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ABSTRACT

Contrastive Language-Image Pretraining (CLIP) excels in cross-domain image
retrieval. However, existing methods often depend on extensive manual anno-
tations for local supervision and ignore CLIP’s native local-semantic capabilities.
To address these problems, we propose an autoencoder-based approach named
LS-CLIP, which is designed to extract local semantics in CLIP and realize cross-
domain feature alignment. First, we design a self-supervised Semantic Recon-
struction Module (SRM) for local feature mining. Through reconstructing the
patch features of the Vision Transformer (ViT), SRM integrates global and local
semantic information to adapt to retrieval tasks of different granularities. Sec-
ond, we introduce Feature Moment Transfer (FMT). Through the reconstruction
of cross-domain features via moment transfer, the stability of the feature space
is enhanced. In addition, this module incorporates noise when reconstructing
the data distribution, thereby improving the model’s generalization ability. To
accommodate diverse retrieval intents, we construct a dataset with rich textual
descriptions and a wide range of scenarios, named CDIR-Flickr30k. Extensive
experiments demonstrate that LS-CLIP significantly outperforms state-of-the-art
baseline models in various metrics. Zero-shot evaluation confirms its strong gen-
eralization capability. Importantly, LS-CLIP can be applied as a plug-and-play
model to CLIP variants, consistently delivering performance improvements.

1 INTRODUCTION

Image Retrieval (IR) Datta et al.| (2008) has been extensively studied, among which Query-Based
Image Retrieval (QBIR) Thomee & Lew| (2012); [Isinkaye et al.| (2015)); Li et al.| (2023a)) is the most
widely applied. With the development of this field, challenges have expanded from single-domain
retrieval to Cross-Domain Image Retrieval (CDIR) |Ghosh et al.|(2018); /Wang et al.| (2017). CDIR
means to find relevant images in one visual domain based on query images from another visual
domain, such as sketches, paintings, or photographs |Wang et al.[(2014).

There are some unique challenges for CDIR due to the significant visual domain gap between the
query and the target images. This domain gap is characterized by substantial differences in visual
features between domains, which leads to poor retrieval performance when the features do not gen-
eralize Huang et al.| (2015). Early approaches leveraged category information for discriminative
feature extraction or minimized losses such as triplet|Yu et al.|(2016) and HOLEF Song et al.|(2017)
for cross-domain pairing. With the development of vision language models such as CLIP Radford
et al.|(2021), which achieves cross-modal alignment through large-scale image-text pre-training and
demonstrates strong generalization in cross-domain scenarios, new possibilities have opened up for
handling CDIR tasks |Pan et al.[(2023); [Sun et al.| (2024)); Zhang et al.|(2024). However, CLIP relies
primarily on the CLS token (a single global feature vector), which fails to capture local semantic
details. This problem is critical for CDIR as cross-domain images often share semantic equivalence
but differ in local visual forms. The local semantic deficiency further causes the domain-gap issue,
making CLIP-based CDIR methods still far from practical application.

To enhance the ability of local semantic understanding, existing CLIP-based CDIR methods have ex-
plored targeted improvements. For example, RO-ViT Kim et al.| (2023)) adopts a contrastive approach
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Figure 1: Cross-Attention Map of CLS and image Patches, which green is CLS of CLIP, yellow is
patches and red is ours. A\ is a image patch randomly selected on the target object. Taking the second
sample as an example, the lower body of the person on the right blends in with the environment due
to wearing black. This is difficult to distinguish for CLIP. However, LS-CLIP can distinguish the
outline of the person well. More results can be seen in appendix [A.3]

to align sentence tokens with image regions, while FG-CLIP [Xie et al.| (2025) uses region-text pairs
for enhanced regional contrastive learning. Despite their progress, these methods share two key lim-
itations. Firstly, they are highly dependent on supervised learning. This requires large-scale manual
annotations, such as object bounding boxes and region-text alignments. These annotations increase
data costs and at the same time limit their scalability. Secondly, they overlook the inherent local
semantic potential of the CLIP Vision Transformer (ViT) structure, specifically, patch features that
naturally encode local object information.

To verify this potential, we analyzed CLIP attention weights maps as shown in Fig[l] The CLS
token focuses mainly on global semantics. The CLS of the low-level layer has more attention to
local details but more focuses on the background. In contrast, ViT patch features exhibit strong
targeted attention to different objects, providing valuable supplementary local semantic for cross-
domain alignment. Inspired by this observation, we designed an autoencoder-based adapter named
Semantic Reconstruction Module (SRM) based on MAE (2022) to extract local semantics
from patch features. By combining this local information with the global semantics of the CLS
token, SRM can address both the issues of high supervision dependence and insufficient utilization
of CLIP’s local semantic extraction capability in existing methods. Furthermore, to improve the
stability of feature spaces and generalization, we propose Feature Moment Transfer (FMT). Inspired
by the AdaIN Huang & Belongie (2017) style transfer framework, FMT optimizes the alignment of
feature distribution across domains and incorporates controlled noise to reduce overfitting to specific
domains. As shown in Fig[l] attention weights of LS-CLIP can focus well on local objects.

A comprehensive evaluation of CDIR methods requires datasets that cover various retrieval sce-
narios and granularities. However, existing benchmarks are insufficient. For example, FSCOCO
Chowdhury et al.| (2022) only supports text or sketch queries. FreestyleRet|Li et al| expands
to cartoons and low-quality images. However, FreestyleRet lacks support for local object retrieval.
This is a common real-world need. It includes things like retrieving a full image via a local detail.
These limitations make it impossible to fully assess the ability of a method to multigranularity and
multi-domain retrieval, which are core goals of our proposed framework. Therefore, we constructed
the CDIR-Flickr30k dataset based on Flickr30k [Young et al|(2014). This dataset includes a large
number of natural images. These images are paired with five types of cross-domain queries. These
queries include text, sketch, cartoon, low quality image and local object image. This dataset enables
comprehensive validation of the performance of our method in diverse scenarios.

In summary, our contributions are as follows.

* We propose LS-CLIP, a lightweight and flexibly pluggable feature enhancement framework
for CDIR. Integrates the Semantic Reconstruction Module (SRM) and Feature Moment
Transfer (FMT) to achieve a more accurate understanding of both local and global semantic
information, addressing key limitations of existing CLIP-based methods.
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* We construct the CDIR-Flickr30k dataset, which contains rich textual descriptions and an
extensive scenario. This dataset supports the comprehensive validation of cross-domain
retrieval methods, including multigranularity retrieval tasks.

» Extensive experiments demonstrate that LS-CLIP outperforms state-of-the-art baseline
models on both our CDIR-Flickr30k dataset and other public retrieval datasets. It also
exhibits strong generalization capability through zero-shot evaluation, providing effective
solutions and new insights for practical CDIR applications.

2 RELATED WORK

Cross-Domain Image Retrieval CDIR further increases image retrieval challenge by incorporating
search tasks across different domains such as sketches, cartoons, paintings, and photographs [Datta
et al.| (2008); [Huang et al.| (2015). There is a significant visual domain gap between queries and
targets in CDIR. It leads to misalignment of feature distributions and degraded retrieval performance.
Early approaches leveraged category information for discriminative feature extraction or minimized
losses such as triplet [Yu et al.| (2016) and HOLEF |Song et al.| (2017) for cross-domain pairing.
However, these methods have a limitation. They show poor generalization across domain pairs. For
example, methods optimized for sketch-photo fail on cartoon-photo tasks. With the development
of large-scale VLMs, such as, CLIP |Radford et al.| (2021)), ALIGN Jia et al.| (2021), BLIP-2 |L1
et al.| (2023b), cross-modal alignment is used in CDIR. These models leverage pretrained image-text
semantic associations to bridge domain gaps, allowing tasks such as text-image retrieval L1 et al.
(2022a); Radford et al.|(2021) and text-video retrieval |Jin et al. (2023a;b). Most VLMs-based CDIR
methods only use the CLS token ignoring local details critical to cross-domain matching. This
problem causes performance drops in the search task for full image using the local object query.

Datasets Image-text datasets are the foundation of VLMs-based CDIR. However, existing bench-
marks have incomplete coverage of retrieval scenario. Datasets like LAION Jia et al.|(2021)), COCO
Lin et al.| (2014), and Flickr30K |Young et al.| (2014) focus on contrastive text-image learning in
the same domain, lacking support for cross-domain query types. Diverse-Style Retrieval Dataset
(DSR) Dataset [Li et al.|(2024) extend to multistyle domains but lack local object retrieval, a com-
mon real-world scenario. This gap makes it impossible to assess the ability of the method to adapt
to multigranularity CDIR, which motivates us to construct the CDIR-Flickr30k dataset.

Local Semantic Enhancement Most VLMs (e.g. CLIP [Radford et al.| (2021)) have limited local
semantics due to be optimized on global image-text alignment, which hampers specific region fea-
ture extraction. One kind of enhancement method is to depend on supervision. For example, GLIP
Li et al.| (2022b), RegionCLIP |[Zhong et al.| (2022) use grounding data which need labor-heavy an-
notations. FG-CLIP Xie et al.| (2025) relies on object captions and ignores ViT patch features. In
addition, some methods are only based on simple image-text pairs. LongCLIP [Zhang et al.| (2024)
extends the length of the text. However, it ignores the local information from the VLMs. In sum-
mary, existing methods have two flaws. Firstly, high reliance on annotations or one-sided text op-
timization. Secondly, ignore the local semantics of ViT. We propose SRM to mine local semantics
from ViT patches via self-supervised reconstruction without extra annotations.

Autoencoder The autoencoder [He et al.| (2022); [Hou et al.| (2022); Wei et al. (2023) enables un-
supervised learning via encoder-decoder structure by minimizing input-output reconstruction error,
reducing labeled data reliance. It shows promise in CDIR but has limitations in existing applications.
CDFD He| (2024), which is an unsupervised CDIR, uses DWT and DCT for robustness. However,
it relies on hand-crafted transforms and fails to capture high-level semantics across domains, which
limits semantic-driven CDIR. CM [lijima et al.| (2024) uses VLMs to generate captions as CDIR
intermediates to avoid using labeled data. However, it depends on caption quality. For example,
ambiguity hurts alignment. It also increases the computation cost of caption generation. Our work
uses autoencoder-based unsupervised reconstruction to address those problems.

3 METHODOLOGY

In this section, we first present an overview of our proposed LS-CLIP, which contains the Semantic
Reconstruction Module (SRM) and the Feature Moment Transfer (FMT). Next, we elaborate on the
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Figure 2: The Overall Framework of our LS-CLIP. The model input ¢ denotes an image from
I, Ipos; Ineg|, and the input 4,5 is an randomly selected corresponding domain images to i. We
propose a Semantic Reconstruction Module (SRM) based on autoencoder architecture, which is
used to mine local semantic information from patch features. Additionally, through the Feature Mo-
ment Transfer (FMT), we perturb the feature distribution and perform reconstruction to achieve the
stability of the feature space. Lp¢ is the InfoNCE loss in Equation (E[), Liyipiet 1s the triplet loss to

achieve modality aliment in Equation (6), LEZM and LEMT is MSE loss to mine local semantics
@

in Equation (3)) and (8). FiGLS is feature of the input ¢ for retrieval.
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Figure 3: Model architecture of LS-CLIP with SRM and FMT. The encoder is a multi-head cross-
attention block with a Max Pooling Layer to pool the image features at first. For SRM and FMT,
they share the same model parameters.

detailed network architecture, with a particular focus on SRM and FMT. Finally, we introduce the
retrieval tasks designed to validate the effectiveness and generalization of our proposed LS-CLIP.

3.1 NETWORK ARCHITECTURE

3.1.1 SEMANTIC RECONSTRUCTION MODULE

To extract the local semantic information of CLIP, we introduce the Semantic Reconstruction Mod-
ule (SRM), which is a lightweight module. SRM reconstructs patch features into low-dimensional
representations that preserve local semantics, then integrates these representations into the CLS
token to enhance the ability of local semantic understanding. The SRM encoder consists of a
Max-Pooling Layer and a Multi-head Cross-Attention Layer which as shown in left of Fig[3]
For an anchor image I, it will be inputted into the frozen CLIP image encoder to extract feature
F; € RU+m)xd where n denotes the number of ViT patch tokens in CLIP and d denotes the dimen-
sion of feature. Fy is formulated as F; = [FC|FF] (where [|] denotes the concatenation operation),
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in which F¥ € R and F/" € R"*? are the CLS features and patch features, respectively. To
optimize triplet loss, we select two auxiliary samples. One is a negative sample I,,., which is a se-
mantically irrelevant natural image from the same dataset as I. One is a positive sample I,,,, which
is a semantically consistent cross-domain image, such as sketch corresponding to I. In the same
way, we extract their features Fy,. € RIFT™*dand F; € RO+M*d Fy Fy - and Fy,, are
further used in SRM for local semantic reconstruction.

neg

Max Pooling Layer. For patch features F'" of any image, it first undergoes a maximum pooling
operation for dimensionality reduction to obtain F¥", that is, F¥" = Pool(FF). The purposes of
this step are as follows. First, it can compress useful information to minimize interference from

redundant information. Second, it can ensure that F'¥ " and the CLS token features F'C maintain
consistent feature scales, facilitating subsequent operations such as feature fusion.

Multi-head Cross-Attention Layer. After compression of the information through the pooling
operation, there may be information distortion in F'*". Therefore, a multi-head cross-attention layer

is introduced here to allow information interaction between F'¥ and F'F /, as shown in the formula
(T). The significant advantage of this approach is that we do not change the dimension of the feature

and the number of scales of F'¥' itself in this process, which means that its maximum information
carrying capacity remains fixed. Through the interaction of information with F'’, the model can
compress more modal information into F'4. After that, 4 will be fed into a light MLP network to
obtain F', which can be formulated as equation . Finally, the fusion of the features of ¢ and
F4" produces the final feature of the image ¢S, which can be formulated as FELS = FC 4 FA,
In the inference phase, we will use F¢%~ as the semantic feature of the image for CDIR.

QFK(FP)
vy,
= MLP(F* + FF') + (FA + FF) 2)

A = Attention(Q, K, V, F¥' | F') = softmax( W(FD) (1

In the decoder, we choose to adopt a lightweight MLP network for semantic reconstruction. The
feature 4 is input into the decoder to obtain F"¢¢ = D(F4').

The autoencoder is independent of any specific image domain and does not require labeled data. For
any image 7, we can get their reconstruction results F7*¢ through SRM. We employ MSE loss as an
optimization objective for reconstruction. L¥#M is computed between F"¢¢ and F'¥ as in Equation

(3). The final loss of reconstruction £22M is denoted as the mean of £ for all images.

hw

b
£ = (003 3 ity = Flsad)/ b oo x 9

U

Furthermore, to preserve the original image-text alignment capability of the model, we retain the
original image-text contrastive loss L;r¢ as an optimization objective. To maintain semantic con-
sistency, we only compute the InfoNCE loss|Oord et al.|(2018)) for the nature image I. Specifically,
L7 can be expressed as in equation (), where £L,, and £1,; are defined as equation (4). 6(.) is
denoted as the distance of cosine similarlty in equation (@)

eap(3(Ff5 M Fjeet) o

Liy = —log ) (42)
t iy cap(§(FfSOHT, Fleat) /)
g 22\21 6$p(6(F1557CL1P, F}‘p'm‘)/,r)
Lire = (Liy + Liy)/2 )

Finally, to align semantic feature spaces between cross-domain images, we utilize triplet 10ss Lyyipiet
as an optimization objective. Our triplet loss objective is to fully learn the semantic information
between cross-domain images by reducing the distance between image I and the positive sample
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Ip0s while increasing the distance between image I and the negative sample I,,.4, which can be
denoted by Equation (@ with margin > 0. Triplet loss aims to minimize the distance J(.) between

FIGLS and FIG,,OLSS , while increasing that of a random negative feature FIGn fgs .
Liripter = max(0,y + (FFLS, FELS) — 5(FELS | pELS)) (©6)

3.1.2 FEATURE MOMENT TRANSFER

To improve the generalization of the model across domains, we introduce the Feature Moment Trans-
fer (FMT) mechanism as an auxiliary training strategy. Inspired by style transfer methods |Huang &
Belongie| (2017), which in feature moments are used to adjust feature distributions, we use this idea
to improve the robustness of the feature space. The core logic of FMT is: first modify the feature
distribution of the anchor image by replacing the feature moment, then reconstruct the perturbed
features back to their original distribution; this process not only enriches the diversity of feature
representations, but also strengthens the adaptability of model in cross-domain retrieval scenarios.

In FMT, we first randomly select a reference image from the same domain as %,y but with generally
inconsistent semantics compared to the image i. The reference image is then fed into the encoder

module (which shares parameters with SRM as shown in Fig to obtain its Fif;f. We replace

the corresponding feature moments of the source image to complete the feature moment transfer
operation. The FMT result feature FF"M7T of image 7 is defined as:

FMT = Uref(FiA/ = 1)/0 + pres 7

Where pi,..y and o,y is the first-order feature moment and the second-order feature moment of
F;féf In addition, ;2 and o denote the feature moments of F/.

Subsequently, we input F/"M7T into the Decoder (which shares parameters with SRM as shown in
Fig[3) for feature reconstruction. We perform MSE loss £F'7 alignment optimization with F'*” of
the source image, which is similar to £, as the equation (8)). The final FMT loss LT is denoted

rec
as the mean of LM for all images 1.

d
.5,k .5,k

b hw
FMT __
LM =022,
n=1j=1k

Thus, the training loss function in our method is £ = LIZM 4 £, 0 + Lire + LEMT,

(D(FL5R) = i i)/ (b x hw x d) (8)

4 EXPERIMENT

4.1 EXPERIMENT SETTING

Compting Methods. To better validate LS-CLIP, we conducted image retrieval experiments to
compare the model with state-of-the-art multimodal models, such as FreestyleRet|L1 et al.| (2024),
FG-CLIBXie et al.| (2025)), Siglip2 [Tschannen et al.| (2025). We utilize ViT-L-14 Radford et al.
(2021) as the default vision encoder in our experiments.

Training Set. Four A800 GPUs (80G) are used for the training phase. The learning rate is set as the
cosine warm-up learning rate. The initial learning rate is set as 1e-6, while the maximum learning
rate is set as le-4. The batch size is 512. We train for a total of 64 epochs in our training phase.

Evaluation Set. The models are evaluated by recall at k (R@k) and mean average precision at k
(mAP@Xk). For the DSR dataset and CDIR-Flickr30k, we use the open-source code of FreestyleRet
L1 et al.| (2024) as the evaluation code with a batch size of 24.

4.2 DATASETS

To address the limitation of incomplete retrieval types in existing CDIR datasets, we extend the
Flickr30k Young et al.|(2014) dataset to construct Cross-Domain Image Retrieval Flickr30k (CDIR-
Flickr30k). First, this dataset retains Flickr30k’s 31,783 natural images as the target retrieval corpus
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Table 1: Results (%) comparison between our method (+Ours) and other baselines on DSR. * means
the model of fine-tuning on the dataset while ~ means the model of zero-shot on the dataset.

T—1 S—1 C—1 M—1 Average
R@l mAP@10 R@] mAP@10 R@1 mAP@10 R@! mAP@10 R@1 mAP@10
FreestyleRet 76.6 87.0 70.7 81.9 63.4 78.2 83.9 91.6 73.7 84.7

Methods

CLIP* 80.7 89.0 349 50.0 51.7 66.2 64.2 74.0 57.9 69.7
CLIP+Ours 82.4 89.4 79.1 86.6 68.3 80.6 93.8 96.3 80.9 88.3
FG-CLIP* 84.8 91.5 41.8 56.4 62.1 75.6 68.6 78.0 64.3 75.4
FG-CLIP+Ours  82.8 90.0 69.3 78.4 65.4 73.6 90.8 95.0 77.1 84.2
Siglip2* 76.7 85.0 60.3 72.7 62.9 76.7 73.3 82.0 68.3 79.1

Siglip2+Ours 76.7 85.8 70.9 86.3 62.9 81.7 81.4 90.4 73.0 86.0

Table 2: Results (%) of our method (+Ours) and other baselines on CDIR-Flickr30k dataset.

Methods T—1 S—1 C—=1 M—1 O0—1 Average
R@]1 mAP@10 R@1 mAP@10 R@1 mAP@10 R@1 mAP@10 R@]1 mAP@10 R@1 mAP@10
FreestyleRet” 94.7 974 553 726 650 758 59.0 787 / / 68.5 8l.1
CLIP+Ours” 9.5 981 81.8 880 790 866 83.6 89.1 / / 852 905
CLIP* 97.8 988 463 585 723 816 510 626 958 969 726 79.7

CLIP+Ours 979 989 87.1 920 81.7 88.7 864 913 989 993 884 940

FG-CLIP* 99.0 995 483 623 815 879 468 606 981 988 747 818
FG-CLIP+Ours 989 994  89.7 941 81.1 839 872 919 992 986 91.0 93.6

Siglip2* 990 990 703 637 828 85 532 576 991 994 809 81.0
Siglip2+Ours  98.6 993 857 91.0 81.8 8.5 703 80.7 995 997 872 918

and its human-annotated captions which comprehensively describe image content. Then we add
four cross-domain query types to cover typical CDIR scenarios in CDIR-Flickr30k. The details of
each query type are as follows. Text: we select the first caption in Flickr30k as the text prompt.
Sketch: The Pidinet|Su et al.| (2021) method was used to generate the sketch. Mosaic: The original
images were converted into low-resolution images via downsampling as queries. Object: We use
GroundingDINO [Liu et al.| (2024)) to extract local target images based on caption descriptions.

Details of CDIR-Flickr30k are in the Appendix [B] Furthermore, we adopted the DSR|Li et al.| (2024)
and the CDIR-Flickr30k dataset as training and testing datasets.

4.3 MAIN RESULT
4.3.1 COMPARISONS ON CROSS-DOMAIN IMAGE RETRIEVAL TASK

To validate the effectiveness of the proposed LS-CLIP for CDIR tasks, we evaluate on the DSR and
the CDIR-Flickr30k datasets. The results are shown in Table[l|and Table [2| respectively. We use T
— I for Text to Image, S — I for Sketch to Image, C — I for Cartoon to Image, M — I for Mosaic to
Image, and O — I for Object to Image. For benchmark models, such as CLIP Radford et al.|(2021),
Siglip2 [Tschannen et al.[(2025), FG-CLIP [Xie et al.| (2025), the incorporation of LS-CLIP has led
to better performance in multiple scenarios with cross-domain queries. The results demonstrate that
the integration of LS-CLIP into the three baseline models leads to significant improvements in both
R@1 and mAP@ 10 metrics in all cross-domain query scenarios. This confirms the effectiveness
of the SRM, which is used for local semantic mining and FMT, which is used for feature space
stabilization modules to enhance CDIR performance. R@5 metrics can be referred in appendix[A.1]

To evaluate the performance of our framework on diverse cross-domain scenarios, we conducted
experiments on the DSR dataset. The evaluation results are presented in Table [T} In the text-to-
image retrieval task, the improvement is not significant. This is likely because existing pre-trained
VLMs, such as CLIP already have mature image-text alignment capabilities, leaving limited room
for further optimization in T—1I retrieval. In contrast, for scenarios with larger domain gaps, S—1I
and M—I retrieval, LS-CLIP delivers substantial improvements gains 8.4% and 9.9% on R@1 over
FreestyleRet, highlighting its effectiveness in CDIR.
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Table 3: Zero-shot results on Image-text contrastive datasets.

Flickr30k MSCOCO
Methods T—I I-T T—I1 I—-T
R@1 R@5 R@10 R@]1 R@5 R@I0 R@]l R@5 R@10 R@1 R@5 R@10
CLIP 845 966 987 64.1 869 918 563 788 87.0 36.1 609 7I.1

CLIP +Ours 872 985 994 744 936 963 633 847 913 457 724 81.7

Table 4: Zero-shot results on RSTPReid benchmark.

Methods R@l R@5 R@10 mAP@10
CLIP 129 315 42.1 9.6
CLIP+DSR 152 364 476 13.2
CLIP+CDIR-Flickr30k  16.8 39.8  54.1 13.9

To further validate LS-CLIP performance on our self-constructed CDIR-Flickr30k dataset in Ta-
ble 2] we evaluated both its zero-shot and fine-tuned capabilities. For reproducibility, key testing
parameters are consistent with the DSR experiment. The zero-shot here means that models were
not fine-tuned on CDIR-Flickr30k and only used pretrained weights fine-tuned on DSR dataset for
evaluation. The results show that CLIP+Ours achieves average improvements of 16.7% and 9.4%
in the average metrics R@1 and mAP@ 10, respectively, over FreestyleRet. This result confirms
the strong generalization ability of LS-CLIP in unseen cross-domain scenarios. We then integrated
LS-CLIP into three baseline models and evaluated their fine-tuned performance on CDIR-Flickr30k.
In particular, the most significant gains appear in S—1I and M—1 tasks, highlighting the advantage
of LS-CLIP in extracting semantic information from cross-domain images with large domain gaps.

4.3.2 ZERO-SHOT IMAGE-TEXT RETRIEVAL

To evaluate the generalizability of the LS-CLIP, we set up a zero-shot experiment on the Flickr30k
Young et al.| (2014) and MSCOCO [Lin et al| (2014) dataset using models that were not trained
on these datasets. The results are shown in Table 3| First, LS-CLIP effectively improves retrieval
recall in both tasks and datasets, with the most prominent gain 10.3% R@1 in Flickr30k’s I=-T
task. Second, LS-CLIP preserves the model’s zero-shot generalization while boosting recall, which
is attributed to the FMT module’s role in stabilizing the feature space and avoiding overfitting to
specific domains. In general, LS-CLIP not only enhances the model’s semantic understanding but
also maintains its strong generalization across diverse cross-modal scenarios.

To verify the effectiveness of our CDIR-Flickr30k dataset and validate the fine-grained semantic
understanding ability of the model. We selected the RSTPReid benchmark Zhu et al.|(2021) as the
evaluation dataset. This choice is justified by the characteristics of RSTPReid. It includes various
fine-grained descriptions of human-related aspects such as clothing style. The results in Table f]
show that the model finetuned on our dataset achieves the best performance in retrieval tasks.

4.3.3 ABLATION STUDY

We also set up ablation study to explore the impact of different modules on the model, which were
tested on the DSR and the CDIR-Flickr30k. The test conditions were consistent with the previous
test experiments. The results are shown in Table[5] The results highlight the effectiveness of SRM
and FMT in improving the ability of the model on CDIR. It can be seen from the results of the
ablation study that progressive improvements can be achieved by combining SRM and FMT.

4.3.4 COMPUTATION COMPARISON

To verify the lightweight nature of our LS-CLIP and its ease of integration with existing retrieval
models, we analyzed the computational complexity of LS-CLIP compared to other baselines. Table
[6] presents a statistical analysis of the model parameters and inference time of per batch for our
LS-CLIP framework and other baselines. In Table [6] compared to FreestyleRet, LS-CLIP is more
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Query

CLIP

FRet

ours

Figure 4: Visualization of the experimental results on the DSR (left) and the CDIR-Flickr30k (right).

Table 5: Results of the ablation study of LS-CLIP on DSR and CDIR-Flickr30k datasets.

DSR CDIR-Flickr30k
Methods T—I S—I1 C—I1 M-I T—I S—I C—I1 M-I 0—I1
R@IR@5R@]IR@5SR@I R@5R@1 R@5R@1 R@5R@I R@5R@]1 R@5R@1I R@5R@1 R@5
CLIP* 80.7 98.8 349 64.4 51.7 83.0 64.2 84.6 97.8 99.9 46.3 70.3 72.3 92.2 51.0 74.5 95.8 98.0
+SRM 81.8 99.0 76.3 96.0 67.0 95.6 91.7 98.6 97.9 99.8 81.3 91.8 76.6 90.9 78.9 84.3 97.9 99.6

+SRM+FMT 82.4 98.9 79.1 97.2 68.3 95.7 93.8 99.3 97.9 99.9 87.1 97.5 81.7 96.5 86.4 96.4 98.9 99.9

Table 6: Comparison of model parameter and inference speed on per batch. Our method is compu-
tationally efficient from the model parameters and inference speed aspects.

Method Parameters(M) Speed(ms)
FreestyleRet-CLIP 454 308
CLIP 408 19
CLIP+Ours 410(+2) 21(+2)

lightweight in terms of both model parameters and inference speed. Relative to CLIP, LS-CLIP
maintains efficient deployability while only slightly increasing model parameters and inference time.

4.3.5 VISUALIZATION

As shown in Figl] we visualize the retrieval results of CLIP Radford et al] (2021), FreestyleRet
(abbreviated as FRet) (2024) and our LS-CLIP model on DSR [Li et al.| (2024) dataset and
CDIR-Flickr30k dataset. In the DSR dataset, we compared the retrieval results of various models
after training on this dataset. While in the CDIR-Flickr30k dataset, we evaluated the zero-shot
retrieval capability of the models trained on the DSR dataset. In Figld] our method can retrieve
images of people riding horses or people on boats on the water. It can also retrieve global scene
images based on local ground information, and retrieve images matching the scene and characters
from blurry pictures. Since our proposed method can not only preserve the global features of CLIP
but also effectively mine its local features, the results in the figure show that our method has a better
understanding of both local and global semantics compared to other models.

5 CONCLUSION

In this study, we propose LS-CLIP, a lightweight method suitable for various multimodal network
patterns. LS-CLIP fully leverages the existing capabilities of mature multimodal models to excavate
more latent knowledge to enhance the model’s own abilities. Strengthens the model’s performance in
downstream tasks of cross-domain image retrieval without compromising its generalization ability.
In addition, we also introduce a newly constructed CDIR dataset named CDIR-Flickr30k, in order
to provide convenience to subsequent researchers.
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A EXPERIMENTAL SUPPLEMENTARY MATERIALS

A.1 RESULTS FOR R@5

In this section, we additionally supplemented the R@5 metrics in Table[T]and Table2]for evaluation.
The evaluation results are shown in Table [71and Table [8] It can be seen from the evaluation results
that under the R@5 metrics, LS-CLIP can still achieve excellent results.

Table 7: Results (%) comparison between our method (+Ours) and other baselines on DSR.
T—1 S—=1 C—1 M—=1 Average

R@5 R@5 R@5 R@5 R@5

FreestyleRet 979 952 953 96.6 96.3

Methods

CLIP* 98.8 644 83.0 84.6 82.7
CLIP+Ours 989 972 957 99.3 97.8
FG-CLIP* 99.2 712 912 88.7 87.6
FG-CLIP+Ours 99.2  95.0 949 98.9 97.0
Siglip2* 945 872 935 91.7 91.7

Siglip2+Ours 947 942 941 947 94.4
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Table 8: Results (%) of our method (+Ours) and other baselines on CDIR-Flickr30k.

T—-I S—=1 C—1 M—=I1 O—1 Average
R@5 R@5 R@5 R@5 R@5 R@5

FreestyleRet” 99.3 80.1 874 84.2 99.9 90.2
CLIP+Ours” 99.9 952 957 95.2 99.8 97.2

Methods

CLIP* 99.9 703 922 74.5 98.0 87.0
CLIP+Ours 99.9 975 96.5 96.4 99.9 98.0
FG-CLIP* 99.9 773 952 75.0 99.6 89.4
FG-CLIP+Ours 999 98.8  96.2 98.6 99.9 98.7
Siglip2* 99.9 89.8 96.1 79.4 99.9 93.0

Siglip2+Ours 999 971 963 93.0 99.9 972

Table 9: Results(%) of LS-CLIP with ViT-B-32 on the DSR and CDIR-Flickr30k.

T—I1 S—1 C—l M—I O—1
R@1 R@5 R@1 R@5 R@]1 R@5 R@1 R@5 R@1 R@5

Methods

Diverse-Style Retrieval Dataset

CLIP(ViT-B)* 79.4 98.3 453 79.0 61.0 925 762 954 / /
w/LS-CLIP  81.0 98.8 584 87.0 62.2 932 78.0 955 / /

CDIR-Flickr30k Dataset

CLIP(ViT-B)* 95.6 99.7 33.9 67.5 65.5 919 450 78.2 96.5 98.9
w/LS-CLIP 963 99.6 57.8 86.5 68.8 92.0 64.6 89.2 96.3 99.0

A.2 EVALUATION OF VIT-B-32

To verify that LS-CLIP is a flexible and pluggable module, we also conducted corresponding re-
trieval experiments on ViT-B-32 and compared it with the baseline. The experimental settings can
refer to the above experiments. The experimental results are shown in Table 0] Judging from the
experimental results, our model can bring improvements not only on Vit-L-14 but also on Vit-B-32.

Image

CLS shallow CLS middle CLS deep ] LS-CLIP i Image CLS shallow CLS middle CLS deep 1 LS-CLIP

Figure 5: Visualization of attention weights. We presented the attention distribution of the CLS
token in CLIP at different depths of the model, and compared it with that of LS-CLIP.
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CLS shallow CLS middle CLS deep ]

Figure 6: Additional visualization of attention weights. It can be referred to Figure 5] for details.

A.3 ANALYSIS OF ATTENTION MAP

In Figures |§| and|§|, we visualized the attention distribution of the CLS token in the shallow, middle,
and deep layers of CLIP, and compared it with the attention distribution of LS-CLIP on the image
content. The shallow, middle and deep layers of the CLS token selected the results of the first,
middle, and last layers of ViT, respectively. Judging from the results, our model can capture the
main content in the image. The attention distribution is relatively concentrated. In terms of the
attention distribution, the noise points of the attention weights of LS-CLIP are fewer, and it is more
consistent with the contour of local objects, which is also consistent with our analysis results. By
analyzing the attention of the shallow, middle and deep layers of the CLS token, we can know that
in the shallow module of ViT, the model is more sensitive to local information, but there are still
obvious noise points, and this phenomenon is well solved in LS-CLIP. As the number of layers
increases, the CLS token tends to extract high-level semantic information, while the extraction of
local information is no longer significant.

B DATASETS

Dataset Generation Due to the high diversity of image descriptions provided by human annotators
in the Flickr30k dataset, which can comprehensively describe the contents in images, we extended
the Flickr30k dataset to CDIR-Flickr30k by introducing different styles and local objects of images.

» Text: The same as the Flickr30k dataset, each image has five captions.

» Sketch: The first caption of the image was selected as the text prompt for the generation of
the sketch. The Pidinet|Su et al.| (2021)) method was used to generate the image sketch.

* Mosaic images: The original images were converted into low-resolution images via down-
sampling as queries with a scaling factor of 17.

* Cartoon: AnimateDiff (2023) was used to generate the corresponding artistic-
style images.

* Objects: In practical application scenarios, global image retrieval by target is also common.
Thus, GroundingDINO (2024) was used to extract local target images based on
caption descriptions.

Dataset Advantages Compared with existing datasets, CDIR has the following advantages.

+ Compare with LAION (2021) CDIR-Flickr30k offers stronger fine-grained ca-
pabilities. It refines both images and text. For images it expands the original image pool

14



Under review as a conference paper at ICLR 2026

"Several men in hard hats are operating a giant pulley system ",
"Workers look down from up above on a piece of equipment ",
"Two men working on a machine wearing hard hats "

"Four men on top of a tall structure ",

"Three men on a large rig ."

"Aman with reflective safety clothes and ear protection drives a
John Deere tractor on a road ."

"John Deere tractors cruises down a street . while the driver
wears easy to see clothing "

"Aman in a neon green and orange uniform is driving on a
green tractor .",

"Aman in a wactor wearing headphones driving down 2 paved
street "

"Aman driving a John Deere tractor on a main road in the
counmry ."

"A group of peaple picnicking at picnic tables in font ofa
playground ",

"A group of people enjoying a beautiful day in the park ",
"A group of people are having a picnic at the park "

"The reunion is in full swing with 2 meon bounce .",

"A group of people having a barbecue at a park ."

"bride and groom walking side by side out of focus on pathway
next to brick building ",

"A beautiful bride walking on a sidewalk with her new
husband ",

"Arecenty marzied couple pose for the camera ",

"A groom and bride are standing am in arm ",

"A couple getting married "

"Several men in hard hats are operating a giant pulley system ."
"Workers look down from up above on a piece of equipment .",
"Two men working on 2 machine wearing hard hats .",

"Four men on top of a tall structure .",

"Three men on a large rig ."

Figure 7: Samples of CDIR-Flickr30k. From left to right they are image, caption, sketch, cartoon
image, mosaic image and object.

and incorporates more similar images. For text it breaks down coarse-grained sentences
into fine-grained ones. This refinement greatly facilitates fine-grained semantic under-
standing. In contrast LAION, despite its large scale, has relatively coarse granularity in
both text and images. CDIR-Flickr30k is more suitable for evaluating specific tasks. It
is an improved dataset designed for tasks such as image-text retrieval. It provides more
targeted support for assessing model performance in specific tasks like cross-modal fine-
grained retrieval. LAION, on the other hand, focuses more on broad applications such as
multi-modal pre-training.

Compare with COCO CDIR-Flickr30k achieves higher relevance between
images and text. The relevance between its text descriptions and images has been further
optimized. In fine-grained retrieval tasks its text can describe image content more accu-
rately. COCO, by comparison, falls slightly short in terms of fine-grained text descriptions.
CDIR-Flickr30k demonstrates better cross-domain adaptability. As a cross-domain dataset
improved based on Flickr30k it performs better in cross-domain tasks such as image-text
matching. COCO mainly focuses on tasks like common object detection segmentation and
general image description so it is less adaptable in cross-domain scenarios.

Compare with DSR[Li et al | CDIR-Flickr30k contains a larger number of image-text
pairs. DSR mainly includes 10,000 natural images along with four corresponding retrieval
styles. CDIR-Flickr30k has an advantage in the scale of both images and text. This allows
it to provide more data samples for model training and evaluation. CDIR-Flickr30k has
richer text descriptions. Its text descriptions are refined fine-grained sentences which are
more detailed and accurate. DSR’s text descriptions are mainly designed to match its four
retrieval styles so they are less rich and accurate in comparison. In addition the CDIR
dataset also proposes an object-based retrieval task. This task can not only verify language
retrieval at different granularities but also verify visual retrieval at different granularities.
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C DESCRIPTION OF LLM USAGE

In this paper, we use and only use the Doubao LLM and the DeepSeek LLM for the paper grammar
modification and word error correction, including parts such as the Introduction and Related work.
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