
000 001 002 003 004 005 T1: ONE-TO-ONE CHANNEL-HEAD BINDING FOR 006 MULTIVARIATE TIME-SERIES IMPUTATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894<br

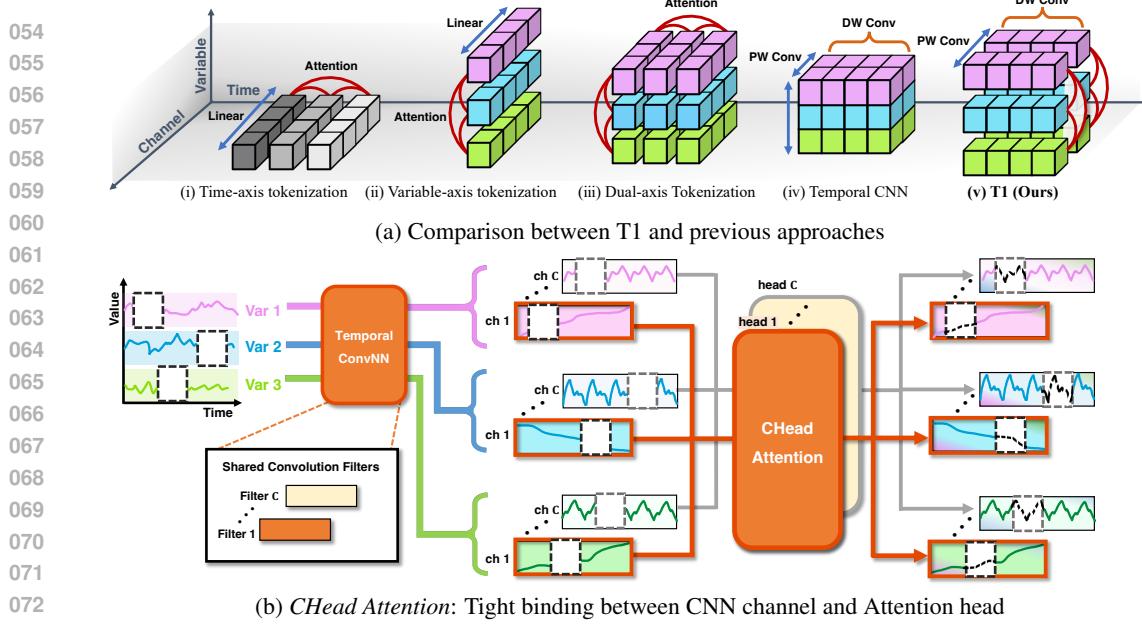


Figure 1: T1 introduces CNN-Transformer hybrid architecture that effectively processes information by strategically assigning CNN or attention to the temporal, feature, and variable dimensions using depthwise (DW) and pointwise (PW) convolutions. In our novel mechanism, *CHead Attention*, each channel encoded by shared CNN is directly aligned with a single attention head. It facilitates cross-variable information exchange, ensuring that interactions occur only between semantically similar temporal features. *(revised)*

approaches (Wu et al., 2023; Luo & Wang, 2024) efficiently extract multi-scale temporal features but provide limited cross-variable information transfer.

We show that robust imputation benefits from task-aligned architecture—specialized temporal and cross-variable components whose information transfer accounts for their interdependencies. We propose **T1** (Time series imputation with 1-to-1 channel-head binding), a hybrid architecture where CNNs extract temporal features from incomplete observations within variables and attention performs selective cross-variable information transfer ((v) in Figure 1a). T1 employs modernized temporal convolutions (Luo & Wang, 2024), leveraging the inherent property of CNNs where each channel learns to capture distinct temporal patterns from the observed data. This process effectively encodes the input into a set of diverse feature maps, yielding variable tokens that directly parameterize query, key, and value representations for cross-variable attention. This design leverages each architecture’s strengths for imputation: the convolutional modules excel at building robust temporal representations from sparse observations, while variable-wise attention dynamically identifies informative variables based on their observed patterns. However, a naïve combination of these modules is insufficient. When missingness corrupts specific temporal features, treating each variable as a single token forces all its channels to mix, preventing isolation of corrupted features from reliable ones during information transfer. This necessitates an architectural refinement for feature-specific control.

Our key mechanism, *Channel-Head Binding* (CHead Attention, Figure 1b), seamlessly integrates CNNs and inter-variable attention, by creating a one-to-one correspondence between CNN channels and attention heads. Each CNN channel captures a distinct temporal feature while each attention head processes only its corresponding channel across variables, enabling fine-grained, feature-level information transfer pathways. This feature-level binding enables robust imputation: when missingness prevents a channel from observing its specialized pattern, the feature it extracts becomes less informative. Consequently, a corresponding attention head can temper its reliance on that channel during information transfer, while **feature-level selectivity** prevents these localized uncertainties from contaminating other channels.

In our extensive experiments across 11 benchmark datasets, T1 achieves state-of-the-art performance, demonstrating its effectiveness in diverse scenarios including point, block, and naturally

108 occurring missingness. Furthermore, a model trained with a single missing ratio maintains performance
109 when tested on both higher and lower ratios, a crucial property for real-world applications.
110 These results are achieved using a **consistent** hyperparameter configuration across all datasets, sug-
111 gesting robustness to hyperparameter choices.

112 Our main contributions are summarized as follows:
113

114 • We introduce *T1*, a CNN-Transformer hybrid architecture that tackles imputation through com-
115 plementary specialization: CNNs for robust temporal feature extraction under missingness, and
116 Transformers for selective information transfer across informative variables.
117

118 • We propose *Channel-Head Binding* (CHead Attention), an architectural mechanism that creates a
119 one-to-one correspondence between CNN channels and attention heads, enabling robust imputa-
120 tion by isolating feature-specific information transfer pathways that adapt to varying missingness
121 patterns.
122

123 • We demonstrate that *T1* achieves state-of-the-art performance across 11 datasets, reducing MSE
124 by 46% on average and maintaining this advantage under extreme missingness (70% missing
125 ratio), while generalizing to unseen missing patterns without retraining.
126

2 RELATED WORK

128 **Time-series Imputation.** Time-series imputation has evolved from statistical methods (Dempster
129 et al., 1977; Van Buuren & Groothuis-Oudshoorn, 2011) to deep learning approaches. RNN-based
130 methods like BRITS (Cao et al., 2018) and M-RNN (Yoon et al., 2019) model bidirectional temporal
131 dependencies. Transformer-based approaches including SAITS (Du et al., 2023) and ImputeFormer
132 (Nie et al., 2024) leverage self-attention mechanisms with masked training objectives to capture
133 long-range dependencies. Generative models, particularly diffusion-based CSDI (Tashiro et al.,
134 2021), SSSD (Alcaraz & Strothoff, 2023), and PriSTI (Liu et al., 2023a), achieve high quality
135 through iterative refinement but with prohibitive inference latency. Graph methods like GRIN (Cini
136 et al., 2022) and SPIN (Marisca et al., 2022) model inter-variable relationships via message passing
137 but rely on static graphs that cannot adapt to instance-specific missingness.
138

139 **Temporal and Cross-variable Modeling.** Effective imputation requires both robust temporal ex-
140 traction and selective cross-variable fusion, yet existing methods excel at one while compromis-
141 ing the other. For temporal modeling, linear models (DLinear, NLinear) decompose via projec-
142 tions (Zeng et al., 2023). Vanilla Transformers (Vaswani et al., 2017) tokenize all variables at each
143 timestep, while extended versions like PatchTST (Nie et al., 2023), Autoformer (Wu et al., 2021),
144 and FEDformer (Zhou et al., 2022) apply temporal attention with decomposition strategies. CNN-
145 based methods—TCN (Bai et al., 2018), TimesNet (Wu et al., 2023), and notably ModernTCN (Luo
146 & Wang, 2024)—extract multi-scale features through dilated or large-kernel depthwise convolu-
147 tions. While powerful for temporal patterns, these methods *lack dynamic cross-variable relation-
148 ships*. For cross-variable modeling, Crossformer (Zhang & Yan, 2023) attempts across temporal and
149 variable dimensions but still entangles representations. iTransformer (Liu et al., 2024) achieves pure
150 variable-axis attention by inverting dimensions, treating each variable’s sequence as a single token
151 for clean cross-variable fusion. However, these *compress or entangle temporal information*. **Mean-
152 while, convolutional approaches like ModernTCN effectively capture temporal patterns but rely on
153 static cross-variable mixing that cannot adapt to missing patterns.** *T1* combines these strengths
154 through shared depthwise convolutions and variable-axis attention for cross-variable fusion. The
155 shared convolutions ensure each channel extracts the same pattern type across all variables, while
156 mask-aware embeddings and CHead Attention enable dynamic, validity-based information transfer.
157

3 THE T1 ARCHITECTURE FOR TIME SERIES IMPUTATION

158 We address the problem of time series imputation. Let a multivariate time series be represented by
159 $X = \{x^{(1)}, \dots, x^{(M)}\} \in \mathbb{R}^{M \times T}$ where M denotes the number of variables and T is the sequence
160 length. The accompanying observation mask $\Omega \in \{0, 1\}^{M \times T}$ indicates whether a value is observed
161 ($\Omega_{m,t} = 1$) or missing ($\Omega_{m,t} = 0$). The objective is to impute the missing values by leveraging each
162 variable’s unique temporal patterns and inter-variable correlations.
163

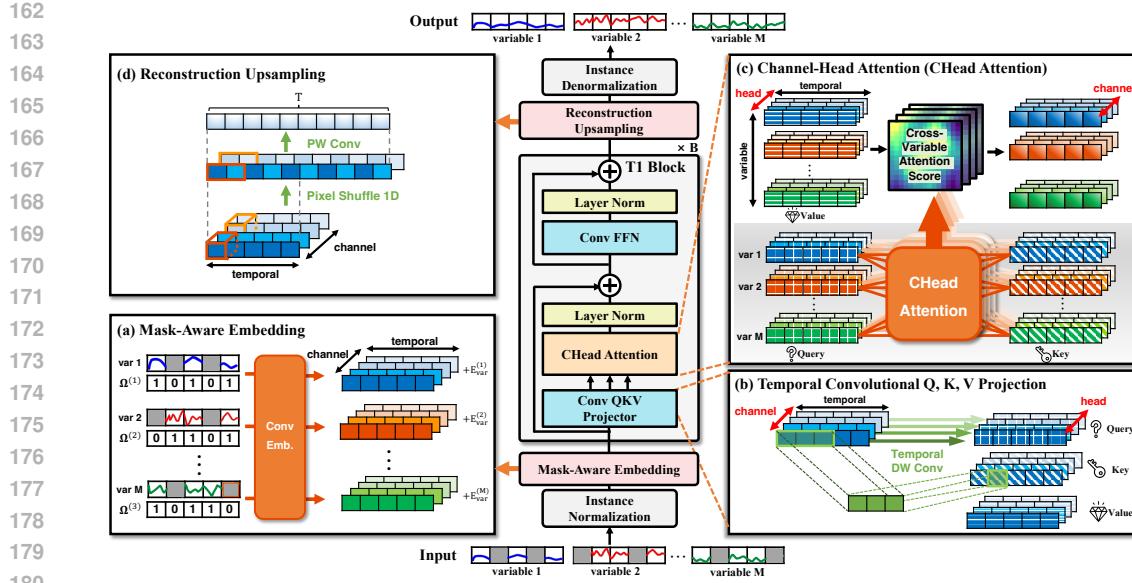


Figure 2: An overview of the T1 architecture. **(a)** The Mask-Aware Embedding module encodes the input series and its observation mask into a latent representation using 1D convolutions. **(b)** The Temporal Convolutional QKV Projection block employs Depthwise Convolutions to extract consistent temporal patterns for each channel. The kernel weights are shared across variables, resulting in semantically-aligned Query, Key, and Value embedding. **(c)** Our proposed Channel-Head Attention (CHead Attention) is applied across the variable axis to selectively transfer information. Each head is bound to a single channel, enabling feature-specific fusion between semantically-aligned patterns. **(d)** The Reconstruction Upsampler restores the original temporal resolution of the series via a parameter-free 1D PixelShuffle operation followed by a final pointwise convolution. (revised)

3.1 OVERALL ARCHITECTURE

As presented in Figure 2, our novel architecture, T1, comprises three main components: Mask-Aware Embedding, T1 blocks and Reconstruction Upsampler.

Mask-Aware Embedding. As an initial step, instance normalization is applied to each input series $x^{(m)}$, computing the normalized series as $x_{\text{norm}}^{(m)} = (x^{(m)} - \mu^{(m)}) / \sigma^{(m)}$. To properly handle missing data in imputation tasks, the per-instance mean $\mu^{(m)}$ and standard deviation $\sigma^{(m)}$ are computed solely from observed values (where $\Omega_{m,t} = 1$) and stored for the final denormalization.

To explicitly encode missing value locations, the normalized series and its observation mask are stacked into a two-channel input (as presented in Figure 2a). The resulting tensor ($\in \mathbb{R}^{2 \times T}$) is processed by a strided 1D convolution with C filters and augmented with a learnable variable-wise encoding, producing the final embedding $z^{(m)} \in \mathbb{R}^{C \times L}$ where L is the latent temporal dimension:

$$z^{(m)} = \text{Conv1D} \left(\begin{bmatrix} x_{\text{norm}}^{(m)} \\ \Omega^{(m)} \end{bmatrix} \right) + E_{\text{var}}^{(m)} \quad (1)$$

Here $E_{\text{var}}^{(m)} \in \mathbb{R}^{C \times L}$ is a learnable variable-specific encoding (analogous to positional encoding for tokens).

T1 Blocks. The aggregated embedding $Z = [z^{(1)}, z^{(2)}, \dots, z^{(M)}] \in \mathbb{R}^{M \times C \times L}$ is processed through stacked T1 blocks that implement a CNN-Transformer hybrid design. Each variable maintains independent temporal CNN feature spaces while Channel-Head Attention models inter-variable relationships. Optionally, downsampling can be applied between blocks to reduce the temporal resolution for subsequent layers. The details of T1 block design are presented in Section 3.2.

Reconstruction Upsampler. The final representation from the T1 blocks, denoted as $Z_{\text{out}} \in \mathbb{R}^{M \times C \times L}$, is passed to the reconstruction upsampler to generate the final imputed output, as presented in Figure 2d. For the upsampling stage, we employ a 1D variant of PixelShuffle (Shi et al., 2016), a parameter-free operation that rearranges the channel dimension into the temporal dimen-

216 This process reshapes the input from $\mathbb{R}^{M \times C \times L}$ to $\mathbb{R}^{M \times (C/r) \times (L \cdot r)}$, where $r = T/L$ is the
 217 upsampling ratio. Using PixelShuffle1D avoids the checkerboard artifacts common in transposed
 218 convolutions while maintaining efficiency. A subsequent pointwise convolution (PWConv) projects
 219 to the target dimension:

$$\hat{x}_{\text{norm}} = \text{PWConv}(\text{PixelShuffle1D}(Z_{\text{out}})) \in \mathbb{R}^{M \times 1 \times T} \quad (2)$$

222 Final imputation $\hat{x}^{(m)} = \hat{x}_{\text{norm}}^{(m)} \cdot \sigma^{(m)} + \mu^{(m)}$ is obtained through denormalization using the stored
 223 statistics.

225 3.2 T1 BLOCK

226 The T1 block addresses multivariate imputation through three specialized components: Temporal
 227 Convolutional Q, K, V Projection for multi-scale temporal feature extraction, CHead Attention for
 228 cross-variable information transfer, and Convolutional Feed-Forward Network (FFN) for channel-
 229 wise feature refinement. **The shared depthwise convolutions ensure that features are extracted con-
 230 sistent across variables, while the 1-to-1 channel-head binding mechanism allows the attention to
 231 selectively transfer information at the feature level.**

232 **Temporal Convolutional Q, K, V Projection.** To generate the Query, Key, and Value embeddings,
 233 we use a projection block based on depthwise convolutions (DWConv) (as illustrated in Figure 2b),
 234 a technique effectively utilized for time-series analysis in ModernTCN (Luo & Wang, 2024). This
 235 design choice leverages the inherent property of CNNs where each channel naturally specializes in
 236 capturing distinct patterns.

237 In our architecture, the weights of the DWConv operators are shared across all variables. This
 238 straightforward design choice allows each channel to learn a consistent feature type from every
 239 variable, producing the semantically aligned representations required for the subsequent Channel-
 240 Head Attention. Moreover, we employ parallel kernels of different sizes for multi-scale analysis.
 241 The projections are formally defined as:

$$\begin{aligned} Q_{m,c} &= \text{DWConv}_{\text{large},Q}(Z_{m,c}) + \text{DWConv}_{\text{small},Q}(Z_{m,c}), \\ K_{m,c} &= \text{DWConv}_{\text{large},K}(Z_{m,c}) + \text{DWConv}_{\text{small},K}(Z_{m,c}), \quad \forall m \in \{1, \dots, M\}, c \in \{1, \dots, C\} \\ V_{m,c} &= \text{DWConv}_{\text{large},V}(Z_{m,c}) + \text{DWConv}_{\text{small},V}(Z_{m,c}) \end{aligned} \quad (3)$$

242 where each DWConv operator acts on $Z_{m,c} \in \mathbb{R}^{1 \times L}$ for variable m and channel c .

243 **CHead Attention for Cross-Variable Information Transfer.** As shown in Figure 2c, our Channel-
 244 Head Attention creates a one-to-one correspondence between CNN channels and attention heads
 245 ($n_h = C$), ensuring each head processes a single channel across all variables. This design prevents
 246 indiscriminate fusion—instead enabling selective information transfer where each channel indepen-
 247 dently identifies and transfers relevant patterns across variables.

248 For each channel $c \in \{1, \dots, C\}$, the attention operation is:

$$O_c = \text{Softmax} \left(\frac{Q_c K_c^T}{\sqrt{L}} \right) V_c \quad (4)$$

249 where $Q_c, K_c, V_c \in \mathbb{R}^{M \times L}$ represent channel c 's features across all variables.

250 The output tensor $O \in \mathbb{R}^{M \times C \times L}$ is constructed by concatenating the individual channel outputs
 251 $\{O_1, \dots, O_C\}$ along the channel dimension. The refined embedding Z_{attn} is obtained by applying a
 252 pointwise convolution to O , followed by layer normalization and residual skip-connection:

$$Z_{\text{attn}} = Z + \text{LayerNorm}(\text{PWConv}(O)) \quad (5)$$

253 **Convolutional Feed-Forward Network.** Following Channel-Head Attention, we apply a convolu-
 254 tional feed-forward network for channel-wise feature refinement:

$$Z_{\text{out}} = Z_{\text{attn}} + \text{LayerNorm}(\text{PWConv}_2(\text{GeLU}(\text{PWConv}_1(Z_{\text{attn}})))) \quad (6)$$

255 We use pointwise convolutions rather than linear transformations to preserve the temporal structure
 256 inherent in time series data. This design ensures that each temporal position is processed inde-
 257 pendently while enabling non-linear interactions across channels. The network follows a inverted

270 bottleneck architecture where PWConv₁ projects to an intermediate dimension and PWConv₂ maps
 271 back to the original channel dimension C . Through stacked T1 blocks, the FFN-mixed features form
 272 new channel representations for subsequent layers, enabling progressive feature combination while
 273 CHead Attention maintains feature-level selectivity.

275 4 EXPERIMENTS

277 In this section, we comprehensively evaluate T1 across various missing data scenarios and benchmark
 278 datasets. We conduct three main experiments to demonstrate the effectiveness of our approach:
 279 (1) point missing scenario with varying missing ratios, (2) block missing scenario simulating sensor
 280 failures, (3) evaluation on naturally occurring missing data. Additionally, we provide detailed
 281 representation analysis and ablation studies to better understand the contribution of each component.

282 4.1 EXPERIMENTAL SETUP

284 **Datasets.** We evaluate on 9 widely-used time series benchmark datasets: ETTh1, ETTh2, ETTm1,
 285 ETTm2 (Zhou et al., 2021), Electricity (Trindade, 2015), Weather (Wetterstation), Illness (CDC),
 286 Exchange (Lai et al., 2018), and PEMS03 (Chen et al., 2001). Additionally, we use two naturally
 287 missing datasets: PhysioNet Challenge 2012 (Silva et al., 2012) and AQI36 (Yi et al., 2016).

288 **Baselines.** We compare against 11 state-of-the-art methods spanning two categories: (1) *General time series and forecasting models*: TimeMixer++ (Wang et al., 2024), ModernTCN (Luo &
 289 Wang, 2024), iTransformer (Liu et al., 2024), TimesNet (Wu et al., 2023), PatchTST (Nie et al.,
 290 2023), and DLinear (Zeng et al., 2023); (2) *Specialized imputation models*: ImputeFormer (Nie
 291 et al., 2024), SAITS (Du et al., 2023), CSDI (Tashiro et al., 2021), BRITS (Cao et al., 2018), and
 292 PSW-I (Wang et al., 2025a). **Architecturally, these methods span time-axis tokenization (PatchTST,**
 293 **SAITS), variable-axis tokenization (iTransformer), dual-axis tokenization (ImputeFormer, CSDI),**
 294 **temporal CNN (ModernTCN, TimesNet), RNN-based (BRITS), MLP-based (DLinear), hybrid**
 295 **(TimeMixer++), and optimal transport (PSW-I).**

297 **Implementation Details.** We set the sequence length to 96 for all experiments. During training, we
 298 employ self-supervised learning where 40% of observed values are randomly masked and used as
 299 reconstruction targets, minimizing MSE loss between predictions and ground truth. For fair com-
 300 parison, general time series models are trained under identical conditions to T1, while specialized
 301 imputation methods retain their original training protocols; all models are evaluated with the same
 302 data splits and random seeds. Performance is evaluated using mean absolute error (MAE) and mean
 303 squared error (MSE) following previous studies (Liu et al., 2024; Wang et al., 2025a). Full train-
 304 ing details and loss formulation are provided in Appendix A.2, and experimental results including
 305 standard deviations are in Appendix F.

306 4.2 MAIN RESULTS

307 4.2.1 POINT MISSING SCENARIO

309 **Setup.** We test on four different missing ratios (0.1, 0.3, 0.5, 0.7) to assess the robustness of each
 310 method under various missing conditions.

311 Table 1: Imputation performance on nine benchmark datasets under point missing scenario. Results
 312 are averaged across four missing ratios (0.1, 0.3, 0.5, 0.7). Best results are marked in **bold** and
 313 second best in underlined.

Dataset	T1 (Ours)	TimeMixer++	ModernTCN	iTransformer	TimesNet	PatchTST	DLinear	ImputeFormer	SAITS	CSDI	BRITS	PSW-I											
	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE											
ETTh1	0.049 <u>0.138</u>	0.132	0.232	0.083	0.189	0.129	0.236	0.130	0.237	<u>0.082</u>	0.185	0.180	0.273	0.223	0.266	0.092	0.178	0.083	<u>0.178</u>	0.121	0.223	0.126	0.231
ETTh2	0.036 <u>0.113</u>	0.068	0.161	0.051	0.145	0.064	0.165	0.065	0.169	0.049	0.142	0.073	0.178	0.429	0.354	0.275	0.342	0.075	0.144	0.226	0.327	0.046	<u>0.142</u>
ETTm1	0.022 <u>0.091</u>	0.052	0.136	0.040	0.124	0.063	0.159	0.045	0.130	0.038	0.119	0.132	0.225	0.086	0.155	0.051	0.127	<u>0.034</u>	<u>0.114</u>	0.070	0.166	0.047	0.131
ETTm2	0.017 <u>0.070</u>	0.030	0.099	0.026	0.098	0.032	0.111	0.027	0.100	0.024	0.089	0.040	0.128	0.151	0.183	0.103	0.201	0.035	<u>0.087</u>	0.245	0.314	0.021	0.094
Weather	0.029 <u>0.045</u>	0.034	0.055	0.038	0.072	0.090	0.038	0.047	0.079	0.037	0.069	0.044	0.084	0.042	0.053	<u>0.034</u>	<u>0.045</u>	0.084	0.042	0.112	0.117	0.107	0.072
PEMS03	0.021 <u>0.093</u>	0.044	0.143	0.056	0.166	0.048	0.147	0.050	0.171	<u>0.038</u>	<u>0.133</u>	0.094	0.220	0.080	0.175	0.066	0.156	0.082	0.155	0.076	0.176	0.049	0.149
Exchange	0.002 <u>0.018</u>	<u>0.002</u>	<u>0.023</u>	0.009	0.062	0.005	0.034	0.005	0.032	0.003	0.027	0.005	0.044	0.031	0.070	0.184	0.344	0.007	0.054	0.115	0.249	0.031	0.026
Illness	0.038 <u>0.102</u>	0.238	0.291	0.260	0.350	0.205	0.283	0.588	0.458	0.130	0.223	0.345	0.392	0.636	0.505	0.614	0.495	586.936	0.957	0.426	0.399	0.067	<u>0.122</u>
Electricity	0.043 <u>0.131</u>	<u>0.071</u>	<u>0.172</u>	0.121	0.253	0.090	0.199	0.105	0.225	0.089	0.208	0.191	0.331	0.076	0.177	0.152	0.277	0.144	0.235	0.168	0.298	0.106	0.208
Avg	0.027 <u>0.084</u>	0.075	0.142	0.070	0.151	0.079	0.159	0.119	0.172	<u>0.050</u>	0.123	0.114	0.193	0.210	0.220	0.176	0.236	73.417	1.229	0.174	0.247	0.062	<u>0.121</u>

322 **Results.** As shown in Table 1, T1 demonstrates superior performance across all datasets. On average,
 323 T1 achieves a 46% MSE reduction compared to the next best PatchTST baseline and a 56% reduction
 324 against the specialized imputer PSW-I. Table 2 further highlights T1’s robustness against

324 Table 2: Performance comparison under varying test-time missing ratios averaged across all
325 datasets. Models are trained with 0.4 missing ratio and evaluated on different missing intensities.

Missing Ratio	T1 (Ours)	TimeMixer++	ModernTCN	iTransformer	TimesNet	PatchTST	DLinear	ImputeFormer	SAITS	CSDI	BRITS	PSW-I
	MSE	MSE	MSE	MSE	MSE	MSE	MSE	MSE	MSE	MSE	MSE	MSE
	MAE	MAE	MAE	MAE	MAE	MAE	MAE	MAE	MAE	MAE	MAE	MAE
0.1	0.017 0.070	0.055	0.129	0.063	0.153	0.057	0.141	0.089	0.158	0.040 0.116	0.138	0.233
0.3	0.021 0.077	0.056	0.129	0.048	0.132	0.061	0.144	0.095	0.157	0.038 0.113	0.068	0.157
0.5	0.027 0.089	0.069	0.141	0.059	0.144	0.076	0.160	0.113	0.172	0.048 0.126	0.088	0.174
0.7	0.049 0.121	0.118	0.184	0.135	0.220	0.128	0.210	0.173	0.225	0.092 0.176	0.198	0.270
										0.384	0.335	0.299
										0.324	0.245	0.336
										0.136	0.154	0.384
										0.093	0.157	

331 increasing data sparsity. At the highest missing ratio of 0.7, where many baselines struggle, T1's
332 MSE is nearly half that of the next best methods, PatchTST (0.049 vs. 0.092), underscoring its
333 resilience in scenarios with severe data loss.

335 4.2.2 BLOCK MISSING SCENARIO

337 **Setup.** To simulate realistic sensor failure scenarios, we introduce two types of missing patterns at
338 test time: (1) 5% probability of point missing for random measurement noise, and (2) 0.15% proba-
339 bility of consecutive block missing with random lengths between 24 to 96 time steps for temporary
340 sensor failures or communication interruptions.

341 Table 3: Imputation performance under block missing scenario simulating realistic sensor failures.
342 Test patterns combine 5% point missing and 0.15% block missing (24-96 consecutive timesteps).

Dataset	T1 (Ours)	TimeMixer++	ModernTCN	iTransformer	TimesNet	PatchTST	DLinear	ImputeFormer	SAITS	CSDI	BRITS	
	MSE	MSE	MSE	MSE	MSE	MSE	MSE	MSE	MSE	MSE	MSE	
	MAE	MAE	MAE	MAE	MAE	MAE	MAE	MAE	MAE	MAE	MAE	
ETTH1	0.030 0.107	0.105	0.210	0.066	0.172	0.094	0.205	0.104	0.217	0.050	0.151	0.192
ETTH2	0.027 0.092	0.062	0.153	0.048	0.138	0.060	0.152	0.055	0.156	0.039 0.125	0.078	0.228
ETTm1	0.030	0.082	0.062	0.131	0.044	0.115	0.070	0.145	0.043	0.118	0.037	0.103
ETTm2	0.016 0.059	0.029	0.094	0.024	0.090	0.028	0.099	0.028	0.095	0.024 0.081	0.047	0.141
Weather	0.026 0.039	0.032	0.054	0.040	0.085	0.092	0.140	0.040	0.086	0.050	0.106	0.040
PEMS03	0.022 0.084	0.050	0.144	0.065	0.180	0.053	0.152	0.061	0.174	0.044	0.132	0.166
Exchange	0.003 0.017	0.002 0.021	0.004	0.047	0.004	0.031	0.003 0.031	0.004	0.026	0.008	0.056	0.034
Illness	0.037 0.089	0.230	0.280	0.263	0.397	0.158	0.237	0.418	0.384	0.125 0.224	0.518	0.533
Electricity	0.038 0.118	0.088	0.180	0.146	0.283	0.080	0.190	0.099	0.212	0.090	0.208	0.302
Avg	0.026 0.076	0.073	0.141	0.078	0.167	0.071	0.150	0.094	0.164	0.050 0.124	0.174	0.262
										0.114	0.159	0.108
										0.191	0.131	0.376
										0.086	0.166	

351 **Results.** T1's strong performance continues in the more challenging block missing scenario. As
352 shown in Table 3, T1 outperforms the next best method, PatchTST, with a 48% reduction in average
353 MSE. This result underscores the effectiveness of T1's cross-variable information transfer when
354 long segments of temporal information are unavailable.

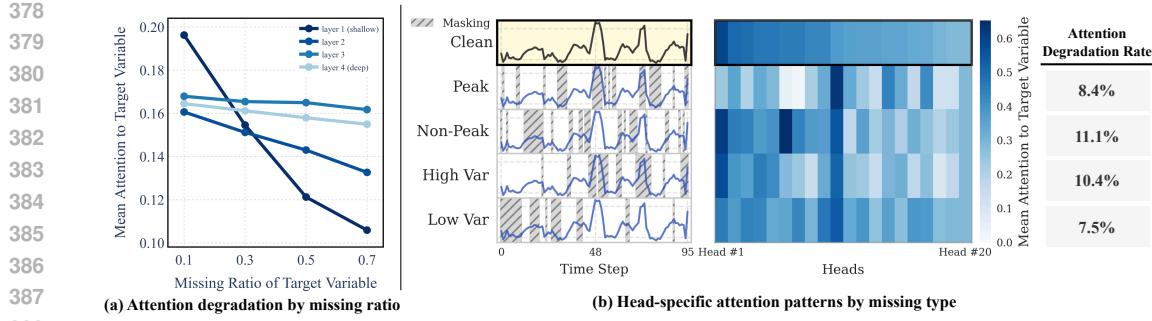
356 4.2.3 NATURAL MISSING DATASET

358 **Setup.** We evaluate on two datasets with naturally occurring missing values using different proto-
359 cols:

- 361 • **PhysioNet Challenge 2012** contains multivariate clinical time series from 4,000 ICU patients
362 with 37 physiological variables and approximately 80% inherent missing values. We add artificial
363 missing patterns (0.1, 0.3, 0.5, 0.7) on top of existing missing values, creating compound missing
364 scenarios with up to 94% total missing rate.
- 365 • **AQI36** consists of air quality measurements from 36 monitoring stations with 15-30% natural
366 missing values due to sensor malfunctions. We evaluate directly on the test set's natural missing
367 patterns without additional masking.

368 Table 4: Performance on naturally missing datasets. PhysioNet2012: compound missing with 80%
369 inherent + additional masking. AQI36: evaluation on natural test set missing patterns (15-30%).

PhysioNet2012 - Natural (80%) + Additional Missing												
Additional Missing Ratio	T1 (Ours)	TimeMixer++	ModernTCN	iTransformer	TimesNet	PatchTST	DLinear	ImputeFormer	SAITS	CSDI	BRITS	PSW-I
	MSE	MSE	MSE	MSE	MSE	MSE	MSE	MSE	MSE	MSE	MSE	MSE
	MAE	MAE	MAE	MAE	MAE	MAE	MAE	MAE	MAE	MAE	MAE	MAE
0.1 (Total: 82%)	0.049 0.067	0.091	0.107	0.092	0.118	0.107	0.128	0.082	0.103	0.099	0.116	0.075 0.100
0.3 (Total: 86%)	0.064 0.077	0.372	0.111	0.103	0.121	0.122	0.129	0.096	0.108	0.106	0.120	0.093 0.108
0.5 (Total: 90%)	0.081 0.090	0.130	0.117	0.110	0.126	0.120	0.131	0.101 0.116	0.113	0.125	0.104	0.117
0.7 (Total: 94%)	0.106 0.110	0.236	0.126	0.124	0.134	0.129	0.135	0.114 0.127	0.124	0.132	0.118	0.127
Avg	0.075 0.086	0.207	0.115	0.107	0.125	0.119	0.131	0.098	0.114	0.110	0.123	0.097 0.113
AQI36 - Natural Missing Only (15-30%)												
Test Set	0.226 0.226	0.274	0.318	0.281	0.311	0.314	0.331	0.337	0.337	0.262 0.303	0.338	0.343
										0.447	0.411	0.469
										0.400		



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Figure 3: Representation analysis of T1’s attention mechanism. (a) Layer-wise attention weights from other variables to target variable under varying missing ratios (entire ETTh1 test set). Attention weights decrease with increasing missing ratio, with shallow layers showing more pronounced degradation. (b) Head-specific attention patterns of clean signal and under various missing patterns (peak vs non-peak and high vs low variance, 30% each), showing top-20 heads sorted by clean attention weights.

Results. Under real-world conditions with naturally occurring missing data, T1 proves its practical applicability. On the PhysioNet2012 dataset, T1 demonstrates remarkable stability and achieves a 23% performance improvement in average MSE over the next best method, DLinear (Table 4).

This robustness is also demonstrated on the AQI36 dataset, where T1 outperforms the next best method, PatchTST, with a 13% reduction in MSE. These results confirm the robustness of our architecture across diverse and critically sparse data regimes.

4.2.4 REPRESENTATION ANALYSIS

We conduct two controlled experiments on ETTh1 to qualitatively analyze the effectiveness of CHead Attention.

Missing Response Across Layers. Using the entire ETTh1 test set, we select one variable as target and vary its missing ratio from 0.1 to 0.7 while keeping the missing ratio of all other variables at 0.4. Figure 3a shows attention weights assigned to the target variable decrease with increasing missing ratio. This trend is most noticeable in the shallow layer while deeper layers exhibit reduced sensitivity to missingness. Attention weights in the first layer exhibit sharp drop of 46% ($0.195 \rightarrow 0.105$) while weights in the last layer drop by only 6% ($0.165 \rightarrow 0.155$). This suggests partial reconstruction in early layers improves information availability for subsequent layers.

Observable Pattern Dependence. Using a single ETTh1 test sample, we mask 30% of the target variable in regions with different characteristics: peak regions (far from center) versus non-peak regions (near center), and regions with top 30% versus bottom 30% local variance. As shown in left panel of Figure 3b, these masks leave fundamentally different temporal patterns in the observed portion of the target variable. The middle panel of Figure 3b visualizes the corresponding attention responses for the top-20 heads, sorted by clean attention weights. Clearly, this visualization reveals distinct response patterns for each masking scenario. Quantitatively, removing high-variance regions reduces attention by 10.4% while removing low-variance regions reduces it by 7.5%. This indicates that attention modulation depends on which temporal patterns remain observable, not solely on missing ratio. CHead Attention enables each channel to assess whether its corresponding temporal features can be extracted from the observed data.

These results demonstrate that T1 [learns to adaptively down-weight unreliable information pathways](#) based on both observation density and the extractability of temporal patterns. The layer-wise stabilization and channel-specific responses support our architectural design combining CNN feature extraction with channel-bound attention, contributing to the performance gains observed under structured missingness (Table 3).

432 4.2.5 ABLATION STUDY
433

434 We conduct comprehensive ablation studies to analyze the contribution of each component in T1. All
435 experiments are performed on six datasets (ETTh1, ETTh2, ETTm1, ETTm2, Weather, Electricity)
436 with 40% training mask ratio and evaluated across four test missing ratios (0.1, 0.3, 0.5, 0.7). Table 5
437 reports averaged results when replacing only the specified component while keeping all others at
438 their default configuration.

439 **Cross-variable Mechanism.** Replacing attention with pointwise convolution degrades performance
440 by 12.91%, demonstrating that adaptive information transfer outperforms fixed patterns. Removing
441 cross-variable modeling entirely results in 56.16% degradation, confirming that cross-variable in-
442 formation is essential for imputation.

443 **Channel-Head Binding.** We evaluate the impact of channel-head grouping by varying the number
444 of channels per attention head: 8, 16, and 32 channels per head (compared to our default one-to-
445 one correspondence with 128 channels). Performance degrades by 7.45%, 16.86%, and 14.57%
446 respectively, with 16 channels per head showing the worst degradation. These results confirm that
447 fine-grained, one-to-one channel-head correspondence is crucial for maintaining feature-specific
448 information pathways and preventing the mixing of corrupted and reliable temporal patterns during
449 cross-variable transfer.

450 **Mask-Aware Embedding.** Removing the explicit mask channel from input embedding causes
451 3.64% degradation. This indicates that providing missing patterns directly to the model improves its
452 ability to distinguish between observed and missing values during feature extraction.

453 **Reconstruction Method.** PixelShuffle outperforms linear upsampling by 3.19%, validating our
454 choice for artifact-free temporal reconstruction.

455 The substantial gap between convolution (12.91%) and no cross-variable modeling (56.16%) reveals
456 an important finding: while cross-variable information is crucial, the method of information transfer
457 matters significantly. Our attention mechanism better identifies which variables contain reliable
458 information for imputation compared to fixed convolutional patterns.

460 Table 5: Comprehensive ablation study on model components (MSE). Each row shows the per-
461 formance when replacing only the specified component from our full model. The last column shows
462 the percentage increase in error relative to our full model.

463

Component	Alternative	ETTh1	ETTh2	ETTm1	ETTm2	Weather	ECL	Avg	$\Delta (\%) \downarrow$
T1 (Ours)		0.049	0.036	0.022	0.017	0.029	0.043	0.033	-
Cross-variable Component	Conv w/o	0.056 0.095	0.040 0.064	0.024 0.040	0.020 0.029	0.029 0.031	0.052 0.048	0.037 0.051	+ 12.91 + 56.16
Channel-Head Binding	32 Chns 16 Chns 8 Chns	0.061 0.066 0.055	0.040 0.041 0.038	0.030 0.028 0.025	0.020 0.020 0.019	0.030 0.030 0.030	0.044 0.045 0.044	0.037 0.038 0.035	+ 14.57 + 16.86 + 7.45
Embedding	w/o mask	0.052	0.037	0.023	0.018	0.029	0.044	0.034	+ 3.64
Reconstruction	Linear	0.050	0.036	0.022	0.018	0.030	0.046	0.034	+ 3.19

473
474 5 CONCLUSION AND FUTURE WORK
475

476 In this paper, we presented T1, a CNN-Transformer hybrid architecture for multivariate time series
477 imputation. By strategically assigning CNNs for temporal feature extraction and attention for cross-
478 variable information transfer, T1 addresses the fundamental challenge of imputation under heavy
479 missingness. Our key innovation, Channel-Head Binding, creates one-to-one correspondences be-
480 tween CNN channels and attention heads, enabling feature-specific information pathways that adapt
481 to varying missingness patterns. Extensive experiments demonstrate that T1 maintains computa-
482 tional efficiency while achieving state-of-the-art performance across diverse datasets and missing
483 scenarios. The architecture’s robustness under extreme missing conditions and its **stable perfor-**
484 **mance with a consistent hyperparameter configuration** highlight its practical applicability. Looking
485 forward, we will explore extensions to online streaming environments for real-time imputation and
active sensing strategies that can guide optimal sensor selection under resource constraints.

486 REFERENCES

487

488 Juan Miguel Lopez Alcaraz and Nils Strothoff. Diffusion-based time series imputation and fore-
489 casting with structured state space models. *Transactions on Machine Learning Research*, 2023.
490 ISSN 2835-8856.

491 Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
492 and recurrent networks for sequence modeling. *arXiv preprint arXiv:1803.01271*, 2018.

493 Parikshit Bansal, Prathamesh Deshpande, and Sunita Sarawagi. Missing value imputation on multi-
494 dimensional time series. In *VLDB*, 2021.

495

496 David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Torralba.
497 Understanding the role of individual units in a deep neural network. *Proceedings of the National
498 Academy of Sciences (PNAS)*, 117(48):30071–30078, 2020.

499

500 Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. BRITS: Bidirectional recurrent
501 imputation for time series. In *Advances in Neural Information Processing Systems*, volume 31,
502 pp. 6775–6785, 2018.

503 CDC. Illness. URL <https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html>.

504

505 Cai Chen and Jin Dong. Deep learning approaches for time series prediction in climate resilience
506 applications. *Frontiers in Environmental Science*, 13:1574981, 2025.

507

508 Chao Chen, Karl Petty, Alexander Skabardonis, Pravin Varaiya, and Zhanfeng Jia. Freeway perfor-
509 mance measurement system: Mining loop detector data. *Transportation Research Record*, 1748
510 (1):96–102, 2001. doi: 10.3141/1748-12. URL <https://doi.org/10.3141/1748-12>.

511 Andrea Cini, Ivan Marisca, and Cesare Alippi. Filling the g_ap_s: Multivariate time series imputation
512 by graph neural networks. In *International Conference on Learning Representations*, 2022.

513 Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
514 via the em algorithm. *Journal of the Royal Statistical Society: Series B (Methodological)*, 39(1):
515 1–22, 1977.

516

517 Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando de Freitas. Predicting
518 parameters in deep learning. In *Advances in Neural Information Processing Systems (NIPS)*,
519 volume 26, 2013.

520

521 Wenjie Du, David Côté, and Yan Liu. SAITS: Self-attention-based imputation for time series. *Expert
Systems with Applications*, 219:119619, 2023.

522

523 Wenjie Du, Jun Wang, Linglong Qian, Yiyuan Yang, Zina Ibrahim, Fanxing Liu, Zepu Wang, Haoxin
524 Liu, Zhiyuan Zhao, Yingjie Zhou, Wenjia Wang, Kaize Ding, Yuxuan Liang, B. Aditya Prakash,
525 and Qingsong Wen. Tsi-bench: Benchmarking time series imputation, 2024. URL <https://arxiv.org/abs/2406.12747>.

526

527 Wenjie Du, Yiyuan Yang, Linglong Qian, Jun Wang, and Qingsong Wen. Pypots: A python toolkit
528 for machine learning on partially-observed time series, 2025. URL <https://arxiv.org/abs/2305.18811>.

529

530 Wei Fan, Pengyang Wang, Dongkun Wang, Dongjie Wang, Yuanchun Zhou, and Yanjie Fu. Dish-
531 TS: A general paradigm for alleviating distribution shift in time series forecasting. In *Proceedings
532 of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 7522–7529, 2023.

533

534 Marzyeh Ghassemi, Marco Pimentel, Tristan Naumann, Thomas Brennan, David Clifton, Peter
535 Szolovits, and Mengling Feng. A multivariate timeseries modeling approach to severity of ill-
536 ness assessment and forecasting in icu with sparse, heterogeneous clinical data. In *Proceedings
537 of the AAAI conference on artificial intelligence*, volume 29, 2015.

538

539 Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2022.

540 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
541 temporal patterns with deep neural networks. In *The 41st international ACM SIGIR conference
542 on research & development in information retrieval*, pp. 95–104, 2018.

543 Jeong Min Lee and Milos Hauskrecht. Modeling multivariate clinical event time-series with recur-
544 rent temporal mechanisms. *Artificial intelligence in medicine*, 112:102021, 2021.

545 Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
546 efficient ConvNets. In *International Conference on Learning Representations (ICLR)*, 2017.

547 Roderick JA Little and Donald B Rubin. *Statistical analysis with missing data*. John Wiley & Sons,
548 2019.

549 Mingzhe Liu, Han Huang, Hao Feng, Leilei Sun, Bowen Du, and Yanjie Fu. PriSTI: A conditional
550 diffusion framework for spatiotemporal imputation. In *2023 IEEE 39th International Conference
551 on Data Engineering (ICDE)*, pp. 1927–1939. IEEE, 2023a.

552 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary Transformers: Explor-
553 ing the stationarity in time series forecasting. In *Advances in Neural Information Processing
554 Systems*, volume 35, pp. 9881–9893, 2022.

555 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, Jianmin Wang, and
556 Mingsheng Long. iTransformer: Inverted transformers are effective for time series forecasting.
557 In *The Twelfth International Conference on Learning Representations*, 2024.

558 Zhidong Liu, Mingyue Cheng, Zhi Li, Zhenya Huang, Qi Liu, Yanhu Xie, and Enhong Chen. Adap-
559 tive normalization for non-stationary time series forecasting: A temporal slice perspective. In
560 *Advances in Neural Information Processing Systems (NeurIPS)*, 2023b.

561 Donghao Luo and Xue Wang. ModernTCN: A modern pure convolution structure for general time
562 series analysis. In *The Twelfth International Conference on Learning Representations*, 2024.

563 Ivan Marisca, Andrea Cini, and Cesare Alippi. Learning to reconstruct missing data from spatiotem-
564 poral graphs with sparse observations. In *Advances in Neural Information Processing Systems
565 (NeurIPS)*, 2022.

566 Tong Nie, Guoyang Qin, Wei Ma, Yuewen Mei, and Jian Sun. ImputeFormer: Low rankness-
567 induced transformers for generalizable spatiotemporal imputation. In *Proceedings of the 30th
568 ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 2260–2271. ACM,
569 2024.

570 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
571 64 words: Long-term forecasting with transformers. In *The Eleventh International Conference
572 on Learning Representations*, 2023.

573 Tong Niu, Jianzhou Wang, Haiyan Lu, Wendong Yang, and Pei Du. Developing a deep learning
574 framework with two-stage feature selection for multivariate financial time series forecasting. *Ex-
575 pert Systems with Applications*, 148:113237, 2020.

576 Edward Appau Nketiah, Li Chenlong, Jing Yingchuan, and Simon Appah Aram. Recurrent neural
577 network modeling of multivariate time series and its application in temperature forecasting. *Plos
578 one*, 18(5):e0285713, 2023.

579 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
580 bilenetv2: Inverted residuals and linear bottlenecks. In *Proceedings of the IEEE conference on
581 computer vision and pattern recognition*, pp. 4510–4520, 2018.

582 Deepak Kumar Sharma, Shikha Brahmachari, Kartik Singhal, and Deepak Gupta. Data driven pre-
583 dictive maintenance applications for industrial systems with temporal convolutional networks.
584 *Computers & Industrial Engineering*, 169:108213, 2022.

585 Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel
586 Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an efficient
587 sub-pixel convolutional neural network. In *Proceedings of the IEEE conference on computer
588 vision and pattern recognition*, pp. 1874–1883, 2016.

594 Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-hospital
595 mortality of icu patients: The physionet/computing in cardiology challenge 2012. In *2012 com-*
596 *puting in cardiology*, pp. 245–248. IEEE, 2012.

597

598 Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: Conditional score-based
599 diffusion models for probabilistic time series imputation. In *Advances in Neural Information*
600 *Processing Systems (NeurIPS)*, 2021.

601 Artur Trindade. ElectricityLoadDiagrams20112014. UCI Machine Learning Repository, 2015. DOI:
602 <https://doi.org/10.24432/C58C86>.

603

604 Stef Van Buuren and Karin Groothuis-Oudshoorn. Mice: Multivariate imputation by chained equa-
605 tions in r. *Journal of statistical software*, 45:1–67, 2011.

606

607 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
608 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-*
609 *mation Processing Systems (NeurIPS)*, volume 30, 2017.

610 Hao Wang, Haoxuan Li, Xu Chen, Mingming Gong, Zhichao Chen, et al. Optimal transport for
611 time series imputation. In *The Thirteenth International Conference on Learning Representations*,
612 2025a.

613

614 Jun Wang, Wenjie Du, Yiyuan Yang, Linglong Qian, Wei Cao, Keli Zhang, Wenjia Wang, Yuxuan
615 Liang, and Qingsong Wen. Deep learning for multivariate time series imputation: A survey. In
616 *IJCAI*, 2025b.

617

618 Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan
619 Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive
620 analysis. *arXiv preprint arXiv:2410.16032*, 2024.

621

622 Wetterstation. Weather. URL <https://www.bgc-jena.mpg.de/wetter/>.

623

624 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transfor-
625 *mers with Auto-Correlation for long-term series forecasting*. In *Advances in Neural Information*
626 *Processing Systems (NeurIPS)*, 2021.

627

628 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. TimesNet:
629 Temporal 2d-variation modeling for general time series analysis. In *The Eleventh International*
630 *Conference on Learning Representations*, 2023.

631

632 Xinyu Yang, Yu Sun, Xiaojie Yuan, and Xinyang Chen. Frequency-aware generative models for
633 multivariate time series imputation. In *Neural Information Processing Systems (NeurIPS)*, 2024.

634

635 Xiuwen Yi, Yu Zheng, Junbo Zhang, and Tianrui Li. St-mvl: Filling missing values in geo-sensory
636 time series data. In *Proceedings of the 25th international joint conference on artificial intelli-*
637 *gence*, 2016.

638

639 Jinsung Yoon, William R. Zame, and Mihaela van der Schaar. Estimating missing data in temporal
640 data streams using multi-directional recurrent neural networks. *IEEE Transactions on Biomedical*
641 *Engineering*, 66(5):1477–1490, 2019. doi: 10.1109/TBME.2018.2874712.

642

643 Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
644 *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12,*
645 *2014, Proceedings, Part I* 13, pp. 818–833. Springer, 2014.

646

647 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
648 forecasting? In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp.
649 11121–11128, 2023. doi: 10.1609/aaai.v37i9.26317.

650

651 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
652 for multivariate time series forecasting. In *The 11th International Conference on Learning Rep-*
653 *resentations (ICLR)*, 2023.

648 Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Object detectors
649 emerge in deep scene CNNs. In *International Conference on Learning Representations (ICLR)*,
650 2015.

651 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
652 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
653 *of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.

654 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
655 enhanced decomposed transformer for long-term series forecasting. In *The 39th International*
656 *Conference on Machine Learning (ICML)*, 2022.

657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A IMPLEMENTATION DETAILS 703

704 A.1 DATASET DETAILS 705

706 A.1.1 DATASET DESCRIPTIONS 707

708 We conduct experiments on 11 multivariate time series datasets spanning diverse domains including
709 energy, transportation, climate, healthcare, and economics. All experiments use a sequence length
710 of 96 timesteps, except for PhysioNet2012 which uses 48 timesteps due to its clinical nature and
711 irregular sampling patterns. The datasets are categorized into two groups: complete datasets for ar-
712 tificial missing experiments and naturally missing datasets for realistic evaluation scenarios. Table 6
713 summarizes the key statistics.

714 **Complete Datasets** ETT (Zhou et al., 2021) comprise electricity transformer measurements includ-
715 ing with hourly (ETTh1, ETTh2) and 15-minute (ETTm1, ETTm2) sampling frequencies. Electric-
716 ity (Trindade, 2015)tracks consumer power consumption. Weather (Wetterstation) contains meteo-
717 rological indicators from the Max Planck Institute weather station. Illness (CDC) records CDC in-
718 fluenza surveillance data across US states. Exchange (Lai et al., 2018)covers international currency
719 rates from 1990-2016. PEMS03 (Chen et al., 2001) represents highway traffic sensor measurements
720 from California transportation networks.

721 **Naturally Missing Datasets** PhysioNet Challenge 2012 (Silva et al., 2012) contains ICU patient
722 physiological measurements with 80% inherent missingness due to irregular clinical sampling proto-
723 cols. Experiments are conducted on the 20% observed portions. AQI36 (Yi et al., 2016) includes air
724 quality monitoring data with 13.3% real missingness from sensor failures: general missing (8.2%)
725 from random transmission errors, spatial block missing (2.2%) from regional power/network out-
726 ages, and temporal block missing (3.5%, 11 timesteps average block length) from maintenance peri-
727 ods. These datasets span diverse domains and temporal scales, providing comprehensive evaluation
728 under varying missingness scenarios from dense sensor networks to sparse clinical measurements.

729
730 Table 6: Dataset descriptions.

Type	Dataset	Variables	Train	Valid	Test	Frequency	Missing Ratio
Complete	ETTh1,ETTh2	7	8,545	2,785	2,785	Hourly	-
	ETTm1,ETTm2	7	34,465	11,425	11,425	15min	-
	Electricity	321	18,346	2,621	5,424	Hourly	-
	Weather	21	36,820	5,260	10,521	10min	-
	Illness	7	609	87	175	Weekly	-
	Exchange	8	5,245	749	1,499	Daily	-
	PEMS03	358	18,279	2,611	5,223	5min	-
Naturally Missing	PhysioNet2012	37	2,557	640	800	Irregular	80.0%
	AQI36	36	4,422	649	2,548	Hourly	13.3%

741
742 A.2 EXPERIMENT DETAILS
743

744 A.2.1 T1 CONFIGURATION DETAILS
745

746 We maintain consistent architectural design across different datasets, with [deterministic sequence-](#)
747 [length scaling for kernel sizes when sequence lengths differ from the standard 96 timesteps](#). Impor-
748 tantly, we use the same model configuration (channel count, layer depth, FFN ratio) regardless of
749 the number of variables in each dataset, demonstrating the model’s robustness across varying data
750 dimensions.

751 **Standard Configuration.** For datasets with sequence length 96, Conv1D embedding with kernel
752 size 2 and stride 1 projects input to 128 channels. The architecture consists of four T1 blocks
753 arranged in two hierarchical groups. The first group contains two T1 blocks employing dual-scale
754 depthwise convolutions with kernel sizes 71 and 5, followed by downsampling with kernel size 2
755 and stride 2. The second group contains two T1 blocks with adjusted kernel sizes 31 and 5, operating
on downsampled features. This hierarchical design allows the model to capture multi-scale temporal

756 patterns at different resolutions. FFN expansion ratio is set to 1.0. This configuration remains fixed
757 across all datasets, from 7-variable datasets (ETT series) to 358-variable datasets (PEMS03).
758

759 **Sequence Length Adaptation.** For datasets with different sequence lengths (e.g., PhysioNet with
760 48 timesteps), we apply deterministic scaling to adjust kernel sizes:

$$k_{\text{adjusted}} = \lfloor (T/96) \times k_{\text{default}} \rfloor \quad (7)$$

761 where T is the sequence length. This yields $71 \rightarrow 35$ and $31 \rightarrow 15$ for the large kernels, while
762 small kernels (size 5) remain unchanged. This systematic rule preserves proportional receptive
763 field coverage without dataset-specific tuning. All other parameters remain identical to the standard
764 configuration.
765

766 A.2.2 EXPERIMENT DESIGN

767 All experiments use five random seeds (102, 202, 302, 402, 502) with mean and standard deviation
768 reported. Experiments were performed on NVIDIA H100 80GB GPUs.

769 We evaluate models across three missing scenarios to assess generalization capability. Point missing
770 applies independent probability masking at each timestep with varying ratios (10%, 30%, 50%,
771 70%). Block missing simulates realistic sensor failures by combining 5% point missing with 0.15%
772 probability of initiating consecutive missing blocks spanning 24-96 timesteps. The key experimental
773 principle is training with specific missing ratios and evaluating across multiple missing scenarios.
774

775 **Complete Datasets** T1 uses 0.4 point-wise random masking for training in both point missing and
776 block missing experiments. This single trained model is evaluated across multiple test scenarios:
777 point missing experiments test on ratios of 0.1, 0.3, 0.5, and 0.7 with point-wise patterns, while
778 block missing experiments test on the complex block patterns described above. This design directly
779 tests whether models trained on simple point patterns can generalize to more complex structured
780 missing without specific training.
781

782 **Naturally Missing Datasets** We apply additional artificial missing on top of inherent missing pat-
783 terns for imputation training and evaluation. PhysioNet2012 models train with 0.2 point-wise ran-
784 dom masking applied to non-missing values, then test on various missing ratios (0.1, 0.3, 0.5, 0.7)
785 applied to non-missing regions. AQI36 models train using real-pattern based artificial missing aug-
786 mented with additional random point-wise masking ratios (0.2, 0.5, 0.8) sampled per batch, while
787 testing uses exclusively the dataset’s provided real-pattern based artificial missing patterns.
788

789 A.2.3 EVALUATION METRICS

790 We employ Mean Squared Error (MSE) and Mean Absolute Error (MAE) as primary evaluation
791 metrics for imputation performance:
792

$$\text{MSE} = \frac{1}{|\mathcal{M}|} \sum_{(m,t) \in \mathcal{M}} (\hat{x}_t^{(m)} - y_t^{(m)})^2, \quad \text{MAE} = \frac{1}{|\mathcal{M}|} \sum_{(m,t) \in \mathcal{M}} |\hat{x}_t^{(m)} - y_t^{(m)}| \quad (7)$$

793 where \mathcal{M} denotes the set of artificially masked positions during evaluation, $y_t^{(m)}$ represents ground
794 truth values, and $\hat{x}_t^{(m)}$ represents imputed values. Metrics are computed only on artificially masked
795 positions, not on originally missing values, ensuring consistent evaluation across all methods.
796

800 A.2.4 TRAINING IMPLEMENTATION

801 We employ a self-supervised training strategy where observed values are artificially masked during
802 training and the loss is computed only on these masked positions. We distinguish between the orig-
803 inal observation mask $\Omega \in \{0, 1\}^{M \times T}$ where 1 indicates observed values and 0 indicates missing
804 values, and the training mask $\Psi \in \{0, 1\}^{M \times T}$ where 0 indicates artificially masked positions for
805 training. The model minimizes Mean Squared Error between predictions $\hat{x}_t^{(m)}$ and ground truth
806 $y_t^{(m)}$ at artificially masked locations:
807

$$\mathcal{L}_{\text{MSE}} = \frac{1}{\sum_{m,t} I(\Psi_t^{(m)} = 0)} \sum_{\Psi_t^{(m)} = 0} (\hat{x}_t^{(m)} - y_t^{(m)})^2 \quad (8)$$

810 This approach ensures the model learns to reconstruct values from partial observations without using
811 originally missing data as supervision. We use the Adam optimizer with $\beta_1 = 0.9$ and $\beta_2 = 0.999$,
812 learning rate of 0.001 (0.0001 for Weather due to rapid convergence), batch size of 16, and maximum
813 300 epochs with early stopping patience of 30.

817 A.3 BASELINE IMPLEMENTATION DETAILS

820 We evaluate two categories of baseline models with distinct configuration strategies to ensure fair
821 and comprehensive comparison. All baseline implementations are based on established frameworks
822 including Time-Series Library¹, PyPOTS (Du et al., 2025), and Awesome-Imputation (Du et al.,
823 2024) repositories to ensure reproducibility and fair comparison.

824 **General and Forecasting Time Series Models** TimeMixer++ (Wang et al., 2024), ModernTCN (Luo & Wang, 2024), iTransformer (Liu et al., 2024), TimesNet (Wu et al., 2023),
825 PatchTST (Nie et al., 2023), and DLinear (Zeng et al., 2023) adopt identical training protocols
826 to T1, using 0.4 point-wise random masking during training. MSE loss computed only on masked
827 positions, Adam optimizer with learning rate 0.001, batch size 16, and maximum 300 epochs with
828 early stopping (patience=30). This standardization isolates architectural differences from training
829 strategies. Model architectures follow hierarchical selection priority: official imputation configu-
830 rations for specific datasets when available, configurations from similar variable count imputation
831 tasks, long-term forecasting configurations for the same dataset, or forecasting configurations from
832 datasets with similar variable counts.

833 **Specialized Imputation Models** ImputeFormer (Nie et al., 2024), SAITS (Du et al., 2023),
834 CSDI (Tashiro et al., 2021), and BRITS (Cao et al., 2018) retain their published training proto-
835 cols to leverage model-specific capabilities. These models employ original loss functions (such
836 as CSDI’s diffusion loss and BRITS’s consistency loss), published optimization schedules, model-
837 specific missing pattern strategies, and architecture-specific parameters from official implemen-
838 tations. When exact configurations were unavailable, the same hierarchical priority was applied while
839 preserving each model’s unique training methodology. Both model categories adapt to natural miss-
840 ing experiments with PhysioNet2012 training using 0.2 point-wise masking on non-missing values,
841 while AQI36 follows the T1 protocol with real-pattern based missing augmentation.

845 B EFFICIENCY ANALYSIS

846 **Comparison with Baseline Methods.** Table 7 presents computational efficiency and performance
847 metrics across T1, DLinear (Zeng et al., 2023), ModernTCN (Luo & Wang, 2024), iTransformer (Liu
848 et al., 2024), TimesNet (Wu et al., 2023), PatchTST (Nie et al., 2023), TimeMixer++ (Wang et al.,
849 2024), SAITS (Du et al., 2023), ImputeFormer (Nie et al., 2024), CSDI (Tashiro et al., 2021). T1
850 achieves the best imputation performance on both ETTh1 and Weather datasets while maintaining
851 reasonable computational requirements. The comparison reveals significant variations in resource
852 consumption across models, with methods like CSDI and TimeMixer++ requiring substantially
853 higher computational complexity, while lightweight approaches like DLinear sacrifice accuracy for
854 speed. T1 demonstrates an effective balance between performance quality and computational ef-
855 ficiency, making it suitable for practical deployment scenarios where both accuracy and resource
856 constraints are important considerations.

857
858
859
860
861
862
863
1¹<https://github.com/thuml/Time-Series-Library>

864 Table 7: Computational efficiency and performance comparison on ETTh1 and Weather datasets.
 865 Params (M): parameters in millions; Memory : inference memory; GFLOPs: computational com-
 866 plexity; Train Speed: ms per iteration; MSE: Mean Squared Error (lower is better).

868	Dataset	Model	Params (M)	Memory	GFLOPs	Train Speed (ms/iter)	MSE
869	ETTh1	T1 (Ours)	0.543	356.45	0.156	29.84	0.049
870		DLinear	0.024	22.36	0.003	10.04	0.18
871		ModernoTCN	1.716	120.99	0.039	13.7	0.083
872		iTransformer	0.223	22.71	0.003	13.95	0.129
873		TimesNet	0.588	157.78	0.176	39.18	0.13
874		PatchTST	2.185	2571.3	10.042	89.46	0.082
875		TimeMixer++	2.357	437.84	6.235	158.13	0.132
876		SAITS	5.273	294.49	0.506	37.01	0.092
877		ImputeFormer	1.368	1060.11	0.645	34.49	0.223
878		CSDI	1.195	777.71	19.045	154.45	0.083
879	Weather	T1 (Ours)	0.715	793.49	0.467	34.37	0.029
880		DLinear	0.051	29.07	0.008	7.4	0.044
881		ModernoTCN	2.598	316.17	0.125	11.8	0.038
882		iTransformer	4.827	119.79	0.203	13.97	0.09
883		TimesNet	4.698	224.82	1.35	34.59	0.04
884		PatchTST	0.455	443.88	0.48	21.56	0.037
885		TimeMixer++	2.357	1000.74	18.705	205.87	0.034
886		SAITS	5.297	296.32	0.509	34.59	0.034
887		ImputeFormer	1.551	1948.48	1.936	52.97	0.042
888		CSDI	0.326	1122.19	18.238	109.6	0.084

888 **Computational Overhead of Channel-Head Binding.** We clarify that Channel-Head Binding
 889 incurs no additional computational overhead compared to standard Multi-Head Attention (MHA)
 890 when the total representation capacity is fixed. Let M denote the number of variables, C the number
 891 of channels, and L the latent temporal dimension. In T1, each of the C heads processes a single
 892 channel with feature dimension L , yielding complexity $O(M^2 \cdot C \cdot L)$. Standard MHA with fewer
 893 heads achieves the same total complexity by increasing the per-head dimension proportionally.

894 To empirically validate this, we measured FLOPs and GPU memory usage across three datasets
 895 with varying variable counts (Table 8). We compare T1’s 1-to-1 binding ($n_{\text{heads}} = 128$) against
 896 grouped-head variants ($n_{\text{heads}} \in \{4, 8, 16\}$) while keeping the total channel count fixed at 128.

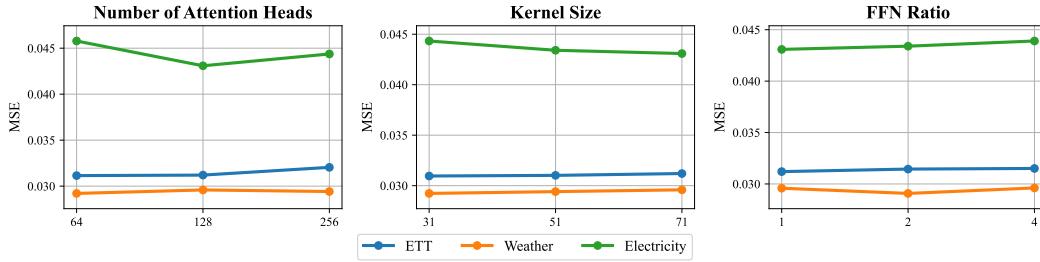
897 The results confirm that FLOPs remain identical across all configurations, as theoretically expected.
 898 For memory usage, T1 shows a minor increase on smaller datasets (1–4%) due to maintaining sep-
 899 arate head computations. However, on the large-scale Electricity dataset ($M = 321$), T1 consumes
 900 approximately 7.5% less memory than grouped-head variants, as the simplified channel-wise oper-
 901 ations avoid the overhead of reshaping and managing grouped head dimensions. This suggests that
 902 the 1-to-1 binding becomes increasingly efficient as the number of variables grows.

903
 904 Table 8: Computational overhead comparison across different head configurations. All variants use
 905 128 total channels.

906	Dataset	Model	Heads	Channels	FLOPs	Memory (MB)
907	ETTh1 ($M = 7$)	T1 (Ours)	128	128	155.6 M	283.2
908		Grouped (Base)	4	128	155.6 M	280.8
909		Grouped	8	128	155.6 M	280.0
910		Grouped	16	128	155.6 M	279.8
911	Weather ($M = 21$)	T1 (Ours)	128	128	466.9 M	741.1
912		Grouped (Base)	4	128	466.9 M	712.0
913		Grouped	8	128	466.9 M	709.7
914		Grouped	16	128	466.9 M	709.2
915	Electricity ($M = 321$)	T1 (Ours)	128	128	23.8 G	18,567
916		Grouped (Base)	4	128	23.8 G	20,071
917		Grouped	8	128	23.8 G	20,010
918		Grouped	16	128	23.8 G	20,026

918 C HYPERPARAMETER SENSITIVITY

920
 921 We evaluate the sensitivity of T1 to key hyperparameters: the number of attention heads (corre-
 922 sponding to channel dimension C), convolutional kernel size, and FFN expansion ratio. All models
 923 are trained with 40% missing ratio and evaluated on test sets with varying missingness (10%, 30%,
 924 50%, 70%). Results show averaged performance across these test conditions on ETT, Weather, and
 925 Electricity datasets in Figure 4. T1 demonstrates robust performance across all tested configurations.
 926



935 Figure 4: Hyperparameter Sensitivity analysis with respect to the number of heads, FFN ratio, and
 936 kernel size.

937 The model shows minimal sensitivity to variations in the number of heads (64, 128, 256), kernel
 938 sizes (31, 51, 71), and FFN expansion ratios (1, 2, 4) across all datasets. [Among these, C=128 pro-](#)
 939 [vides a reasonable balance across diverse datasets and missing ratios, which motivates our default](#)
 940 [configuration.](#) This stability suggests that T1’s Channel-Head Binding mechanism and architectural
 941 constraints provide natural regularization, making the model less dependent on precise hyperpar-
 942 ameter tuning while maintaining consistent imputation quality across diverse datasets and missing
 943 ratios.

944 Table 9: [Detailed numerical results for the hyperparameter sensitivity analysis on the number of](#)
 945 [attention heads under varying missing ratios \(0.1, 0.3, 0.5, 0.7\).](#)

	Number of Heads	64		128		256	
		Metric	MSE	MAE	MSE	MAE	MSE
ETT	0.1	0.023	0.102	0.025	0.104	0.027	0.110
	0.3	0.032	0.116	0.033	0.118	0.036	0.124
	0.5	0.047	0.139	0.048	0.140	0.050	0.144
	0.7	0.095	0.196	0.091	0.192	0.093	0.194
	Avg	0.049	0.138	0.049	0.139	0.052	0.143
ETT2	0.1	0.023	0.088	0.024	0.089	0.024	0.091
	0.3	0.028	0.099	0.029	0.100	0.029	0.102
	0.5	0.036	0.115	0.037	0.116	0.038	0.117
	0.7	0.054	0.145	0.055	0.145	0.055	0.146
	Avg	0.035	0.111	0.036	0.112	0.037	0.114
ETTm1	0.1	0.013	0.074	0.013	0.073	0.013	0.075
	0.3	0.016	0.081	0.016	0.080	0.017	0.082
	0.5	0.022	0.093	0.021	0.092	0.022	0.092
	0.7	0.039	0.123	0.037	0.119	0.037	0.120
	Avg	0.022	0.093	0.022	0.091	0.022	0.092
ETTm2	0.1	0.012	0.057	0.011	0.055	0.012	0.056
	0.3	0.014	0.064	0.014	0.062	0.014	0.063
	0.5	0.018	0.074	0.018	0.073	0.018	0.073
	0.7	0.027	0.092	0.026	0.091	0.026	0.092
	Avg	0.018	0.072	0.017	0.070	0.018	0.071
Weather	0.1	0.023	0.034	0.022	0.033	0.023	0.034
	0.3	0.025	0.037	0.025	0.036	0.025	0.037
	0.5	0.029	0.043	0.028	0.042	0.029	0.043
	0.7	0.040	0.063	0.041	0.068	0.041	0.065
	Avg	0.029	0.044	0.029	0.045	0.029	0.045
Electricity	0.1	0.033	0.117	0.032	0.114	0.031	0.111
	0.3	0.037	0.123	0.037	0.121	0.036	0.119
	0.5	0.045	0.136	0.045	0.134	0.043	0.132
	0.7	0.069	0.174	0.070	0.174	0.068	0.172
	Avg	0.046	0.138	0.046	0.136	0.044	0.133
Overall Average		0.033	0.099	0.033	0.099	0.034	0.100

972 Table 9 details the sensitivity analysis for the number of attention heads (n_h), which determines
 973 channel capacity ($n_h = C$) under our binding mechanism. Results indicate that $n_h = 128$ provides
 974 a favorable balance that ensures robust generalization across diverse data scales and missing ratios.
 975 While a larger capacity ($n_h = 256$) yields marginal benefits on high-dimensional datasets such as
 976 Electricity, it compromises stability on smaller ones. Conversely, a reduced capacity ($n_h = 64$)
 977 limits the representation of fine-grained series such as the ETTm datasets. This evidence justifies
 978 our choice of 128 as a universal default and confirms that T1 achieves robust imputation independent
 979 of dataset-specific parameter tuning.

980 981 982 D ADDITIONAL EXPERIMENTS AND ANALYSIS

983 984 985 D.1 IMPACT OF HEAD SCALING

986 987 988 To distinguish the contribution of the Channel-Head Binding mechanism from the effect of simply
 989 increasing the attention head count, we performed a scalability analysis using iTransformer as a
 990 baseline. We examined whether augmenting the number of heads n_{heads} in standard Multi-Head
 991 Attention could reproduce the performance gains observed in T1.

992 993 994 The evaluation encompassed two scaling strategies designed to match the head capacity of T1 at 128
 995 heads. In the first configuration, we increased n_{heads} while maintaining a constant model dimension,
 996 which results in a reduced head dimension d_k . In the second configuration, we increased n_{heads}
 while fixing the head dimension, a setup that scales the model dimension d_{model} proportionally.

997 998 999 As detailed in Tables 10 and 11, increasing the head count in standard Multi-Head Attention does
 1000 not consistently improve performance. For datasets such as ETTh1 and ETTm2, performance tends
 1001 to plateau or deteriorate under configurations with high head counts. This trend may stem from
 1002 optimization challenges or overfitting associated with the excessive fragmentation of the feature
 1003 space or the rapid growth in parameters.

1004 1005 1006 Most importantly, even the optimal iTransformer configuration yields an MSE of 0.072 on Weather,
 1007 which remains considerably higher than the 0.029 MSE achieved by T1. These results suggest that
 1008 the performance advantage of T1 derives from the structural efficacy of the Channel-Head Binding
 1009 mechanism in ensuring semantically aligned information transfer, rather than merely from the
 1010 increased quantity of attention heads.

1011 1012 1013 Table 10: Impact of increasing the number of attention heads (n_{heads}) in iTransformer while keeping
 1014 the model dimension (d_{model}) fixed. Best results for each dataset are highlighted in bold.

Dataset	Configuration			0.1		0.3		0.5		0.7		Avg	
	n_{heads}	d_{model}	d_k	MSE	MAE								
ETTh1	8	128	16	0.089	0.203	0.102	0.215	0.128	0.239	0.203	0.292	0.131	0.237
	16	128	8	0.093	0.208	0.104	0.219	0.130	0.240	0.202	0.292	0.132	0.240
	32	128	4	0.095	0.211	0.106	0.220	0.129	0.241	0.202	0.292	0.133	0.241
	64	128	2	0.097	0.214	0.110	0.225	0.133	0.244	0.211	0.298	0.138	0.245
	128	128	1	0.099	0.216	0.110	0.225	0.135	0.245	0.212	0.298	0.139	0.246
ETTm2	8	128	16	0.024	0.095	0.027	0.101	0.033	0.113	0.049	0.140	0.033	0.112
	16	128	8	0.025	0.096	0.027	0.102	0.033	0.113	0.048	0.139	0.033	0.113
	32	128	4	0.025	0.098	0.028	0.103	0.033	0.113	0.047	0.138	0.033	0.113
	64	128	2	0.026	0.100	0.028	0.104	0.033	0.114	0.047	0.137	0.034	0.114
	128	128	1	0.026	0.100	0.029	0.105	0.033	0.114	0.047	0.136	0.034	0.114
Weather	8	512	64	0.087	0.139	0.089	0.139	0.090	0.140	0.093	0.142	0.090	0.140
	16	512	32	0.112	0.176	0.112	0.176	0.113	0.177	0.115	0.177	0.113	0.177
	32	512	16	0.081	0.130	0.082	0.131	0.083	0.132	0.088	0.136	0.083	0.132
	64	512	8	0.086	0.136	0.087	0.137	0.088	0.137	0.091	0.139	0.088	0.137
	128	512	4	0.069	0.110	0.070	0.110	0.072	0.112	0.077	0.116	0.072	0.112

1026 Table 11: Impact of increasing the number of attention heads (n_{heads}) in iTransformer while keeping
 1027 the head dimension (d_k) fixed. Best results for each dataset are highlighted in bold.

Dataset	Configuration			0.1		0.3		0.5		0.7		Avg	
	n_{heads}	d_{model}	d_k	MSE	MAE								
ETTh1	8	128	16	0.089	0.203	0.102	0.215	0.128	0.239	0.203	0.292	0.131	0.237
	16	256	16	0.090	0.206	0.103	0.217	0.130	0.240	0.216	0.300	0.135	0.241
	32	512	16	0.109	0.227	0.120	0.237	0.146	0.257	0.239	0.318	0.154	0.260
	64	1024	16	0.129	0.248	0.144	0.259	0.171	0.279	0.256	0.329	0.175	0.279
	128	2048	16	0.323	0.379	0.330	0.383	0.347	0.391	0.389	0.410	0.347	0.391
ETTm2	8	128	16	0.024	0.095	0.027	0.101	0.033	0.113	0.049	0.140	0.033	0.112
	16	256	16	0.025	0.097	0.028	0.103	0.033	0.114	0.051	0.144	0.034	0.114
	32	512	16	0.029	0.105	0.032	0.110	0.037	0.120	0.050	0.141	0.037	0.119
	64	1024	16	0.060	0.158	0.061	0.159	0.063	0.162	0.069	0.169	0.063	0.162
	128	2048	16	0.067	0.171	0.069	0.172	0.071	0.174	0.075	0.179	0.071	0.174
Weather	8	512	64	0.087	0.139	0.089	0.139	0.090	0.140	0.093	0.142	0.090	0.140
	16	1024	64	0.088	0.138	0.087	0.138	0.089	0.139	0.092	0.140	0.089	0.139
	32	2048	64	0.113	0.176	0.113	0.176	0.114	0.177	0.115	0.177	0.114	0.177
	64	4096	64	0.113	0.176	0.113	0.176	0.114	0.177	0.115	0.177	0.113	0.177
	128	8192	64	0.113	0.176	0.113	0.177	0.114	0.177	0.115	0.178	0.114	0.177

D.2 SENSITIVITY ANALYSIS ON TRAINING MASK RATIOS

In practical deployment scenarios, test-time missing ratios are often unknown and dynamic. To validate the robustness of our training strategy, we conducted a comprehensive ablation study by training T1 with various masking ratios (0.1, 0.3, 0.5, 0.7) and evaluating them across a comprehensive range of test ratios.

Table 12: Impact of training mask ratios on generalization performance. Bold indicates the best performance for each test condition.

Training Metric	Missing Ratio	0.1		0.3		0.5		0.7	
		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	0.1	0.023	0.102	0.023	0.103	0.026	0.109	0.034	0.124
	0.3	0.038	0.126	0.033	0.118	0.035	0.122	0.040	0.133
	0.5	0.074	0.168	0.051	0.145	0.050	0.142	0.052	0.148
	0.7	0.192	0.260	0.106	0.208	0.080	0.181	0.076	0.177
	Avg	0.082	0.164	0.053	0.143	0.048	0.139	0.051	0.145
ETTh2	0.1	0.023	0.090	0.024	0.091	0.026	0.096	0.029	0.108
	0.3	0.030	0.105	0.030	0.103	0.030	0.105	0.032	0.113
	0.5	0.044	0.129	0.039	0.121	0.038	0.119	0.039	0.124
	0.7	0.074	0.173	0.063	0.159	0.054	0.145	0.052	0.143
	Avg	0.043	0.124	0.039	0.118	0.037	0.116	0.038	0.122
ETTm1	0.1	0.013	0.074	0.013	0.073	0.013	0.076	0.016	0.083
	0.3	0.018	0.086	0.016	0.080	0.016	0.082	0.018	0.087
	0.5	0.033	0.112	0.022	0.093	0.021	0.092	0.022	0.094
	0.7	0.096	0.181	0.038	0.122	0.033	0.113	0.031	0.111
	Avg	0.040	0.113	0.022	0.092	0.021	0.090	0.022	0.094
ETTm2	0.1	0.012	0.059	0.012	0.059	0.012	0.060	0.014	0.068
	0.3	0.016	0.069	0.015	0.068	0.015	0.067	0.016	0.072
	0.5	0.023	0.087	0.020	0.080	0.019	0.077	0.019	0.079
	0.7	0.041	0.122	0.030	0.102	0.027	0.094	0.026	0.093
	Avg	0.023	0.084	0.019	0.077	0.018	0.075	0.019	0.078
Weather	0.1	0.022	0.034	0.021	0.031	0.034	0.068	0.030	0.058
	0.3	0.028	0.046	0.024	0.034	0.031	0.055	0.029	0.051
	0.5	0.040	0.071	0.028	0.040	0.034	0.055	0.030	0.048
	0.7	0.064	0.110	0.038	0.057	0.047	0.078	0.035	0.052
	Avg	0.039	0.065	0.028	0.041	0.036	0.064	0.031	0.052
Electricity	0.1	0.034	0.117	0.037	0.123	0.044	0.140	0.053	0.154
	0.3	0.042	0.132	0.042	0.131	0.046	0.140	0.056	0.157
	0.5	0.070	0.176	0.052	0.148	0.052	0.147	0.059	0.159
	0.7	0.240	0.347	0.115	0.230	0.071	0.177	0.068	0.168
	Avg	0.097	0.193	0.061	0.158	0.053	0.151	0.059	0.160

1080
1081 Table 12 presents the detailed results across six datasets. As expected, models generally achieve
1082 optimal performance when the training missing ratio closely aligns with the test ratio. However, the
1083 results demonstrate that T1 maintains high robustness even under distribution shifts; performance
1084 degradation is significant only when there is an extreme discrepancy between training and testing
1085 conditions (e.g., training at 0.1 and testing at 0.7).

1086 These findings support our choice of a 0.4 training mask ratio as a practical default. As a moderate
1087 masking level, it provides reasonable coverage across both sparse and dense test conditions without
1088 requiring prior knowledge of test-time missing distributions. This allows a single T1 model to be
1089 deployed across diverse missing patterns without instance-specific tuning.

1090 D.3 COMPARISON WITH A DIFFUSION-BASED MODEL

1091 We compare T1 against SSSD (Alcaraz & Strodthoff, 2023), a diffusion-based imputation model
1092 that achieves strong performance through iterative stochastic refinement.

1093 **Imputation Performance.** Table 13 presents the comparison across seven datasets under varying
1094 missing ratios. T1 achieves lower MSE on most configurations, with notable improvements on
1095 ETTm2 (83.18% average MSE reduction) and Illness (81.70%).

1096 Table 13: Performance comparison between T1 and the diffusion-based model SSSD across varying
1097 missing ratios.

Models Metric	T1 (Ours)		SSSD		Improvement (%)	
	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	0.1	0.024 0.104	0.028	0.115	12.1	9.65
	0.3	0.033 0.118	0.037	0.130	11.2	9.75
	0.5	0.048 0.139	0.052	0.152	9.1	8.35
	0.7	0.093 0.193	0.087 0.193	-	-6.7	0.39
	Avg	0.049 0.138	0.051	0.148	6.44	7.03
ETTh2	0.1	0.024 0.089	0.043	0.132	45.21	32.04
	0.3	0.029 0.100	0.056	0.150	48.76	33.40
	0.5	0.037 0.116	0.087	0.187	57.05	37.80
	0.7	0.055 0.146	0.214	0.294	74.18	50.40
	Avg	0.036 0.113	0.100	0.191	56.30	38.41
ETTm1	0.1	0.013 0.073	0.018	0.092	30.16	20.52
	0.3	0.016 0.080	0.025	0.103	35.96	22.28
	0.5	0.021 0.091	0.038	0.122	44.21	25.20
	0.7	0.037 0.120	0.080	0.169	53.89	29.29
	Avg	0.022 0.091	0.040	0.122	41.05	24.32
ETTm2	0.1	0.011 0.056	0.044	0.133	74.00	58.16
	0.3	0.014 0.063	0.071	0.172	80.39	63.64
	0.5	0.018 0.073	0.131	0.238	86.28	69.39
	0.7	0.026 0.091	0.330	0.383	92.06	76.25
	Avg	0.017 0.070	0.144	0.231	83.18	66.86
Weather	0.1	0.023 0.034	0.026	0.031	12.05	-9.83
	0.3	0.025 0.037	0.030	0.039	15.2	13.86
	0.5	0.029 0.043	0.036	0.048	20.3	39.86
	0.7	0.041 0.066	0.051	0.069	19.76	3.87
	Avg	0.029 0.045	0.036	0.047	16.84	1.94
Exchange	0.1	0.001 0.014	0.003	0.035	54.25	59.34
	0.3	0.002 0.016	0.004	0.041	53.80	61.40
	0.5	0.002 0.019	0.007	0.058	71.78	67.19
	0.7	0.003 0.025	0.024	0.103	89.04	75.86
	Avg	0.002 0.018	0.009	0.059	67.22	65.95
Illness	0.1	0.016 0.073	0.109	0.166	85.59	55.83
	0.3	0.020 0.081	0.141	0.193	86.06	58.27
	0.5	0.031 0.098	0.195	0.231	84.10	57.50
	0.7	0.085 0.157	0.293	0.293	71.05	46.47
	Avg	0.038 0.102	0.184	0.221	81.70	54.52

1134 **Computational Efficiency.** Table 14 compares computational requirements. T1’s single-pass ar-
1135 chitecture provides substantial efficiency gains: approximately $1,344\times$ faster inference and $4,295\times$
1136 faster training compared to SSSD’s multi-step denoising process. T1 also requires significantly
1137 fewer parameters (0.54M vs. 48.11M) and less memory (234MB vs. 5,646MB), making it more
1138 practical for resource-constrained deployment scenarios.

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 14: Computational efficiency comparison between T1 and SSSD.

Metric	T1 (Ours)	SSSD	Ratio
Parameters (M)	0.54	48.11	$89\times$ smaller
GFLOPs	0.155	1.863	$12\times$ less
Training Memory (MB)	234	5646	$24\times$ less
Inference (ms/sample)	0.60	811	$1,344\times$ faster
Training (ms/iter)	47	201,845	$4,295\times$ faster

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

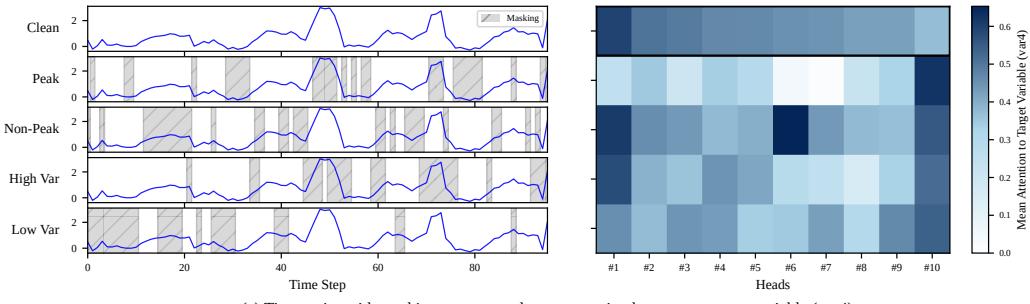
1186

1187

1188
1189
1190

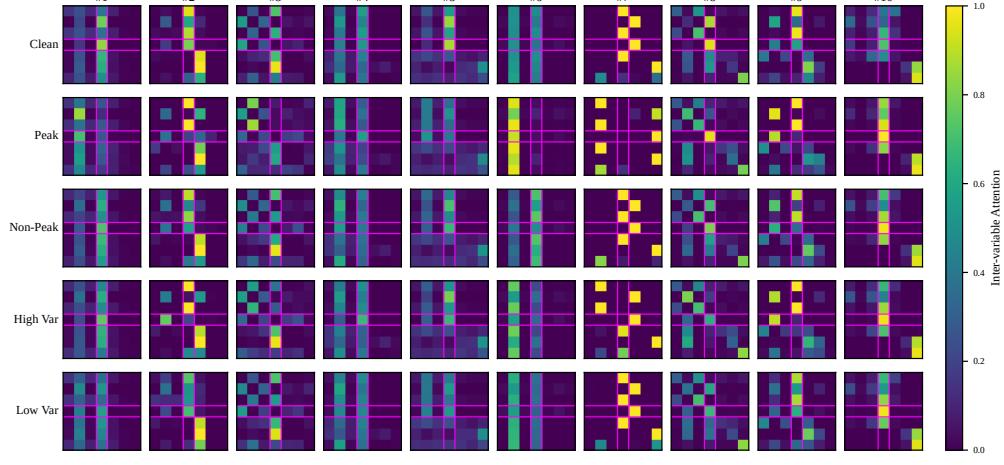
D.4 VISUALIZATION OF CROSS-VARIABLE ATTENTION PATTERNS

1191
1192
1193
1194
1195
1196
1197
1198
1199



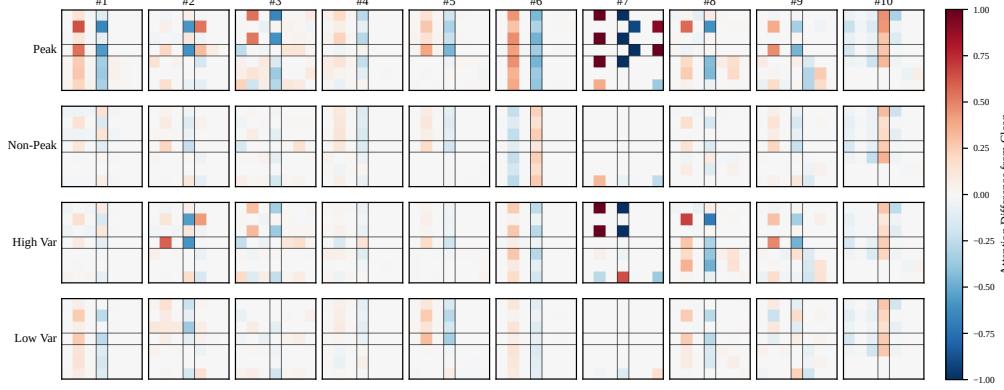
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216

(a) Time series with masking patterns and mean attention heatmap to target variable (var4)



1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239

(b) Inter-variable attention maps (7×7) for top 10 heads



(c) Attention difference from clean condition

Figure 5: Extended attention analysis under varying missingness patterns (expansion of Figure 3(b)). (a) Left: Example time series (var4 from ETTh1) with four masking strategies targeting peak, non-peak, high-variance, and low-variance regions. Right: Mean attention weights to the target variable across 10 heads and 5 conditions. (b) Full 7×7 inter-variable attention maps for the top-10 heads (sorted by clean attention weights). Magenta lines indicate the target variable (var4). (c) Attention difference from the clean condition, showing how each head adapts its attention distribution in response to different missing patterns. Red indicates increased attention; blue indicates decreased attention.

1240
1241

To provide quantitative illustration of Channel-Head Binding effects, we extend Figure 3(b) with detailed attention maps. While Figure 3(b) visualizes the top-20 heads, here we focus on the top-10 heads for clearer presentation of attention dynamics under different masking conditions.

1242 We use a single ETTh1 test sample with 7 variables. Following the experimental setup in Section 4.2.4, we mask 30% of the target variable (var4) using four strategies targeting different temporal characteristics: peak regions, non-peak regions, high-variance segments, and low-variance segments.

1246 Figure 5(b) reveals that different heads learn specialized attention patterns. Some heads exhibit
1247 strong diagonal patterns indicating self-variable focus, while others develop off-diagonal connec-
1248 tions capturing cross-variable dependencies.

1250 Figure 5(c) demonstrates that these attention patterns adapt to the missingness configuration rather
1251 than remaining static. When var4 is masked, many heads reduce their attention to var4 and redis-
1252 tribute it to other variables. This indicates that the model recognizes unreliable sources and seeks
1253 information from alternative variables, enabled by Channel-Head Binding.

1254 E CASE STUDY OF PHYSIONET2012

1255 E.1 DATASET CHARACTERIZATION

1258 PhysioNet Challenge 2012 contains multivariate clinical time series from 4,000 ICU patients with
1259 37 physiological variables recorded over approximately 48 hours. The dataset exhibits substantial
1260 variable-level heterogeneity in missing rates, reflecting real-world clinical measurement protocols.
1261 Vital signs (13 variables) range from 19% to 94% missing, where continuously monitored signals
1262 (e.g., HR at 19%) contrast sharply with intermittently recorded ones (e.g., NISysABP at 94%). Lab
1263 measurements (23 variables) range from 51% to 100% missing, as they require explicit sample
1264 collection. This heterogeneity—where missing rates vary by an order of magnitude even within the
1265 same category—makes PhysioNet2012 an ideal testbed for evaluating T1’s imputation robustness
1266 under realistic, non-uniform missingness.

1267 Table 15: PhysioNet2012 variable-level missing rate distribution by category.

Category	# Vars	Missing Rate		Examples			
Vital Signs	13	0.19 – 0.94		HR (0.19), Urine (0.37), Temp (0.67), NISysABP (0.94)			
Lab Measurements	23	0.51 – 1.00		Mg (0.51), PaO2 (0.90), Cholesterol (1.00)			

1274 E.2 PER-VARIABLE IMPUTATION PERFORMANCE

1276 To examine per-variable imputation behavior, we report MSE and MAE for six representative vari-
1277 ables spanning diverse missing rates (0.19 to 0.91) under the 0.5 additional masking condition (total
1278 ~90% missing). Table 16 presents results for both vital signs (HR, Urine, Temp) and lab mea-
1279 surements (Mg, PaO2, HCT). Variables were selected to represent diverse missing rates across both
1280 categories.

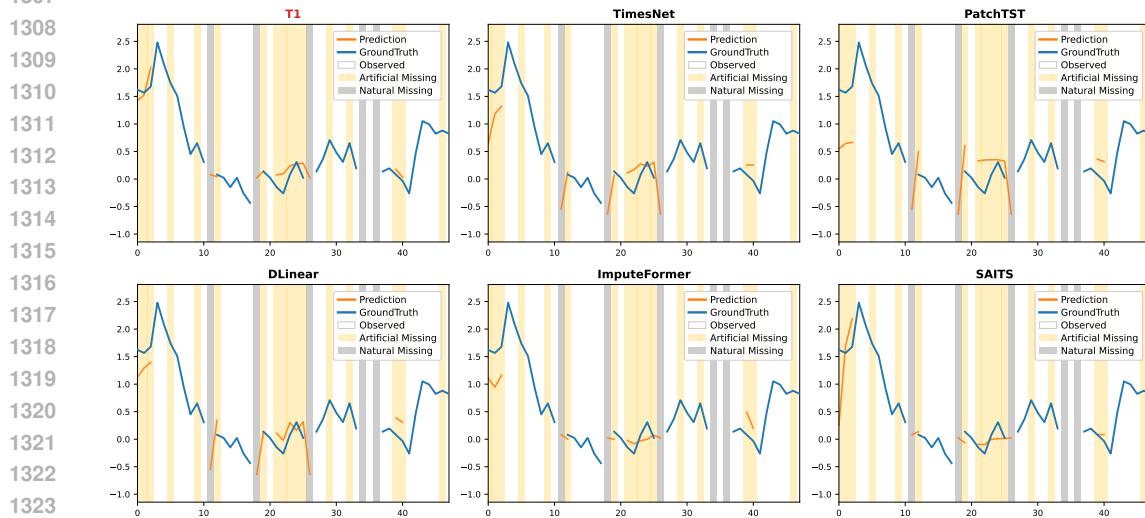
1281 Table 16: Per-variable imputation performance on PhysioNet2012 under 0.5 additional masking.
1282 Variables span diverse missing rates (0.19–0.91) across vital signs and lab measurements. Best
1283 results are in **red bold**, and second best are blue underlined.

Variable	Category	Natural Missing Rate	T1 (Ours)		TimesNet		DLinear		ImputeFormer		SAITS		PatchTST	
			MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
HR	Vital	0.19	0.189	0.296	0.237	0.347	0.245	0.356	0.392	0.431	<u>0.208</u>	<u>0.309</u>	0.351	0.439
Urine	Vital	0.37	<u>0.364</u>	<u>0.297</u>	0.408	0.318	0.408	0.322	0.458	0.330	<u>0.426</u>	0.279	0.420	0.332
Temp	Vital	0.67	0.239	0.179	0.306	0.222	<u>0.300</u>	0.214	0.339	<u>0.186</u>	0.327	<u>0.186</u>	0.317	0.227
Mg	Lab	0.51	0.126	<u>0.171</u>	0.190	0.225	0.195	0.228	0.207	0.203	<u>0.133</u>	0.165	0.299	0.321
PaO2	Lab	0.90	0.067	0.085	<u>0.082</u>	0.118	0.083	0.117	0.094	0.077	0.094	<u>0.079</u>	0.091	0.120
HCT	Lab	0.91	0.069	0.087	<u>0.094</u>	0.128	<u>0.094</u>	0.127	0.097	0.076	0.097	<u>0.076</u>	0.095	0.127

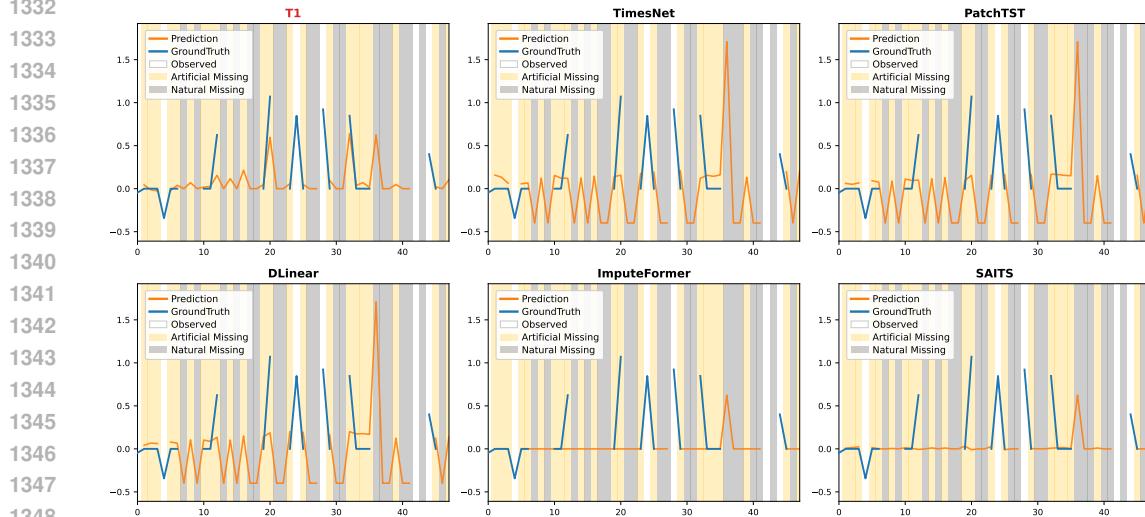
1292 T1 achieves the lowest MSE across all six variables, demonstrating consistent improvements regard-
1293 less of the inherent missing rate. Notably, the model maintains its performance advantage even for
1294 variables with extremely high missing rates (e.g., PaO2, HCT), confirming its capability to robustly
1295 reconstruct dynamics from sparse, irregular observations where baseline methods often struggle.

1296 E.3 QUALITATIVE VISUALIZATION
1297

1298
1299 To provide a clear comparison among different models, we present imputation showcases for three
1300 representative variables in Figures 6–8, which are produced by the following models: T1, Times-
1301 Net (Wu et al., 2023), PatchTST (Nie et al., 2023), DLinear (Zeng et al., 2023), ImputeFormer (Nie
1302 et al., 2024), and SAITS (Du et al., 2023). All results are shown under 50% additional masking.
1303 Among the compared models, T1 produces the most accurate imputations across various sparsity
1304 levels.
1305
1306
1307



1325 Figure 6: Visualization of imputation results on PhysioNet2012 for HR.
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349



1332 Figure 7: Visualization of imputation results on PhysioNet2012 for Temp.
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

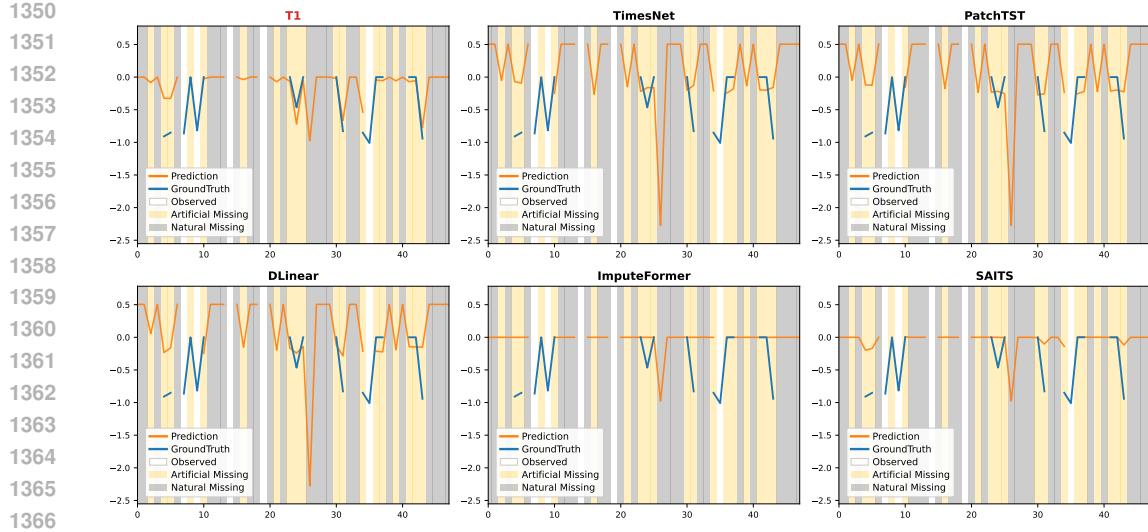


Figure 8: Visualization of imputation results on PhysioNet2012 for PaO₂.

F FULL RESULTS

Table 17: Full results with point missing ratios(0.1, 0.3, 0.5, 0.7) across datasets.

Models	TI (Ours)	MSE	MAE	TimeMixer++	MSE	MAE	ModernTCN	MSE	MAE	Transformer	MSE	MAE	Timesnet	MSE	MAE	PatchTST	MSE	MAE	DLinear	MSE	MAE	ImputeFormer	MSE	MAE	SaitS	MSE	MAE	CSD1	MSE	MAE	BRITS	MSE	MAE	PSW-I	MSE	MAE
ETTh1	0.1	0.024	0.104	0.090	0.201	0.053	0.162	0.087	0.201	0.094	0.211	0.044	0.146	0.161	0.274	0.064	0.158	0.026	0.109	0.039	0.129	0.052	0.146	0.079	0.188											
	0.3	0.033	0.118	0.098	0.208	0.054	0.161	0.100	0.213	0.100	0.214	0.050	0.152	0.107	0.222	0.129	0.204	0.044	0.132	0.060	0.154	0.077	0.180	0.105	0.213											
	0.5	0.048	0.139	0.125	0.229	0.073	0.181	0.127	0.237	0.120	0.229	0.074	0.180	0.153	0.251	0.238	0.279	0.085	0.181	0.089	0.187	0.122	0.234	0.125	0.234											
	0.7	0.093	0.193	0.215	0.290	0.153	0.251	0.203	0.293	0.208	0.293	0.161	0.261	0.300	0.347	0.459	0.421	0.214	0.291	0.146	0.241	0.233	0.334	0.194	0.289											
[Avg]																																				
ETTh2	0.1	0.024	0.089	0.057	0.148	0.041	0.131	0.051	0.148	0.052	0.153	0.036	0.122	0.069	0.172	0.132	0.212	0.132	0.247	0.035	0.124															
	0.3	0.029	0.100	0.060	0.151	0.041	0.130	0.055	0.154	0.054	0.156	0.039	0.127	0.055	0.156	0.183	0.251	0.155	0.276	0.054	0.127	0.162	0.281	0.041	0.133											
	0.5	0.037	0.116	0.067	0.160	0.048	0.141	0.064	0.166	0.063	0.167	0.048	0.141	0.067	0.171	0.356	0.342	0.230	0.331	0.075	0.150	0.232	0.337	0.047	0.145											
	0.7	0.055	0.146	0.087	0.186	0.075	0.178	0.085	0.193	0.092	0.201	0.075	0.178	0.104	0.215	0.107	0.611	0.583	0.507	0.116	0.188	0.385	0.443	0.059	0.165											
[Avg]																																				
ETTh1	0.1	0.013	0.073	0.035	0.117	0.022	0.101	0.041	0.132	0.025	0.106	0.019	0.092	0.147	0.248	0.025	0.102	0.015	0.082	0.020	0.091	0.024	0.099	0.034	0.112											
	0.3	0.016	0.080	0.036	0.118	0.023	0.100	0.046	0.140	0.025	0.106	0.022	0.097	0.063	0.164	0.041	0.121	0.021	0.094	0.027	0.102	0.037	0.123	0.040	0.120											
	0.5	0.021	0.091	0.042	0.128	0.032	0.116	0.057	0.156	0.035	0.121	0.031	0.112	0.089	0.188	0.075	0.154	0.038	0.122	0.036	0.117	0.063	0.167	0.048	0.133											
	0.7	0.037	0.120	0.094	0.180	0.085	0.179	0.110	0.208	0.095	0.187	0.081	0.173	0.229	0.300	0.203	0.244	0.129	0.210	0.054	0.144	0.158	0.276	0.066	0.158											
[Avg]																																				
ETTh2	0.1	0.011	0.056	0.024	0.088	0.019	0.084	0.024	0.095	0.021	0.088	0.017	0.074	0.037	0.127	0.061	0.121	0.057	0.155	0.022	0.067	0.069	0.177	0.016	0.083											
	0.3	0.014	0.063	0.026	0.090	0.020	0.085	0.027	0.101	0.021	0.089	0.019	0.079	0.028	0.105	0.067	0.132	0.071	0.174	0.027	0.077	0.108	0.225	0.018	0.088											
	0.5	0.018	0.073	0.030	0.098	0.025	0.096	0.032	0.111	0.026	0.098	0.023	0.087	0.035	0.118	0.093	0.160	0.093	0.200	0.036	0.091	0.211	0.318	0.021	0.096											
	0.7	0.026	0.091	0.041	0.119	0.041	0.125	0.046	0.136	0.040	0.125	0.036	0.114	0.064	0.160	0.082	0.137	0.071	0.190	0.075	0.111	0.059	0.356	0.029	0.110											
[Avg]																																				
ETTh2	0.1	0.017	0.070	0.030	0.099	0.026	0.098	0.032	0.111	0.027	0.100	0.024	0.089	0.040	0.128	0.151	0.183	0.103	0.201	0.035	0.087	0.245	0.314	0.021	0.094											
	0.3	0.023	0.084	0.028	0.098	0.035	0.076	0.087	0.137	0.036	0.079	0.032	0.063	0.093	0.030	0.039	0.024	0.028	0.045	0.035	0.026	0.039	0.092	0.062												
	0.5	0.025	0.087	0.030	0.097	0.031	0.059	0.088	0.137	0.033	0.065	0.032	0.058	0.063	0.033	0.042	0.026	0.031	0.092	0.038	0.037	0.062	0.098	0.066												
	0.7	0.041	0.066	0.071	0.051	0.093	0.093	0.140	0.055	0.102	0.049	0.089	0.060	0.110	0.065	0.084	0.055	0.078	0.099	0.051	0.307	0.256	0.131	0.088												
[Avg]																																				
PEMS03	0.1	0.014	0.076	0.035	0.131	0.049	0.162	0.036	0.134	0.048	0.160	0.032	0.120	0.126	0.265	0.096	0.049	0.134	0.113	0.141	0.048	0.128	0.044	0.142												
	0.3	0.015	0.078	0.036	0.131	0.034	0.128	0.029	0.116	0.040	0.138	0.027	0.116	0.124	0.047	0.155	0.105	0.067	0.147	0.055	0.144	0.046	0.146													
	0.5	0.018	0.089	0.039	0.136	0.036	0.132	0.030	0.130	0.046	0.152	0.034	0.128	0.054	0.166	0.050	0.151	0.060	0.155	0.068	0.158	0.074	0.179	0.049	0.150											
	0.7	0.035	0.130	0.064	0.175	0.106	0.242	0.092	0.206	0.101	0.236	0.055	0.166	0.150	0.290	0.216	0.349	0.077	0.181	0.078	0.177	0.125	0.255	0.056	0.159											
[Avg]																																				
ETTh1	0.1	0.001	0.014	0.022	0.020	0.005	0.047	0.003	0.029	0.003	0.029	0.002	0.023	0.006	0.047	0.018	0.042	0.009	0.025	0.008	0.053	0.024	0.113	0.026	0.022											
	0.3	0.002	0.016	0.022	0.022	0.007	0.057	0.003	0.031	0.003	0.028	0.002	0.023	0.003	0.030	0.016	0.044	0.012	0.027	0.008	0.051	0.050	0.175	0.028	0.023											
	0.5	0.002	0.019	0.022	0.022	0.010	0.067	0.004	0.035	0.003	0.026	0.002	0.026	0.003	0.037	0.019	0.057	0.014	0.027	0.008	0.053	0.01														

1404
1405
1406

Table 18: The standard deviation of Table 17.

Models Metric	T1 (Ours)	TimeMixer++	ModernTCN	iTransformer	Timesnet	PatchTST	DLinear	ImputeFormer	Saits	CSDI	BRITS	PSW-I	
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
ETTh1	0.1	0.001 0.001	0.008 0.011	0.004 0.006	0.001 0.001	0.001 0.001	0.002 0.001	0.007 0.010	0.002 0.005	0.002 0.002	0.008 0.004	0.008 0.004	
	0.3	0.000 0.001	0.011 0.012	0.001 0.002	0.001 0.001	0.000 0.001	0.001 0.001	0.023 0.017	0.006 0.009	0.004 0.004	0.004 0.008	0.004 0.008	
	0.5	0.000 0.000	0.016 0.015	0.002 0.003	0.001 0.001	0.001 0.001	0.002 0.002	0.001 0.001	0.046 0.029	0.015 0.017	0.008 0.007	0.003 0.009	0.003 0.009
	0.7	0.002 0.002	0.024 0.016	0.008 0.007	0.003 0.002	0.004 0.003	0.002 0.001	0.093 0.058	0.033 0.030	0.016 0.012	0.004 0.006	0.004 0.006	
	Avg	0.001 0.001	0.015 0.013	0.004 0.004	0.001 0.001	0.001 0.002	0.002 0.003	0.001 0.001	0.042 0.029	0.014 0.015	0.008 0.006	0.005 0.007	0.005 0.007
	0.1	0.000 0.001	0.001 0.001	0.001 0.001	0.000 0.001	0.001 0.002	0.000 0.001	0.001 0.002	0.000 0.004	0.017 0.018	0.027 0.005	0.007 0.002	0.007 0.002
	0.3	0.000 0.001	0.000 0.000	0.000 0.001	0.000 0.000	0.001 0.001	0.000 0.000	0.023 0.009	0.017 0.016	0.003 0.005	0.005 0.002	0.005 0.002	0.005 0.002
ETTh2	0.5	0.000 0.001	0.000 0.001	0.000 0.001	0.000 0.000	0.001 0.001	0.001 0.001	0.075 0.026	0.020 0.011	0.012 0.005	0.005 0.003	0.006 0.003	0.006 0.003
	0.7	0.001 0.001	0.001 0.001	0.001 0.001	0.000 0.001	0.003 0.003	0.003 0.003	0.001 0.001	0.077 0.024	0.139 0.062	0.037 0.007	0.001 0.003	0.001 0.003
	Avg	0.000 0.001	0.001 0.001	0.001 0.001	0.000 0.001	0.000 0.002	0.001 0.001	0.001 0.001	0.045 0.016	0.048 0.027	0.020 0.005	0.005 0.003	0.005 0.003
	0.1	0.000 0.000	0.000 0.001	0.001 0.002	0.001 0.001	0.002 0.004	0.000 0.000	0.004 0.004	0.004 0.005	0.002 0.008	0.001 0.002	0.001 0.002	0.001 0.002
	0.3	0.000 0.000	0.000 0.001	0.000 0.001	0.000 0.000	0.003 0.003	0.000 0.000	0.001 0.001	0.012 0.009	0.004 0.011	0.001 0.002	0.004 0.009	0.004 0.009
	0.5	0.000 0.000	0.000 0.001	0.000 0.001	0.000 0.000	0.004 0.003	0.000 0.001	0.001 0.001	0.032 0.021	0.010 0.018	0.002 0.003	0.004 0.008	0.004 0.008
	0.7	0.000 0.001	0.000 0.001	0.000 0.004	0.001 0.002	0.003 0.002	0.009 0.005	0.018 0.017	0.002 0.001	0.103 0.056	0.029 0.032	0.003 0.003	0.003 0.009
ETTm1	Avg	0.000 0.000	0.002 0.002	0.001 0.001	0.001 0.002	0.004 0.004	0.005 0.004	0.002 0.002	0.038 0.023	0.011 0.017	0.002 0.002	0.003 0.007	0.003 0.007
	0.1	0.000 0.000	0.001 0.002	0.000 0.000	0.000 0.000	0.001 0.001	0.000 0.000	0.001 0.004	0.006 0.006	0.008 0.015	0.001 0.002	0.003 0.003	0.003 0.003
	0.3	0.000 0.000	0.000 0.001	0.000 0.001	0.000 0.000	0.001 0.001	0.000 0.000	0.000 0.000	0.005 0.007	0.011 0.016	0.001 0.002	0.004 0.009	0.004 0.009
	0.5	0.000 0.000	0.000 0.001	0.000 0.001	0.000 0.000	0.004 0.003	0.000 0.000	0.000 0.000	0.007 0.010	0.011 0.015	0.004 0.002	0.008 0.007	0.008 0.007
	0.7	0.000 0.001	0.000 0.001	0.000 0.004	0.001 0.002	0.003 0.002	0.009 0.005	0.001 0.001	0.097 0.053	0.021 0.012	0.017 0.004	0.006 0.002	0.006 0.002
	Avg	0.000 0.001	0.001 0.002	0.000 0.001	0.000 0.000	0.000 0.001	0.000 0.000	0.000 0.000	0.029 0.019	0.013 0.014	0.006 0.002	0.005 0.005	0.005 0.005
	0.1	0.000 0.000	0.001 0.002	0.000 0.000	0.000 0.000	0.001 0.001	0.000 0.000	0.000 0.000	0.029 0.019	0.013 0.014	0.006 0.002	0.005 0.005	0.005 0.005
ETTm2	0.3	0.000 0.000	0.001 0.001	0.000 0.001	0.000 0.000	0.001 0.001	0.000 0.000	0.000 0.000	0.005 0.007	0.011 0.016	0.001 0.002	0.004 0.009	0.004 0.009
	0.5	0.000 0.000	0.000 0.001	0.000 0.001	0.000 0.000	0.001 0.001	0.000 0.000	0.000 0.000	0.007 0.010	0.011 0.015	0.004 0.002	0.008 0.007	0.008 0.007
	0.7	0.000 0.001	0.000 0.001	0.000 0.004	0.001 0.002	0.003 0.002	0.009 0.005	0.001 0.001	0.097 0.053	0.021 0.012	0.017 0.004	0.006 0.002	0.006 0.002
	Avg	0.000 0.001	0.001 0.002	0.000 0.001	0.000 0.000	0.001 0.001	0.000 0.000	0.000 0.000	0.029 0.019	0.013 0.014	0.006 0.002	0.005 0.005	0.005 0.005
	0.1	0.000 0.000	0.001 0.001	0.000 0.000	0.000 0.000	0.001 0.001	0.000 0.000	0.000 0.000	0.029 0.019	0.013 0.014	0.006 0.002	0.005 0.005	0.005 0.005
	0.3	0.000 0.000	0.001 0.001	0.000 0.000	0.000 0.000	0.001 0.001	0.000 0.000	0.000 0.000	0.029 0.019	0.013 0.014	0.006 0.002	0.005 0.005	0.005 0.005
	0.5	0.000 0.000	0.001 0.001	0.000 0.000	0.000 0.000	0.001 0.001	0.000 0.000	0.000 0.000	0.029 0.019	0.013 0.014	0.006 0.002	0.005 0.005	0.005 0.005
Weather	0.7	0.000 0.001	0.000 0.001	0.000 0.004	0.001 0.002	0.003 0.002	0.009 0.005	0.001 0.001	0.094 0.044	0.022 0.004	0.009 0.004	0.002 0.001	0.002 0.001
	Avg	0.000 0.001	0.000 0.002	0.000 0.001	0.000 0.000	0.001 0.001	0.000 0.000	0.000 0.000	0.028 0.013	0.014 0.014	0.006 0.002	0.005 0.006	0.005 0.006
	0.1	0.001 0.001	0.000 0.001	0.000 0.000	0.000 0.000	0.001 0.001	0.000 0.000	0.001 0.004	0.006 0.006	0.011 0.013	0.008 0.009	0.003 0.003	0.003 0.003
	0.3	0.000 0.001	0.000 0.001	0.000 0.000	0.000 0.000	0.001 0.001	0.000 0.000	0.000 0.000	0.005 0.007	0.007 0.016	0.001 0.002	0.004 0.009	0.004 0.009
	0.5	0.000 0.001	0.000 0.001	0.000 0.000	0.000 0.000	0.001 0.001	0.000 0.000	0.000 0.000	0.007 0.010	0.011 0.015	0.004 0.004	0.008 0.007	0.008 0.007
	0.7	0.000 0.001	0.000 0.001	0.000 0.004	0.001 0.002	0.003 0.002	0.009 0.005	0.001 0.001	0.094 0.044	0.022 0.004	0.009 0.004	0.002 0.001	0.002 0.001
	Avg	0.000 0.001	0.000 0.002	0.000 0.001	0.000 0.000	0.001 0.001	0.000 0.000	0.000 0.000	0.028 0.013	0.014 0.014	0.006 0.002	0.005 0.006	0.005 0.006
PEMS03	0.1	0.000 0.001	0.001 0.002	0.002 0.003	0.001 0.003	0.002 0.005	0.002 0.004	0.001 0.001	0.003 0.006	0.000 0.001	0.113 0.141	0.008 0.009	0.008 0.009
	0.3	0.000 0.000	0.001 0.002	0.001 0.002	0.000 0.001	0.001 0.001	0.000 0.000	0.000 0.000	0.005 0.007	0.007 0.016	0.001 0.002	0.004 0.009	0.004 0.009
	0.5	0.000 0.000	0.000 0.001	0.000 0.001	0.000 0.000	0.002 0.003	0.000 0.000	0.000 0.000	0.009 0.019	0.001 0.003	0.068 0.158	0.003 0.006	0.003 0.006
	0.7	0.003 0.007	0.002 0.034	0.002 0.002	0.003 0.004	0.016 0.021	0.000 0.001	0.000 0.000	0.073 0.080	0.002 0.004	0.078 0.177	0.003 0.007	0.003 0.007
	Avg	0.001 0.002	0.001 0.002	0.001 0.002	0.000 0.000	0.005 0.007	0.001 0.002	0.001 0.000	0.028 0.013	0.014 0.014	0.003 0.007	0.006 0.006	0.006 0.006
	0.1	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.008 0.013	0.008 0.013	0.003 0.003	0.053 0.053	0.002 0.002
	0.3	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.008 0.007	0.009 0.012	0.006 0.006	0.051 0.051	0.001 0.001
Exchange	0.5	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.004 0.010	0.010 0.010	0.006 0.006	0.053 0.053	0.005 0.005
	0.7	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.068 0.084	0.005 0.008	0.008 0.008	0.060 0.060	0.009 0.009
	Avg	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.023 0.028	0.008 0.011	0.007 0.007	0.054 0.054	0.004 0.004
	0.1	0.001 0.003	0.050 0.043	0.037 0.026	0.000 0.000	0.023 0.011	0.002 0.002	0.038 0.023	0.030 0.017	0.054 0.039	596.549 5.643	0.005 0.005	0.005 0.005
	0.3	0.001 0.002	0.045 0.042	0.019 0.018	0.000 0.003	0.017 0.010	0.002 0.004	0.010 0.008	0.030 0.015	0.073 0.042	411.993 5.189	0.007 0.004	0.007 0.004
	0.5	0.001 0.001	0.044 0.040	0.023 0.015	0.000 0.000	0.016 0.000	0.001 0.000	0.014 0.009	0.026 0.011	0.075 0.038	213.524 3.328	0.007 0.007	0.006 0.007
	0.7	0.004 0.003	0.024 0.031	0.049 0.016	0.000 0.004	0.015 0.000	0.010 0.006	0.019 0.012	0.039 0.011	0.092 0.043	119.279 2.150	0.007 0.006	0.007 0.006
Illness	Avg	0.002 0.002	0.041 0.039	0.032 0.019	0.002 0.003	0.018 0.009	0.004 0.003	0.020 0.013	0.031 0.014	0.073 0.041	335.336 4.078	0.006 0.006	0.006 0.006
	0.1	0.001 0.003	0.050 0.043	0.037 0.026	0								