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Abstract001

Large language models have become crucial002
across various domains, yet it comes at the ex-003
pense of considerable computational and mem-004
ory resources. Model pruning refines deep005
learning models by excising redundant ele-006
ments. However, current pruning methods of-007
ten fail to substantially achieve end-to-end ac-008
celeration. In this paper, we present MI-PRUN,009
a novel approach that uses mutual informa-010
tion to identify low-impact blocks for efficient011
model pruning. Furthermore, we incorporate012
the Data Processing Inequality to ensure the013
preservation of contiguous blocks essential for014
overall model performance, avoiding their acci-015
dental pruning. Concurrently, we develop the016
Fast-Block-Select algorithm to enhance the effi-017
ciency of the pruning process. Comprehensive018
experiments show that our proposed method019
surpasses the previous state-of-the-art (SOTA)020
model pruning methods.021

1 Introduction022

Recently, Large Language models (LLMs) have023

made significant strides, showing notable language024

skills in both comprehension and creation (Brown025

et al., 2020; Touvron et al., 2023a; Chiang et al.,026

2023). However, as the scale of models expands,027

the challenges faced in practical deployment also028

increase. The large size and computational require-029

ments of the models lead to high deployment costs030

and inference delays. As shown in Figure 1, the031

growth in the size of large language models has be-032

come a striking phenomenon, a trend that not only033

captures attention but also sparks profound con-034

templation and challenges. The LLaMA models035

have experienced a remarkable surge in size, soar-036

ing from 7B to 65B, and potentially even greater037

heights. These enormous leaps in numbers are038

not only impressive but also deeply reveal that as039

the models grow in size, the complexity of their040

deployment and application in practical scenarios041

also increases.042

Figure 1: The trend of growth in the size of large
language models.

Model pruning is essential for enhancing the ef- 043

ficiency of deep learning models by eliminating 044

redundant weights or neurons without compromis- 045

ing performance. While the benefits of pruning 046

are clear, applying it to large language models still 047

presents several challenges (Ma et al., 2023; Ashk- 048

boos et al., 2024). There are four main key points: 049

1) Complexity in Weight Selection: Many pruning 050

methods rely on intricate gradient analysis (Li et al., 051

2023), which is both resource-intensive and time- 052

consuming. 2) Challenges in Hardware Utiliza- 053

tion: The sparsity introduced by unstructured prun- 054

ing complicates the efficient use of hardware (Han 055

et al., 2015a). 3) Necessity for Model Fine-tuning: 056

Pruning can impact model accuracy, often requir- 057

ing fine-tuning to regain pre-pruning levels of preci- 058

sion, which is particularly costly for large language 059

models (Han et al., 2015b). 4) Overemphasis on 060

Model Width Reduction: Some approaches focus 061

primarily on reducing the model’s width by pruning 062

certain connections within the network (Fang et al., 063

2023), potentially neglecting the optimization of 064

parameters in depth and other dimensions (Men 065

et al., 2024; Yang et al., 2024; Kim et al., 2024; 066

Song et al., 2024). Addressing these challenges is 067

crucial for advancing pruning techniques in large 068

language models. 069

Recently, some studies begin to use mutual in- 070
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formation for optimizing neural network pruning.071

Some methods retain neurons with high mutual in-072

formation with the preserved neurons in the upper073

layer for each layer of the neural network, start-074

ing pruning from the top softmax layer and mov-075

ing downward (Fan et al., 2021). Others decide076

on pruning by calculating the mutual information077

between neurons; if the MI value between two neu-078

rons exceeds a threshold, it indicates overlapping079

information, allowing for the pruning of one with-080

out significant loss (Huang et al., 2024). MIPP081

maintains the mutual information of activations082

between layers during pruning and uses the Trans-083

fer Entropy Redundancy Criterion to remove neu-084

rons that do not contribute to downstream layers085

(Westphal et al., 2024). However, these methods086

optimize network structure and enhance pruning087

efficiency by evaluating the relationships between088

neurons for width pruning, have not yet been ex-089

tended to depth layer pruning to achieve effective090

acceleration.091

To design a simple pruning algorithm that is092

easy to deploy and use on hardware for large lan-093

guage models, some studies propose identifying094

less important blocks in large language models us-095

ing cosine similarity and performing greedy prun-096

ing based on block importance (Men et al., 2024).097

However, the effectiveness of cosine similarity of-098

ten decreases when dealing with non-linear rela-099

tionships or complex, skewed data distributions,100

and it may not delve deeply into the specific inter-101

actions between variables (Kim et al., 2022). More-102

over, greedy block selection strategies based on this103

approach tend to find the local optimal solutions,104

and cannot identify the global optimal solution for105

the combination of pruning blocks. LaCo (Yang106

et al., 2024) reduces the model size by merging107

subsequent layers into the previous ones. However,108

its effectiveness is often not as good as direct layer109

removal. SLEB (Song et al., 2024) and Shortened110

LLaMA (Kim et al., 2024) determine importance111

metrics to iteratively remove layers. However, the112

requirement to measure corresponding indicators113

with a calibration set after each layer removal often114

leads to high complexity.115

In this paper, we propose a Mutual Information116

Based Pruning (MI-PRUN) method designed for117

large language models. MI-PRUN uses mutual118

information to identify and remove non-essential119

weight blocks by evaluating the transitions of hid-120

den states. It incorporates Data Processing Inequal-121

ity (DPI) (Beaudry and Renner, 2011) to enhance122

the accuracy of identifying less important blocks by 123

assessing the MI of inputs and outputs across con- 124

tinuous blocks. This helps in recognizing blocks 125

that contribute significantly when part of a larger 126

unit. To enhance efficiency, we develop the Fast- 127

Block-Select algorithm. This innovative approach 128

utilizes heuristic methods to efficiently pinpoint op- 129

timal candidates for pruning, thereby streamlining 130

the pruning process. 131

The main contributions of our paper are summa- 132

rized as follows: 133

• We leverages mutual information to quantify 134

the transition of hidden states between differ- 135

ent blocks, identifying and pruning weight 136

blocks that contribute less to the model’s per- 137

formance. 138

• We incorporate the Data Processing Inequal- 139

ity to assess the overall importance of weight 140

blocks, employing an iterative block updat- 141

ing strategy. This ensures that blocks that 142

may seem unimportant individually but signif- 143

icantly contribute to the model as a whole are 144

not mistakenly pruned. 145

• We develope the Fast-Block-Select algorithm 146

to enhance the efficiency of the pruning pro- 147

cess. 148

• Comprehensive experiments show that our 149

proposed pruning method surpasses the pre- 150

vious state-of-the-art (SOTA) model pruning 151

methods. 152

2 Related Work 153

Mutual information (Liu and Motani, 2022; 154

Nguyen et al., 2014; Veyrat-Charvillon and Stan- 155

daert, 2009) is a metric that measures the de- 156

pendency between two variables, quantifying the 157

amount of information about one variable that can 158

be obtained by observing the other. It is highly 159

valued for its capacity to detect non-linear relation- 160

ships between variables (Vinh et al., 2012; Pas- 161

coal et al., 2017), which is essential for uncovering 162

intricate data patterns and understanding model 163

dynamics. It surpasses conventional linear mea- 164

surement techniques by delving into the complex 165

interplays within data (Pluim et al., 2003; Steuer 166

et al., 2002). Grounded in probability distributions, 167

it not only tracks the trends and magnitudes of vari- 168

ables, but more importantly, uncovers their statisti- 169

cal dependencies(Walters-Williams and Li, 2009). 170
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Furthermore, the application of mutual information171

is remarkably broad, enabling the assessment of172

complex connections among multiple variables. In173

the field of feature selection, the application of mu-174

tual information is particularly important (Battiti,175

1994; Liu et al., 2009; Vergara and Estévez, 2014).176

By calculating the mutual information between fea-177

tures and the target variable, one can effectively178

identify the most informative features. This not179

only enhances the model’s performance and inter-180

pretability but also simplifies the model and re-181

duces computational costs.182

3 Methodology183

In this section, we discuss details of the proposed184

pruning method which leverages mutual informa-185

tion to identify blocks that contribute less to the186

model’s performance. Furthermore, we integrate187

the Data Processing Inequality into the iterative188

refinement of the pruning blocks. Concurrently, we189

develop the Fast-Block-Select algorithm to enhance190

the efficiency of the pruning process.191

3.1 Mutual Information Measures Block192

Importance193

During the inference phase of LLMs, the sequence194

outputs of the Transformer layers exhibit a high de-195

gree of similarity. This similarity primarily stems196

from a crucial feature in the model’s design: the197

output of each layer is added to the output of198

the previous layer through residual connections,199

thereby enabling the continuous transfer of infor-200

mation across different layers of the model. Specif-201

ically, the output of the (i+1)-th Transformer layer202

can be represented as follows:203

xi+1 = Transformeri+1 (xi) + xi (1)204

where xi and xi+1 are the outputs of the i-th and205

(i+1)-th layers, Transformeri+1 is the transfor-206

mation of the (i+ 1)-th layer.207

In the Transformer architecture, mutual infor-208

mation is a key metric for measuring the flow of209

information. The mutual information I between210

continuous random variables x and y can be calcu-211

lated as:212

I =

∫
P (x, y) log

P (x, y)

P (x)P (y)
dxdy (2)213

When the mutual information between the input214

and output state is unusually high, it typically in-215

dicates that the block’s output is largely a direct216

reflection of its input state, suggesting a lower im- 217

portance. In other words, the output state does not 218

significantly add new important information but 219

largely replicates the information from the input 220

state, thereby introducing redundancy in informa- 221

tion. In this case, the Transformer block may play a 222

minor role in the overall functionality of the model. 223

This is because it does not significantly transform 224

or refine the input data but simply passes on the 225

original information. Suppose there is a block f 226

with input x and output y, the specific proof is as 227

follows: 228

① When x and y are independent, the transfor- 229

mation effect of f is maximized, and the mutual 230

information I is zero. 231

P (x, y) = P (x)P (y) (3) 232

233

I =

∫
P (x, y) log

P (x)P (y)

P (x)P (y)
dxdy = 0 (4) 234

② When y is completely determined by x, such 235

that for any x there exists a y for which P (y|x) = 236

1, the transformation function is minimal, and the 237

mutual information is maximal. 238

P (x, y) = P (x)P (y|x) (5) 239

240∫
P (x, y) dx = P (y) (6) 241

242

I = −
∫

P (y) log P (y)dy (7) 243

③ Aside from these two extreme cases, as 244

the transformation function f exerts a greater ef- 245

fect, H(y|x) becomes larger and I(x, y) becomes 246

smaller. 247

I (x, y) = H (y)−H (y|x) (8) 248

This method based on mutual information offers 249

a more comprehensive and in-depth analytical ap- 250

proach compared to traditional methods based on 251

cosine similarity. It focuses not only on the direc- 252

tionality of vectors but also on the actual informa- 253

tion flow and dependency relationships between 254

vectors, thereby providing a richer perspective for 255

model optimization and understanding. MI-PRUN 256

leverages the advantages of mutual information to 257

more accurately identify parts of the model that 258

contribute less to its performance. It not only en- 259

hances the efficiency of the model but also aids 260

in a deeper understanding of the model’s internal 261

workings. 262
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3.2 Iterative Update Blocks263

In the previous section, we analyze the importance264

of blocks from the perspective of individual in-265

dependent blocks. A potential issue is that some266

individual blocks may seem unimportant, but when267

considered as a whole with surrounding blocks,268

they may significantly contribute to the model’s per-269

formance. To gain a clearer understanding of this270

issue, we introduce the Data Processing Inequality.271

The Data Processing Inequality indicates that when272

data undergo multi-level processing, with each pro-273

cessing step, there is a potential loss of information.274

In other words, data processing can transform data275

into more useful forms but will never create new276

information. The mutual information between in-277

puts and outputs in a two-stage cascade channel278

is bounded by the individual mutual information279

of each stage, never exceeding the levels at either280

stage. Specifically, when input information x is281

processed by the first level processor to obtain in-282

formation y, and then information y is further pro-283

cessed by the second level processor to output the284

result z. For such a two-level processor system, if285

y is known, then x and z are mutually independent,286

that is, I (x; z|y) = 0. Thus, we can arrive at the287

following conclusion:288

I (x; z) = I (x; y)−I (x; y|z) = I (y; z)−I (y; z|x)
(9)289290

I(x; z) ≤ min {I(x; y), I(y; z)} (10)291

From this perspective, we can extend the concept292

to the transformer model. As illustrated in Figure293

2, taking the combination of two blocks as an ex-294

ample, suppose that the mutual information of the295

blocks meets the following conditions:296

min(I1a , I1b) ≥ max(I2a , I2b) ≥ min(I2a , I2b)
(11)297

then the importance of the two blocks on the left298

side is lower than that of the two blocks on the right299

side. Based on the Data Processing Inequality, the300

following formula can be derived:301

I(x1, z1) ≤ min(I1,a, I1,b) (12)302
303

I(x2, z2) ≤ min(I2,a, I2,b) (13)304

Therefore, the continuous block corresponding to305

two unimportant blocks is more likely to be unim-306

portant. However, there is still a possibility that it307

could be important.308

To improve the accuracy of our pruning process,309

we evaluate the combined effect of adjacent mod-310

ules rather than assessing them individually. This311

0 𝑚𝑖𝑛 𝐼2_𝑎, 𝐼2_𝑏 𝑚𝑖𝑛 𝐼1_𝑎, 𝐼1_𝑏

𝐼(𝑥1, 𝑧1)

𝐼(𝑥2, 𝑧2)

𝑥2 𝑦2 𝑧2𝐼2_𝑎 𝐼2_𝑏
𝑥1 𝑦1 𝑧1𝐼1_𝑎 𝐼1_𝑏

Figure 2: The relationship between the MI of the global
continuous block and the local individual blocks.

prevents the accidental removal of modules that, 312

while seemingly less critical on their own, signif- 313

icantly contribute to the model’s overall perfor- 314

mance. Take the Llama2-7B model, for instance, 315

which consists of 32 modules. If we aim to prune 316

5, we must evaluate the importance of 150 mod- 317

ules. The mutual information among blocks for 318

the Llama2-7B model can be found in Appendix C. 319

We start by identifying modules for pruning based 320

on individual importance, then merge and catego- 321

rize continuous modules into groups, with adjacent 322

modules in the same group and non-adjacent in 323

different groups. We compare each group with 324

other continuous blocks of the same length, replac- 325

ing the current group if we find a less important 326

one. After updating the modules in each group, we 327

iterate this process to refine our pruning strategy. 328

Once updated, we select the best solution for each 329

group, ensuring no conflicts. If conflicts occur, 330

we prioritize the least important modules, ranking 331

continuous blocks in each group to choose a com- 332

bination with the lowest overall importance and no 333

conflicts. 334

3.3 Fast-Block-Select 335

In practical applications, calculating the impor- 336

tance of all contiguous blocks may require a signif- 337

icant amount of time and resources. For instance, 338

in the Llama2-7B model, there are as many as 528 339

possible combinations of contiguous blocks, which 340

is highly complex. Therefore, it is essential to ex- 341

plore methods that can expedite the block selection 342

process. A simple idea might be to employ dy- 343

namic programming for the solution, but since the 344

importance of contiguous blocks does not have a 345

strict quantitative relationship with the importance 346

of their sub-blocks, this approach is not feasible. 347

To address this, we design a heuristic block selec- 348

tion method named Fast-Block-Select to enhance 349
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Figure 3: The process of pruning 5 blocks in the Llama2-7B model.

the speed of block selection. Figure 3 provides a350

detailed exposition of our process for pruning 5351

blocks in the Llama2-7B model. When we need to352

prune N blocks, the process can be divided into the353

following steps:354

① step1: We utilize a calibration set to obtain the355

importance of each independent block in the model356

and sort them in ascending order of importance.357

② step2: We select the topN blocks based on the358

importance ranking to form the pruning set, and359

identify the M least important blocks outside the360

pruning set to form the alternative set, where M361

satisfies the following conditions:362

M = min(N,Total blocks−N) (14)363

③ step3: We categorize the blocks in the pruning364

set into groups to obtain contiguous blocks sets.365

④ step4: For any contiguous block within the366

contiguous blocks set, we construct all possible367

contiguous block sets of corresponding lengths us-368

ing blocks from both the pruning set and the al-369

ternative set. We estimate the importance of each370

contiguous block by summing the importance of371

its individual blocks, and then sort these blocks in372

ascending order of importance.373

⑤ step5: For the topK contiguous blocks in each374

group, we calculate their actual mutual information375

(rather than using estimated values) and then rank376

them accordingly, where K satisfies the following377

conditions:378

K = min(⌊logL⌋+ 5, S) (15)379

Here, L represents the length of the corresponding 380

contiguous block and S corresponds to the number 381

of elements in the continuous block set. In Figure 382

3, L is 2, 3 and 5 respectively, with corresponding 383

K values of 5, 6 and 5. 384

⑥ step6: For each group of contiguous blocks, 385

we select the combination with the highest sum 386

of mutual information that does not conflict as the 387

updated block combination for this iteration. 388

We then use the pruning set from this iteration to 389

repeat steps 3, 4, 5 and 6. This process continues 390

until the selected blocks remain unchanged from 391

one iteration to the next. 392

4 Experiments 393

4.1 Experimental Setup 394

Models. To demonstrate our method’s effective- 395

ness, we conducted experiments on popular open- 396

source models: Llama2-7B (Touvron et al., 2023b), 397

Llama2-13B, Qwen-7B (Bai et al., 2023), and 398

Qwen-14B. These Transformer-based decoder-only 399

models include Llama2, trained on over two trillion 400

tokens, and Qwen, pre-trained on a 3TB dataset 401

featuring multilingual content, mainly Chinese and 402

English. 403

Benchmarks. To assess the impact of pruning 404

on large language models, we evaluate using key 405

benchmarks: Winogrande (ai2, 2019), PIQA (Bisk 406

et al., 2020), WSC (Kocijan et al., 2020), WNLI 407

(ai2, 2019), SST-2 (Socher et al., 2013), RTE (Po- 408

liak, 2020), QNLI (Wang et al., 2018), CB (Talmor 409

et al., 2019), ARC-e (Yadav et al., 2019), and ARC- 410
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c (Yadav et al., 2019). These cover NLP tasks like411

QA, text entailment, sentiment analysis, and rea-412

soning. We also include a perplexity analysis on413

C4 (Raffel et al., 2020).414

Baselines. To evaluate the effectiveness of our415

method, we compare the following pruning meth-416

ods for large language models:417

• LLM-Pruner: The method adopts structural418

pruning that selectively removes non-critical419

coupled structures based on gradient informa-420

tion, maximally preserving the majority of the421

LLM’s functionality (Ma et al., 2023).422

• SliceGPT: SliceGPT is a new post-training423

sparsification scheme which replaces each424

weight matrix with a smaller matrix, reduc-425

ing the embedding dimension of the network426

(Ashkboos et al., 2024).427

• ShortGPT: It is a straightforward pruning428

approach: layer removal, in which we directly429

delete the redundant layers in LLMs based on430

their BI scores (Men et al., 2024).431

Implementation Details. We implement our ap-432

proach using PyTorch (Paszke et al., 2019) and the433

HuggingFace Transformers library (Wolf, 2020),434

conducting experiments on NVIDIA A100 GPUs435

with 40GB memory. If the product of a model’s436

total transformer blocks and target sparsity isn’t an437

integer, we round up to decide the number of blocks438

to prune. We use two calibration sets, WikiText-439

2 (Merity et al., 2016) and Alpaca (Taori et al.,440

2023), varying their size and sequence length. For441

performance comparisons, we maintain consistent442

experimental settings, including the calibration set443

and pruning rate. We run experiments with errors444

multiple times and average the results.445

4.2 Results of Pruning Blocks on different446

Calibration Sets447

To assess the influence of different calibration sets448

on pruning results, we conduct experiments on449

Qwen-7B and Qwen-14B, pruning 5 and 7 blocks450

respectively. We test pruning blocks with various451

data sizes and sequence lengths on the WikiText-2452

and Alpaca datasets. Despite these differing exper-453

imental conditions, we achieve consistent pruning454

results. This indicates that our method maintains455

stability across different datasets. More details can456

be found in Appendix D.457

Figure 4: Performance of Llama2-7B with increasing
pruning blocks.

4.3 Comparison with Existing Work 458

To validate the effectiveness of our proposed 459

method, comparative experiments are conducted 460

on Llama2 and Qwen, employing standard bench- 461

marks and baselines commonly utilized in the as- 462

sessment of large language models. The experi- 463

mental results are shown in table 1,3. The results 464

suggest that the models pruned via our proposed 465

method have demonstrated enhanced overall perfor- 466

mance when compared with the baseline methods, 467

maintaining most of the large language model’s 468

capabilities. 469

4.4 Sensitivity Analysis of Different Pruning 470

Block Quantities 471

In pursuit of a holistic evaluation of our pruning 472

method under diverse pruning ratios, we execute an 473

extensive experimental regimen on the Llama2-7B 474

model, as delineated in Figure 4. The assessment 475

is conducted by scrutinizing the accuracy and per- 476

plexity indices on a broad dataset encompassing 477

multiple tasks. The experimental results corrobo- 478

rate that our pruning methodology sustains com- 479

mendable performance across a range of pruning 480

ratios. 481

4.5 Statistics of the Compressed Model 482

Table 2 presents the performance metrics of the 483

Llama2-7B model utilized in our experiments, en- 484

compassing reduced forward params size, reduced 485

params size, ratio of reduced to forward-reduced 486

params size and latency. The results indicate that 487

our method not only reduces model params but also 488

more effectively diminishes forward propagation 489

params. These assessments are conducted with the 490

model in inference mode, processing input data 491

with a length of 1,024 sentence. 492
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Models Methods Ratio Winogrande PIQA WSC WNLI SST-2 RTE QNLI CB ARC-e ARC-c Avg.

Llama2-7B

Dense 0.00% 72.85 78.24 54.81 59.15 85.89 66.06 54.6 60.71 79 47.78 65.91
SliceGPT 15.34% 63.06 67.03 63.46 45.07 52.64 59.57 50.63 42.86 55.26 34.56 53.41

LLM-Pruner 15.30% 64.72 76.06 36.54 56.34 65.83 52.71 51.20 46.43 64.86 36.69 55.14
ShortGPT 15.32% 67.72 71.6 36.54 43.66 49.2 53.43 50.19 39.29 65.66 39.42 51.67
MI-PRUN 15.32% 69.69 73.5 63.46 60.56 83.94 60.29 50.91 62.5 67.21 39.42 63.15

Llama2-13B

Dense 0.00% 75.61 79.71 53.85 66.2 87.61 69.31 58.56 80.36 81.82 53.16 70.62
SliceGPT 25.28% 70.72 63.17 44.23 43.66 51.15 52.71 50.58 41.07 65.03 33.79 51.61

LLM-Pruner 25.35% 71.74 73.07 36.54 43.66 66.86 52.71 49.90 42.86 66.08 32.42 53.58
ShortGPT 24.37% 64.17 71.93 58.65 59.15 50.57 68.95 49.83 57.14 50.17 40.53 57.11
MI-PRUN 24.37% 59.59 72.36 59.62 66.2 70.87 69.31 50.61 78.57 60.02 40.27 62.74

Qwen-7B
Dense 0.00% 71.98 79.22 73.08 64.79 94.15 83.75 74.24 76.79 79.04 48.04 74.51

ShortGPT 13.11% 67.4 73.01 63.46 63.38 93.12 80.87 50.54 60.71 62.96 35.84 65.13
MI-PRUN 13.11% 69.3 73.78 63.46 61.97 94.04 71.84 50.54 62.5 66.25 39.93 65.36

Qwen-14B
Dense 0.00% 75.3 80.01 69.23 73.24 95.07 80.51 74.81 87.5 81.14 52.47 76.93

ShortGPT 15.58% 67.4 70.18 36.54 71.83 94.15 80.51 49.46 87.5 63.72 39.33 66.06
MI-PRUN 15.58% 69.46 72.25 81.73 71.83 95.41 80.87 69.89 83.93 67.38 43.69 73.64

Table 1: Comparison of pruning methods on multiple natural language benchmarks.

Methods Reduced Forward Params size (MB) Reduced Params size (MB) Ratio Latency (ms)
SliceGPT 3281.53 1358.95 41.41% 287.35

LLM-Pruner 2061.34 714.37 34.66% 341.55
MI-PRUN 2023.83 1038.09 51.29% 221.14

Table 2: Statistics of the compressed models.

Models Methods Perplexity

Llama2-7B

Dense 7.53
SliceGPT 12.49

LLM-Pruner 13.70
ShortGPT 15.93
MI-PRUN 11.80

Llama2-13B

Dense 6.99
SliceGPT 14.35

LLM-Pruner 18.87
ShortGPT 21.77
MI-PRUN 13.35

Table 3: Comparison of pruning methods on perplexity.

4.6 Ablation Study493

Iterative Update Blocks. We delve into the impact494

of incorporating Data Processing Inequality within495

the MI-PRUN method, meticulously comparing496

two pruning strategies to assess its signifilnce. Ini-497

tiating with an evaluation of mutual information for498

individual blocks, the experiment employ a greedy499

strategy to prune based on the MI values. Advanc-500

ing from this, the MI-PRUN method is applied, in-501

tegrating DPI to compute the MI across contiguous502

blocks, shedding light on their collective impact503

on the model’s overall performance. An iterative504

refinement algorithm is harnessed to enhance the se-505

lection process, ensuring that the pruning outcomes506

were both exhaustive and accurate. The results, as507

Figure 5: Performance comparison between Greedy
Strategy and Iterative Update.

depicted in Figure 5, contrast the model’s accuracy 508

under the two strategies, thereby vividly illustrat- 509

ing the notable influence of considering contiguous 510

blocks during pruning on the model’s enhanced 511

performance. 512

Fast-Block-Select. We aim to evaluate two dis- 513

tinct block selection methods: one is the brute- 514

force approach that calculates the importance of 515

all individual and contiguous blocks, while the 516

other is our heuristic-based Fast-Block-Select al- 517

gorithm. The primary focus of the experiment 518

is to compare the computational demand, specif- 519

ically the number of required solution attempts, 520

between these two methods. The brute-force ap- 521

proach must evaluate all possible combinations of 522

contiguous blocks, a process that is exceedingly 523

complex and resource-intensive. In stark contrast, 524
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the Fast-Block-Select algorithm employs a heuristic525

strategy for block selection, substantially enhanc-526

ing the selection efficiency. As depicted in Table 4,527

the Fast-Block-Select algorithm not only identifies528

the blocks slated for pruning but also significantly529

reduces the number of computations, thereby vali-530

dating its practicality and superiority in real-world531

applications.

Models Methods MI Calculations

Llama2-7B
Brute Force 150

Fast-Block-Select 46

Llama2-13B
Brute Force 355

Fast-Block-Select 46

Table 4: Pruning efficiency of Brute Force and
Fast-Block-Select.

532

4.7 Case Study533

We present some examples of sentences generated534

by the model before and after pruning with our535

method. It is evident that the sentences produced536

by the compressed model are comparable in quality537

to those generated by the original model. These sen-538

tences exhibit fluency, relevance, and informative-539

ness in relation to the given topics, demonstrating540

that our pruning method successfully maintains the541

model’s ability to generate high-quality text while542

reducing its complexity. This further confirms the543

effectiveness of the method and its minimal impact544

on model performance in practical applications.545

More detailed results can be found in Appendix B.546

4.8 Pruning Overhead Analysis547

In our pruning approach, we calculate the mu-548

tual information between intermediate layer hidden549

states to evaluate inter-layer information flow and550

redundancy. To minimize GPU memory use and551

prevent data overload, we swiftly move each hidden552

state from GPU to CPU post-retrieval. This enables553

the GPU to focus on other tasks without interrup-554

tion. Utilizing the CPU’s multi-core capabilities,555

we efficiently compute MI, aided by optimized al-556

gorithms from libraries like scipy (Virtanen et al.,557

2020), torchmetrics (Detlefsen et al., 2022), and558

scikit-learn (Pedregosa et al., 2011), which are de-559

signed to exploit CPU parallelism for rapid MI560

calculations, thus supporting our pruning method561

effectively.562

5 Discussion 563

In this study, we concentrate on pruning interme- 564

diate layers of large language models using skip- 565

connections, replacing operations with identity ma- 566

trices to streamline network structure and reduce 567

computation without affecting performance. Our 568

method’s broad applicability extends to various 569

models, including those with skip-connections like 570

ResNet. It also allows for fine-grained pruning, 571

enabling flexible optimization and enhanced effi- 572

ciency in Transformer models. 573

6 Conclusion 574

In this paper, we propose MI-PRUN, a struc- 575

tured pruning approach for large language mod- 576

els. MI-PRUN leverages mutual information and 577

the Data Processing Inequality to iteratively re- 578

fine the blocks that contribute less to the model’s 579

performance. Furthermore, it employs the Fast- 580

Block-Select strategy to augments the efficiency. 581

Our experimental results show that MI-PRUN ef- 582

fectively prunes the model, alleviating computa- 583

tional load without compromising its performance 584

capabilities. Employing the strategy of eliminating 585

entire blocks, MI-PRUN effectively enhances the 586

inference speed of end-to-end LLM inference. This 587

enhancement in speed is versatile, applicable in a 588

multitude of implementation contexts, positioning 589

MI-PRUN as a viable solution for practical LLM 590

service scenarios. 591

7 Limitations 592

Although our paper focuses on measuring param- 593

eter redundancy from the perspective of depth, 594

there are also well-established algorithms for neu- 595

ron pruning in the width dimension. Determin- 596

ing which optimization method (width or depth) is 597

more useful for a specific model, as well as integrat- 598

ing these two methods for easy hardware deploy- 599

ment, remains highly challenging. The complexity 600

of model architectures and the diversity of task 601

requirements make it difficult to universally deter- 602

mine the optimal optimization strategy. The imple- 603

mentation of joint optimization strategies also faces 604

limitations. For example, the sequential approach 605

of first pruning width and then depth may not al- 606

ways be optimal, and dynamically adjusting the 607

pruning ratios increases the complexity and compu- 608

tational cost of the training process. Additionally, 609

hardware deployment poses challenges, as different 610

hardware platforms have varying preferences for 611
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depth and width optimization, and re-adapting op-612

timized models to hardware can involve additional613

development and debugging costs. Existing auto-614

mated tools and frameworks, while providing some615

optimization support, still have limitations in terms616

of their universality and optimization accuracy, and617

may not fully adapt to specific LLM architectures618

and task requirements. Therefore, future research619

needs to further explore how to better integrate620

depth and width optimization methods and develop621

more efficient automated tools and hardware adap-622

tation strategies to achieve efficient deployment of623

large language models.624
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A Evaluation Benchmarks851

In order to comprehensively assess the impact of852

pruning on the capabilities of large language mod-853

els, we conduct an evaluation using widely preva-854

lent benchmarks. Winogrande (ai2, 2019) is a com-855

prehensive dataset designed to assess models’ abil-856

ity to reason with common sense. It consists of857

over 45,000 question-answer pairs that challenge858

models with complex, real-world scenarios. PIQA859

(Bisk et al., 2020) is an innovative dataset that fo-860

cuses on understanding physical interactions. It861

requires models to comprehend the relationships862

between objects to answer questions about their863

physical interactions. The WSC dataset (Kocijan864

et al., 2020) presents a series of text entailment865

tasks where models must discern whether one sen-866

tence logically implies another, with a focus on867

pronoun resolution and contextual understanding.868

WNLI (ai2, 2019) is a subset of the WinoGrande869

dataset, concentrating on natural language infer-870

ence tasks. It tests models’ capabilities in identify-871

ing whether one sentence entails another within a872

given context. SST-2 (Socher et al., 2013) is a sen-873

timent analysis benchmark that includes movie re-874

views. Models are tasked with determining the sen-875

timent expressed in the reviews, whether positive876

or negative. RTE (Poliak, 2020) challenges mod-877

els to evaluate the logical relationships between878

sentences. It is a critical test for models’ ability879

to understand textual entailment. QNLI (Wang880

et al., 2018) combines question answering with nat- 881

ural language inference, requiring models to assess 882

the logical relationship between a given question 883

and a set of candidate answers. CB (Talmor et al., 884

2019) is a question answering dataset that taps into 885

general knowledge. It requires models to lever- 886

age common sense to provide accurate answers 887

to a variety of questions. ARC-e (Yadav et al., 888

2019) is tailored for elementary-level science and 889

math questions, designed to test models’ under- 890

standing and reasoning abilities in these domains. 891

ARC-c (Yadav et al., 2019) extends the challenge 892

to college-level complexity, assessing models’ pro- 893

ficiency in advanced scientific and mathematical 894

reasoning. These datasets serve as critical bench- 895

marks for evaluating the performance of language 896

models across a spectrum of NLP tasks, includ- 897

ing question answering, text entailment, sentiment 898

analysis, and commonsense reasoning. 899

B Pruning Effects on Generated 900

Sentences 901

We meticulously carry out a series of comparative 902

experiments to thoroughly assess the impact of our 903

proposed pruning technique on the sentence gener- 904

ation quality of large language models before and 905

after the pruning process. The design of these ex- 906

periments enables us to precisely quantify and com- 907

pare the model’s performance at different stages. 908

The results, comprehensively presented in table B, 909

reveal an encouraging phenomenon: despite under- 910

going pruning, the model’s performance remains 911

unaffected. In fact, the model continues to demon- 912

strate exceptional capabilities in handling complex 913

linguistic tasks, consistently producing responses 914

that are not only of superior quality but also flu- 915

ent and natural. These findings not only validate 916

the scientific rationality of our approach but also 917

provide strong empirical evidence for the poten- 918

tial to maintain or even enhance the performance 919

of language models while reducing computational 920

resource consumption in future applications. 921

C Mutual Information Value of 922

Llama2-7B 923

Table 6 and figure 6 showcase our meticulous ex- 924

amination and detailed presentation of the mutual 925

information values pertaining to the 15 least influ- 926

ential blocks within the Llama2-7B model, con- 927

sidering both isolated and contiguous blocks with 928

lengths spanning from 2 to 5. This insightful anal- 929
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Original Model Pruned Model
Assess the impact of the Industrial Revolution on so-
ciety. The impact of the Industrial Revolution on the
environment was significant. The shift to industrial
production and transportation led to increased pollu-
tion and damage to the environment ...

Assess the impact of the Industrial Revolution on
society. The Industrial Revolution, which began in
Britain in the late 18th century and spread to other
parts of the world over the next century, had a pro-
found impact on society. It transformed the ...

10 steps to build an ios app: 1. Determine the pur-
pose of your app: What problem does it solve or
what goal does it achieve? Who is the audience and
what features will they need? 2. Research the market:
Look at similar apps in the Apple App Store and see
what features they offer, what features are missing,
and what can be improved. 3. Design the user inter-
face: Create a visual design for the app, including
the layout, color scheme ...

10 steps to build an ios app: 1. Determine the pur-
pose of your app: Before starting to build an iOS app,
you need to determine its purpose and what prob-
lem it will solve for the users. 2. Choose the right
programming language: Swift and Objective-C are
the two most popular programming languages used
for iOS app development. Swift is recommended for
beginners, as it is easier to learn and use. 3. Set up
your development ...

Explain what artificial intelligence is. Artificial intel-
ligence (AI) refers to the development of computer
systems able to perform tasks that typically require
human intelligence, such as visual perception, speech
recognition, decision-making, and language transla-
tion. AI systems use machine learning, deep learn-
ing, and natural language processing to analyze data,
learn from it, and make decisions or predictions ...

Explain what artificial intelligence is. Artificial in-
telligence (AI) is a branch of computer science ded-
icated to creating intelligent machines that can per-
form tasks that typically require human intelligence,
such as understanding language, recognizing images,
reasoning, and decision-making. AI is a rapidly grow-
ing field that is transforming many industries, includ-
ing healthcare, finance, transportation, and ...

Describe the process of fermentation in bread mak-
ing. Fermentation is a process that occurs when mi-
croorganisms such as yeast or bacteria convert sugars
into alcohol or acids. In bread making, fermentation
is used to convert the starches in flour into sugars,
which are then converted into carbon dioxide gas by
yeast. This process causes the dough to rise ...

Describe the process of fermentation in bread making.
Fermentation is an important stage in bread making,
which involves the conversion of sugars in the bread
ingredients into alcohol and carbon dioxide gas. The
fermentation stage is crucial for creating the charac-
teristic flavor and texture of bread. Here are the key
stages of fermentation in bread making ...

List the equipment needed for rock climbing. Rock
climbing is a popular adventure sport that requires
specific equipment to ensure safety and success. Here
are some of the essential pieces of equipment needed
for rock climbing:1. Climbing Shoes: Climbing
shoes are specifically designed to provide a snug
fit and good grip on the rock. They are usually ...

List the equipment needed for rock climbing. Rock
climbing is a popular adventure sport that involves
climbing a rock wall using a variety of techniques and
equipment. The equipment needed for rock climbing
includes: 1. Climbing shoes: These are specialized
shoes designed specifically for rock climbing. They
are typically tight-fitting and provide good grip ...

Describe the process of DNA replication. DNA repli-
cation is the process by which a cell makes an exact
copy of its DNA before cell division. This process is
essential for the transmission of genetic information
from one generation of cells to the next. Here is a
step-by-step explanation of the process of DNA repli-
cation: 1. Initiation: The process of DNA replication
begins with the unwinding of the double helix ...

Describe the process of DNA replication. DNA repli-
cation is the biological process that occurs during
which the genetic material or DNA copy is produced.
DNA replication is a complex and complex biological
complex that involves many proteins and enzymes.
DNA replication is divided into several stages, includ-
ing:1. Initiation: The first step in DNA replication is
the recognition of the DNA molecule by ...

Table 5: Some examples of generations obtained with the original model and the pruned model.
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ysis affords us a transparent perspective on the930

model’s internal information dynamics and, cru-931

cially, identifies components that could potentially932

be targeted for elimination during model pruning.933

The quantification of mutual information across934

these blocks allows us to discern the varying de-935

grees of contribution each model segment makes936

to the overall performance, thereby laying down a937

solid scientific foundation for the strategic refine-938

ment of the model’s architecture and the conse-939

quent improvement in operational efficiency.940

D Results of Pruning Blocks on different941

Calibration Sets942

To evaluate the impact of various calibration943

datasets on the pruning outcomes, we perform ex-944

periments on the Qwen-7B and Qwen-14B models,945

targeting the reduction of 5 and 7 blocks, respec-946

tively. We assess the pruning of blocks across a947

spectrum of data sizes and sequence lengths using948

the WikiText-2 and Alpaca datasets, as specified949

in tables 8 and 7. Despite the variation in experi-950

mental setups, we consistently achieved uniform951

pruning outcomes. This consistency suggests that952

our approach remains stable across diverse datasets.953

954
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NUM : 1 NUM : 2 NUM : 3 NUM : 4 NUM : 5
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Figure 6: The results derived from the application of mutual information to assess the importance of individual and
contiguous blocks within the Llama2-7B model.

NUM : 1 NUM : 2 NUM : 3 NUM : 4 NUM : 5
layer 17 0.87498162 layer 17,18 0.63229072 layer 17,18,19 0.50139592 layer 17,18,19,20 0.40852264 layer 17,18,19,20,21 0.40852264
layer 18 0.95587192 layer 18,19 0.69475307 layer 18,19,20 0.54578185 layer 18,19,20,21 0.44966459 layer 18,19,20,21,22 0.44966459
layer 19 1.02724996 layer 19,20 0.7396465 layer 19,20,21 0.58558662 layer 19,20,21,22 0.48767546 layer 19,20,21,22,23 0.48767546
layer 20 1.06539699 layer 20,21 0.77436899 layer 20,21,22 0.62218076 layer 20,21,22,23 0.528129 layer 20,21,22,23,24 0.528129
layer 21 1.13227833 layer 21,22 0.84088689 layer 21,22,23 0.6884778 layer 21,22,23,24 0.58341424 layer 21,22,23,24,25 0.58341424
layer 22 1.1889242 layer 22,23 0.90008803 layer 22,23,24 0.73684974 layer 22,23,24,25 0.61361306 layer 22,23,24,25,26 0.61361306
layer 23 1.25624859 layer 23,24 0.94790796 layer 23,24,25 0.7637615 layer 23,24,25,26 0.64457198 layer 23,24,25,26,27 0.64457198
layer 24 1.28686095 layer 24,25 0.94960353 layer 24,25,26 0.77423227 layer 24,25,26,27 0.65406463 layer 24,25,26,27,28 0.65406463
layer 25 1.2529082 layer 25,26 0.95379755 layer 25,26,27 0.77904016 layer 25,26,27,28 0.63289751 layer 25,26,27,28,29 0.63289751
layer 26 1.31557265 layer 26,27 0.9882906 layer 26,27,28 0.78095716 layer 26,27,28,29 0.61478706 layer 26,27,28,29,30 0.61478706
layer 27 1.32509811 layer 27,28 0.96518432 layer 27,28,29 0.73501047 layer 27,28,29,30 0.51409194 layer 27,28,29,30,31 0.51409194
layer 28 1.27117968 layer 28,29 0.89805039 layer 28,29,30 0.60309149 layer 28,29,30,31 0.19466056 - -
layer 29 1.22813231 layer 29,30 0.75716348 layer 29,30,31 0.22885524 - - - -
layer 30 0.99682464 layer 30,31 0.27271845 - - - - - -
layer 31 0.41455725 - - - - - - - -

Table 6: The mutual information of individual and contiguous blocks within the Llama2-7B model.
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Models Calibration set Sequence Length Results of pruning blocks

Qwen-7B

WikiText-2
512

[24, 25, 26, 27, 28]1024
2048

Alpaca
512

[24, 25, 26, 27, 28]1024
2048

Qwen-14B

WikiText-2
512

[29, 30, 31, 32, 33, 34, 35]1024
2048

Alpaca
512

[29, 30, 31, 32, 33, 34, 35]1024
2048

Table 7: Results of pruning blocks with different sequence lengths on various calibration sets.

Models Calibration set Size Results of pruning blocks

Qwen-7B

WikiText-2
256

[24, 25, 26, 27, 28]512
1024

Alpaca
256

[24, 25, 26, 27, 28]512
1024

Qwen-14B

WikiText-2
256

[29, 30, 31, 32, 33, 34, 35]512
1024

Alpaca
256

[29, 30, 31, 32, 33, 34, 35]512
1024

Table 8: Results of pruning blocks with different sizes on various calibration sets.
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