
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MULTI-MARGINAL STOCHASTIC FLOW MATCHING
FOR ALIGNMENT OF HIGH-DIMENSIONAL SNAPSHOT
DATA AT IRREGULAR TIME POINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modeling the evolution of high-dimensional systems from limited snapshot obser-
vations at irregular time points poses a significant challenge in quantitative biology
and related fields. Traditional approaches often rely on dimensionality reduction
techniques, which can oversimplify the dynamics and fail to capture critical tran-
sient behaviors in non-equilibrium systems. We present Multi-Marginal Stochas-
tic Flow Matching (MMSFM), a novel extension of simulation-free score and
flow matching methods to the multi-marginal setting, enabling the alignment of
high-dimensional data measured at non-equidistant time points without reducing
dimensionality. The use of measure-valued splines enhances robustness to irregu-
lar snapshot timing, and score matching prevents overfitting in high-dimensional
spaces. We validate our framework on several synthetic and benchmark datasets
and apply it to single-cell perturbation data from melanoma cell lines and gene
expression data collected at uneven time points.

1 INTRODUCTION

Understanding cellular responses to perturbations is a fundamental challenge in quantitative biology,
with significant implications for fields such as developmental biology, cancer research, and drug
discovery (Altschuler & Wu, 2010; Saeys et al., 2016). Modeling these responses requires capturing
complex stochastic dynamics in high-dimensional cellular states that evolve over time under the
influence of both deterministic and random factors. Developing generative models that accurately
represent these dynamics is crucial for simulating cellular behavior and predicting responses to new
perturbations. A common approach to modeling such systems is through stochastic differential
equations (SDEs), particularly the Langevin equation as an Itô SDE (Gardiner, 1985; Risken, 1996);
the evolution of the cellular state X(t) ∈ Rd can be described by

dX(t) = ut(X(t)) dt+ g(t) dW (t), (1)

where ut(x) is the drift term representing deterministic dynamics, g(t) is the diffusion coefficient
capturing stochastic fluctuations, and W (t) is a Wiener process modeling random noise. At the
population level, the corresponding probability density function p(x, t) evolves according to the
Fokker-Planck equation (Risken, 1996):

∂pt(x)

∂t
= −∇ · (pt(x)ut(x)) +

g2(t)

2
∆pt(x), (2)

where pt(x) is shorthand for p(x, t), ∇· denotes the divergence operator, and ∆ is the Laplacian
operator.

In practice we only observe the system through snapshot measurements at discrete, possibly ir-
regular time points t0 < t1 < · · · < tM , providing samples from the marginal distributions
ρi = pti(x) (Schofield et al., 2023). Therefore, we lack trajectory data that would reveal how
individual states evolve between these snapshots due to the destructive nature of single-cell mea-
surements. This raises a fundamental question: among the infinitely many stochastic processes that
could connect these observed marginals (Weinreb et al., 2018), which one is the most likely?
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1.1 LEAST ACTION PRINCIPLE

To address this problem, we turn to the theory of Optimal Transport (OT) (Villani, 2009) which seeks
the most efficient way to transform one probability distribution into another. In the simplest case of
two marginals ρ0 and ρ1, OT aims to find a transport map T that minimizes the cost functional:

min
T

∫
∥x− T (x)∥2 dρ0(x) subject to T#ρ0 = ρ1, (3)

where T#ρ0 denotes the pushforward of ρ0 under T . Kantorovich’s generalized formulation of (3) is
a linear programming problem over the set of joint probability distributions, leading to the definition
of the Wasserstein-2 distance:

W 2
2 (ρ0, ρ1) = min

π∈Π(ρ0,ρ1)

∫
∥x− y∥2 dπ(x, y), (4)

where Π(ρ0, ρ1) is the set of joint distributions with marginals ρ0 and ρ1. While OT provides a
deterministic model based on the principle of least action—finding the shortest path or geodesic in
the space of probability distributions—it does not account for the inherent stochasticity of biological
systems (Horowitz & Gingrich, 2020). Cells are subject to both extrinsic noise, such as variations in
initial conditions and environmental inputs (Hilfinger & Paulsson, 2011), and intrinsic noise arising
from the thermodynamic uncertainty in biochemical reactions (Mitchell & Hoffmann, 2018).

To incorporate stochasticity and identify the most likely stochastic process connecting the ob-
served marginals, we consider the entropic-regularized optimal transport problem, a particular case
of the Schrödinger Bridge Problem (SBP) (Schrödinger, 1931; Léonard, 2014). The SBP seeks
the stochastic process that minimally deviates from a prior—typically a Brownian motion—while
matching the observed marginals. It can be considered a general statistical inference and model
improvement methodology in which one updates the probability of a hypothesis based on the most
recent observations while making the fewest possible assumptions beyond the available informa-
tion (Pavon et al., 2021). This approach aligns with Occam’s razor principle and aims to find the
simplest stochastic process that explains the data with minimal adjustment to our prior belief.

Extension to Multiple Marginals: Extending this rationale to the multi-marginal (MMOT) case
with arbitrary time points t0, t1, . . . , tM , we pose the same question: among all possible stochastic
processes that could connect the observed marginal distributions {ρi}Mi=0, which one is the most
probable given our prior knowledge? This leads us to formulate the problem as finding the drift
ut(x) that minimizes the cumulative transport cost and provides the smoothest and most efficient
flow connecting the observed distributions over time, while ensuring robustness against overfitting.
In summary, we require:

• Robustness Against Overfitting: By minimizing the total transport cost across all time inter-
vals, we introduce only essential adjustments to match the observed marginals, preventing
the model from overfitting to limited observations and ensuring that the inferred dynamics
generalize well beyond the training data.

• Insensitivity to the Timing of Snapshots: The formulation inherently accommodates arbi-
trary and irregular time points ti, making it robust to the choice of measurement times. By
focusing on the minimal action path that passes through the observed marginals, we capture
the system’s evolution without being constrained by the timing of data collection.

• Scalability in High Dimensions: While directly solving high-dimensional transport prob-
lems is computationally challenging (Benamou & Brenier, 2000; Peyré & Cuturi, 2019),
our approach efficiently approximates the solution. By leveraging advances in simulation-
free score and flow matching methods, we model the high-dimensional stochastic process
directly in the ambient space, avoiding dimensionality reduction that could obscure impor-
tant dynamical features.

1.2 LITERATURE REVIEW

Direct learning of the high-dimensional partial differential equation (2) is computationally pro-
hibitive due to the complexity of integration and divergence computations in high-dimensional
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spaces (Benamou & Brenier, 2000; Peyré & Cuturi, 2019). Hence, current approaches typically
consider reduced-dimensional data representations with gradient-based drifts originating from de-
velopmental biology (Weinreb et al., 2018; Schiebinger et al., 2019) where the focus is primarily
on slow time scales and the assumption of low-dimensional manifold dynamics is often useful.
In this context, dimensionality reduction tools such as t-SNE (Van der Maaten & Hinton, 2008),
UMAP (McInnes et al., 2018), and PHATE (Moon et al., 2019) are extensively used to simplify
the modeling. However, these techniques can obscure critical faster-scale dynamical information,
introduce artifacts (Kiselev et al., 2019), and result in the loss of important biological information
in the reduced, folded space.

Neural Ordinary Differential Equations (Neural ODEs) have emerged as a powerful tool for model-
ing continuous-time dynamics and connecting probability measures over time (Chen et al., 2018a).
This approach offers an alternative method by parameterizing the time derivative of the hidden
state with a neural network, which is trained to approximate the drift term in the Fokker-Planck
equation (2). While this method has been successfully applied (Tong et al., 2020; Huguet et al.,
2022) for modeling cellular dynamics and trajectory inference, it still operates primarily in reduced-
dimensional spaces.

Recent multi-marginal approaches have attempted to handle multiple time points simultaneously.
Chen et al. (2024) developed a deep multi-marginal momentum Schrödinger bridge approach that,
while capable of working in high dimensions, requires expensive flow integration and memory-
intensive caching of trajectories during training. Similarly, Albergo et al. (2023) proposed stochastic
interpolants for multi-marginal modeling but still relies on ODE/SDE integration and marginal dis-
tributions as supervision signals, which becomes computationally challenging in high dimensions.
These approaches share common limitations: they either require dimension reduction to handle com-
putational complexity, or they depend on expensive numerical integration and trajectory generation
during training.

Alternative approaches using generative models attempt to transform a simple distribution to an
arbitrary target distribution. Variational Autoencoders (VAEs) (Kingma, 2013) learn an encoder-
decoder pair, q(z | x) and p(x | z), such that the decoder can generate x ∼ ρ1 given samples
z ∼ ρ0. Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) employ a generator-
discriminator framework, where the generator G(z) produces x = G(z) with x ∼ ρ1 for z ∼ ρ0.
While successful, these methods are limited by the simplicity of the source distribution ρ0, often
chosen to be uniform or normal for analytical convenience. Moreover, these models represent static
transformations with no notion of time and cannot generate intermediate states at arbitrary time
points, making them unsuitable for modeling dynamic processes where temporal evolution is crucial.

Although diffusion models (Ho et al., 2020; Song & Ermon, 2019) incorporate a time component
by learning a denoising Markovian reverse process, their notion of “time” corresponds to a noise
schedule rather than physical time. This limitation prevents them from capturing actual temporal
dynamics or generating data at arbitrary time points not specified during training.

Our Approach We introduce Multi-Marginal Stochastic Flow Matching (MMSFM) to address
these limitations by adapting recent developments in simulation-free approaches (Lipman et al.,
2022; Tong et al., 2023a) to our setting. These methods learn pt directly in the ambient space
without dimensionality reduction or explicit simulation. However, their direct application to our
multi-marginal setting requires careful adaptation to principles described in Section 1.1 to ensure
robust learning and prevent overfitting.

Our key innovation lies in learning continuous spline measures through overlapping windows of
consecutive marginals during training. Specifically, we process overlapping triplets (ρi, ρi+1, ρi+2)
in a rolling fashion, where we demonstrate in Section 2.3 that a window size of two strikes an optimal
balance between enforcing smoothness constraints and computational efficiency. This approach en-
ables us to capture local dynamics across uneven time intervals, maintain consistency between over-
lapping windows, and generate intermediate states between observed snapshots, effectively creating
a ”motion picture” of the system’s evolution. The overlapping nature of these learned flows ensures
robustness against the specific choice of measurement times while preserving the high-dimensional
structure of the data.
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2 PROBLEM FORMULATION AND METHODOLOGY

Formally, let 0 = t0 < t1 < · · · < tM = 1 denote a sequence of time points, and let ρi be
the probability distribution of the system state at time ti in Rd. Our data consists of snapshot
measurements Xti = {x(j) : x ∼ ρi}Ni

j=1, at these timepoints. The goal is to learn a continuous
probability flow pt(x) for t ∈ [0, 1], satisfying pti = ρi for all i, which describes the evolution of
the system over time.

2.1 DYNAMIC FORMULATION OF THE WASSERSTEIN DISTANCE AND WASSERSTEIN SPLINES

Benamou and Brenier (Benamou & Brenier, 2000) introduced a dynamic formulation of the Wasser-
stein distance, connecting OT with fluid dynamics:

W 2
2 (µ, ν) = inf

pt,ut

{∫ 1

0

∫
Rd

∥ut(x)∥2 pt(x) dx dt
∣∣∣∣ ∂pt∂t

+∇ · (ptut) = 0, p0 = µ, p1 = ν

}
.

(5)
While MMOT extends this framework to multiple distributions, computing MMOT plans becomes
computationally challenging in high dimensions. Prior work (Chen et al., 2018b; Benamou et al.,
2019) examined the formulation

inf
Xt

∫ 1

0

E
[∥∥∥Ẍt

∥∥∥2] dt, (6)

termed P-splines by Chewi et al. (2021). Unfortunately this does not fit our needs because Xt here
is considered to be a stochastic process whereas we need a deterministic flow. Moreover, these for-
mulations are still quite computationally expensive given that we need to solve this problem within
the training loop. Instead, Chewi et al. (2021) proposed transport splines as a method to efficiently
obtain deterministic maps that smoothly interpolate between multiple distributions. The key idea is
to sample points from the distributions ρi and apply a Euclidean interpolation algorithm between
these points. The specific spline algorithm is left as a design choice for the user. Options include the
natural cubic spline interpolation which minimizes the integral of the squared acceleration

inf
γt

∫ 1

0

E
[
∥γ̈t∥2

]
dt, (7)

where γt denotes a curve in space , and the cubic Hermite spline (Hermite & Borchardt, 1878) which
represents each interval (xi, xi+1) as a the third-degree polynomial:

X(t) = (2t3 − 3t2 + 1)xi + (t3 − 2t2 + t)x′
i + (−2t3 + 3t2)xi+1 + (t3 − t2)x′

i+1 (8)

where x0, x1 are the boundary constraints, and x′
0, x′

1 are the derivatives w.r.t. time at those points.

In practice, we consider transport splines as compositions of OT plans. Let π be the MMOT plan
over (xt0 , xt1 , . . . , xtM ). By applying a first-order Markov approximation, we decompose π into
conditional plans

π(xt0 , . . . , xtM ) ≈ π(xt0 , xt1)

M∏
i=2

π(xti | xti−1), (9)

where π(xti | xti−1) specifies how to transport a point xti−1 ∼ ρi−1 to the distribution ρi. By
applying the transport spline procedure to batches of vectors (Xti)

M
i=0, the conditional plans act as

alignment operators, allowing us to construct Euclidean splines through optimally coupled points
(X⋆

ti)
M
i=0.

2.2 SIMULATION-FREE SCORE AND FLOW MATCHING

We aim to model the stochastic process bridging the multiple distributions ρi by learning the under-
lying dynamics of the system in Equation (1) and the associated Fokker-Planck equation (2). Tong
et al. (2023a) introduced a reparameterization of the drift ut(x) as

ut(x) = u◦
t (x) +

g2(t)

2
∇ log pt(x), (10)
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where u◦
t (x) is the deterministic component, and ∇ log pt(x) is the score function of the density

pt(x). This observation allows us to decouple the learning of the deterministic drift u◦
t (x) and the

score function ∇ log pt(x). Therefore, specifying u◦
t (x) and ∇ log pt(x) is sufficient to define the

SDE drift ut(x). Tong et al. (2023a) proposed the unconditional score and flow matching objective:

L(θ) = Et∼U(0,1),x∼pt(x)

[
∥vt(x; θ)− u◦

t (x)∥
2
+ λ(t)2 ∥st(x; θ)−∇ log pt(x)∥2

]
, (11)

where vt(x; θ) and st(x; θ) are neural networks approximating the drift and score functions, respec-
tively, and λ(t) is a weighting function. However, pt(x) is unknown and thus directly computing
u◦
t (x) and ∇ log pt(x) is challenging. To overcome this, Tong et al. (2023a) proposed a conditional

formulation of the loss function:

L(θ) =Et∼U(0,1),z∼q(z),x∼pt(x|z)

[
∥vt(x; θ)− u◦

t (x|z)∥
2
]

+ λ(t)2Et∼U(0,1),z∼q(z),x∼pt(x|z)

[
∥st(x; θ)−∇ log pt(x|z)∥2

]
,

(12)

where z represents conditioning variables, and x ∼ pt(x|z). In this conditional framework, u◦
t (x|z)

and ∇ log pt(x|z) can be computed analytically or estimated empirically based on the conditional
distribution pt(x|z). We can reconstruct the learned SDE drift using:

ut(x; θ) = vt(x; θ) +
g2(t)

2
st(x; θ), (13)

and integrate it with given initial conditions x0 to infer the trajectories that develop from those initial
conditions.

2.3 LEARNING OVERLAPPING MINI-FLOWS FOR MULTI-MARGINAL DATA

We aim to train an ODE drift network vt(x; θ) and a score network st(x; θ) to learn an overall flow
based on the mini-flows on overlapping (k+1)-tuples (ρi, ρi+1, . . . , ρi+k) for i = 0, 1, . . . ,M−k in
a rolling window fashion. Because transport splines are ultimately just approximations for the true
MMOT, the rolling windows provide a variation of perturbations in the approximated error from any
single geodesic spline segment estimate. See Figure 2 for a visual representation of the variation of
paths in an interval. Our method handles overlapping trajectories where u◦

ti(x) ̸= u◦
tj (x) for fixed x

and ti ̸= tj , accommodating the possibility that trajectories may cross over a point at different times
in multi-marginal settings. In practice, we train using mini-batches of size b.

By incorporating stochasticity through score matching, we improve robustness and avoid overfit-
ting in high-dimensional spaces. The score ∇x log pt(x|z) allows the model to capture the inherent
uncertainty and variability in the data. Using the log derivative trick, we see that the score is equiva-
lent to∇xpt(x|z)/pt(x|z), indicating that the score nudges predictions towards more likely regions
and thereby implicitly explores the region around the local per-sample flow. This efficiency allows
us to remain in the ambient dimension d and sidestep dimensionality reduction strategies which
often introduce information loss and additional complexities into the flow dynamics. Moreover,
re-projecting the trajectories back into the ambient space introduces undesirable reconstruction arti-
facts.

2.3.1 TRANSPORT SPLINES SAMPLING OF z AND STRATIFIED SAMPLING OF t

We sample z from a MMOT plan π using transport splines by first drawing samples
Xti , Xti+1

, . . . , Xti+k
∼ ρi, ρi+1, . . . , ρi+k, where each Xti is a batch of i.i.d. samples from ρi.

Then, we compute the MMOT plan given by the first-order Markov approximation (9):

π(xti , . . . , xti+k
) ≈ π(xti , xti+1)

i+k∏
j=i+2

π(xtj | xtj−1).

The initial plan π(xti , xti+1) is a standard OT plan w.r.t. the squared Euclidean distance
∥xti − xti+1

∥2 as the cost function. Next, we compute the conditional map π(xtj | xtj−1
) using

π(xtj | xtj−1
) =

π(xtj−1 , xtj )

π(xtj−1
)

=
π(xtj−1 , xtj )∫

π(xtj−1 , xtj ) dxtj

.
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By working with empirical samples, we can replace the computationally expensive integration with
a summation over xtj ∈ Xtj .

In the original source-target distribution pair setting, we sample t ∼ U(0, 1). To accommodate our
mini-flow method, we could sample t ∼ U(ti, ti+k) for the ith mini-flow. However, this approach
is ineffective for training uneven time intervals—for example ti+1 − ti ≪ ti+2 − ti+1—leading
to insufficient sampling from the smaller interval. To handle this, we adopt a stratified sampling
strategy, sampling an equal number of time points from U(ti, ti+1), U(ti+1, ti+2), and so on to
ensure balanced training across intervals. Specifically, for a total batch size of b, we sample b/k
time points from each interval.

2.3.2 MINI-FLOW ODE AND SCORE REGRESSION TARGETS

Theorem 3 of Lipman et al. (2022) and Theorem 2.1 of Tong et al. (2023b) derive the ODE flow
regression target for a conditional Gaussian probability path pt(x | z) = N (x | µt, σ

2
t ) as

u◦
t (x | z) =

σ′
t

σt
(x− µt) + µ′

t (14)

where µt and σt are respectively the time-varying mean and standard deviation of the flow condi-
tioned on z. The prime notation (′) denotes differentiation w.r.t. time t. We set µt = µi:i+k(t) for a
transport spline µi:i+k(t) : [ti, ti+k]→ Rd, constructed through the points in z via Euclidean spline
interpolation.

For σt we consider the case of Brownian bridges with constant diffusion g(t) = σ and set σt =

σ
√

t(1− t) along the global time t ∈ [0, 1]. Alternatively, we can set σt based on the Brownian
bridge of the mini-flow from a = ti to b = ti+k, reparameterizing as σt = σ

√
r(t)(1− r(t)), where

r(t) = t−a
b−a . In this case, the derivative σ′

t must take into account the reparameterization, yielding
σ′
t = dσt

dr ·
dr
dt = dσt

dr ·
1

b−a . Because µt, σt, µ
′
t, σ

′
t can be expressed analytically, we can directly

compute these quantities and efficiently compute the regression target u◦
t using Equation (14).

Given our Gaussian probability path, we can easily derive the score regression target as
∇ log pt(x | z) = µt−x

σ2
t

, or alternatively − ϵ
σt

for ϵ ∼ N (0, I).

We summarize our method in Algorithm 1. Once we have the trained networks vt(x; θ), st(x; θ),
we can construct the SDE drift ut(x; θ) using (13), and generate trajectories from given initial con-
ditions x0 by an SDE integration with drift ut(x; θ) and diffusion σ.

2.3.3 WINDOW SIZE k AND SPLINE ALGORITHM

We choose our window size k = 2 based on the properties of our chosen Euclidean spline algorithm
and considerations to the running time. We opt to use monotonic cubic Hermite splines instead of
natural cubic splines for four main reasons. First, the guaranteed monotonicity of each piecewise
cubic polynomial ensures no overshoot, thus removing overshooting from the conditional ODE flow
regression target described in Section 2.3.2. Second, monotonic cubic Hermite splines by construc-
tion do not necessarily have a continuous second derivative. While this is a desired property for
smoother curves (and in fact enforced for natural cubic splines), this condition can restrict the curve
from taking a more direct path such as from a linear piecewise interpolation. Third, while using
a larger window can potentially fit a spline closer to the linear piecewise interpolation, allowing
for smaller windows can better capture a wider variation of paths, increasing the robustness of the
learned flow. Moreover, 3 control points are sufficient to learn a curvature at the interior control
point. Fourth, the specific coefficients describing each piecewise cubic polynomial are efficient to
compute, scaling linearly in O(k) with the k + 1 points to interpolate. For a window size k and M
timepoints, the overlapping window routine computes (M − k)k splines resulting in a total com-
plexity of O((M − k)k). This is “maximized” when k = M/2 for a complexity of O(M2), and
“minimized” when k = 1 or k = M − 1 for a complexity of O(M). As an added bonus, mono-
tonic cubic Hermite splines are highly insensitive to control points that are not immediate neighbors.
Thus, choosing a larger window size k > 2 does not meaningfully increase the amount of informa-
tion captured by the spline. We include a more in-depth discussion of splines in Appendix A.1.
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Algorithm 1 MMSFM Training

procedure TRAIN MMSFM
Initialize networks vt(x; θ), st(x; θ)
Set diffusion term g(t)← σ

Set time-varying variance σt ← σ
√
t(1− t) or σ

√
r(t)(1− r(t))

Set weights λ(t)← 2σt

g(t)2
▷ From scaling strategy

Set window size k
while Training do

for i = 0 to M − k do ▷ Rolling window
Sample mini-batches Xti , . . . , Xti+k

∼ ρi, . . . , ρi+k

Compute OT plans π(Xti , Xti+1
), π(Xti+2

| Xti+1
), . . .

Generate aligned samples z ← (X⋆
ti , . . . , X

⋆
ti+k

) using π

Compute transport splines µt ← µi:i+k(t) ▷ Batch computation
Set pt(x | z)← N (x | µt, σ

2
t )

Sample times t using stratified sampling over [ti, ti+k]
Sample x ∼ pt(x | z)

Compute u◦
t (x | z)←

σ′
t

σt
(x− µt) + µ′

t

Compute ∇ log pt(x | z)←
µt − x

σ2
t

Compute loss:

L(θ)← ∥vt(x; θ)− u◦
t (x | z)∥

2
+ λ(t)2 ∥st(x; θ)−∇ log pt(x | z)∥2

Update θ using L(θ)
end for

end while
return Trained networks vt(x; θ), st(x; θ)

end procedure

3 RESULTS

We briefly describe our data and setup below, and also include a more detailed experimental setup
description in Appendix B. We summarize our results in Tables 1 and 2.

3.1 EXPERIMENTAL SETUP

We applied our rolling window framework to three synthetic datasets, one single-cell dataset from
COLO858 melanoma cells, and two RNA gene expression datasets. From our framework we use
the k = 1 (Pairwise, equivalent to SF2M (Tong et al., 2023a)) and k = 2 (Triplet) mini-flow
settings. We approximate the MMOT plan with transport splines computed on mini-batch OT given
the smaller computation cost and asymptotic convergence properties (Fatras et al., 2019; 2021). We
additionally use MIOFlow (Huguet et al., 2022) on the synthetic datasets and COLO858 to examine
the difference in performance for ambient-space and latent-space models. The initial conditions
for the generated trajectories are from a held-out set of samples from the source distribution ρ0.
Evaluations are computed by leaving out a timepoint marginal during training and calculating the
Wasserstein metrics W1 and W 2

2 (using Euclidean distance as the cost function), the maximum
mean discrepancy with a mixture kernel (MMD(M)), and the maximum mean discrepancy using a
Gaussian kernel (MMD(G)) at the left-out timepoint.

Synthetic Data: Our three synthetic datasets are the S-shaped Gaussians, the α-shaped Gaussians,
and the DynGen synthetic scRNA dataset (Cannoodt et al., 2021). The S and α-shaped Gaussians
both consist of 7 marginal distributions in R2. We select these two datasets because S-shaped Gaus-
sians involve learning a flow with changing curvature, and the α shaped Gaussians have a cross-
over point for some x where the flow uti(x) ̸= utj (x) and i ̸= j. We evaluate both datasets
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on three different timepoint labels: equidistant timepoints T1 = (0, 0.17, 0.33, 0.5, 0.67, 0.83, 1),
arbitrary timepoints T2 = (0, 0.08, 0.38, 0.42, 0.54, 0.85, 1), and a second set of arbitrary time-
points T3 = (0, 0.2, 0.27, 0.3, 0.88, 0.98, 1) with neighboring small and large intervals. The Dyn-
Gen dataset has 5 marginal distributions on equidistant timepoints T = (0, 0.25, 0.5, 0.75, 1), and
introduces a bifurcating flow.

Real Data: We also apply our method to three real datasets. The COLO858 dataset contains
single-cell snapshot data from the AP-1 transcription factor network in COLO858 melanoma cells.
The AP-1 network integrates signals from the upstream MAPK pathway, linking signal transduction
to transcription and driving cellular plasticity, epigenetic reprogramming, and resistance to MAPK
inhibitors in melanoma (Kong et al., 2017; Johannessen et al., 2013; Shah et al., 2010; Maurus
et al., 2017; Fallahi-Sichani et al., 2015; Ramsdale et al., 2015; Comandante-Lou et al., 2022). The
dataset consists of measurements of 15 AP-1 transcription factors from the FOS, JUN, and ATF
families, collected at eight non-equidistant timepoints T = (0, 0.5, 2, 6, 15, 24, 72, 120) measured
in hours following BRAF/MEK inhibitor treatment (Comandante-Lou et al., 2022), which we
normalize to T = (0, 0.004, 0.017, 0.05, 0.125, 0.2, 0.6, 1).

To visualize the dynamics, we employ a GAE with a Gaussian kernel (Huguet et al., 2022),
embedding the 15-dimensional data into a two-dimensional latent space. Unlike methods such as
t-SNE or UMAP, the GAE provides a consistent representation, allowing new data to be embedded
into a shared coordinate system. We plot snapshots of the inferred trajectories at various timepoints
in Figure 1.

Finally, we consider gene expression data from the Multiome and CITEseq datasets pub-
lished as part of a NeurIPS competition (Burkhardt et al., 2022). Measurements are taken at
T = (2, 3, 4, 7) days, which again normalize to T = (0, 0.2, 0.4, 1). We follow the procedure
in (Tong et al., 2023a) and preprocess the data into the first 50 and 100 principal components, along
with the top 1000 highly variable genes (Satija et al., 2015; Stuart et al., 2019; Zheng et al., 2017).

3.2 DISCUSSION

Figure 1: Visualization of transcription factor dynamics in COLO858 melanoma cells following
BRAF/MEK inhibitor treatment, using our triplet stochastic flow matching model. The plots show
snapshots of the inferred trajectories embedded in a two-dimensional GAE space (Huguet et al.,
2022). The original high-dimensional data (15 transcriptiuon factors) is mapped to R2 for visualiza-
tion. Trajectories start on the right and follow a mirrored ‘N’ shape, ending on the left. Blue dots
represent model predictions at the current timepoint.

Learned flows are visualized in Appendix D. Our method consistently outperformed MIOFlow on
the interpolation at the held-out timepoint for the synthetic data. Interestingly, the Pairwise model
slightly outperformed the Triplet model for the α-shaped Gaussians on T1. We believe that in this
specific instance, the masked timepoint corresponded to an interval where the momentum from the
prior interval was enough for the Pairwise model to infer the held-out marginal. In contrast, the
α-shaped Gaussians on T2 show the Triplet model outperformed the Pairwise model by a significant
margin; even MIOFlow generally outperformed the Pairwise model in this instance. This suggests
that the Triplet method is more effective for non-equidistant time snapshots especially when captur-
ing complex temporal dynamics because the variation of flows provided by splines in overlapping
windows helps learn the held-out marginal. The success of our methods on T2 demonstrates the
robustness and stability of our approach even when handling arbitrary timepoints. Looking at the
trajectory plots, we can also confirm that our method is able to handle datasets with varying flow
curvatures and flow cross-overs.
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Table 1: Comparison of the inferred distributions generated by MIOFlow and our method using
Pairwise and Triplet mini-flows at the held-out timepoint. For the equidistant timepoints T1, we
hold out t5 = 0.83 and t4 = 0.67 respectively for the S-shaped and α-shaped data. We do the same
for the arbitrary timepoints T2, holding out t5 = 0.85 and t4 = 0.54. We also examine distance
metrics averaged across all timepoints for T3. From Dyngen, we hold out t1 = 0.25 and from
COLO858 t3 = 0.05. The best results are in bold; lower is better.

S-shaped (hold out t5) α-shaped (hold out t4)
MIOFlow Pairwise Triplet MIOFlow Pairwise Triplet

T1

W1 8.16 2.36 1.83 21.54 3.78 4.54
W 2

2 66.91 5.87 3.86 464.36 14.56 21.06
MMD(G) 7.26 2.29 1.47 7.65 3.96 4.26
MMD(M) 66.19 5.24 3.11 463.66 13.92 20.01

T2

W1 9.42 2.12 1.62 5.04 8.08 3.79
W 2

2 89.07 4.56 2.73 25.85 76.82 14.73
MMD(G) 7.37 2.36 1.53 6.46 4.01 3.77
MMD(M) 88.37 4.12 2.22 25.35 64.81 14.07

S-shaped (all timepoints) α-shaped (all timepoints)

T3

W1 — 12.06 3.71 — 33.95 186.68
W 2

2 — 257.86 35.01 — 2400.15 2.51e6
MMD(G) — 4.12 2.12 — 4.62 1.35
MMD(M) — 241.01 7.87 — 2168.01 7.76e5

Dyngen (hold out t1) COLO858 (hold out t3)

W1 0.85 0.74 0.83 0.48 0.93 0.42
W 2

2 0.98 0.63 0.82 0.25 0.92 0.19
MMD(G) 0.53 0.38 0.22 1.30 1.08 0.26
MMD(M) 0.51 0.19 0.10 0.08 0.74 0.05

Table 2: Comparison of the Pairwise and Triplet methods on the CITEseq and Multiome gene ex-
pression datasets. We hold out t2 = 0.4 for both datasets.

PCA 50 PCA 100 Hi-Var 1000
Pairwise Triplet Pairwise Triplet Pairwise Triplet

CITEseq

W1 54.18 53.98 62.85 62.08 50.64 50.71
W 2

2 3027.28 3019.89 4036.41 3942.08 2579.84 2585.98
MMD(G) 0.16 0.16 0.16 0.15 0.05 0.05
MMD(M) 339.20 344.89 345.09 331.72 48.53 49.83

Multiome

W1 61.79 60.92 70.72 70.39 56.15 56.10
W 2

2 3918.50 3806.89 5077.07 5029.56 3166.01 3160.84
MMD(G) 0.30 0.27 0.25 0.23 0.04 0.04
MMD(M) 793.34 705.21 656.86 621.32 40.71 40.29

The bifurcating flow of Dyngen posed a challenge for our models, as they outperformed MIOFlow
on the metrics, but struggled to handle the bifurcating trajectories. We suspect this behavior to stem
from mini-batch OT because it does not enforce a consistency constraint on the sampling process,
resulting in cases where particles are able to jump between separate branches of the bifurcated flow.
We did not explore methods to mitigate this problem and believe this to be an avenue for future
work.

The COLO858 trajectories again show our Triplet method performs the best, scoring better than
the MIOFlow trajectories and significantly outperforming the Pairwise method. The overlapping
mini-flows of the Triplet model greatly stabilize the overall flow in the individual intervals. In addi-
tion, remaining in the high-dimensional ambient space without aggressive dimensionality reduction
preserves important biological information, leading to more biologically plausible trajectories. The
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ability to generate samples at arbitrary timepoints allows us to explore the system’s behavior beyond
the observed data, potentially identifying critical time windows where intervention might be most
effective. This has implications for understanding drug resistance mechanisms and designing more
effective therapeutic strategies.

In all instances, MIOFlow generated idiosyncratic trajectories which matched the marginals at the
specified timepoints but performed poorly between those timepoints. We believe this to be the case
because MIOFlow operates in the embedding space generated by a GAE. This structure works very
well for trajectories in the embedding space but poses a problem when reconstructing the trajectories
in the ambient space. The GAE is only trained on the data marginals {ρi}Mi=0 at times {ti}Mi=0,
which means that data points not specified in the data are effectively out-of-distribution w.r.t. the
GAE. These out-of-distribution points arise naturally from generating trajectories which spend time
traveling between the data distributions. In addition, we notice that all the reconstructed points
exhibit high bias and low variance, tending to be bunched very close to each other. This quality
perhaps captures the first moment well but not any higher moments.

We validate our Triplet model’s ability to learn flows on high dimensional, noisy data, taken at ir-
regular timepoints by comparing results from the Pairwise and Triplet models on the CITEseq and
Multiome datasets. These two datasets contain high dimensional samples with noise inherent to bio-
logical measurements and measurements from non-uniform time intervals. We see the Triplet model
successfully outperform the Pairwise model on inferring the distribution at the held out timepoint
even in these conditions.

Finally, we examine performance of the Pairwise and Triplet models on the S and α-shaped datasets
using the highly unbalanced timepoints T3. Here, we find that the Triplet model greatly outperforms
the Pairwise model on the overall learned flow for the S-shaped dataset, but seemingly vastly un-
derperforms for the α-shaped dataset. By taking a closer look at the visualizations of the learned
flow, we can see that in both cases, the short-long-short interval pattern poses a significant difficulty,
suggesting that arbitrary timepoints do indeed increase the difficulty of the learning task. In the S-
shaped case, the Pairwise model completely fails to learn this trajectory, whereas the Triplet model
does better, learning to speed up and then slow down between t2 = 0.27 to t3 = 0.3, and t3 = 0.3
to t4 = 0.88. Unfortunately, neither model was able to converge in the α-shaped case.

4 CONCLUSION

We present a novel framework for aligning high-dimensional single-cell data in a multi-marginal set-
ting with non-equidistant timepoints, while remaining in the high-dimensional space and avoiding
the pitfalls of dimensionality reduction. By expanding the literature of Conditional Flow Matching,
we have developed a method that learns flows for overlapping triplets, enhancing robustness and
stability in multi-marginal settings. Our application to the COLO858 melanoma single-cell dataset
demonstrates the method’s effectiveness in capturing complex cellular dynamics while avoiding the
need to simulate differential equations during training. We further validate our method’s scalabil-
ity and ability to learn in high dimensional spaces using the CITEseq and Multiome datasets. The
incorporation of stochasticity through score matching improves robustness and avoids overfitting,
enabling the model to generalize to new conditions. This work opens new avenues for generative
algorithms as well as modeling cellular responses to perturbations, providing a computationally effi-
cient and biologically accurate framework capable of handling the complexities of high-dimensional,
stochastic biological systems.
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A CUBIC SPLINES

Cubic splines are a class of piecewise functions interpolating between control points
(t0, x0), . . . , (tn, xn), taking the form

S(t) =


S0(t) t0 ≤ t < t1
...
Sn−1(t) tn−1 ≤ t ≤ tn

where Si is the cubic polynomial Si(t) = ai(t−ti)3+bi(t−ti)2+ci(t−ti)+di for i in 0, . . . , n−1.
There are 4 coefficients to solve for per equation which results in n equations and 4n unknowns.
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Figure 2: Comparison of Euclidean splines on overlapping windows of size k = 2, demonstrating
the potential for overlapping windows to capture variations of paths though the same intervals. From
left to right: 1) The 7 points to interpolate with time labels t0, . . . , t6. 2) Natural cubic splines on
equidistant time intervals. 3) Monotonic cubic Hermite splines on equidistant time intervals. 4)
Natural cubic splines on arbitrary time intervals T = (0, 0.05, 0.2, 0.27, 0.86, 0.95, 1). Note the
overshooting required to satisfy the continuity of S′′ at t3 and t4. 5) Monotonic cubic Hermite
splines on arbitrary time intervals.

A.1 NATURAL CUBIC SPLINES

Natural cubic splines solve for the above coefficients ai, bi, ci, di by applying four conditions.
The first requires the spline to interpolate the data points (ti, xi) such that S(ti) = xi result-
ing in n + 1 constraints. The second requires S to be continuous at the interior points such that
Si(ti) = Si+1(ti), resulting in n − 1 constraints. The third and fourth conditions respectively re-
quire S′ and S′′ to be continuous for a total of 2n− 2 constraints. Finally two boundary conditions
are added such that S′′(t0) = S′′(tn) = 0. In total, we have constructed a system of equations with
4n unknowns and 4n constraints. Ultimately, this setup constructs a tridiagonal system of equa-
tions which is efficiently solvable in O(n) time using a single forward and backward pass. Perhaps
reasonably, natural cubic splines are quite local as the influence of neighboring intervals greatly
decreases the further away the neighbor is.

A.2 MONOTONIC CUBIC HERMITE SPLINES

Cubic Hermite splines approach the problem differently. Consider a single time interval [0, 1] and
corresponding points x0, x1. Let the position of x at time t be given by the following cubic polyno-
mial:

xt = at3 + bt2 + ct+ d.

Likewise, let mt be the velocity of xt at time t, given by

mt = 3at2 + 2bt+ c.

At t = 0 and t = 1, we can solve for x0, x1,m0,m1 in terms of a, b, c, d to get the following system
of equations:

x0 = d

x1 = a+ b+ c+ d

m0 = c

m1 = 3a+ 2b+ c.

Solving this system of equations, we get

x(t) = (2t3 − 3t2 + 1)x0 + (t3 − 2t2 + t)m0 + (−2t3 + 3t2)x1 + (t3 − t2)m1

as the polynomial interpolating (0, x0) to (1, x1). All that remains is to specify values for m0 and
m1. In other words, cubic Hermite spline algorithms are defined by how the velocities mi are
selected.

Monotonic cubic Hermite splines set mi using the following strategy. Define hk = tk+1 − tk and
dk = xk+1−xk

hk
. If the signs of dk and dk−1 do not match or either is 0, then set mk = 0. Otherwise,

mk is given by
w1 + w2

mk
=

w1

dk−1
+

w2

dk

14
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where w1 = 2hk + hk−1 and w2 = hk + 2hk−1. We direct the reader to Fritsch & Carlson (1980)
for an exact derivation and proof of monotonicity. This formula is also solvable in O(n) time, but
differs from the natural cubic spline in that it is very local. In fact, only the immediate neighboring
data points (ti−1, xi−1) and (ti+1, xi+1) influence the curve.

Figure 3: Euclidean splines on overlapping windows of size k = 2, using the means of each Gaus-
sian in the S-shaped dataset as the control points. From left to right: 1) The 7 points to interpolate
with time labels t0, . . . , t6. 2) Natural cubic splines on equidistant time intervals. 3) Monotonic cu-
bic Hermite splines on equidistant time intervals. 4) Natural cubic splines on arbitrary time intervals
T2 = (0, 0.08, 0.38, 0.42, 0.54, 0.85, 1). 5) Monotonic cubic Hermite splines on T2.

Figure 4: Euclidean splines on overlapping windows of size k = 2, using the means of each Gaus-
sian in the α-shaped dataset as the control points. From left to right: 1) The 7 points to interpolate
with time labels t0, . . . , t6. 2) Natural cubic splines on equidistant time intervals. 3) Monotonic cu-
bic Hermite splines on equidistant time intervals. 4) Natural cubic splines on arbitrary time intervals
T2 = (0, 0.08, 0.38, 0.42, 0.54, 0.85, 1). 5) Monotonic cubic Hermite splines on T2.

B EXPERIMENTAL SETUP

B.1 TRAINING SETUP

For all experiments, we used a MLP with an input layer, two hidden layers, an output layer, along
with SELU activation functions. All networks were optimized using AdamW. We set σ = 0.15 for
our method and likewise as the noise scale in MIOFlow.

For the S-shaped, α-shaped, DynGen, and COLO858 datasets, we trained for 2500 gradient steps
and a learning rate of 1e-4. For the CITEseq and Multiome datasets, we trained for 1000 gradient
steps and a learning rate of 1e-5.

MIOFlow is a method to infer “optimal” trajectories on manifolds which correspond to geodesics.
As we do not have access to the underlying manifold itself, the authors propose learning it from data
using a GAE such that the encoder ϕ is a mapping from the ambient space to the manifold. More
specifically, the encoder learns an embedding such that the Euclidean distance of two embedded
points ∥ϕ(x)− ϕ(y)∥ matches some geodesic distance G(x, y) based on a diffusion affinity matrix.

Additionally, MIOFlow requires training a GAE to embed high-dimensional data into a lower-
dimensional space and to then reconstruct trajectories learned in the embedded space. We define
the encoder as a MLP with three hidden layers of sizes 128, 64, and 32. This encoder outputs an
embedding into R2. The decoder has the same architecture but in reverse. We use ReLU as the
activation function. The GAE is trained for 1000 gradient steps using the AdamW optimizer.

B.1.1 SCORE MATCHING IMPLEMENTATION

As noted in Section 2.3.2, we have ∇ log pt(x | z) = − ϵ
σt

for ϵ ∼ N (0, I). However, this direct
formulation does not protect against numerical instability when σt is small. We follow the approach

15
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used by Tong et al. (2023a) and take advantage of the user-defined weighting schedule λ(t) to
cancel out the division and learn the scaled target g(t)2

2 ∇ log pt(x | z) based on the Fokker-Planck
Equation 2. By rewriting the inside of the expectation of the scaled score loss as

λ(t)2
∥∥∥∥ŝt(x; θ)− g(t)2

2
∇ log pt(x|z)

∥∥∥∥2 =

∥∥∥∥λ(t)ŝt(x; θ) + λ(t)
g(t)2ϵ

2σt

∥∥∥∥2 ,
we can see that when setting λ(t) = 2σt

g(t)2 , the score loss becomes

∥λ(t)ŝt(x; θ) + ϵ∥2 ϵ ∼ N (0, I).

This approach allows us to reconstruct the mini-flow SDE drift as the sum of the mini-flow ODE
drift and the scaled score network output:

ut(x; θ) = vt(x; θ) + ŝt(x; θ). (15)

B.2 DYNGEN

We repurpose the DynGen data used in MIOFlow (Huguet et al., 2022) for our experiments. No-
tably, the data itself is not the raw simulated reads; it is preprocessed into 5 dimensions using
PHATE (Moon et al., 2019).

PHATE operates as a dimensionality reduction scheme aiming to preserve both local and global
dependency structures. Local structure is learned first by imposing Pairwise affinities under a Gaus-
sian kernel. Global structure is inferred by propagating the local affinities via diffusion, effectively
learning a statistical manifold based on the information geometry. Finally, metric MDS is used as
the dimensionality reduction strategy.

We believe that the GAE used in MIOFlow learns the data manifold for the (PHATE-transformed)
DynGen dataset especially well given that, by construction, the DynGen dataset does indeed reside
on a manifold equipped with a diffusion-based metric. This matches the prior belief in MIOFlow
that diffusion-based affinities can accurately capture the data manifold.

B.3 COLO858

The dataset consists of high-dimensional measurements of 15 AP-1 transcription fac-
tors from the FOS, JUN, and ATF families, collected at eight non-equidistant timepoints
T = (0, 0.5, 2, 6, 15, 24, 72, 120) measured in hours following BRAF/MEK inhibitor treat-
ment (Comandante-Lou et al., 2022). The data was acquired using the 4i (Iterative Indirect Im-
munofluorescence Imaging) technique, allowing multiplexed imaging of protein markers in single
cells (Gut et al., 2018).

B.4 CITESEQ AND MULTIOME

These datasets were published as part of a NeurIPS competition for multimodal single-cell integra-
tion (Burkhardt et al., 2022). We present a brief overview, and refer the reader to the competition
itself for more in-depth descriptions 1. The data is collected from peripheral CD34+ hematopoietic
stem and progenitor cells from healthy human donors. The CITEseq data is measured using 10x
Genomics Single Cell Gene Expression with Feature Barcoding technology. The Multiome data is
measured using 10x Chromium Single Cell Multiome ATAC + Gene Expression technology.

Technically, both the CITEseq and Multiome datasets are labled, with the former about predicting
protein levels given gene expressions, and the latter about predicting gene expressions given ATAC-
seq peak counts. We are only interested in the gene expression data, so we only use the CITEseq
input data and the Multiome target data. Following Tong et al. (Tong et al., 2023a), we only select
cells from the respective datasets from a single donor id 13176. The gene expression data is already
library-size normalized and log1p transformed, so we compute the PCA and top highly variable
genes without any further preprocessing step.

1https://www.kaggle.com/competitions/open-problems-multimodal/overview
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C ABLATION STUDIES

We report in Table 3 ablation experiments on held-out timepoints for the S-shaped and α-shaped
Gaussians on the Pairwise (k = 1), Triplet (k = 2), and “All” (k = M − 1) models. We test both
T1 = (0, 0.17, 0.33, 0.5, 0.67, 0.83, 1) and T2 = (0, 0.08, 0.38, 0.42, 0.54, 0.85, 1). We evaluate the
W1 metric on the held-out marginal for these experiments. In general, the Pairwise model performed
worst, whereas the Triplet and All models were relatively even, providing experimental validation
for minimal performance boosts when k > 2.

S-shaped α-shaped
Held-out index Pairwise Triplet All Pairwise Triplet All

T1

1 2.43† 2.13 2.08 3.38 4.95 5.13†

2 2.59† 1.96 2.14 4.38 4.37 4.84†

3 1.44† 1.28 1.13 2.72 2.94 2.97†

4 2.12† 1.95 1.74 3.78⋆ 4.54⋆† 4.53
5 2.36⋆† 1.83⋆ 2.04 4.17 5.04† 4.71

T2

1 2.35† 1.71 1.48 2.78 3.94 3.94
2 2.65 3.27 3.64† 5.74† 4.94 4.68
3 2.65† 1.90 1.76 3.37 3.24 3.91†

4 0.86 1.09 2.11† 8.08⋆† 3.79⋆ 2.42
5 2.12⋆† 1.62⋆ 1.59 5.06 5.12† 4.54

Table 3: W1 metrics on ablation experiments varying the held-out timepoint. Entries with a ⋆

indicate values reported in Table 1. Entries with a † indicate the worst performance out of the
Pairwise, Triplet, and All models.

D FLOW VISUALIZATIONS

We visualize our experiments here. Viewing in color is recommended.

Figure 5: Trajectories for S-shaped Gaussians using arbitrary timepoints
T2 = (0, 0.08, 0.38, 0.42, 0.54, 0.85, 1) and holding out timepoint t5 = 0.85. Trajectories
start from the leftmost point and follow the curve to reach the rightmost point. From left to right:
MIOFlow, Pairwise, Triplet.
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Figure 6: Trajectories for α-shaped Gaussians using arbitrary timepoints
T2 = (0, 0.08, 0.38, 0.42, 0.54, 0.85, 1) and holding out timepoint t4 = 0.54. Trajectories
start from the upper right and loop around to the bottom right. From left to right: MIOFlow,
Pairwise, Triplet.

Figure 7: DynGen simulated trajectories. Trajectories start from the leftmost point and quickly
bifurcate into the upper and lower right. The trajectories are in R5, but only the first and second
dimensions are shown here. We hold out t1 = 0.25. From left to right: MIOFlow, Pairwise, Triplet.

Figure 8: Trajectories for S and α-shaped Gaussians predicted by the Pairwise and Triplet models
using all timepoints from T3 = (0, 0.2, 0.27, 0.3, 0.88, 0.98, 1). From left to right: 1) Pairwise on
S-shaped. 2) Triplet on S-shaped. 3) Pairwise on α-shaped. 4) Triplet on α-shaped.
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Figure 9: Trajectories for S-shaped Gaussians predicted by the Pairwise and Triplet models using
all timepoints from T3 = (0, 0.2, 0.27, 0.3, 0.88, 0.98, 1). Top row) Pairwise. Bottom row) Triplet.

Figure 10: Trajectories for α-shaped Gaussians predicted by the Pairwise and Triplet models using
all timepoints from T3 = (0, 0.2, 0.27, 0.3, 0.88, 0.98, 1). Top row) Pairwise. Bottom row) Triplet.
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