg, FedProx), our FCA allows each client to undergo
customized federated updating, thus enabling the optimal
tailored model for each client. (2) Although the IOP-FL [17],
FedCross [51], MAP [52], and PerFedAvg [50] also attempt to
customize federated models for local clients, they decouple at
coarse-grained model or module levels [14], [19] and allocate
parameter groups [20], [21] statically, lacking enough adapt-
ability. While our FCA framework achieves better performance
via dynamic and fine-grained parameter decompose. (3) Our
FCA framework equipped with the smooth federated updat-
ing strategy (FCA-SFU) performs better than that equipped
with the binary federated updating strategy (FCA-BFU). It
is because our SFU probabilistically distributes the adapter
units to multiple clients, thus achieving more fine-grained and
adaptive federated updating.

To further validate the generalization across different scales
and modalities, we compared our FCA framework with
several representative methods on the large-scale AMD-
SD-HG dataset, including two baselines (FedAvg, FedAvg*
[15]), a personalized approach (FedCross* [51]), a decou-
pling approach (MAP* [52]), and the existing state-of-the-art
approach (IOP-FL* [17]). As shown in Table II, our FCA
framework consistently outperforms these approaches with
large margins. Moreover, the standard deviation (STD) of
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TABLE I
COMPARING WITH THE STATE-OF-THE-ART AND BASELINE METHODS REGARDING MDICE ON THE CXRS-HG AND HLS DATASETS

Methods CXRS-HG HLS |
Average | Client; Client; Client; | Average | Client; Client; Clients
FedAvg [15] (baselineq) 36.94 35.82 37.71 37.29 58.41 58.39 58.80 58.04
FedProx [34] 37.74 37.40 37.97 37.85 57.20 56.81 57.47 57.32
HarmoFL [49] 42.85 42.73 42.97 42.85 51.13 50.27 51.52 51.60
FedSeg [18] 40.35 38.42 41.56 41.07 81.72 79.13 82.69 83.34
FedA3I [41] 41.99 53.75 34.02 38.22 81.58 80.98 83.30 80.48
FedAvg* [15] (baselines) 60.64 60.58 60.69 60.67 90.79 88.76 90.87 92.75
FedProx* [34] 61.06 61.27 61.48 60.43 91.06 88.80 91.38 92.84
PerFedAvg* [50] 61.35 61.11 61.39 61.56 91.37 89.95 91.28 92.90
FedCross* [51] 61.44 61.09 61.75 61.29 91.03 89.21 91.01 92.87
MAP* [52] 61.54 61.22 61.39 62.01 91.49 90.18 91.54 92.75
IOP-FL* [17] 62.00 61.21 61.86 61.69 91.68 90.34 91.96 92.69
FCA-BFU (ours) 63.41 63.31 63.20 63.15 92.12 90.60 92.26 93.50
FCA-SFU (ours) 64.15 64.08 64.47 63.90 92.44 90.82 92.52 93.98
* Our implementation of MFMs enhanced variants of conventional FL methods.
Methods client, client, client;
FedAvg

(baseliner)

FedAvg*
(baseline»)

FCA-SFU
(ours)

Ground-Truth

Fig. 5. Visualization comparison of heterogeneous federated segmentation results on the CXRS-HG dataset.

performance across clients also indirectly reflects the person-
alize (client-tailored) degree in distributed clients. As shown
in Table II, our FCA method achieve high diversity, which
effectively validates the effectiveness of our client-tailored
updating strategies. We note that the high STD values obtained
from FedAvg [15] and FedAvg* [15] methods should owe to
bad global compromise rather than the client-tailored updating
since they are global-compromised not client-tailored feder-
ated learning methods.

In addition, we qualitatively compare the segmentation
masks obtained from our FCA-SFU, the FedAvg* (the MFMs
enhanced variant of the FedAvg [15]), and the original FedAvg
[15] for effectiveness validation. As shown in Fig. 5 and

Fig. 6, our FCA-SFU achieves more precision segmentation
than the FedAvg* variant on every local client. Besides, the
difficulty of segmenting the same anatomical structure differs
across clients (e.g. the boxed areas in Fig. 5) since the com-
plicated client-wise heterogeneity. Conventional FL. methods
like the FedAvg* variant only obtain a global-compromised
model for all clients that leads to a sub-optimal compromised
segmentation. In contrast, our FCA-SFU customizes a local
model for each client that achieves an optimal client-tailored
segmentation for each client. In Fig. 6, some clients (such
as client;) require simultaneously segmenting out the shadow
area that overlapped by the mediastinum and right lung (see
corresponding ground-truth annotations) while other clients
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Methods client,

client, clients

FedAvg
(baseliner)

FedAvg*
(baseline:2)

FCA-SFU
(ours)

Ground-Truth

Fig. 6. Visualization comparison of heterogeneous federated segmentation results on the HLS dataset.

TABLE I

COMPARING WITH THE STATE-OF-THE-ART AND BASELINE METHODS
REGARDING MDICE ON THE AMD-SD-HG DATASET

TABLE III

EXPERIMENTAL VALIDATION OF ALLEVIATING VARIOUS CLIENT-WISE
HETEROGENEITY ON THE CXRS-HG DATASET

Methods Client; Client, Clients | Average | STD Heterogeneity FedAvg* [15] (baselinez) FCA-SFU (ours)
FedAvg [15] (baseline;) | 44.25 46.03  45.1 45.12 [ 0.7269 11D 69.70 70.89
FedAvg* [15] (baselinez) | 59.55 6142  60.31 60.42 |0.7679 Class Imbalance 61.78 64.27
FedCross* [51] 60.56 61.01 60.56 60.71 |0.2121 Distribution Diversity 62.91 64.05
MAP* [52] 60.96 61.65 60.69 61.1 |0.4042 Imbalance+Diversity 60.64 64.15
IOP-FL* [17] 61.24 6188 61.13 61.41 |0.3307

FCA-BFU (ours) 62.15 63.12 62.41 62.56 | 0.4100

FCA-SFU (ours) 62.5 6447 63.24 | 63.40 |0.8125

* Our implementation of MFMs enhanced variants.

(client,, client;) do not need to segment this area. Since the
FedAvg* variant only has a global-compromised segmentation
model, the client; and client; mis-segmented out this shadow
area. In contrast, our FCA-SFU was not affected by this
annotation heterogeneity demonstrating the superiority and
effectiveness of our client-tailored adapter framework.

D. Ablation Studies

To examine the effectiveness of each component, we com-
pare our FCA with a series of baselines and variants, the main
results already contained in Table I. Specifically, the FCA-BFU
and FCA-SFU respectively are the proposed Federated Client-
tailored Adapter (FCA) equipped with our binary (BFU)
and smooth (SFU) federated updating strategies. FedAvg*
[15] (baseline;) is a baseline constructed with the same
network (i.e. SAM-Med2D) as our FCA except it utilizes a

conventional federated updating strategy FedAvg [15]. The
FedAvg [15] (baseline;) is the vanilla FedAvg baseline without
assistance from off-the-shelf MFMs. The results of baseline;
and baseline, indicate that the prior knowledge contained
in off-the-shelf MFMs indeed benefits a lot for improving
segmentation performance (Table I) and stabilizing the het-
erogeneous federated updating (see Fig. 1 (b)). Eventually,
our client-tailored adapter FCA-SFU further improves the
individual performance of each client and sets a new start-
of-art result on both CXRS-HG and HLS datasets.

E. Experimental Validation of Alleviating Heterogeneity

In this section, we further examine the capability of our FCA
for alleviating various client-wise heterogeneity and provid-
ing client-tailored segmentation. Since the CXRS-HG dataset
contains two kinds of heterogeneity including class imbalance
and distribution diversity, we split them alone and construct
corresponding dataset variants to train two variant models.
As shown in Table III, our FCA-SFU significantly boosts
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TABLE IV

EXPERIMENTAL VALIDATION OF GENERALIZATION ABILITY FOR
DIFFERENT MFMS ON THE CXRS-HG DATASET

Medical Foundation Models (MFMs) Client, Average
FedAvg [15] without MFMs (baseline) 35.82  36.94
FedAvg* [15] with H-SAM [61] 59.13  58.36
FCA-SFU with H-SAM [61] (ours) 62.51 62.15
FedAvg* [15] with Med-SA [48] 47.10  45.92
FCA-SFU with Med-SA [48] (ours) 5391 51.53
FedAvg* [15] with SAM-Med2D [10] (baselinez) | 60.69  60.64
FCA-SFU with SAM-Med2D [10] (ours) 64.47 64.15

* Our implementation of corresponding MFMs enhanced variants.

TABLE V

COMPARISON AND ANALYSIS OF COMPUTATIONAL EFFICIENCY
ON THE CXRS-HG DATASET

Methods #Params (M) #Time (h)
FedAvg* (baselines) 180.50 36.14
FedCross* 180.50 108.39
IOP-FL* 180.50 39.61
FCA-SFU* (ours) 180.59 36.64

* Our implementation of SAM-Med2D enhanced variants.

performance (mDice) from 61.78 to 64.27 and from 62.91
to 64.05 regarding heterogeneity types of class imbalance and
distribution diversity. When dealing with the more complicated
heterogeneity mixture (Imbalance+Diversity), the performance
drop from our FCA-SFU is negligible while the drop from
FedAvg* [15] is prominent. This difference further validates
that our FCA-SFU is good at learning client-tailored models
for each client and effectively alleviating various heterogeneity
existing in distributed medical image segmentation.

F. Experimental Validation of MFMs Generalization

In this section, we validate that our federated client-tailored
adapter framework is generalizable to various MFMs consist-
ing of transformers. As shown in Table IV, we examine our
FCA-SFU on three medical foundation models including the
SAM-Med2D [10], Med-SA [8] and H-SAM [61]. We observe
that our FCA-SFU shows consistent improvements over the
conventional FL baseline method FedAvg* [15], indicating
the generalization ability of the proposed FCA framework for
various MFMs.

G. Comparison and Analysis of Computational Efficiency

In this section, we compare and analyze the computational
efficiency by measuring the model parameters (#Params) and
convergence time (#Time), respectively. For fair comparisons,
all the methods are implemented and enhanced by the same
MFMs (SAM-Med2D [10]). Besides, since all compared
methods nearly involve the same parameter transmission and
collection process, the model parameters (#Params) for each
local model copy could also be treated as an indirect metric
to evaluate the communication overhead during federated
learning. As shown in Table V, our FCA-SFU achieves sig-
nificant performance improvement with a slight increase in
model parameters and communication overhead. Moreover, the
convergence speed of our FCA-SFU is much faster than other
state-of-the-art methods.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

V. CONCLUSION

This paper introduces a generalizable framework Federated
Adaptive Adapter (FCA) for heterogeneous medical image
segmentation. We identify the training instability issue induced
by client-wise heterogeneity in the conventional federated
learning paradigm and propose two measures to alleviate
it. One measure distills the universal knowledge in off-the-
shelf medical foundation models to stabilize heterogeneous
federated learning via the parameter-efficient adapter. Another
measure decomposes the adapter units in each client into
client-specific and client-invariant parts and develops different
federated updating strategies for them. This measure further
stabilizes the heterogeneous federated training process and
realizes client-tailor federated learning at the same time.
Eventually, the FCA achieves state-of-the-art performance on
three datasets for heterogeneous medical image segmentation.
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