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Abstract

This paper investigates the effectiveness of retrieving sentences with
multiple objectives – polarity and similarity – by fine-tuning sentence-
transformer models on augmented supervised data. We establish two op-
posing metrics, namely Polarity Score and Semantic Similarity Score, for
evaluation purposes. These are used in a test suite with various lightweight
sentence-transformer models, hyperparameters and loss functions. Exper-
iments are conducted on two binary classification problems from different
domains: the SST-2 dataset for sentiment analysis and the detection of
sarcastic news headlines. Addressing the catastrophic forgetting problem,
our results show that the configuration of loss functions drastically alters
a model’s capability to retain similarity while simultaneously differentiat-
ing on classes from supervised data. These findings indicate that we can
1) improve upon generalized sentence embeddings for information retrieval
and 2) increase interpretability of sentence embeddings by studying their
adaptability to different domains.

1 Introduction

In the rapidly evolving field of Natural Language Processing, the tasks of text classification
and semantic textual similarity (STS) are well established and have countless use cases.
While rule-based, statistical and deep learning models for both tasks have been successful
throughout the years (Tai et al., 2015; Minaee et al., 2021; Li et al., 2022), newer contextual
word representations and transformer models have now become the de-facto standard (Joulin
et al., 2017; Howard & Ruder, 2018; Devlin et al., 2019; Yang et al., 2019; Raffel et al., 2020).
Sentence embeddings have also shown great promise for STS (Reimers & Gurevych, 2019),
often trained by contrastive learning (Chuang et al., 2022; Gao et al., 2022). Research
suggests these procedures are effective with much less data than previously needed for end-
to-end models, as shown with few-shot training examples in SetFit (Tunstall et al., 2022).
By incorporating classification into the data sources for sentence-transformers and adjusting
the training configurations, we study the capability of restructuring the embedding space
throughout fine-tuning to capture both sentences of the same polarity and of high semantic
similarity. This scheme also allows for standard classification by considering the labels of
retrieved similar sentences in the training data.
For evaluation, we establish two metrics: Polarity Score, which measures the classification
performance, and Semantic Similarity Score, which quantifies the semantic closeness of texts
compared to a reference model. These metrics allow us to closely interpret the behavior of
the resulting semantic space in different domains, addressing the problem of catastrophic
forgetting during fine-tuning (Goodfellow et al., 2015; Opitz & Frank, 2022).
Experiments are conducted on two datasets: 1) SST-2, Stanford Sentiment Treebank (Socher
et al., 2013), a binary sentiment dataset on full sentences, and 2) A dataset with sarcastic
news headlines (Misra & Arora, 2023). The remainder of this paper is structured as follows:
Section 2 discusses related work. Section 3 introduces the datasets, metrics, models and
training details. Section 4 presents experimental results and Section 5 discussions. Finally,
conclusions and future work are described in Section 6.
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2 Related Work

Related research is largely based on developments within word and sentence embeddings.
Commonly used embedding techniques include word2vec (Mikolov et al., 2013), GloVe (Pen-
nington et al., 2014), and ELMo (Peters et al., 2018). In the realm of sentence embeddings,
early methods involved concatenation and aggregation of word embeddings to produce a
sentence representation (Le & Mikolov, 2014; Joulin et al., 2017). However, more recent
research has focused on developing specialized models to encode sentence representations,
as exemplified by systems like InferSent (Conneau et al., 2017), universal sentence encoder
(Yang et al., 2020), sentence-transformers (SBERT) (Reimers & Gurevych, 2019) and Sim-
CSE (Gao et al., 2022). SBERT is trained using a pre-trained BERT model to learn the
representations of a given sentence. While techniques and setups vary, an example of a
training procedure is by providing triplets forming (anchor sentence, positive, negative),
where the model attempts to maximize the distance between the anchor and the negative
(dissimilar sentence), while minimizing the distance between the anchor and the positive
(similar) sentence. This methodology provided efficient models for STS (Agirre et al., 2013;
Reimers & Gurevych, 2019; Gao et al., 2022; Tunstall et al., 2022; Wang et al., 2022; Li et al.,
2023). Several datasets and benchmarks have been published for STS since the SemEval
shared task (Agirre et al., 2013), including the STS Benchmark (Cer et al., 2017), SICK
(Marelli et al., 2014), and BIOSSES (Soğancıoğlu et al., 2017), all of which are now found in
the Massive Text Embedding Benchmark (MTEB) (Muennighoff et al., 2022). Transformer
models have excelled at the task, as is shown in the tables on HuggingFace’s leaderboard
for the evaluation.1 Currently, the General Text Embeddings model (Li et al., 2023) receives
the highest scores. The work by Opitz & Frank (2022) is highly related to interpretability
for multiple objectives, where the authors create a set of sub-embeddings for features such
as negation and semantic roles, adressing the problem catastrophic forgetting (Goodfellow
et al., 2015). This problem has been further studied in detail by Chen et al. (2020), adjusting
the mechanisms behind the Adam optimizer (Kingma & Ba, 2017), and Luo et al. (2023),
a study describing the forgetting effect during fine-tuning of large language models on vari-
ous key features like domain knowledge and reasoning. In this work, however, the focus is
shifted towards understanding the embedding space for specific domains by augmenting the
data sources directly and adjusting the parameters behind the loss functions.

3 Methods and Data

This section includes information on datasets, evaluation metrics, baseline models, loss
functions, data generation, and the fine-tuning pipeline. We use two sources for classification
evaluation. The modeling scheme is generalized to any data source for binary classification.

SST-2 The Stanford Sentiment Treebank (Socher et al., 2013) is commonly used for binary
classification tasks and is implemented in the GLUE benchmark (Wang et al., 2019). It
consists of a train/test/validation split with 67,349/1821/872 samples respectively. However,
the labels for the test split are hidden and can only be evaluated by submissions to GLUE.2
As our system is not aimed at the broad range of tasks present in GLUE, we evaluate using
the available validation split, for which our system achieves an accuracy of 93.23. A high
classification score is not the purpose of this work and is merely an indicator of how retrieved
similar sentences can be used to infer the label of an unseen sentence.

Sarcastic Headlines The “News Headlines Dataset for Sarcasm Detection” (Misra &
Arora, 2023) contains 28,619 news headlines from HuffPost (non-sarcastic) and The Onion
(sarcastic). Misra & Arora claims this to guarantee high quality labels. Furthermore,
headlines are primarily self-contained and do not rely on additional context, thus well suited
for evaluating both similarity and polarity. Retrieving similar sarcastic sentences to produce
labels for the test set gives an accuracy of 92.27, outperforming the models presented by
Amin et al. (2023).

1https://huggingface.co/spaces/mteb/leaderboard
2https://gluebenchmark.com/leaderboard
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3.1 Evaluation

For a sentence s, we retrieve the k nearest neighbours with a model M , denoted sM
1 , . . . , sM

k .
These are evaluated on the criteria of polarity and semantic similarity.

3.1.1 Polarity Score

To measure whether a model favors texts of the same polarity as the input in its predictions,
we compute a weighted average polarity score over the k predictions depending on the
polarity of s. Formally, for a sentence s, this can be expressed as:

PM (s) :=
k∑

i=1
wi · pol

(
sM

i

)
where pol

(
sM

i

)
:=

{
1 if s and sM

i have the same polarity,
0 otherwise.

(1)
The weights wi can be chosen to reflect the importance of ranked suggestions. Instead of
averaging them, we choose a linear discounting model where the i-th suggestion is scaled by
a factor of k + 1 − i. By normalization, we get weights wi := 2·(k+1−i)

k·(k+1) .

If the predictions are mostly of the same polarity as the input, this is reflected in a value
close to one. In any case, we would expect fine-tuned models to be better at predicting
sentences of the same polarity than the pre-trained baseline, or reference, model.

3.1.2 Semantic Similarity Score

In assessing the quality of predicted sentences, simply aligning their polarity with the input
is insufficient. We necessitate a metric to gauge the semantic similarity: the weighted
average cosine similarity between the predictions from a model M and their corresponding
embeddings under a baseline reference model R, pre-trained for semantic similarity. As the
fine-tuned model will increase its internal representation of similarity within its embeddings
throughout training, it is necessary to compare similarity with a reference model. The cosine
similarity is defined as cos sim(s1, s2) := x1·x2

||x1||·||x2|| , where xi is the vector for sentence si.
For a model M , we compute the Semantic Similarity Score SM for a sentence s:

SM (s) :=
k∑

i=1
wi · cos simR

(
s, sM

i

)
(2)

The weights wi are reused from the Polarity metric, as defined in Section 3.1.1. If the
predicted sentences from model M remain semantically similar to the input sentence, we
should observe that SM (s) is equal or slightly lower than the reference SR(s).

3.2 Baseline Models

The models in Table 1 are selected based on varying complexity, but more importantly,
performance versus size and inference time. Data is sourced from the MTEB leaderboard
(Muennighoff et al., 2022). We select the commonly used sentence-transformer model, all-
MiniLM-L6-v2 (Reimers & Gurevych, 2019) – referred to as MiniLM-6, along with the
better performing models GTE-base/small (Li et al., 2023) and the E5-small-v2 (Wang
et al., 2022). We use the entire test sets for target embeddings, and select a lookup sample
of five times the size of the test set as source embeddings – keeping an even ratio between
datasets. Inspecting the importance of k for each model shows a near static relationship
between the models (see Figure 1), where performance drops slightly for higher values of k,
as can be expected when forcing the model to retrieve more sentences. We select k = 16
for further experiments, as a reasonable number for retrieval and inspection, as well as to
reduce the number of computations. Although performance is generally high for all values,
the E5-small model achieves the highest scores. Conversely, the minilm-6 performs the
worst, with especially low scores for S. All models are used for continued evaluations.
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Table 1: Sentence-transformer baseline model selection and performance (k = 16) for po-
larity and semantic similarity on SST-2 and sarcastic headlines. Standard deviation sub-
scripted.

Model Size Embedding STSBenchmark SST-2 Sarcasm
MB dimension reported avg P S P S

E5-small-v2 130 768 85.95 81.523.7 85.51.7 71.421.2 83.41.5
GTE-base 220 768 85.73 80.422.6 83.71.4 67.420.7 81.41.6
GTE-small 70 384 85.57 77.822.2 84.81.4 66.820.6 82.51.6
MiniLM-6 90 384 82.03 63.021.9 46.67.4 63.820.2 42.35.6
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Figure 1: Baseline models with average performance across both datasets when retrieving
the k nearest matches.

3.3 Loss Functions for Sentence Embeddings

To assess the quality of sentence embeddings, models are trained with different loss func-
tions depending on the desired properties for downstream tasks. The Sentence-Transformers
library provides a wide range of predefined loss functions.3 However, not all losses provide
the desired flexibility for supporting our constraints of multiple objectives. There are four
batching triplet losses, all of which generate every valid combination of triplets, typically
creating a far too large dataset. We describe triplets and their generation constraints in
Section 3.4. Further, the DenoisingAutoEncoderLoss adds noise and reconstructs the origi-
nal sentences. This process is suitable for unsupervised training, but not for our application
of encoding polarity within the embeddings. The same limitation holds for MSELoss, which
uses the MSE loss between a target and source, with no relation to it being positive or nega-
tive. MegaBatchMarginLoss finds the least similar pair between an anchor and a sentence of
the same polarity. As our similarity scores are not gold labels, we find this loss incompatible.
MarginMSELoss requires a gold similarity score between a query and a positive/negative
value, which we do not have. CosineSimilarityLoss considers the similarity between pairs
of sentences. This is the very basis for the augmentation of datasets to begin with, as we
have ensured a threshold of similarity between the sentences of equal polarity. However,
this loss is the default for SetFit (Tunstall et al., 2022), which we use in our comparisons.
The SoftMaxLoss was in Reimers & Gurevych (2019) used to train models on NLI data
(Williams et al., 2018), adding a softmax classifier on the output, compatible with multiple
classes. However, it does not provide a clear distinction of similarity. After filtering, we
employ a set of four loss functions: TripletLoss (Schroff et al., 2015), MultipleNegatives-
RankingLoss (Henderson et al., 2017), OnlineContrastiveLoss and ContrastiveLoss (Hadsell
et al., 2006). These have varying data inputs related to how the model assesses the similar-
ity between input sentences. All models support a similarity function, for which we use the
cosine similarity. They are described in more detail below.

3We encourage the interested reader to study the loss functions at https://www.sbert.net/
docs/package_reference/losses.html
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TripletLoss consists of triplets of sentences (A, P, N) where A is the “anchor”, P is similar
to the anchor, and N is dissimilar. In context of binary classification, P is attributed to the
label 1, and N label 0. The loss is then expressed as: max(|emb(A) − emb(P )| − |emb(A) −
emb(N)| + λ, 0), where λ is the margin, specifying the minimum separation between A and
N .

MultipleNegativesRankingLoss consists of sentence pairs, assuming (ai, pi) pairs as
positive and (ai, pj) pairs for i ̸= j as negatives. It calculates the loss by minimizing the
negative log-likelihood for softmax-normalized scores, encouraging positive pairs to have
higher similarity scores than negative pairs.

(Online)ContrastiveLoss consists of {0, 1}-labelled tuples (Anchor, Sentence) where the
label indicates whether |emb(A) − emb(S)| is to be maximized, indicating dissimilarity (0)
or minimized, indicating similarity (1). In the online variant, the loss is only calculated
for strictly positive or negative pairs, reported to generally perform better (Tunstall et al.,
2022). The margin parameter λ controls how far dissimilar pairs need to be separated.
For each compatible loss function, we select various margin values (Table 2) in order to
study the models’ behavior.

Table 2: Loss functions with margin selections.

Loss function λ margin λ default
Triplet Loss {0.01, 0.1, 1.0, 5.0, 7.5, 10} 5.0
Multiple Negatives Ranking Loss – –
Contrastive Loss {0.1, 0.25, 0.5, 0.75, 1.0} 0.5
Online Contrastive Loss {0.1, 0.25, 0.5, 0.75, 1.0} 0.5

3.4 Data generation

Different loss functions require different data inputs. To speed up data sampling when train-
ing, we precompute datasets corresponding to each input type: 1) Triplet, 2) Contrastive,
and 3) MultipleNegatives, referred to as example generation. Original data is encoded using
a sentence-transformer model, from which an index is built. For each (sentence, label) pair
in the data, we compute the k nearest neighbors of each polarity, requiring a minimum
semantic similarity threshold of ≥ 0.5, resulting in semantically similar pairs for each la-
bel. These pairs are then combined according to the selection of loss functions, e.g., with
a TripletLoss requiring (anchor, similar, dissimilar). As this process creates a mapping
between every source sentence to the k similar sentences, we control the data generation
size by introducing a dropout, tuned to generate roughly 250,000 examples for each loss
function, the highest number we can reach when normalizing the sample count across all
configurations.4 See Figure 2 for an illustration of the example generation process. Data
examples for each loss type are listed in Table 3.

3.5 Fine-tuning

The generated examples, described in Section 3.4, is the input to each model configuration,
forming the basis for fine-tuned models. From the selected dataset, we fetch the generated
examples corresponding to the loss function, from which N are resampled each training step.
The dataset, in its original form, is passed to the reference model as well as the fine-tuned
model after each training step, from which an index is computed to retrieve the k closest
matches in the training samples for each sample in the test split, used to compute the scores
for polarity and semantic similarity.

4Data generation for MultipleNegativesRankingLoss with 0 dropout for the smallest dataset
(sarcastic headlines, 22,000 samples) produces 243,793 examples.
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Dataset
(sentence, label)

Index

kNN search sentence → k · (similar, label)

(similar, label1) (similar, label0)

Sentence embeddings

Combine
(and label)Loss type Examples

dropout

Figure 2: The example generation process.

Table 3: Data samples from SST-2 for the different loss function categories.

Loss type Data sample Data type

Triplet
Anchor: Totally unexpected directions
Similar+Same polarity: Dramatically moving
Similar+Opposite polarity: Utterly misplaced

Triple

Multiple
Negatives

Anchor: Bring new energy
Similar+Same polarity: Juiced with enough energy and excitement Tuple

Contrastive

Anchor: Is a movie that deserves recommendation
Similar: Effort to watch this movie
Label: 0 (increase distance → make less similar)

Anchor: Of the jokes, most at women’s expense
Similar: Dumb gags, anatomical humor
Label: 1 (reduce distance → make more similar)

Tuple + Label

4 Experiments and Results

The results are based around fine-tuning and continuous evaluation of the baseline models in
different setups for loss functions and corresponding parameters. From available literature,
fine-tuning transformers between 1 to 3 epochs seems sufficient in many cases (Gao et al.,
2022). Beyond this, we observe smaller improvements – but no signs of overfitting. To decide
on a suitable number of training samples (in the range [50, 100000]) for further experiments,
we study the differences between models after 5 epochs. Despite the reported effectiveness of
few-shot learning for sentence-transformers (Tunstall et al., 2022), we observe improvements
in polarity when increasing the sample size far beyond the scope of few-shot learning. Table
4 illustrates this behavior, aggregated across all models and loss configurations. While the
polarity score P increases, the semantic similarity score S takes a slight hit throughout
training. The latter is to be expected because we fine-tune the embedding only based on
polarity labels. However, the reduction of S is far lower than the increase in P. Observe the
growing distance between the min and max scores for S. This distance indicates that certain
model and loss configurations perform vastly better (or worse) for our joint task, and is the
basis for our hypothesis that we can balance both, despite the apparent trade-off. This is
further supported by the relatively small changes to the standard deviation. Figure 3 shows
an increasing number of outliers as the embedding space is shifted towards polarity, which we
aim to minimize with training configurations. To investigate possible configurations, while
accounting for computational efficiency, we continue by setting the sample size N = 50,000
and perform detailed experiments on the aforementioned loss functions with their λ margins
on both datasets. Details on training and configurations are found in Appendix A.
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Table 4: Aggregated scores across all configurations for different sample sizes after 5 epochs
on the validation split of the SST-2 dataset.

Samples Polarity Score Semantic Similarity Score
Mean σ Min Max Mean σ Min Max

50 75.7 7.5 63.0 81.5 75.1 16.6 46.6 85.5
500 75.7 7.5 63.0 81.5 75.1 16.6 46.6 85.5

2000 75.7 7.5 62.9 81.7 75.1 16.6 46.6 85.5
5000 76.3 7.7 63.1 83.1 75.1 16.6 46.5 85.5

10000 78.0 8.3 63.2 87.3 74.9 16.8 45.7 85.4
20000 81.5 8.7 61.8 89.2 73.0 18.3 36.4 84.9
50000 86.2 6.4 68.0 92.5 70.2 21.3 29.6 84.7

100000 88.9 4.0 72.2 93.4 69.3 22.3 29.0 84.6
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Figure 3: Box plot of polarity- and semantic similarity scores for each sample size on the
SST-2 dataset.

Tables 5 and 6 show the polarity and semantic similarity scores obtained after the continued
training with N = 50,000 samples. The tables are organized to showcase the impact of the
different loss functions and their λ margins. Best scores are shown in boldface, with the
reference model, the setfit baseline, and the best performing model(s) highlighted. Note
that for semantic similarity, we boldface the top two highest scores, as the MultipleNegative
ranking loss – although seemingly performing strongly on the task – does so due to minimal
adaptation to the new training samples, with similar performance to the respective baseline
models. This can be confirmed by inspecting its polarity scores.

5 Discussion

Most model configurations adjusted the embeddings towards correct polarity upon fine-
tuning. However, the minilm-6 falls short of its semantic similarity capabilities, while
the remaining models seem to learn both tasks, with only slight differences between con-
figurations. The TripletLoss stands out as the best-performing loss function, especially
for smaller margins, with λ ∈ {0.01, 0.10}, strongly outperforming the default value of 5.0.
The earlier referenced statement on OnlineContrastiveLoss generally performing better than
ContrastiveLoss holds for most experiments.5 For the ContrastiveLoss configurations, the
default λ value of 0.5 seems well suited for the tasks, with minimal changes for different mar-
gins. MultipleNegativesRankingLoss is an outlier in both results. This is likely attributed to
poor example generation for this particular loss function. MultipleNegatives treats sentences
from distinct sentence pairs as dissimilar. In our case, we generate multiple similar pairs with
the same first sentence, resulting in contradictory examples. This problem does not arise
for any of the other loss functions. The key takeaway is that the implicit relations between
distinct training examples severely restrict our flexibility in example generation. Hence,

5https://www.sbert.net/docs/package_reference/losses.html#onlinecontrastiveloss
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Table 5: Polarity scores for all loss configurations after 5 epochs with N = 50,000 samples,
retrieving k = 16 sentences.

Loss λ e5-small gte-base gte-small minilm-6
sarcastic sst2 sarcastic sst2 sarcastic sst2 sarcastic sst2

Reference - 71.421.2 81.523.7 67.420.7 80.422.6 66.820.6 77.822.2 63.720.2 63.021.9
Cosine (SetFit) - 85.225.4 86.224.2 82.126.8 85.625.5 82.825.4 84.225.9 79.527.0 77.929.0
Contrastive 0.10 88.824.3 89.523.2 86.925.6 89.224.1 81.927.0 88.025.6 75.925.6 68.024.9
Contrastive 0.25 89.325.1 90.723.2 88.226.1 90.025.0 84.326.9 88.826.1 76.826.4 72.426.9
Contrastive 0.50 89.825.6 91.223.8 88.826.5 90.325.3 86.827.5 89.127.1 77.827.2 75.127.8
Contrastive 0.75 89.925.1 91.623.6 88.926.6 90.625.1 87.727.3 89.526.9 79.027.7 77.328.6
Contrastive 1.00 89.825.5 91.224.3 88.726.7 90.725.1 87.827.0 89.626.8 80.328.1 78.428.9
MultipleNeg - 73.622.2 80.822.4 73.122.4 81.823.5 72.022.6 80.623.4 69.022.0 69.423.1
OnlineContr 0.10 89.624.7 90.423.7 87.425.8 89.524.2 82.627.0 88.225.8 78.926.0 70.826.5
OnlineContr 0.25 90.025.2 91.523.8 88.226.4 90.225.4 84.427.3 88.926.7 78.926.4 74.627.8
OnlineContr 0.50 89.725.9 91.624.4 88.227.3 90.626.0 86.027.6 89.327.2 79.026.9 76.527.9
OnlineContr 0.75 89.526.5 91.724.5 88.627.4 90.825.6 87.227.9 89.227.6 80.027.4 77.528.2
OnlineContr 1.00 89.626.6 91.725.0 88.327.3 90.726.0 87.527.7 89.627.5 80.527.8 78.428.7
Triplet 0.01 90.225.6 91.525.1 82.525.7 90.324.9 84.025.5 89.126.2 78.524.5 76.926.9
Triplet 0.10 90.626.3 91.925.0 89.727.1 91.225.6 88.427.2 89.927.0 83.526.9 80.628.6
Triplet 1.00 90.125.7 90.923.5 88.426.6 90.624.9 87.427.0 88.625.7 84.128.6 83.231.1
Triplet 5.00 88.225.1 89.323.4 86.526.8 90.125.1 84.926.5 88.226.1 81.527.7 81.330.1
Triplet 7.50 88.225.4 89.623.1 86.627.0 90.125.0 84.826.4 88.225.9 81.427.8 81.530.1
Triplet 10.00 88.125.1 89.622.9 86.826.6 90.224.9 84.826.8 88.126.2 81.627.8 81.230.4

Average - 88.5 90.3 86.8 89.8 84.9 88.4 79.2 76.6

Table 6: Semantic similarity scores for all loss configurations after 5 epochs with N = 50,000
samples, retrieving k = 16 sentences.

Loss λ e5-small gte-base gte-small minilm-6
sarcastic sst2 sarcastic sst2 sarcastic sst2 sarcastic sst2

Reference - 83.41.5 85.51.7 81.41.6 83.71.4 82.51.6 84.81.4 42.35.6 46.67.4
Cosine (SetFit) - 78.52.1 81.62.1 75.63.0 79.91.8 75.62.5 80.71.8 17.85.6 27.16.9
Contrastive 0.10 79.42.0 83.32.0 75.02.4 81.01.8 78.72.1 82.11.8 25.66.6 34.87.2
Contrastive 0.25 79.72.0 83.71.9 76.22.4 81.41.8 79.02.1 82.61.7 26.66.6 34.56.8
Contrastive 0.50 79.72.0 83.81.9 76.92.4 81.61.7 79.12.1 82.81.6 27.16.6 34.26.7
Contrastive 0.75 79.82.0 83.81.9 76.52.6 81.51.7 78.72.3 82.71.6 27.16.5 34.16.6
Contrastive 1.00 79.82.0 83.71.9 76.52.7 81.31.7 78.12.5 82.41.6 27.86.5 33.96.6
MultipleNeg - 82.51.6 84.71.8 80.41.8 82.51.6 81.61.8 83.91.6 39.96.1 43.57.8
OnlineContr 0.10 80.11.9 83.81.9 75.62.3 81.21.8 79.22.0 82.51.7 25.46.7 33.27.1
OnlineContr 0.25 80.51.9 84.11.9 77.12.3 81.71.8 79.71.9 82.91.7 27.16.6 33.06.9
OnlineContr 0.50 80.61.9 84.11.9 77.82.3 82.01.6 79.92.0 83.01.6 28.36.5 33.97.0
OnlineContr 0.75 80.61.9 84.01.9 77.52.5 81.91.6 79.42.2 82.91.6 28.56.5 34.57.0
OnlineContr 1.00 80.61.9 84.01.9 77.42.6 81.71.6 78.92.3 82.71.6 29.26.4 35.07.0
Triplet 0.01 81.21.8 83.82.0 78.02.4 81.91.7 79.92.0 83.01.7 25.86.2 33.97.3
Triplet 0.10 81.31.7 83.71.9 78.12.3 81.91.7 79.92.1 83.01.6 30.56.1 35.27.3
Triplet 1.00 79.22.1 82.82.1 76.32.9 80.31.8 77.22.6 81.31.6 23.76.0 30.57.0
Triplet 5.00 78.32.1 81.82.1 74.62.7 79.91.8 75.82.7 80.61.7 20.65.9 29.67.0
Triplet 7.50 78.42.1 81.82.1 74.72.7 79.91.8 75.72.7 80.61.7 20.45.9 29.57.0
Triplet 10.00 78.32.1 81.82.1 74.72.7 80.01.8 75.72.7 80.71.7 20.55.9 29.67.0

Average - 80.0 83.5 76.7 81.3 78.6 82.3 26.7 33.7

MultipleNegativesRankingLoss may be unsuitable for fine-tuning toward other objectives as
we have less control over the targeted separations between specific sentences. The other loss
functions have separate example generation implementations with control over λ parameter
that defines the margin between similar and dissimilar sentences. Interestingly, independent
of the loss function, this value does not necessarily correlate with good model performance.
For distinguishing polarity, higher λ values resulted in only slightly improved scores for the
ContrastiveLoss. For TripletLoss, the opposite is true, contradicting the intuition that the
margin of two embeddings in vector space should be separated more rather than less. The
subtle differences between the embeddings may thus be small enough for larger margins to
be impossible for specific configurations. As for the models, the e5-small scores highest for
nearly all configurations, being effective at maximizing both polarity and semantic similar-
ity, as is evident from the average row. For further details on model performance as of the
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final experiment with 50, 000 samples, see Appendix B for the average score across all loss
functions per model and Appendix C for details on each loss function, separated on both
models and datasets. A final evaluation on the well established SentEval toolkit (Conneau &
Kiela, 2018) allows us to compare our models on a series of tasks for the two best-performing
baseline models (gte-base and e5-small). Table 7 shows the results of TripletLoss with a
margin of 0.1 against a similar training procedure with the SetFit model, both trained with
50, 000 samples and sorted by average score. We reuse the suitable metrics from Reimers &
Gurevych (2019) for fine-tuning on NLI data. Note how the fine-tuning approach achieves
better overall scores and especially so for the MR (Movie Reviews) and SST-2. Our models
also transfer well to tasks like SUBJ (subjective/objective classification). Comparing mod-
els of different loss functions is challenging due to the different data formats, as we cannot
guarantee a direct comparison when the inputs are unequal. Unlike typical research on loss
functions, we did not consider the loss values obtained during training or evaluation, as we
find these uninformative in this context, i.e., balancing two possibly opposing objectives.
However, we argue that our suggested metrics in Section 3.1 are reasonable and intuitive,
and can likely be used for further studies on sentence embeddings.

Table 7: Performance for the best configuration and SetFit with SentEval.

Model Dataset MR CR SUBJ MPQA SST2 TREC avg
Tripletλ0.1 gte-base sst2 89.31 89.27 92.91 85.95 93.19 80.80 85.50
Tripletλ0.1 gte-base sarcastic 84.33 88.82 92.82 88.04 90.83 88.40 85.01
Tripletλ0.1 e5-small sst2 88.95 88.98 91.06 86.28 93.41 79.80 84.97
SetFit gte-base sst2 84.30 88.85 90.91 86.08 89.18 86.00 84.27
SetFit e5-small sst2 85.43 85.16 86.58 83.93 91.05 88.00 82.18
SetFit gte-base sarcastic 81.61 86.52 90.01 87.50 88.69 86.00 81.92
SetFit e5-small sarcastic 82.69 83.97 90.65 86.80 88.80 90.20 81.62
Tripletλ0.1 e5-small sarcastic 82.40 76.27 90.47 85.75 89.95 71.40 78.81

6 Conclusion and Future Work

This paper has explored the potential of encoding polarity into sentence embeddings while
retaining semantic similarity, done by fine-tuning models on data generated to suit the objec-
tives of various sentence-transformers loss functions. We introduced two metrics to evaluate
our results: the Polarity and Semantic Similarity Score. We conducted two main experi-
ments. First, we investigated the importance of the number of sample sizes in our modeling
scheme, finding that larger sample sizes from the generated data contribute positively to-
wards both metrics. We used a suitable sample size in the second experiment and compared
all model and loss function configurations. We found that 1) the e5-small-v2 model outper-
formed the other baseline models tested (gte-base, gte-small and all-MiniLM-L6-v2 ), and
2) the TripletLoss, especially for lower λ margins, had the overall best results. We conclude
that fine-tuning the e5-small model with TripletLoss using the presented example generation
with a margin parameter of λ = 0.1 is likely to yield an efficient and high-performing model
for polarity-aware semantic retrieval – here evaluated on binary sentiment and sarcastic
news headlines.
Future work consists of several paths for improvement: 1) With the suggested model config-
uration, a broader range of tasks can be experimented with the same fine-tuning approaches
beyond sarcastic and sentiment-based data. 2) The example generation process can be ex-
tended to support multiclass inputs by one-vs-rest and other methods to manage multiple
classes with a system designed for contrasting two samples. 3) Although our proposed met-
rics are a first step in assessing multiple objectives in this novel context, combining them
better to represent the drift of the original semantic similarity remains an open question.
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Reproducibility Statement

All code is available in an anonymous repository on the Anonymous GitHub page.6 Results
and corresponding tables and figures are programmatically generated for efficient reproduc-
tion. Sampling operations are fully deterministic, with the use of a defined random state.
Source datasets are provided as used after initial preprocessing, and the experiments are
logically structured in the source code. Some results are compiled from the resulting logs
using wandb (both from the API and local run files), which cannot be included because of
personal identifiers. However, code is provided to handle the resulting log files after training
to ensure reproducibility. The necessary parsed and anonymized data to reproduce tables
and figures is included.

Ethics Statement

We have reviewed the ICLR Code of Ethics, and can ensure that our work aligns with
its guidelines. Datasets and the pre-trained sentence-transformer models utilized in our
experiments are already public and readily available. The final system can be used for
automatic retrieval, which may impose ethical concerns, especially when used for public-
facing applications. One must thus consider privacy, bias, fairness, and potential misuse of
the results.
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Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017
task 1: Semantic textual similarity multilingual and crosslingual focused evaluation. In
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017),
pp. 1–14, Vancouver, Canada, August 2017. Association for Computational Linguistics.
doi: 10.18653/v1/S17-2001. URL https://aclanthology.org/S17-2001.

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che, Ting Liu, and Xiangzhan Yu. Recall
and learn: Fine-tuning deep pretrained language models with less forgetting, 2020.

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo, Yang Zhang, Shiyu Chang, Marin
Soljacic, Shang-Wen Li, Wen-tau Yih, Yoon Kim, and James Glass. DiffCSE: Difference-
based contrastive learning for sentence embeddings. In Annual Conference of the North
American Chapter of the Association for Computational Linguistics (NAACL), 2022.

Alexis Conneau and Douwe Kiela. Senteval: An evaluation toolkit for universal sentence
representations. arXiv preprint arXiv:1803.05449, 2018.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Löıc Barrault, and Antoine Bordes. Super-
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A Training Details

A.1 Configuration for Sample Size

Table 8: Configuration for the initial run of all models and parameters.

Parameter Value
Epochs 5
Batch Size 64
k 16
Learning Rate 3 × 10−5

Train Samples {50, 500, 2000, 5000, 10000, 20000, 50000, 100000}

A.2 Compute and Training Time

The fine-tuning of a model scales linearly with N , averaging 15sec/epoch per 10,000 samples
on an RTX4090. A model with N = 100,000 and 10 epochs is thus completed in 1500 seconds
(25 minutes). This does not include time spent on evaluation per epoch, which requires
embedding the test and training set with the fine-tuned models. The setup described by the
seventeen loss configurations in Table 2 and the four baseline models in Table 1, amounts to
68 models to evaluate each epoch. For the initial experiment with the range of 8 different
training samples, this results in 544 models (per dataset).

B Average Model Performance

Averaging the loss function scores per dataset for all models (Figures 4, 5, 6, 7), we can
observe the general capability of each model, along with performance against its untrained
baseline.
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Figure 4: Average model performance for E5 Small

C Loss Performance per Model

Figures 8, 9, 10, 11 show the best-performing loss configuration per model. The strongest
models all have acceptable performance for the selected loss functions. Triplet loss, however,
stands out as it is only slightly below the baseline for the semantic similarity score and
reaches the highest polarity scores. This is especially pronounced for the e5-small model.
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Figure 5: Average model performance for GTE base
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Figure 6: Average model performance for GTE small
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Figure 7: Average model performance for MiniLM-6

15



Under review as a conference paper at ICLR 2024

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

80

85

90

Sc
or

e
polarity, sst2

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

84.0

84.5

85.0

85.5

Sc
or

e

semantic similarity, sst2

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

75

80

85

90

Sc
or

e

polarity, sarcastic-headlines

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

80

81

82

83

Sc
or

e

semantic similarity, sarcastic-headlines

e5-small on SST-2 and Sarcastic Headlines

MultipleNegativesRankingLoss
OnlineContrastiveLoss

ContrastiveLoss
TripletLoss

e5-small baseline

Figure 8: Max scores per loss for E5 Small
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Figure 9: Max scores per loss for GTE base

16



Under review as a conference paper at ICLR 2024

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

80

85

90

Sc
or

e
polarity, sst2

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

83.0

83.5

84.0

84.5

Sc
or

e

semantic similarity, sst2

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

70

75

80

85

Sc
or

e

polarity, sarcastic-headlines

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

79

80

81

82

Sc
or

e

semantic similarity, sarcastic-headlines

gte-small on SST-2 and Sarcastic Headlines

MultipleNegativesRankingLoss
OnlineContrastiveLoss

ContrastiveLoss
TripletLoss

gte-small baseline

Figure 10: Max scores per loss for GTE small
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Figure 11: Max scores per loss for MiniLM-6
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