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ABSTRACT

Offline planning has recently emerged as a promising reinforcement learning
(RL) paradigm. In particular, model-based offline planning learns an approxi-
mate dynamics model from the offline dataset, and then uses it for rollout-aided
decision-time planning. Nevertheless, existing model-based offline planning al-
gorithms could be overly conservative and suffer from compounding modeling
errors. To tackle these challenges, we propose L-MBOP-E (Latent-Model Based
Offline Planning with Extrinsic policy guided exploration) that is built on two
key ideas: 1) low-dimensional latent model learning to reduce the effects of com-
pounding errors when learning a dynamics model with limited offline data, and
2) a Thompson Sampling based exploration strategy with an extrinsic policy to
guide planning beyond the behavior policy and hence get the best out of these
two policies, where the extrinsic policy can be a meta-learned policy or a policy
learned from another similar RL task. Extensive experimental results demonstrate
that L-MBOP-E significantly outperforms the state-of-the-art model-based offline
planning algorithms on the MuJoCo D4RL and Deepmind Control tasks, yielding
more than 200% gains in some cases. Furthermore, reduced model uncertainty
and superior performance on new tasks with zero-shot adaptation indicates that
L-MBOP-E provides a more flexible and light-weight solution to offline planning.

1 INTRODUCTION

Offline planning is an emerging reinforcement learning (RL) approach designed to synergize the
strength and flexibility of online planning with the advantages of offline learning. A general consen-
sus is that although online planning algorithms Nagabandi et al. (2020); Chua et al. (2018); Lowrey
et al. (2018); Wang & Ba (2019) have demonstrated strong performance, their need for continuous
interactions with the environment can incur prohibitively high cost. In contrast, offline RL algo-
rithms Kidambi et al. (2020); Yu et al. (2020); Kumar et al. (2020); Fujimoto et al. (2018) only
require access to an offline dataset collected by some behavior policy. Notably, a number of model-
free offline RL algorithms have recently been proposed, including SAC-N, EDAC An et al. (2021),
PBRL Bai et al. (2022), RORL Yang et al. (2022), and TD3-BC-N Fujimoto & Gu (2021). It is
worth pointing out that while these algorithms have demonstrated strong performance, they are not
readily amenable to decision-time planning Hamrick et al. (2021). Model-free online planning algo-
rithms, such as MCTSnet Guez et al. (2018), TreeQN Farquhar et al. (2018), and Value Prediction
Network Oh et al. (2017), employ a neural network architecture which mirrors a search tree to enable
implicit planning. By taking advantage of both online planning and offline learning, model-based
offline planning learns an approximate dynamics model from the offline dataset, which can be used
to devise planning algorithms for effective system control.

There are a number of challenges in model-based offline planning, including 1) compounding mod-
eling errors due to the inaccuracy and uncertainty associated with the approximate dynamics model
learned from limited data, and 2) the distributional shift between the distribution of visited state-
action pairs during planning and that of the offline dataset. To tackle these challenges, existing
approaches Argenson & Dulac-Arnold (2020); Zhan et al. (2021); Diehl et al. (2021) for offline
planning typically employ model-predictive control (MPC) Richalet et al. (1978) to re-plan at each
iteration, and use a behavior cloned policy to constrain trajectory rollouts while planning. For exam-
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Figure 1: Overview of L-MBOP-E. A latent dynamics model and the BC policy are trained from the
offline dataset. Leveraging the latent model, a Thompson Sampling (T.S.) exploration procedure is
used to guide exploration following the better one between the BC policy and extrinsic policy.

ple, MBOP Argenson & Dulac-Arnold (2020) and MOPP Zhan et al. (2021) encourage exploration
by allowing sampling from the behavior policy with added deviation. Despite the control flexibility,
these offline planning algorithms still face several key limitations. (1) Uncertainty and inaccuracy of
high-dimensional dynamics model. The dynamics models are often trained in the high-dimensional
observation space. While re-planning at each state in MPC can help reduce the effect of compound-
ing modeling errors, offline planning still suffers from out-of-distribution errors, because the states
visited during planning might differ from the states present in the offline dataset. (2) Overly conser-
vative planning. The constrained trajectory rollouts will lead to planned actions that closely follow
the behavior policy, which is overly conservative and hinges heavily upon the quality of the BC
policy.

To address these two limitations, in this work we propose L-MBOP-E, a model-based offline plan-
ning algorithm that makes use of 1) low-dimensional latent dynamics model learning and 2) guided
exploration with an extrinsic policy. As shown in Fig. 1, the underlying rationale is as follows: (1)
To deal with the inaccuracy of the dynamics model due to the limited samples in the offline dataset,
we advocate a low-dimensional latent representation for the state space, which can yield a higher-
accuracy dynamics model and in turn improve prediction quality and hence reduce the likelihood
of compounding errors. This resonates with human’s interactions with an environment where we
typically do not try to reason directly with the observation space, but rather with some abstracted
features of the observations. (2) Further, to mitigate the overly-conservative planning constrained
by the BC policy, it is plausible to take advantage of an extrinsic policy which can be another policy
obtained from either meta learning or a related task Finn et al. (2017); Lin et al. (2022); Yue et al.
(2023); Li et al. (2020). Based on the online returns of both extrinsic policy and behavior policy,
a Thompson Sampling based exploration strategy is proposed to ensure that the planning would
mostly follow the guidance of the better policy for specific state-action pairs. In particular, when
both the behavior policy and extrinsic policy are non-expert, there will be regions of the state-space
where the behavior policy performs better and other regions where the extrinsic policy performs
better. As such, we can expect that the extrinsic policy will complement the behavior policy in some
subtle way, and the planning using both policies will enable the algorithm to selectively learn from
both policies, leading to improved performance.

2 RELATED WORK

Model-based offline planning Argenson & Dulac-Arnold (2020); Zhan et al. (2021) seeks to directly
plan actions for execution in an environment by leveraging a learned dynamics model from an offline
dataset. This differs from the online setting where one can collect additional data during interaction
to improve the dynamics model. MBOP Argenson & Dulac-Arnold (2020) extends the ideas of
Planning with Deep Dynamics Models (PDDM) Nagabandi et al. (2020) to the offline setting. In
addition to learning an approximate dynamics model, MBOP also trains a behavior cloned (BC)
policy from the offline dataset. MBOP uses the BC policy to constrain the explored trajectories in
order to reduce distributional shift. However, constraining the explored trajectories to only follow the
BC policy limits the potential of planning, therefore MOPP Zhan et al. (2021) attempts to improve
exploration by boosting the variance of the actions produced by the BC policy, and using a pruning
scheme based on dynamics uncertainty to avoid potential out-of-distribution (OOD) samples. While
this approach enhances exploration compared to the base BC policy, its performance still heavily
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depends upon the quality of the BC policy. To overcome this challenge, L-MBOP-E uses an extrinsic
policy to help guide exploration, in addition to the BC policy.

A number of recent studies on model-based RL have investigated the use of latent state representa-
tions with dynamics models, which can capture higher-level features of the environment and facili-
tate the learning. In related work, TD-MPC Hansen et al. (2022) learns a latent state representation
which encodes the dynamics and reward signal, which it then leverages for online planning. Dream-
erv3 Hafner et al. (2023) utilizes world models Ha & Schmidhuber (2018) for training a policy with
synthetic data. World models encode the history of observations encountered thus far into a hidden
state via recurrent neural networks, which is then used for prediction with a latent dynamics model.
Due to the additional complexity, world models often require large amounts of data to train. Differ-
ent from the above approaches, L-MBOP-E employs a state decoder, in addition to reward signals,
to facilitate zero-shot task adaptation, and as a result, the dynamics model employed is lightweight
and can be trained offline with minimal data.

3 PROBLEM FORMULATION

3.1 MARKOV DECISION PROCESS

As is standard, we consider a Markov Decision Process (MDP) defined by a tuple (S,A, P, r, γ),
where S is the state space, A is the action space, P (st+1|st, at) is the transition dynamics, r(st, at)
is the reward function, and γ ∈ (0, 1] is the discounting factor. RL aims to learn an optimal policy
π∗ which can maximize the cumulative reward, i.e., R =

∑∞
t=0 γ

tr(st, π
∗(st)). Following recent

studies Argenson & Dulac-Arnold (2020); Zhan et al. (2021), we fix γ = 1 and thus only consider
the finite-time horizon return. In the offline setting, the algorithm only has access to a static dataset
D of trajectories of the form {(st, at, rt, st+1)} generated by some behavior policy πb.

3.2 OFFLINE PLANNING WITH LEARNED DYNAMICS MODELS

Model-based Offline Planning. Model-based offline planning methods Argenson & Dulac-Arnold
(2020); Zhan et al. (2021) generally learn an approximated dynamics model fm through supervised
learning and then employ a planning algorithm to determine a trajectory with a high return based
on this learned model; which is subsequently implemented in the online environment. Meanwhile,
a value function Vb is used to extend the planning horizon beyond H steps. Hence, offline planning
aims to find an optimal policy π∗

op such that the accumulated reward is maximized, i.e.,

π∗
op(s0) = argmax

a0:H−1

E
[∑H−1

t=0
r(st, at) + Vb(sH)

]
.

Specifically, MBOP Argenson & Dulac-Arnold (2020) learns a behavior cloned policy fb(at−1, st)
as a prior for action sampling when the planning algorithm is rolling out trajectories over the learned
model fm(st, at).

Trajectory Optimization. After having a set of trajectories and the associated return, MBOP em-
ploys an extended version of the MPPI Williams et al. (2017) optimizer to obtain the optimal action
sequence. Specifically, let Ab be the set of action trajectories which are sampled using the learned
behavior policy fb and Rb = {R1, · · · , R|Ab|} be the associated cumulative returns. Then the opti-
mized trajectory of actions is obtained by re-weighting the actions in each trajectory according their
exponentiated return, i.e.,

T∗ =

∑|Ab|
n=1 exp (κRb[n])Ab[n]∑|Ab|

n=1 exp (κRb[n])
,

where κ is the re-weighting factor.

Limitations of Existing Approaches. The performance of existing offline planning algorithms Ar-
genson & Dulac-Arnold (2020); Zhan et al. (2021) is often limited by two factors: (1) the compound-
ing model errors and (2) the over-restrictive planning with the behavior cloned policy. Specifically,
in real-world applications such as video games and robotics, the high-dimensional state observations
may contain redundant information and thus impose great model uncertainty for RL agents trained
from limited offline data. Meanwhile, MBOP samples actions exclusively from the learned behavior
policy to relieve the out-of-distribution error during offline learning. However, this over-restrictive
planning unavoidably hinders the full utilization of trajectory optimizers such as MPPI, which re-
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quires sufficient state-action space coverage in order to perform well Zhan et al. (2021). These
issues are still present in MOPP Zhan et al. (2021) even though large deviation is allowed from the
behavior policy in sampling.

4 LATENT-MODEL BASED OFFLINE PLANNING WITH EXTRINSIC POLICY
GUIDED EXPLORATION (L-MBOP-E)

To address the limitations mentioned above, in this section we introduce L-MBOP-E which is built
on two key ideas. First, we use a low-dimensional latent state space when training the dynamics
model from limited offline data, aiming to mitigate the effects of compounding errors. Second,
we propose a Thompson Sampling based exploration strategy with an extrinsic policy πc to guide
planning beyond the BC policy, where the extrinsic policy can either be a meta-learned policy or a
policy acquired from a similar RL task.

4.1 LATENT MODEL REPRESENTATION

Instead of directly learning the dynamics models using the offline dataset, we utilize insights from
representation learning literature Srinivas et al. (2020); Chandak et al. (2019); Yarats et al. (2021);
Edwards et al. (2018); Watter et al. (2015) and employ latent dynamics models to reduce model un-
certainty. The rationale behind incorporating latent models is to reduce dimensionality; allowing for
more accurate predictions by capturing the core reasoning in higher-level input domains when using
limited samples. Specifically, L-MBOP-E first jointly learns the latent dynamics model and a rep-
resentation mapping between original and latent state spaces with an encoder-decoder architecture
Hinton & Salakhutdinov (2006). Then, a behavior policy and a Q function are learned with the use
of the latent state representation. In this regard, the planning algorithm of L-MBOP-E incorporates
five parameterized function approximators, i.e.,

• zt = e(st) is the state encoder which maps the observations to the latent space, where we
normalize the latent states to lie on the hypersphere to improve convergence.

• d(zt) = st is the state decoder, which decodes the latent state back into the original space.
• fm(zt, at) = (zt+1, rt) is the latent dynamics model, which takes as input the current state

encoding and an action, and produces the latent representation for the next state and the
predicted reward. We use fm(zt, at)z and fm(zt, at)r to denote the predicted latent state
and reward, respectively.

• fb(at|zt) = N (µ(zt),Σ(zt)) is the behavior cloned policy, which is modeled as a Gaussian
distribution over the actions for that iteration.

• Qb(zt, at) is the learned Q function for the underlying true behavior policy πb.

Latent Dynamics Model. Our proposed method trains the autoencoder and dynamics model jointly.
In this way, the network can align the learned latent state representation with the underlying dynam-
ics captured by the latent model. Specifically, denote the joint parameter for the latent model and
encoder-decoder to be θ. We design the loss function as follows:

L(θ|D) =
N∑
i=1

∥e(si+1)− fm(e(si), ai)z∥2 + λ1(ri − fm(e(si), ai)r)
2 + λ2∥si − d(e(si))∥2,

where the first term trains the dynamics model to predict the latent representation of the next state,
the second term trains the dynamics model to predict the instantaneous reward for the given state-
action pair, and the last term is the reconstruction loss for the encoder-decoder pair. λ1 and λ2 are
used to balance the importance of each term.

Behavior Policy and Value Function Learning in the Latent Space. After training the state
encoder and latent dynamics model, the BC policy is trained via maximum likelihood on D
with the latent state representations. The value function Vb is obtained by learning a Q func-
tion via Fitted Q Evaluation Le et al. (2019) on the latent representations of D. Let yi =
ri + Qk−1

b (zi+1, ai+1), (zi, ai, ri, zi+1, ai+1) ∼ D. Then at the k-th iteration, the Q function is
updated as follows,

Qk
b (zi, ai) = min

f∈F

1

N

∑N

i=1
[f(zi, ai)− yi]

2,
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where F is the function class and N is the number of samples in the offline dataset D. The value
function can be further evaluated by Vb(st) = Ea∼πb

[Qb(zt, a)]. As in MBOP Argenson & Dulac-
Arnold (2020), the value function is used to guide exploration and provide a terminal cost during
the planning stage, which enables us to effectively extend the length of the planning horizon.

4.2 POLICY-GUIDED ROLLOUTS VIA THOMPSON SAMPLING

As opposed to MBOP Argenson & Dulac-Arnold (2020), L-MBOP-E samples actions from the be-
haviour cloned policy fb, as well as from an extrinsic exploration policy πc. The use of a secondary
policy aims to boost the exploration by allowing the algorithm to sample actions that might not
be sampled if we exclusively follow the behaviour policy. To determine which policy should be
used during rollouts, we model the policy selection process as a two-armed bandit problem, and use
Gaussian Thompson sampling to learn which policy performs better. In particular, we model the
return of the behavior policy xb and the return of the extrinsic exploration xc policy as Gaussian
distributions.

More specifically, at each iteration t, we are given the current state st of the environment and initial-
ize two sets Rt

b and Rt
c to store the associated cumulative returns from running policies fb and πc,

respectively. N trajectory rollouts will be generated from the current state using the latent dynamics
model fm.

Action Selection. For the n-th rollout trajectory, n = 1, ..., N , the algorithm uses the sampled
return based on parameters learned through Thompson Sampling to determine which policy should
be used for the rollout:

π(st) =

{
fb(st) if xt

b ≥ xt
c

πc(st) otherwise
, xt

b ∼ N (µt
b, σ

t
b), xt

c ∼ N (µt
c, σ

t
c) (1)

where πc is given and fb is given by:

fb(st) = argmaxa∈Ah
Qb(zh, a), Ah = {ai

h}
KQ

i=1, ai
h ∼ N (µ(zh), diag(σM · σ(zh))2),

where σM > 0 is a hyperparameter for scaling the standard deviation of the predicted actions.
Following MBOP and MOPP, the sampled action π(st) is mixed with the trajectory from the pre-
vious timestep with a mixing parameter β to produce the action for the next step in the rollout (ref.
Algorithm 1 line 11).

Parameter Updates. At the end of each rollout, the cumulative reward is obtained by the summa-
tion of the total return over the H steps rollout and the terminal cost for the final state, Vb(zH). The
total return is then added either to Rt

b or to Rt
c, depending on which policy was used during the roll-

out. Let nb denote the number of rollouts taken from fb at iteration t, N t
b the total number of rollouts

taken from fb up until iteration t, Rt
b be the mean return from the set of generated rollouts, and Rt

b[i]
the i-th element of the set Rt

b. At the end of iteration t, we use Welford’s algorithm Welford (1962)
adapted for batch data to update the Gaussian distribution parameters for the policy returns:

µt+1
b =

N t
b · µt

b + nb · Rt
b

N t
b + nb

, N t+1
b = N t

b + nb, dev
t+1
b = devtb + nb(µ

t
b − µt+1

b )2 +

nb∑
i=1

(Rt
b[i]− µt

b)
2. (2)

The standard deviation is computed as σt
b =

√
devt

b

Nt
b−1

. We update µt
c, σ

t
c, and N t

c in the same way.

4.3 ALGORITHM DESIGN

L-MBOP-E is outlined in Algorithm 1, which follows the finite-horizon Model Predictive Control
(MPC) framework. Based on the dynamics model, MPC computes a locally optimal policy by
returning a sequence of actions of length H . At each iteration t, MPC executes the first planned
action of the returned sequence, and then re-plans a new sequence for the newly observed state.

At each iteration t, L-MBOP-E performs N rollouts from the current state; to determine whether the
rollout is following fb or πc, samples of policy returns are generated from the Gaussian distributions
for fb and πc, and the policy corresponding to the larger return is selected. At the end of the rollout,
a terminal cost is added by using Qb or Qc, respectively. After all N rollouts are performed, the
Gaussian distributions for the returns of fb and πc are updated via Welford’s algorithm, and then the
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Algorithm 1 L-MBOP-E Algorithm

1: Initialize Thompson Sampling parameters: N1
b = N1

c = 1, µ1
b , µ1

c , dev1b , dev
1
c = 0.

2: for t = 1, 2 . . . do
3: Observe current environment state st, and encode state st into latent state zt
4: Initialize Rb and Rc as empty sets to contain trajectory scores
5: Set AN,H = 0⃗N,H

6: for n = 1, . . . , N do
7: Initialize Rn = 0 and sample xb ∼ N (µt

b, σ
t
b), xc ∼ N (µt

c, σ
t
c)

8: Select policy πn based on the maximum between xb and xc

9: for h = 1..H do
10: Sample ah from policy πn using Eqn. equation 4.2
11: An,h = (1− β)ah + βTi=min(h,H), Rn ← Rn + fm(zh,An,h)r , zh+1 ∼ fm(zh,An,h)s
12: end for
13: if πn = fb then
14: Estimate Vb(zH) by sampling actions from fb(zH) and averaging Qb(zH , a)
15: Rn ← Rn + Vb(zH), and add Rn to Rb

16: else
17: Estimate Vc(zH) by sampling actions from πc(zH) and averaging Qc(zH , a)
18: Rn ← Rn + Vc(zH), and add Rn to Rc

19: end if
20: end for
21: Update Thompson Sampling parameters for fb and πc using Eqn. equation 2

22: T ′
h =

∑N
n=1 eκRnAn,h∑N

n=1 eκRn
, ∀h ∈ [1, H],Rn = Rb ∪ Rc

23: Execute action T ′
1 in real environment

24: end for

MPPI trajectory optimizer is employed to return a final trajectory from the set of N rollouts, where
the first action is executed for online planning in the environment.

5 EXPERIMENTS

To evaluate the effectiveness of L-MBOP-E, we consider the standard offline RL benchmark D4RL
Fu et al. (2020) and the Deepmind Control (DMC) Tassa et al. (2018) tasks, and use state-of-the-art
offline planning methods as the baselines. In what follows, we first show how L-MBOP-E performs
compared to the baseline algorithms. Next, we provide a comprehensive ablation study to investigate
the impact of each key design component. Finally, we evaluate the adaptability of L-MBOP-E
through experiments on zero-shot adaptation for new tasks.

5.1 PERFORMANCE ON MUJOCO AND DEEPMIND CONTROL (DMC) TASKS

We perform experiments on three D4RL environments: halfcheetah, hopper, and walker2d, and
on two DMC tasks: humanoid and quadruped. For each environment, we consider four different
qualities of offline datasets (random, medium, medium-replay, and med-expert). We compare the
performance of L-MBOP-E to two offline planning algorithms: MBOP Argenson & Dulac-Arnold
(2020) and MOPP Zhan et al. (2021). We also consider the BC policy learnt with behavior cloning
as a baseline. For convenience, the extrinsic policy is obtained as a variant by training a policy using
SAC Haarnoja et al. (2018) on the same task until it performs reasonably well as the BC policy.

The results are reported in Table 1. L-MBOP-E outperforms all the baselines in almost every task.
As expected, the performance gain is more significant when the quality of the offline data is lower,
because the extrinsic policy is more likely to complement the BC policy for a better exploration of
the state-action space.

In particular, in the case with random datasets where the BC policy is of very-low quality, BC-guided
exploration is clearly not productive. As a result, both MBOP and MOPP, which only use the BC
policy for guidance, degrade in performance. In contrast, L-MBOP-E can yield a substantial perfor-
mance gain by training the latent dynamics model and using the Thompson Sampling exploration
scheme to follow the guidance of the better policy.
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Dataset Environment BC MBOP MOPP L-MBOP-E MBOP-E L-MBOP

random halfcheetah 0.0 6.3 9.4 21.2 20.1 9.3
random walker2d 0.1 8.1 6.3 23.7 19.2 8.0
random hopper 0.8 10.8 13.7 20.2 18.8 11.3
random humanoid 0.0 0.3 - 5.1 4.9 0.4
random quadruped 0.1 4.0 - 11.8 11.1 3.8

medium halfcheetah 38.9 44.6 44.7 56.2 48.6 55.2
medium walker2d 60.6 41.0 80.7 84.7 82.1 85.6
medium hopper 40.9 48.8 31.8 63.8 51.1 55.3
medium humanoid 12.1 14.9 - 21.5 20.1 15.2
medium quadruped 21.7 28.0 - 35.5 33.7 30.2

medium-replay halfcheetah 27.7 42.3 43.1 46.8 43.4 43.9
medium-replay walker2d 17.7 9.7 18.5 35.6 32.1 28.5
medium-replay hopper 13.5 12.4 32.3 42.7 35.2 30.6
medium-replay humanoid 10.8 15.3 - 19.0 16.7 15.5
medium-replay quadruped 16.6 21.5 - 29.4 29.1 21.1

med-expert halfcheetah 57.2 105.9 106.2 91.6 92.1 94.3
med-expert walker2d 79.7 70.2 92.9 112.1 94.1 110.7
med-expert hopper 50.4 55.1 95.4 96.7 96.5 97.1
med-expert humanoid 14.9 19.6 - 32.8 30.4 19.9
med-expert quadruped 87.7 90.1 - 91.2 90.9 89.9

Table 1: Experimental results. Scores are normalized between 0 and 100, where 100 represents the
score of the expert policy. The scores for MBOP and MOPP are taken from their respective papers
where possible. See appendix for full table with variance.

5.2 ABLATION STUDY

To clearly understand the impact of the different design choices in the proposed algorithm, we next
conduct ablation studies on the hopper-medium dataset.

Latent Dynamics Model. We begin by examining the impact of the latent dynamics model. We
first compare the performance of L-MBOP-E to that of MBOP-E which learns a standard dynamics
model, to determine how the latent dynamics model helps to improve planning. As shown in Table 1,
L-MBOP-E clearly outperforms MBOP-E by leveraging the latent dynamics model. To further
justify this, we also compare the performance between MBOP and L-MBOP with the latent model
in Table 1, where substantial performance gains can be achieved in L-MBOP by using the latent
model to replace the standard dynamics model.

To understand how the dimension of the latent space affects the performance, we run the experiments
with different values of the size of the latent dimension, with dataset size set to 50,000. The results
are reported in Figure 2a, which show that the algorithm performs well on most latent dimension
sizes where the latent model is sufficient to capture the main characterizations of the dynamic model.

Another benefit of leveraging the latent model is to improve the data efficiency. To justify this, we
next conduct experiments under different sizes of the dataset, ranging from 20,000 to 1,000,000 sam-
ples, fixed with latent dimension size of 9. We observe that even with a smaller training dataset, L-
MBOP-E can outperform MBOP, as demonstrated by MBOP achieving a score of 1578 on 1,000,000
samples. By learning a latent space that captures the features for the environment dynamics, L-
MBOP-E can attain higher data efficiency than attempting to learn the dynamics in the original
space.

Benefits of Using the Extrinsic Policy. First, to understand the benefit of the extrinsic policy, we
compare the performance between L-MBOP and L-MBOP-E. As seen in Table 1, when Thompson
Sampling is used to explore with an additional extrinsic policy, L-MBOP-E can leverage the extrinsic
policy to provide additional guidance for planning and improves upon L-MBOP.

Next, we investigate how the quality of the extrinsic policy affects the performance of the proposed
algorithm L-MBOP-E. To this end, we run the experiments under different qualities of the extrinsic
policy, i.e., low, medium, medium-expert and expert, and compare to just using L-MBOP; the results
are shown in Figure 3b. Our findings indicate that increasing the extrinsic policy quality from low to
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(a) Return vs. latent dimension (b) Return vs. dataset sizes

Figure 2: Performance of L-MBOP-E trained with varying amounts of data and latent dimension
sizes. In Figure 2a, the size of the latent dimension is varied between 3 and 19, in the case where the
dataset size is 50,000. In Figure 2b, the dataset is set to sizes between 20,000 and 1,000,000, and
the latent dimension is fixed to 9.

(a) (b) (c)

Figure 3: (a) Converged pt value from Thompson Sampling vs. various qualities of datasets and
extrinsic policies. The darker the shade, the higher the converged pt value (higher probability of
sampling from BC policy). (b) Performance of L-MBOP-E with varying qualities of the extrinsic
policy. The red line represents the score of L-MBOP as a baseline. (c) Sensitivity to the variance
scaling factor σM .

expert consistently improve the quality of the planning. By using Thompson Sampling, even in the
case where we use a low-quality extrinsic policy, L-MBOP-E can selectively sample actions from
it and still improve upon the overall performance of L-MBOP. As the quality of the extrinsic policy
increases, pt will get closer to 0 and the algorithm learns to follow the extrinsic policy.

Impact of Thompson Sampling. We conduct experiments under different qualities of the offline
dataset and extrinsic policy in order to determine whether Thompson Sampling can correctly identify
which policy is stronger. Intuitively, Thompson Sampling should converge to a low pt value when
the extrinsic policy is better than the BC policy and a high pt value when the BC policy is better. As
shown in Figure 3a, in the random dataset where the performance of the BC policy is of low quality,
the value of pt converges to near 0.0 so that the exploration would tend to follow the guidance of the
extrinsic policy. In the other extreme case where the BC policy is of high quality and the extrinsic
policy is of low quality, pt will converge to a value close to 1.0.

Next, we investigate the impact of the variance scaling factor σM on the learning performance.
Specifically, for the Hopper-medium task, we test different variance scale values ranging from 0.2
to 2.0. As shown in Figure 3c, as we increase σM , the performance initially increases because the
algorithm will sample more diverse actions for better exploration. The performance decreases if σM

is too large, because of the increased distributional shift between the sampled actions and the BC
policy. However, the performance of our algorithm is robust to the selection of σM .

The Thompson Sampling algorithm allows L-MBOP-E to sample actions from both the BC policy
and extrinsic policy, and follow the better policy for different states. To verify this, we perform
Principal Component Analysis on a sample trajectory from the Hopper environment. In order to
distinguish which states the extrinsic policy performs better, we use the N trajectory rollouts gen-
erated by L-MBOP-E during planning. We compute the average return of the trajectories generated
by either policy, and color red the states where the extrinsic policy has higher average return. The
visualizations are shown in Figure 4a and Figure 4b. As we can see, the latent state space has a
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(a) (b) (c)

Figure 4: (a-b) Visualization of states visited in the observation and latent spaces. States where the
extrinsic policy outperforms the BC policy are colored red. (c) Zero-shot adaptation experiments for
Hopper-Jump. It can be seen that L-MBOP-E clearly outperforms MBOP by using the new reward
and the improvement is more significant when a new Q function can be trained with the new reward.

very clear structure which makes the characterization of the dynamics easier and more accurate.
Moreover, it is clear that the planning deviates from the BC policy and follows the guidance of the
extrinsic policy in the red states, leading to the improved overall performance.

5.3 ZERO-SHOT TASK ADAPTATION

One of the main advantages to using the model-based planning framework is the ability to adapt to
new reward signals without having to re-train a policy. We can use a new reward signal by simply
replacing the predicted reward received during the synthetic rollouts with the new reward function.
This will allow L-MBOP-E to optimize the trajectories according to the new reward function, and
enable zero-shot task adaptation.

To verify this, we consider a new task, Hopper-Jump, which uses the original Hopper environment
but encourages the agent to jump by rewarding the agent for its z-position. The new reward function
is defined as follows:

rnew = αr · roriginal + (1− αr) · 10 · z
where roriginal is the reward function from Hopper, z is the z-position of the Hopper, and αr ∈ [0, 1]
is a mixing parameter, which we set to αr = 0.5.

Because the Q function was learnt based on the reward function from the offline dataset D, using it
as the terminal cost could degrade the performance if the new reward for the modified environment
differs greatly from the reward in the dataset. A new Q function can be trained from the offline
dataset by using the new reward function to replace the original reward. This allows L-MBOP-E to
use a more accurate terminal cost for better adaptation performance.

We compare the performance of MBOP and L-MBOP-E, along with two variants of L-MBOP-E:
L-MBOP-E with the new reward function (New-Reward), and L-MBOP-E with both the new reward
function and the Q function re-trained on the new reward (New-Q). Results are plotted in Figure 4c.
As shown, L-MBOP-E improves upon the performance of MBOP. Using the new reward function
allows L-MBOP-E to optimize trajectories for the new task to improve the performance. If a new
Q function is further trained, long-term consequences can be considered and the planning quality is
greatly improved. All these results clearly demonstrate the superior zero-shot adaptation capability
of L-MBOP-E, which is built on the latent model learning and better exploration with Thompson
Sampling and the extrinsic policy.

6 CONCLUSION

We develop Latent-Model Based Offline Planning with Extrinsic Policy-Guided Exploration (L-
MBOP-E), which is built on two key ideas: 1) low-dimensional latent model learning to reduce the
effects of compounding errors when learning a dynamics model with limited offline data, and 2) a
Thompson Sampling based exploration strategy with an extrinsic policy to guide planning beyond
the behavior policy and hence get the best out of these two policies. Experimental results demon-
strate that L-MBOP-E significantly outperforms the state-of-the-art algorithms on the D4RL and
DMC tasks, and performs especially well when given access to an extrinsic policy which comple-
ments the BC policy.
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Arthur Guez, Théophane Weber, Ioannis Antonoglou, Karen Simonyan, Oriol Vinyals, Daan Wier-
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A APPENDIX

B EXPERIMENT SETTINGS

B.1 DATASETS

We evaluate L-MBOP-E on the popular D4RL and DMC tasks. In D4RL we use the tasks halfchee-
tah, walker2d, and hopper. For DMC, we experiment with the more difficult humanoid-walk and
quadruped-walk tasks. On each task we train L-MBOP-E on four different datasets: random,
medium, medium-replay, and med-expert. The datasets are generated from following behavior poli-
cies of various qualities:

• random - a collection of 1M steps is obtained by rolling out a randomly-initialized policy.
• medium - a policy is trained via SAC to one-third the performance of the expert policy,

then is rolled out for 1M steps.
• medium-replay - the dataset is the replay buffer from the medium quality policy.
• med-expert - this dataset is the union of the medium dataset and an additional 1M samples

generated by following the expert policy.

For the DMC tasks, we create our own datasets following the above method.

B.2 MODEL CONFIGURATIONS

The dynamics model, behavior cloned policy, and Q function are all approximated as feed-forward
neural networks. We use the following configurations for all experiments.

B.2.1 LATENT DYNAMICS MODEL

The latent dynamics model fm consists of a state encoder, state decoder, and transition model. All
three networks are configured as follows:

• Number of Hidden Layers: 2
• Size of Hidden Layers: 500
• Activation: ReLu
• Learning Rate: 0.0001
• Batch Size: 128
• Epochs: 40
• Optimizer: Adam

We fix the size of the latent dimension depending on the task:

• HalfCheetah: 15
• Walker2d: 15
• Hopper: 9

B.2.2 BEHAVIOR POLICY AND Q FUNCTION

The behavior policy fb and Q function Qb share the same configuration:

• Number of Hidden Layers: 2
• Size of Hidden Layers: 500
• Activation: ReLu
• Learning Rate: 0.001
• Batch Size: 512
• Epochs: 40
• Optimizer: Adam
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HalfCheetah

Dataset H κ β σM N

random 4 3 0 0.75 100
medium 2 3 0 1.0 100
medium-replay 4 3 0 1.0 100
med-expert 2 1 0 0.7 100

Walker2d

Dataset H κ β σM N

random 8 0.3 0 1.0 1000
medium 2 0.1 0 1.0 1000
medium-replay 8 3 0 0.3 1000
med-expert 2 1 0 1.0 1000

Hopper

Dataset H κ β σM N

random 4 10 0 0.5 100
medium 4 0.3 0 1.2 100
medium-replay 4 0.3 0 1.5 100
med-expert 10 3 0 0.3 100

Humanoid

Dataset H κ β σM N

random 4 4 0 0.2 100
medium 4 1 0 0.2 100
medium-replay 4 1 0 0.2 100
med-expert 4 2 0 0.2 100

Quadruped

Dataset H κ β σM N

random 4 4 0 0.3 100
medium 4 2 0 0.3 100
medium-replay 4 2 0 0.3 100
med-expert 4 2 0 0.3 100

Table 2: Hyperparameter configurations for experiments

B.3 PLANNING HYPERPARAMETERS

We present the selected hyperparameters used in each task for L-MBOP-E in Table 2. We select
hyperparameters similar to the ones used by MBOP and MOPP to make the results more comparable.
We also use these same parameters during the ablation studies, expect for the parameter being varied.
Meanwhile, we set KQ = 10 in Eqn. equation 4.2 for all experiments.
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Dataset Environment BC MBOP MOPP L-MBOP-E

random halfcheetah 0.0±0.0 6.3±4.0 9.4±2.6 21.2±6.4
random walker2d 0.1±0.1 8.1±5.5 6.3±0.1 23.7±2.5
random hopper 0.8±0.6 10.8±0.3 13.7±2.5 20.2±2.4

medium halfcheetah 38.9±3.7 44.6±0.8 44.7±2.6 56.2±0.6
medium walker2d 60.6±22.6 41.0±29.4 80.7±1.0 84.7±2.9
medium hopper 40.9±6.9 48.8±26.8 31.8±1.3 63.8±19.2

medium-replay halfcheetah 27.7±9.0 42.3±0.9 43.1±4.3 46.8±12.7
medium-replay walker2d 17.7±18.4 9.7±5.3 18.5±8.4 35.6±14.6
medium-replay hopper 13.5±12.6 12.4±5.8 32.3±5.9 42.7±12.9

med-expert halfcheetah 57.2±22.3 105.9±17.8 106.2±5.1 91.6±10.2
med-expert walker2d 79.7±26.3 70.2±36.2 92.9±14.1 112.1±0.9
med-expert hopper 50.4±21.3 55.1±44.3 95.4±28.0 96.7±18.7

Table 3: Experimental results with variances.

B.4 EXPERIMENTAL DETAILS

B.4.1 BOOTSTRAPPING FOR Q LEARNING

We train the Q function for the behavior policy πb using the dataset D via Fitted Q Evaluation (FQE).
The dataset consists of rollouts generated by πb in the environment; each episode terminates at an
unhealthy state or continues until timeout is reached.

When applying FQE to learn the Q function for πb, we compute the targets for the next iteration
of FQE by bootstrapping the current Q-values. This can cause issues on the boundary between
episodes, where we may not be able to bootstrap the future Q-value when computing the Q-value
for the final state of the episode. We handle the case when an episode ends due to termination or
timeout separately:

• If an episode ends due to reaching an unhealthy state, then we do not bootstrap the Q-values
for the next state-action pair, and instead set the target to be the immediate reward.

• If an episode ends due to timeout, then we are not able to bootstrap because we do not have
access to which state-action pair follows the final state-action pair in the episode. In this
case, we treat the second-to-last timestep in the episode as the final timestep, and use the
actual final timestep for bootstrapping.

Training the Q function in this manner allows for the network to learn a more accurate approximation
that takes into account whether the episode ended due to termination or timeout.

C EXPERIMENTAL RESULTS

C.1 EXPERIMENTAL RESULTS WITH VARIANCE

We report the experimental results for L-MBOP-E with standard deviations in Table 3. Results for
the ablation studies of L-MBOP-E are reported in Table 4.

C.2 ADDITIONAL EXPERIMENTAL RESULTS

We carry out additional experiments which could not be included in the main paper due to space
limitations.

Effectiveness of Decreasing the Latent Dimension. We first test the effectiveness of decreasing the
latent dimension as a means of regularization. Our intuition is as follows: Using a lower-dimensional
latent state space already implicitly applies a form of regularization to the model, and additional
regularization may or may not improve the performance. Therefore, we should expect that using L2

regularization may cause a drop in performance, as the learned model may underfit the dataset.
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Dataset Environment L-MBOP-E MBOP-E L-MBOP

random halfcheetah 21.2±6.4 20.1±6.1 9.3±1.1
random walker2d 23.7±2.5 19.2±3.1 8.0±0.4
random hopper 20.2±2.4 18.8±2.2 11.3±0.4

medium halfcheetah 56.2±0.6 48.6±0.7 55.2±0.2
medium walker2d 84.7±2.9 82.1±2.7 85.6±13.7
medium hopper 63.8±19.2 51.1±18.6 55.3±27.7

medium-replay halfcheetah 46.8±12.7 43.4±12.2 43.9±0.3
medium-replay walker2d 35.6±14.6 32.1±15.2 28.5±9.1
medium-replay hopper 42.7±12.9 35.2±11.5 30.6±2.8

med-expert halfcheetah 91.6±10.2 92.1±11.4 94.3±10.6
med-expert walker2d 112.1±0.9 94.1±1.1 110.7±0.3
med-expert hopper 96.7±18.7 96.5±17.7 97.1±19.2

Table 4: Ablation study results with variances.

Dataset Environment BC MBOP MOPP L-MBOP-E

random halfcheetah 0.0±0.0 6.3±4.0 9.4±2.6 21.3±6.6
random walker2d 0.1±0.1 8.1±5.5 6.3±0.1 23.6±2.4
random hopper 0.8±0.6 10.8±0.3 13.7±2.5 20.2±2.1

medium halfcheetah 38.9±3.7 44.6±0.8 44.7±2.6 56.6±0.6
medium walker2d 60.6±22.6 41.0±29.4 80.7±1.0 83.3±3.8
medium hopper 40.9±6.9 48.8±26.8 31.8±1.3 63.7±21.3

medium-replay halfcheetah 27.7±9.0 42.3±0.9 43.1±4.3 50.7±1.1
medium-replay walker2d 17.7±18.4 9.7±5.3 18.5±8.4 36.7±10.6
medium-replay hopper 13.5±12.6 12.4±5.8 32.3±5.9 42.2±13.3

med-expert halfcheetah 57.2±22.3 105.9±17.8 106.2±5.1 101.8±4.4
med-expert walker2d 79.7±26.3 70.2±36.2 92.9±14.1 112.9±0.7
med-expert hopper 50.4±21.3 55.1±44.3 95.4±28.0 95.9±16.9

Table 5: Experimental results without L2 regularization.

To this end, we train the latent dynamics model of L-MBOP-E without L2 regularization, and report
the performance results in Table 5. We observe that in some cases, Without L2 regularization in fact
results in slightly improved performance on certain tasks. On most tasks, the performance does not
improve by much. However, on the halfcheetah environment there is a noticeable improvement in
the performance, especially in the medium-replay and med-expert datasets.

Visualization of the Latent State Space. The visualization of the structure of the learnt latent space
for the halfcheetah, hopper, and walker2d environments are displayed in Figure 6. Contrasting the
observation space with the latent space, we can see a clear structure emerges when we embed the
observations into a latent space. We can see that the latent space captures features which lead to a
more structured and predictable approximation of the dynamics.

Thompson Sampling. We conduct experiments to determine whether Thompson Sampling can
identify which policy between the BC policy fb and the extrinsic policy πc performs better. Exper-
iments are conducted for the halfcheetah, walker2d, and hopper environments where we vary the
quality of the dataset and the quality of the extrinsic policy. We report the converged pt value in
every case in Figure 5. As can be seen, when the BC policy is stronger than the extrinsic policy, the
converged pt value will be close to 1, in order to promote sampling from the BC policy. In the other
case where the extrinsic policy is better performing than the BC policy, pt will converge to a value
near 0. Finally, when the policies are of similar quality, pt converges to a value near 0.50 to allow
sampling from both policies.
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Figure 5: Converged pt value from Thompson Sampling vs. various qualities of datasets and extrin-
sic policies. The darker the shade, the larger the converged pt value.
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State visualizations for HalfCheetah task

State visualizations for Walker2d task

State visualizations for Hopper task

Figure 6: Visualization of visited states in a sample trajectory for the halfcheetah, walker2d, and
hopper tasks. Results are shown for both the original observation space and the learnt latent space.

D EXECUTION SPEED

Execution speeds for L-MBOP-E are reported in Table 6, with simulation time included. We test the
execution speed for the walker2d task where we fix N = 1000, and the hopper task, where we set
N = 100. The planning horizon is varied between H = 2 and H = 16. We run all experiments on
an Ampere A100 GPU, using a single core of an AMD EPYC 7513 CPU. We note that L-MBOP-E
can achieve high control frequencies and is suitable for real-time use. If high-frequency control
is required, the planning horizon H or the number of rollouts N can be reduced to increase the
execution speed.
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Frequency (Hz)

H Walker2d Hopper

2 133 134
4 75 77
8 27 46
16 18 24

Table 6: Control frequency of L-MBOP-E on the walker2d and hopper tasks with varying planning
horizons.
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