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ABSTRACT

Imputing missing values in multivariate time series remains challenging, espe-
cially under diverse missing patterns and heavy missingness. Existing methods
suffer from suboptimal performance as corrupted temporal features hinder effec-
tive cross-variable information transfer, amplifying reconstruction errors. Robust
imputation requires both extracting temporal patterns from sparse observations
within each variable and selectively transferring information across variables—yet
current approaches excel at one while compromising the other. We introduce T1
(Time series imputation with 1-to-1 channel-head binding), a CNN-Transformer
hybrid architecture that achieves robust imputation through Channel-Head Bind-
ing—a mechanism creating one-to-one correspondence between CNN channels
and attention heads. This design enables selective information transfer: attention
pathways adapt based on observable patterns, down-weighting corrupted channels
while maintaining reliable cross-variable connections. Experiments on 11 bench-
mark datasets demonstrate that T1 achieves state-of-the-art performance, reducing
MSE by 46% on average compared to the second-best baseline, with particularly
strong gains under extreme sparsity (70% missing ratio). The model generalizes to
unseen missing patterns without retraining and uses a consistent hyperparameter
configuration across all datasets.

1 INTRODUCTION

Multivariate time-series data underpin decision making in healthcare (Ghassemi et al., 2015; Lee &
Hauskrecht, 2021), finance (Niu et al., 2020), climate (Nketiah et al., 2023; Chen & Dong, 2025),
and industrial monitoring (Sharma et al., 2022). Yet measurements are routinely incomplete: sen-
sors fail, transmissions drop, sampling is irregular, and entire windows go missing (Little & Rubin,
2019; Silva et al., 2012; Yi et al., 2016). Before any downstream task—forecasting, anomaly de-
tection, classification—can succeed, we must impute these gaps with high fidelity. Formally, given
X ∈ RM×T (M variables with sequence length T ) and an observation mask Ω ⊆ [M ] × [T ], the
goal is to impute X on Ωc using only the observed entries X|Ω. This is challenging because imputa-
tion must simultaneously (1) reconstruct temporal structure from sparse, irregularly-sampled obser-
vations within each variable and (2) transfer complementary information across variables without
importing noise. When temporal features are corrupted by missingness, cross-variable information
transfer amplifies errors; when this transfer is naı̈ve, it ignores which variables are informative under
the current mask.

Current methods for time-series imputation leave a gap for robust, efficient processing under heavy
missingness. As illustrated in (i)-(iv) of Figure 1a , existing approaches make architectural compro-
mises that limit their effectiveness. (i) Time-axis tokenization approaches (Wu et al., 2021) suffer
from fundamental limitations: Vanilla Transformers (Vaswani et al., 2017) mix all variables at each
timestep token where missing values directly corrupt the representation, allowing corrupted features
to contaminate all computations. While methods using diagonally-masked attention (Du et al., 2023)
improve temporal modeling, they inherit the same tokenization problem—missing values degrade
token representations that propagate through attention layers. (ii) Variable-axis tokenization (Liu
et al., 2024) addresses this but fuses all temporal patterns through a single representation, losing
feature-level selectivity. (iii) Dual-axis tokenization methods (Nie et al., 2024) employ attention on
both temporal and variable axes, but struggle to transfer information across both dimensions when
missing values block intermediate pathways. (iv) Temporal Convolutional Neural Network (CNN)
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Figure 1: T1 introduces CNN-Transformer hybrid architecture that effectively processes information
by strategically assigning CNN or attention to the temporal, feature, and variable dimensions using
depthwise (DW) and pointwise (PW) convolutions. In our novel mechanism, CHead Attention, each
channel encoded by shared CNN is directly aligned with a single attention head. It facilitates cross-
variable information exchange, ensuring that interactions occur only between semantically similar
temporal features. (revised)

approaches (Wu et al., 2023; Luo & Wang, 2024) efficiently extract multi-scale temporal features
but provide limited cross-variable information transfer.

We show that robust imputation benefits from task-aligned architecture—specialized temporal and
cross-variable components whose information transfer accounts for their interdependencies. We
propose T1 (Time series imputation with 1-to-1 channel-head binding), a hybrid architecture where
CNNs extract temporal features from incomplete observations within variables and attention per-
forms selective cross-variable information transfer ((v) in Figure 1a). T1 employs modernized tem-
poral convolutions (Luo & Wang, 2024), leveraging the inherent property of CNNs where each
channel learns to capture distinct temporal patterns from the observed data. This process effectively
encodes the input into a set of diverse feature maps, yielding variable tokens that directly parame-
terize query, key, and value representations for cross-variable attention. This design leverages each
architecture’s strengths for imputation: the convolutional modules excel at building robust temporal
representations from sparse observations, while variable-wise attention dynamically identifies infor-
mative variables based on their observed patterns. However, a naı̈ve combination of these modules
is insufficient. When missingness corrupts specific temporal features, treating each variable as a
single token forces all its channels to mix, preventing isolation of corrupted features from reliable
ones during information transfer. This necessitates an architectural refinement for feature-specific
control.

Our key mechanism, Channel-Head Binding (CHead Attention, Figure 1b), seamlessly integrates
CNNs and inter-variable attention, by creating a one-to-one correspondence between CNN channels
and attention heads. Each CNN channel captures a distinct temporal feature while each attention
head processes only its corresponding channel across variables, enabling fine-grained, feature-level
information transfer pathways. This feature-level binding enables robust imputation: when miss-
ingness prevents a channel from observing its specialized pattern, the feature it extracts becomes
less informative. Consequently, a corresponding attention head can temper its reliance on that chan-
nel during information transfer, while feature-level selectivity prevents these localized uncertainties
from contaminating other channels.

In our extensive experiments across 11 benchmark datasets, T1 achieves state-of-the-art perfor-
mance, demonstrating its effectiveness in diverse scenarios including point, block, and naturally
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occurring missingness. Furthermore, a model trained with a single missing ratio maintains perfor-
mance when tested on both higher and lower ratios, a crucial property for real-world applications.
These results are achieved using a consistent hyperparameter configuration across all datasets, sug-
gesting robustness to hyperparameter choices.

Our main contributions are summarized as follows:

• We introduce T1, a CNN-Transformer hybrid architecture that tackles imputation through com-
plementary specialization: CNNs for robust temporal feature extraction under missingness, and
Transformers for selective information transfer across informative variables.

• We propose Channel-Head Binding (CHead Attention), an architectural mechanism that creates a
one-to-one correspondence between CNN channels and attention heads, enabling robust imputa-
tion by isolating feature-specific information transfer pathways that adapt to varying missingness
patterns.

• We demonstrate that T1 achieves state-of-the-art performance across 11 datasets, reducing MSE
by 46% on average and maintaining this advantage under extreme missingness (70% missing
ratio), while generalizing to unseen missing patterns without retraining.

2 RELATED WORK

Time-series Imputation. Time-series imputation has evolved from statistical methods (Dempster
et al., 1977; Van Buuren & Groothuis-Oudshoorn, 2011) to deep learning approaches. RNN-based
methods like BRITS (Cao et al., 2018) and M-RNN (Yoon et al., 2019) model bidirectional temporal
dependencies. Transformer-based approaches including SAITS (Du et al., 2023) and ImputeFormer
(Nie et al., 2024) leverage self-attention mechanisms with masked training objectives to capture
long-range dependencies. Generative models, particularly diffusion-based CSDI (Tashiro et al.,
2021), SSSD (Alcaraz & Strodthoff, 2023), and PriSTI (Liu et al., 2023a), achieve high quality
through iterative refinement but with prohibitive inference latency. Graph methods like GRIN (Cini
et al., 2022) and SPIN (Marisca et al., 2022) model inter-variable relationships via message passing
but rely on static graphs that cannot adapt to instance-specific missingness.

Temporal and Cross-variable Modeling. Effective imputation requires both robust temporal ex-
traction and selective cross-variable fusion, yet existing methods excel at one while compromis-
ing the other. For temporal modeling, linear models (DLinear, NLinear) decompose via projec-
tions (Zeng et al., 2023). Vanilla Transformers (Vaswani et al., 2017) tokenize all variables at each
timestep, while extended versions like PatchTST (Nie et al., 2023), Autoformer (Wu et al., 2021),
and FEDformer (Zhou et al., 2022) apply temporal attention with decomposition strategies. CNN-
based methods—TCN (Bai et al., 2018), TimesNet (Wu et al., 2023), and notably ModernTCN (Luo
& Wang, 2024)—extract multi-scale features through dilated or large-kernel depthwise convolu-
tions. While powerful for temporal patterns, these methods lack dynamic cross-variable relation-
ships. For cross-variable modeling, Crossformer (Zhang & Yan, 2023) attempts across temporal and
variable dimensions but still entangles representations. iTransformer (Liu et al., 2024) achieves pure
variable-axis attention by inverting dimensions, treating each variable’s sequence as a single token
for clean cross-variable fusion. However, these compress or entangle temporal information. Mean-
while, convolutional approaches like ModernTCN effectively capture temporal patterns but rely on
static cross-variable mixing that cannot adapt to missing patterns. T1 combines these strengths
through shared depthwise convolutions and variable-axis attention for cross-variable fusion. The
shared convolutions ensure each channel extracts the same pattern type across all variables, while
mask-aware embeddings and CHead Attention enable dynamic, validity-based information transfer.

3 THE T1 ARCHITECTURE FOR TIME SERIES IMPUTATION

We address the problem of time series imputation. Let a multivariate time series be represented by
X = {x(1), ..., x(M)} ∈ RM×T where M denotes the number of variables and T is the sequence
length. The accompanying observation mask Ω ∈ {0, 1}M×T indicates whether a value is observed
(Ωm,t = 1) or missing (Ωm,t = 0). The objective is to impute the missing values by leveraging each
variable’s unique temporal patterns and inter-variable correlations.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Input • • •

variable 1 variable 2 variable M

• • •

variable 1 variable 2 variable M

Layer Norm

T1 Block
× B

Instance 
Normalization

Conv QKV
Projector

CHead Attention

(c) Channel-Head Attention (CHead Attention) 

Output

(b) Temporal Convolutional Q, K, V Projection

(d) Reconstruction Upsampling

(a) Mask-Aware Embedding

var 1

var 2

10110

10101𝛀(")

channel
temporal

• 
• 

•

• 
• 

•

var M

01101

Conv
Emb.

temporal

PW Conv

T

Pixel Shuffle 1D

channel

Layer Norm

Reconstruction
Upsampling

Instance
Denormalization

Conv FFN

Mask-Aware Embedding

𝛀($)

𝛀(%)

+E!"#
(%)

+E!"#
(')

+E!"#
(()

Temporal
DW Conv

Query

Key

Value

• 
• 

•

Value

temporal
head

CHACA

va
ria

bl
e

Cross 
Attention

Query Key

Cross 
attention

• 
• 

•

• 
• 

•

CHead
Attention

channel

var 1

var 2

var M

head
channel

temporal

Cross- 
Variable
Attention 

Score

Figure 2: An overview of the T1 architecture. (a) The Mask-Aware Embedding module encodes
the input series and its observation mask into a latent representation using 1D convolutions. (b) The
Temporal Convolutional QKV Projection block employs Depthwise Convolutions to extract consis-
tent temporal patterns for each channel. The kernel weights are shared across variables, resulting
in semantically-aligned Query, Key, and Value embedding. (c) Our proposed Channel-Head Atten-
tion (CHead Attention) is applied across the variable axis to selectively transfer information. Each
head is bound to a single channel, enabling feature-specific fusion between semantically-aligned
patterns. (d) The Reconstruction Upsampler restores the original temporal resolution of the series
via a parameter-free 1D PixelShuffle operation followed by a final pointwise convolution. (revised)

3.1 OVERALL ARCHITECTURE

As presented in Figure 2, our novel architecture, T1, comprises three main components: Mask-
Aware Embedding, T1 blocks and Reconstruction Upsampler.

Mask-Aware Embedding. As an initial step, instance normalization is applied to each input series
x(m), computing the normalized series as x(m)

norm = (x(m)−µ(m))/σ(m). To properly handle missing
data in imputation tasks, the per-instance mean µ(m) and standard deviation σ(m) are computed
solely from observed values (where Ωm,t = 1) and stored for the final denormalization.

To explicitly encode missing value locations, the normalized series and its observation mask are
stacked into a two-channel input (as presented in Figure 2a). The resulting tensor (∈ R2×T ) is
processed by a strided 1D convolution with C filters and augmented with a learnable variable-wise
encoding, producing the final embedding z(m) ∈ RC×L where L is the latent temporal dimension:

z(m) = Conv1D
([

x
(m)
norm

Ω(m)

])
+ E(m)

var (1)

Here E
(m)
var ∈ RC×L is a learnable variable-specific encoding (analogous to positional encoding for

tokens).

T1 Blocks. The aggregated embedding Z = [z(1), z(2), ..., z(M)] ∈ RM×C×L is processed through
stacked T1 blocks that implement a CNN-Transformer hybrid design. Each variable maintains inde-
pendent temporal CNN feature spaces while Channel-Head Attention models inter-variable relation-
ships. Optionally, downsampling can be applied between blocks to reduce the temporal resolution
for subsequent layers. The details of T1 block design are presented in Section 3.2.

Reconstruction Upsampler. The final representation from the T1 blocks, denoted as Zout ∈
RM×C×L, is passed to the reconstruction upsampler to generate the final imputed output, as pre-
sented in Figure 2d. For the upsampling stage, we employ a 1D variant of PixelShuffle (Shi et al.,
2016), a parameter-free operation that rearranges the channel dimension into the temporal dimen-
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sion. This process reshapes the input from RM×C×L to RM×(C/r)×(L·r), where r = T/L is the
upsampling ratio. Using PixelShuffle1D avoids the checkerboard artifacts common in transposed
convolutions while maintaining efficiency. A subsequent pointwise convolution (PWConv) projects
to the target dimension:

x̂norm = PWConv(PixelShuffle1D(Zout)) ∈ RM×1×T (2)

Final imputation x̂(m) = x̂
(m)
norm · σ(m) + µ(m) is obtained through denormalization using the stored

statistics.

3.2 T1 BLOCK

The T1 block addresses multivariate imputation through three specialized components: Temporal
Convolutional Q, K, V Projection for multi-scale temporal feature extraction, CHead Attention for
cross-variable information transfer, and Convolutional Feed-Forward Network (FFN) for channel-
wise feature refinement. The shared depthwise convolutions ensure that features are extracted con-
sistently across variables, while the 1-to-1 channel-head binding mechanism allows the attention to
selectively transfer information at the feature level.

Temporal Convolutional Q, K, V Projection. To generate the Query, Key, and Value embeddings,
we use a projection block based on depthwise convolutions (DWConv) (as illustrated in Figure 2b),
a technique effectively utilized for time-series analysis in ModernTCN (Luo & Wang, 2024). This
design choice leverages the inherent property of CNNs where each channel naturally specializes in
capturing distinct patterns.

In our architecture, the weights of the DWConv operators are shared across all variables. This
straightforward design choice allows each channel to learn a consistent feature type from every
variable, producing the semantically aligned representations required for the subsequent Channel-
Head Attention. Moreover, we employ parallel kernels of different sizes for multi-scale analysis.
The projections are formally defined as:

Qm,c = DWConvlarge,Q(Zm,c) + DWConvsmall,Q(Zm,c),

Km,c = DWConvlarge,K(Zm,c) + DWConvsmall,K(Zm,c),

Vm,c = DWConvlarge,V (Zm,c) + DWConvsmall,V (Zm,c)

∀m ∈ {1, ...,M}, c ∈ {1, ..., C} (3)

where each DWConv operator acts on Zm,c ∈ R1×L for variable m and channel c.

CHead Attention for Cross-Variable Information Transfer. As shown in Figure 2c, our Channel-
Head Attention creates a one-to-one correspondence between CNN channels and attention heads
(nh = C), ensuring each head processes a single channel across all variables. This design prevents
indiscriminate fusion—instead enabling selective information transfer where each channel indepen-
dently identifies and transfers relevant patterns across variables.

For each channel c ∈ {1, ..., C}, the attention operation is:

Oc = Softmax
(
QcK

T
c√

L

)
Vc (4)

where Qc,Kc, Vc ∈ RM×L represent channel c’s features across all variables.

The output tensor O ∈ RM×C×L is constructed by concatenating the individual channel outputs
{O1, ..., OC} along the channel dimension. The refined embedding Zattn, is obtained by applying a
pointwise convolution to O, followed by layer normalization and residual skip-connection:

Zattn = Z + LayerNorm(PWConv(O)) (5)

Convolutional Feed-Forward Network. Following Channel-Head Attention, we apply a convolu-
tional feed-forward network for channel-wise feature refinement:

Zout = Zattn + LayerNorm(PWConv2(GeLU(PWConv1(Zattn)))) (6)

We use pointwise convolutions rather than linear transformations to preserve the temporal structure
inherent in time series data. This design ensures that each temporal position is processed inde-
pendently while enabling non-linear interactions across channels. The network follows a inverted
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bottleneck architecture where PWConv1 projects to an intermediate dimension and PWConv2 maps
back to the original channel dimension C. Through stacked T1 blocks, the FFN-mixed features form
new channel representations for subsequent layers, enabling progressive feature combination while
CHead Attention maintains feature-level selectivity.

4 EXPERIMENTS

In this section, we comprehensively evaluate T1 across various missing data scenarios and bench-
mark datasets. We conduct three main experiments to demonstrate the effectiveness of our approach:
(1) point missing scenario with varying missing ratios, (2) block missing scenario simulating sen-
sor failures, (3) evaluation on naturally occurring missing data. Additionally, we provide detailed
representation analysis and ablation studies to better understand the contribution of each component.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate on 9 widely-used time series benchmark datasets: ETTh1, ETTh2, ETTm1,
ETTm2 (Zhou et al., 2021), Electricity (Trindade, 2015), Weather (Wetterstation), Illness (CDC),
Exchange (Lai et al., 2018), and PEMS03 (Chen et al., 2001). Additionally, we use two naturally
missing datasets: PhysioNet Challenge 2012 (Silva et al., 2012) and AQI36 (Yi et al., 2016).

Baselines. We compare against 11 state-of-the-art methods spanning two categories: (1) Gen-
eral time series and forecasting models: TimeMixer++ (Wang et al., 2024), ModernTCN (Luo &
Wang, 2024), iTransformer (Liu et al., 2024), TimesNet (Wu et al., 2023), PatchTST (Nie et al.,
2023), and DLinear (Zeng et al., 2023); (2) Specialized imputation models: ImputeFormer (Nie
et al., 2024), SAITS (Du et al., 2023), CSDI (Tashiro et al., 2021), BRITS (Cao et al., 2018), and
PSW-I (Wang et al., 2025a). Architecturally, these methods span time-axis tokenization (PatchTST,
SAITS), variable-axis tokenization (iTransformer), dual-axis tokenization (ImputeFormer, CSDI),
temporal CNN (ModernTCN, TimesNet), RNN-based (BRITS), MLP-based (DLinear), hybrid
(TimeMixer++), and optimal transport (PSW-I).

Implementation Details. We set the sequence length to 96 for all experiments. During training, we
employ self-supervised learning where 40% of observed values are randomly masked and used as
reconstruction targets, minimizing MSE loss between predictions and ground truth. For fair com-
parison, general time series models are trained under identical conditions to T1, while specialized
imputation methods retain their original training protocols; all models are evaluated with the same
data splits and random seeds. Performance is evaluated using mean absolute error (MAE) and mean
squared error (MSE) following previous studies (Liu et al., 2024; Wang et al., 2025a). Full train-
ing details and loss formulation are provided in Appendix A.2, and experimental results including
standard deviations are in Appendix F.

4.2 MAIN RESULTS

4.2.1 POINT MISSING SCENARIO

Setup. We test on four different missing ratios (0.1, 0.3, 0.5, 0.7) to assess the robustness of each
method under various missing conditions.

Table 1: Imputation performance on nine benchmark datasets under point missing scenario. Results
are averaged across four missing ratios (0.1, 0.3, 0.5, 0.7). Best results are marked in bold and
second best in underlined.

Dataset T1 (Ours) TimeMixer++ ModernTCN iTransformer TimesNet PatchTST DLinear ImputeFormer SAITS CSDI BRITS PSW-I
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.049 0.138 0.132 0.232 0.083 0.189 0.129 0.236 0.130 0.237 0.082 0.185 0.180 0.273 0.223 0.266 0.092 0.178 0.083 0.178 0.121 0.223 0.126 0.231
ETTh2 0.036 0.113 0.068 0.161 0.051 0.145 0.064 0.165 0.065 0.169 0.049 0.142 0.073 0.178 0.429 0.354 0.275 0.342 0.075 0.144 0.226 0.327 0.046 0.142
ETTm1 0.022 0.091 0.052 0.136 0.040 0.124 0.063 0.159 0.045 0.130 0.038 0.119 0.132 0.225 0.086 0.155 0.051 0.127 0.034 0.114 0.070 0.166 0.047 0.131
ETTm2 0.017 0.070 0.030 0.099 0.026 0.098 0.032 0.111 0.027 0.100 0.024 0.089 0.040 0.128 0.151 0.183 0.103 0.201 0.035 0.087 0.245 0.314 0.021 0.094
Weather 0.029 0.045 0.034 0.055 0.038 0.072 0.090 0.138 0.040 0.079 0.037 0.069 0.044 0.084 0.042 0.053 0.034 0.045 0.084 0.042 0.112 0.117 0.107 0.072
PEMS03 0.021 0.093 0.044 0.143 0.056 0.166 0.048 0.147 0.059 0.171 0.038 0.133 0.094 0.220 0.080 0.175 0.060 0.154 0.082 0.155 0.076 0.176 0.049 0.149
Exchange 0.002 0.018 0.002 0.023 0.009 0.062 0.004 0.034 0.003 0.032 0.003 0.027 0.005 0.044 0.031 0.070 0.180 0.344 0.007 0.054 0.115 0.249 0.031 0.026
Illness 0.038 0.102 0.238 0.291 0.260 0.350 0.205 0.283 0.583 0.458 0.130 0.223 0.345 0.392 0.636 0.505 0.614 0.495 586.936 9.057 0.426 0.399 0.067 0.122
Electricity 0.043 0.131 0.071 0.172 0.121 0.253 0.090 0.199 0.105 0.225 0.089 0.208 0.191 0.331 0.076 0.177 0.152 0.277 0.144 0.235 0.168 0.298 0.106 0.208

Avg 0.027 0.084 0.075 0.142 0.070 0.151 0.079 0.159 0.119 0.172 0.050 0.123 0.114 0.193 0.210 0.220 0.176 0.236 73.417 1.229 0.174 0.247 0.062 0.121

Results. As shown in Table 1, T1 demonstrates superior performance across all datasets. On av-
erage, T1 achieves a 46% MSE reduction compared to the next best PatchTST baseline and a 56%
reduction against the specialized imputer PSW-I. Table 2 further highlights T1’s robustness against
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Table 2: Performance comparison under varying test-time missing ratios averaged across all
datasets. Models are trained with 0.4 missing ratio and evaluated on different missing intensities.
Missing T1 (Ours) TimeMixer++ ModernTCN iTransformer TimesNet PatchTST DLinear ImputeFormer SAITS CSDI BRITS PSW-I
Ratio MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0.1 0.017 0.070 0.055 0.129 0.063 0.153 0.057 0.141 0.089 0.158 0.040 0.116 0.138 0.233 0.098 0.150 0.104 0.189 124.217 1.452 0.080 0.165 0.048 0.111
0.3 0.021 0.077 0.056 0.129 0.048 0.132 0.061 0.144 0.095 0.157 0.038 0.113 0.068 0.157 0.122 0.168 0.125 0.208 75.365 1.286 0.109 0.200 0.058 0.122
0.5 0.027 0.089 0.069 0.141 0.059 0.144 0.076 0.160 0.113 0.172 0.048 0.126 0.088 0.174 0.176 0.209 0.167 0.240 40.385 0.991 0.168 0.260 0.068 0.133
0.7 0.049 0.121 0.118 0.184 0.135 0.220 0.128 0.210 0.173 0.225 0.092 0.176 0.198 0.270 0.384 0.335 0.299 0.324 21.136 0.745 0.336 0.384 0.093 0.157

increasing data sparsity. At the highest missing ratio of 0.7, where many baselines struggle, T1’s
MSE is nearly half that of the next best methods, PatchTST (0.049 vs. 0.092), underscoring its
resilience in scenarios with severe data loss.

4.2.2 BLOCK MISSING SCENARIO

Setup. To simulate realistic sensor failure scenarios, we introduce two types of missing patterns at
test time: (1) 5% probability of point missing for random measurement noise, and (2) 0.15% proba-
bility of consecutive block missing with random lengths between 24 to 96 time steps for temporary
sensor failures or communication interruptions.

Table 3: Imputation performance under block missing scenario simulating realistic sensor failures.
Test patterns combine 5% point missing and 0.15% block missing (24-96 consecutive timesteps).

Dataset T1 (Ours) TimeMixer++ ModernTCN iTransformer TimesNet PatchTST DLinear ImputeFormer SAITS CSDI BRITS
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.030 0.107 0.105 0.210 0.066 0.172 0.094 0.205 0.104 0.217 0.050 0.151 0.192 0.299 0.063 0.156 0.028 0.109 0.037 0.127 0.056 0.145
ETTh2 0.027 0.092 0.062 0.153 0.048 0.138 0.060 0.152 0.055 0.156 0.039 0.125 0.078 0.184 0.179 0.228 0.145 0.260 0.074 0.112 0.133 0.250
ETTm1 0.030 0.082 0.062 0.131 0.044 0.115 0.070 0.145 0.043 0.118 0.037 0.103 0.202 0.285 0.036 0.111 0.022 0.087 0.023 0.092 0.026 0.099
ETTm2 0.016 0.059 0.029 0.094 0.024 0.090 0.028 0.099 0.028 0.095 0.024 0.081 0.047 0.141 0.118 0.144 0.075 0.164 0.048 0.070 0.082 0.181
Weather 0.026 0.039 0.032 0.054 0.040 0.085 0.092 0.140 0.040 0.086 0.035 0.068 0.050 0.106 0.040 0.048 0.026 0.030 0.086 0.036 0.035 0.039
PEMS03 0.022 0.084 0.050 0.144 0.065 0.180 0.053 0.152 0.061 0.174 0.044 0.132 0.166 0.307 0.031 0.103 0.049 0.131 0.178 0.143 0.048 0.127
Exchange 0.003 0.017 0.002 0.021 0.006 0.047 0.004 0.031 0.003 0.031 0.004 0.026 0.009 0.056 0.034 0.059 0.105 0.279 0.037 0.064 0.041 0.120
Illness 0.037 0.089 0.230 0.280 0.263 0.397 0.158 0.237 0.418 0.384 0.125 0.224 0.518 0.533 0.468 0.433 0.389 0.401 1182. 11.52 0.236 0.292
Electricity 0.038 0.118 0.088 0.180 0.146 0.283 0.080 0.190 0.099 0.212 0.090 0.208 0.302 0.444 0.061 0.152 0.135 0.262 0.133 0.220 0.117 0.244

Avg 0.026 0.076 0.073 0.141 0.078 0.167 0.071 0.150 0.094 0.164 0.050 0.124 0.174 0.262 0.114 0.159 0.108 0.191 131.4 1.376 0.086 0.166

Results. T1’s strong performance continues in the more challenging block missing scenario. As
shown in Table 3, T1 outperforms the next best method, PatchTST, with a 48% reduction in average
MSE. This result underscores the effectiveness of T1’s cross-variable information transfer when
long segments of temporal information are unavailable.

4.2.3 NATURAL MISSING DATASET

Setup. We evaluate on two datasets with naturally occurring missing values using different proto-
cols:

• PhysioNet Challenge 2012 contains multivariate clinical time series from 4,000 ICU patients
with 37 physiological variables and approximately 80% inherent missing values. We add artificial
missing patterns (0.1, 0.3, 0.5, 0.7) on top of existing missing values, creating compound missing
scenarios with up to 94% total missing rate.

• AQI36 consists of air quality measurements from 36 monitoring stations with 15-30% natural
missing values due to sensor malfunctions. We evaluate directly on the test set’s natural missing
patterns without additional masking.

Table 4: Performance on naturally missing datasets. PhysioNet2012: compound missing with 80%
inherent + additional masking. AQI36: evaluation on natural test set missing patterns (15-30%).

PhysioNet2012 - Natural ( 80%) + Additional Missing
Additional T1 (Ours) TimeMixer++ ModernTCN iTransformer TimesNet PatchTST DLinear ImputeFormer SAITS
Missing Ratio MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0.1 (Total: 82%) 0.049 0.067 0.091 0.107 0.092 0.118 0.107 0.128 0.082 0.103 0.099 0.116 0.075 0.100 0.078 0.067 0.089 0.070
0.3 (Total: 86%) 0.064 0.077 0.372 0.111 0.103 0.121 0.122 0.129 0.096 0.108 0.106 0.120 0.093 0.108 0.090 0.075 0.088 0.078
0.5 (Total: 90%) 0.081 0.090 0.130 0.117 0.110 0.126 0.120 0.131 0.101 0.116 0.113 0.125 0.104 0.117 0.114 0.091 0.107 0.089
0.7 (Total: 94%) 0.106 0.110 0.236 0.126 0.124 0.134 0.129 0.135 0.114 0.127 0.124 0.132 0.118 0.127 0.151 0.114 0.129 0.106
Avg 0.075 0.086 0.207 0.115 0.107 0.125 0.119 0.131 0.098 0.114 0.110 0.123 0.097 0.113 0.108 0.087 0.103 0.086

AQI36 - Natural Missing Only (15-30%)
Test Set 0.226 0.226 0.274 0.318 0.281 0.311 0.314 0.331 0.337 0.337 0.262 0.303 0.338 0.343 0.447 0.411 0.469 0.400
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(a) Attention degradation by missing ratio (b) Head-specific attention patterns by missing type

Attention
Degradation Rate

7.5%

8.4%

11.1%

10.4%

Figure 3: Representation analysis of T1’s attention mechanism. (a) Layer-wise attention weights
from other variables to target variable under varying missing ratios (entire ETTh1 test set). Atten-
tion weights decrease with increasing missing ratio, with shallow layers showing more pronounced
degradation. (b) Head-specific attention patterns of clean signal and under various missing patterns
(peak vs non-peak and high vs low variance, 30% each), showing top-20 heads sorted by clean at-
tention weights.

Results. Under real-world conditions with naturally occurring missing data, T1 proves its practical
applicability. On the PhysioNet2012 dataset, T1 demonstrates remarkable stability and achieves a
23% performance improvement in average MSE over the next best method, DLinear (Table 4).

This robustness is also demonstrated on the AQI36 dataset, where T1 outperforms the next best
method, PatchTST, with a 13% reduction in MSE. These results confirm the robustness of our ar-
chitecture across diverse and critically sparse data regimes.

4.2.4 REPRESENTATION ANALYSIS

We conduct two controlled experiments on ETTh1 to qualitatively analyze the effectiveness of
CHead Attention.

Missing Response Across Layers. Using the entire ETTh1 test set, we select one variable as target
and vary its missing ratio from 0.1 to 0.7 while keeping the missing ratio of all other variables at 0.4.
Figure 3a shows attention weights assigned to the target variable decrease with increasing missing
ratio. This trend is most noticeable in the shallow layer while deeper layers exhibit reduced sensi-
tivity to missingness. Attention weights in the first layer exhibit sharp drop of 46% (0.195→0.105)
while weights in the last layer drop by only 6% (0.165→0.155). This suggests partial reconstruction
in early layers improves information availability for subsequent layers.

Observable Pattern Dependence. Using a single ETTh1 test sample, we mask 30% of the target
variable in regions with different characteristics: peak regions (far from center) versus non-peak
regions (near center), and regions with top 30% versus bottom 30% local variance. As shown in
left panel of Figure 3b, these masks leave fundamentally different temporal patterns in the observed
portion of the target variable. The middle panel of Figure 3b visualizes the corresponding attention
responses for the top-20 heads, sorted by clean attention weights. Clearly, this visualization reveals
distinct response patterns for each masking scenario. Quantitatively, removing high-variance regions
reduces attention by 10.4% while removing low-variance regions reduces it by 7.5%. This indicates
that attention modulation depends on which temporal patterns remain observable, not solely on
missing ratio. CHead Attention enables each channel to assess whether its corresponding temporal
features can be extracted from the observed data.

These results demonstrate that T1 learns to adaptively down-weight unreliable information path-
ways based on both observation density and the extractability of temporal patterns. The layer-wise
stabilization and channel-specific responses support our architectural design combining CNN fea-
ture extraction with channel-bound attention, contributing to the performance gains observed under
structured missingness (Table 3).
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4.2.5 ABLATION STUDY

We conduct comprehensive ablation studies to analyze the contribution of each component in T1. All
experiments are performed on six datasets (ETTh1, ETTh2, ETTm1, ETTm2, Weather, Electricity)
with 40% training mask ratio and evaluated across four test missing ratios (0.1, 0.3, 0.5, 0.7). Table 5
reports averaged results when replacing only the specified component while keeping all others at
their default configuration.

Cross-variable Mechanism. Replacing attention with pointwise convolution degrades performance
by 12.91%, demonstrating that adaptive information transfer outperforms fixed patterns. Removing
cross-variable modeling entirely results in 56.16% degradation, confirming that cross-variable in-
formation is essential for imputation.

Channel-Head Binding. We evaluate the impact of channel-head grouping by varying the number
of channels per attention head: 8, 16, and 32 channels per head (compared to our default one-to-
one correspondence with 128 channels). Performance degrades by 7.45%, 16.86%, and 14.57%
respectively, with 16 channels per head showing the worst degradation. These results confirm that
fine-grained, one-to-one channel-head correspondence is crucial for maintaining feature-specific
information pathways and preventing the mixing of corrupted and reliable temporal patterns during
cross-variable transfer.

Mask-Aware Embedding. Removing the explicit mask channel from input embedding causes
3.64% degradation. This indicates that providing missing patterns directly to the model improves its
ability to distinguish between observed and missing values during feature extraction.

Reconstruction Method. PixelShuffle outperforms linear upsampling by 3.19%, validating our
choice for artifact-free temporal reconstruction.

The substantial gap between convolution (12.91%) and no cross-variable modeling (56.16%) reveals
an important finding: while cross-variable information is crucial, the method of information transfer
matters significantly. Our attention mechanism better identifies which variables contain reliable
information for imputation compared to fixed convolutional patterns.

Table 5: Comprehensive ablation study on model components (MSE). Each row shows the perfor-
mance when replacing only the specified component from our full model. The last column shows
the percentage increase in error relative to our full model.

Component Alternative ETTh1 ETTh2 ETTm1 ETTm2 Weather ECL Avg ∆ (%)↓
T1 (Ours) 0.049 0.036 0.022 0.017 0.029 0.043 0.033 -

Cross-variable
Component

Conv 0.056 0.040 0.024 0.020 0.029 0.052 0.037 + 12.91
w/o 0.095 0.064 0.040 0.029 0.031 0.048 0.051 + 56.16

Channel-Head
Binding

32 Chns 0.061 0.040 0.030 0.020 0.030 0.044 0.037 + 14.57
16 Chns 0.066 0.041 0.028 0.020 0.030 0.045 0.038 + 16.86
8 Chns 0.055 0.038 0.025 0.019 0.030 0.044 0.035 + 7.45

Embedding w/o mask 0.052 0.037 0.023 0.018 0.029 0.044 0.034 + 3.64

Reconstruction Linear 0.050 0.036 0.022 0.018 0.030 0.046 0.034 + 3.19

5 CONCLUSION AND FUTURE WORK

In this paper, we presented T1, a CNN-Transformer hybrid architecture for multivariate time series
imputation. By strategically assigning CNNs for temporal feature extraction and attention for cross-
variable information transfer, T1 addresses the fundamental challenge of imputation under heavy
missingness. Our key innovation, Channel-Head Binding, creates one-to-one correspondences be-
tween CNN channels and attention heads, enabling feature-specific information pathways that adapt
to varying missingness patterns. Extensive experiments demonstrate that T1 maintains computa-
tional efficiency while achieving state-of-the-art performance across diverse datasets and missing
scenarios. The architecture’s robustness under extreme missing conditions and its stable perfor-
mance with a consistent hyperparameter configuration highlight its practical applicability. Looking
forward, we will explore extensions to online streaming environments for real-time imputation and
active sensing strategies that can guide optimal sensor selection under resource constraints.
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A IMPLEMENTATION DETAILS

A.1 DATASET DETAILS

A.1.1 DATASET DESCRIPTIONS

We conduct experiments on 11 multivariate time series datasets spanning diverse domains including
energy, transportation, climate, healthcare, and economics. All experiments use a sequence length
of 96 timesteps, except for PhysioNet2012 which uses 48 timesteps due to its clinical nature and
irregular sampling patterns. The datasets are categorized into two groups: complete datasets for ar-
tificial missing experiments and naturally missing datasets for realistic evaluation scenarios. Table 6
summarizes the key statistics.

Complete Datasets ETT (Zhou et al., 2021) comprise electricity transformer measurements includ-
ing with hourly (ETTh1, ETTh2) and 15-minute (ETTm1, ETTm2) sampling frequencies. Electric-
ity (Trindade, 2015)tracks consumer power consumption. Weather (Wetterstation) contains meteo-
rological indicators from the Max Planck Institute weather station. Illness (CDC) records CDC in-
fluenza surveillance data across US states. Exchange (Lai et al., 2018)covers international currency
rates from 1990-2016. PEMS03 (Chen et al., 2001) represents highway traffic sensor measurements
from California transportation networks.

Naturally Missing Datasets PhysioNet Challenge 2012 (Silva et al., 2012) contains ICU patient
physiological measurements with 80% inherent missingness due to irregular clinical sampling proto-
cols. Experiments are conducted on the 20% observed portions. AQI36 (Yi et al., 2016) includes air
quality monitoring data with 13.3% real missingness from sensor failures: general missing (8.2%)
from random transmission errors, spatial block missing (2.2%) from regional power/network out-
ages, and temporal block missing (3.5%, 11 timesteps average block length ) from maintenance peri-
ods. These datasets span diverse domains and temporal scales, providing comprehensive evaluation
under varying missingness scenarios from dense sensor networks to sparse clinical measurements.

Table 6: Dataset descriptions.

Type Dataset Variables Train Valid Test Frequency Missing Ratio

Complete

ETTh1,ETTh2 7 8,545 2,785 2,785 Hourly -
ETTm1,ETTm2 7 34,465 11,425 11,425 15min -
Electricity 321 18,346 2,621 5,424 Hourly -
Weather 21 36,820 5,260 10,521 10min -
Illness 7 609 87 175 Weekly -
Exchange 8 5,245 749 1,499 Daily -
PEMS03 358 18,279 2,611 5,223 5min -

Naturally
Missing

PhysioNet2012 37 2,557 640 800 Irregular 80.0%
AQI36 36 4,422 649 2,548 Hourly 13.3%

A.2 EXPERIMENT DETAILS

A.2.1 T1 CONFIGURATION DETAILS

We maintain consistent architectural design across different datasets, with deterministic sequence-
length scaling for kernel sizes when sequence lengths differ from the standard 96 timesteps. Impor-
tantly, we use the same model configuration (channel count, layer depth, FFN ratio) regardless of
the number of variables in each dataset, demonstrating the model’s robustness across varying data
dimensions.

Standard Configuration. For datasets with sequence length 96, Conv1D embedding with kernel
size 2 and stride 1 projects input to 128 channels. The architecture consists of four T1 blocks
arranged in two hierarchical groups. The first group contains two T1 blocks employing dual-scale
depthwise convolutions with kernel sizes 71 and 5, followed by downsampling with kernel size 2
and stride 2. The second group contains two T1 blocks with adjusted kernel sizes 31 and 5, operating
on downsampled features. This hierarchical design allows the model to capture multi-scale temporal
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patterns at different resolutions. FFN expansion ratio is set to 1.0. This configuration remains fixed
across all datasets, from 7-variable datasets (ETT series) to 358-variable datasets (PEMS03).

Sequence Length Adaptation. For datasets with different sequence lengths (e.g., PhysioNet with
48 timesteps), we apply deterministic scaling to adjust kernel sizes:

kadjusted = ⌊(T/96)× kdefault⌋ (7)

where T is the sequence length. This yields 71 → 35 and 31 → 15 for the large kernels, while
small kernels (size 5) remain unchanged. This systematic rule preserves proportional receptive
field coverage without dataset-specific tuning. All other parameters remain identical to the standard
configuration.

A.2.2 EXPERIMENT DESIGN

All experiments use five random seeds (102, 202, 302, 402, 502) with mean and standard deviation
reported. Experiments were performed on NVIDIA H100 80GB GPUs.

We evaluate models across three missing scenarios to assess generalization capability. Point missing
applies independent probability masking at each timestep with varying ratios (10%, 30%, 50%,
70%). Block missing simulates realistic sensor failures by combining 5% point missing with 0.15%
probability of initiating consecutive missing blocks spanning 24-96 timesteps. The key experimental
principle is training with specific missing ratios and evaluating across multiple missing scenarios.

Complete Datasets T1 uses 0.4 point-wise random masking for training in both point missing and
block missing experiments. This single trained model is evaluated across multiple test scenarios:
point missing experiments test on ratios of 0.1, 0.3, 0.5, and 0.7 with point-wise patterns, while
block missing experiments test on the complex block patterns described above. This design directly
tests whether models trained on simple point patterns can generalize to more complex structured
missing without specific training.

Naturally Missing Datasets We apply additional artificial missing on top of inherent missing pat-
terns for imputation training and evaluation. PhysioNet2012 models train with 0.2 point-wise ran-
dom masking applied to non-missing values, then test on various missing ratios (0.1, 0.3, 0.5, 0.7)
applied to non-missing regions. AQI36 models train using real-pattern based artificial missing aug-
mented with additional random point-wise masking ratios (0.2, 0.5, 0.8) sampled per batch, while
testing uses exclusively the dataset’s provided real-pattern based artificial missing patterns.

A.2.3 EVALUATION METRICS

We employ Mean Squared Error (MSE) and Mean Absolute Error (MAE) as primary evaluation
metrics for imputation performance:

MSE =
1

|M|
∑

(m,t)∈M

(x̂
(m)
t − y

(m)
t )2, MAE =

1

|M|
∑

(m,t)∈M

|x̂(m)
t − y

(m)
t | (7)

where M denotes the set of artificially masked positions during evaluation, y(m)
t represents ground

truth values, and x̂
(m)
t represents imputed values. Metrics are computed only on artificially masked

positions, not on originally missing values, ensuring consistent evaluation across all methods.

A.2.4 TRAINING IMPLEMENTATION

We employ a self-supervised training strategy where observed values are artificially masked during
training and the loss is computed only on these masked positions. We distinguish between the orig-
inal observation mask Ω ∈ {0, 1}M×T where 1 indicates observed values and 0 indicates missing
values, and the training mask Ψ ∈ {0, 1}M×T where 0 indicates artificially masked positions for
training. The model minimizes Mean Squared Error between predictions x̂

(m)
t and ground truth

y
(m)
t at artificially masked locations:

LMSE =
1∑

m,t I(Ψ
(m)
t = 0)

∑
Ψ

(m)
t =0

(x̂
(m)
t − y

(m)
t )2 (8)
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This approach ensures the model learns to reconstruct values from partial observations without using
originally missing data as supervision. We use the Adam optimizer with β1 = 0.9 and β2 = 0.999,
learning rate of 0.001 (0.0001 for Weather due to rapid convergence), batch size of 16, and maximum
300 epochs with early stopping patience of 30.

A.3 BASELINE IMPLEMENTATION DETAILS

We evaluate two categories of baseline models with distinct configuration strategies to ensure fair
and comprehensive comparison. All baseline implementations are based on established frameworks
including Time-Series Library1, PyPOTS (Du et al., 2025), and Awesome-Imputation (Du et al.,
2024) repositories to ensure reproducibility and fair comparison.

General and Forecasting Time Series Models TimeMixer++ (Wang et al., 2024), Mod-
ernTCN (Luo & Wang, 2024), iTransformer (Liu et al., 2024), TimesNet (Wu et al., 2023),
PatchTST (Nie et al., 2023), and DLinear (Zeng et al., 2023) adopt identical training protocols
to T1, using 0.4 point-wise random masking during training. MSE loss computed only on masked
positions, Adam optimizer with learning rate 0.001, batch size 16, and maximum 300 epochs with
early stopping (patience=30). This standardization isolates architectural differences from training
strategies. Model architectures follow hierarchical selection priority: official imputation configu-
rations for specific datasets when available, configurations from similar variable count imputation
tasks, long-term forecasting configurations for the same dataset, or forecasting configurations from
datasets with similar variable counts.

Specialized Imputation Models ImputeFormer (Nie et al., 2024), SAITS (Du et al., 2023),
CSDI (Tashiro et al., 2021), and BRITS (Cao et al., 2018) retain their published training proto-
cols to leverage model-specific capabilities. These models employ original loss functions (such
as CSDI’s diffusion loss and BRITS’s consistency loss), published optimization schedules, model-
specific missing pattern strategies, and architecture-specific parameters from official implementa-
tions. When exact configurations were unavailable, the same hierarchical priority was applied while
preserving each model’s unique training methodology. Both model categories adapt to natural miss-
ing experiments with PhysioNet2012 training using 0.2 point-wise masking on non-missing values,
while AQI36 follows the T1 protocol with real-pattern based missing augmentation.

B EFFICIENCY ANALYSIS

Comparison with Baseline Methods. Table 7 presents computational efficiency and performance
metrics across T1, DLinear (Zeng et al., 2023), ModernTCN (Luo & Wang, 2024), iTransformer (Liu
et al., 2024), TimesNet (Wu et al., 2023), PatchTST (Nie et al., 2023), TimeMixer++ (Wang et al.,
2024), SAITS (Du et al., 2023), ImputeFormer (Nie et al., 2024), CSDI (Tashiro et al., 2021). T1
achieves the best imputation performance on both ETTh1 and Weather datasets while maintaining
reasonable computational requirements. The comparison reveals significant variations in resource
consumption across models, with methods like CSDI and TimeMixer++ requiring substantially
higher computational complexity, while lightweight approaches like DLinear sacrifice accuracy for
speed. T1 demonstrates an effective balance between performance quality and computational ef-
ficiency, making it suitable for practical deployment scenarios where both accuracy and resource
constraints are important considerations.

1https://github.com/thuml/Time-Series-Library
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Table 7: Computational efficiency and performance comparison on ETTh1 and Weather datasets.
Params (M): parameters in millions; Memory : inference memory; GFLOPs: computational com-
plexity; Train Speed: ms per iteration; MSE: Mean Squared Error (lower is better).

Dataset Model Params (M) Memory GFLOPs Train Speed (ms/iter) MSE

E
T

T
h1

T1 (Ours) 0.543 356.45 0.156 29.84 0.049
DLinear 0.024 22.36 0.003 10.04 0.18
ModernTCN 1.716 120.99 0.039 13.7 0.083
iTransformer 0.223 22.71 0.003 13.95 0.129
TimesNet 0.588 157.78 0.176 39.18 0.13
PatchTST 2.185 2571.3 10.042 89.46 0.082
TimeMixer++ 2.357 437.84 6.235 158.13 0.132
SAITS 5.273 294.49 0.506 37.01 0.092
ImputeFormer 1.368 1060.11 0.645 34.49 0.223
CSDI 1.195 777.71 19.045 154.45 0.083

W
ea

th
er

T1 (Ours) 0.715 793.49 0.467 34.37 0.029
DLinear 0.051 29.07 0.008 7.4 0.044
ModernTCN 2.598 316.17 0.125 11.8 0.038
iTransformer 4.827 119.79 0.203 13.97 0.09
TimesNet 4.698 224.82 1.35 34.59 0.04
PatchTST 0.455 443.88 0.48 21.56 0.037
TimeMixer++ 2.357 1000.74 18.705 205.87 0.034
SAITS 5.297 296.32 0.509 34.59 0.034
ImputeFormer 1.551 1948.48 1.936 52.97 0.042
CSDI 0.326 1122.19 18.238 109.6 0.084

Computational Overhead of Channel-Head Binding. We clarify that Channel-Head Binding
incurs no additional computational overhead compared to standard Multi-Head Attention (MHA)
when the total representation capacity is fixed. Let M denote the number of variables, C the number
of channels, and L the latent temporal dimension. In T1, each of the C heads processes a single
channel with feature dimension L, yielding complexity O(M2 · C · L). Standard MHA with fewer
heads achieves the same total complexity by increasing the per-head dimension proportionally.

To empirically validate this, we measured FLOPs and GPU memory usage across three datasets
with varying variable counts (Table 8). We compare T1’s 1-to-1 binding (nheads = 128) against
grouped-head variants (nheads ∈ {4, 8, 16}) while keeping the total channel count fixed at 128.

The results confirm that FLOPs remain identical across all configurations, as theoretically expected.
For memory usage, T1 shows a minor increase on smaller datasets (1–4%) due to maintaining sep-
arate head computations. However, on the large-scale Electricity dataset (M = 321), T1 consumes
approximately 7.5% less memory than grouped-head variants, as the simplified channel-wise oper-
ations avoid the overhead of reshaping and managing grouped head dimensions. This suggests that
the 1-to-1 binding becomes increasingly efficient as the number of variables grows.

Table 8: Computational overhead comparison across different head configurations. All variants use
128 total channels.

Dataset Model Heads Channels FLOPs Memory (MB)

ETTh1 (M = 7)

T1 (Ours) 128 128 155.6 M 283.2
Grouped (Base) 4 128 155.6 M 280.8
Grouped 8 128 155.6 M 280.0
Grouped 16 128 155.6 M 279.8

Weather (M = 21)

T1 (Ours) 128 128 466.9 M 741.1
Grouped (Base) 4 128 466.9 M 712.0
Grouped 8 128 466.9 M 709.7
Grouped 16 128 466.9 M 709.2

Electricity (M = 321)

T1 (Ours) 128 128 23.8 G 18,567
Grouped (Base) 4 128 23.8 G 20,071
Grouped 8 128 23.8 G 20,010
Grouped 16 128 23.8 G 20,026
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C HYPERPARAMETER SENSITIVITY

We evaluate the sensitivity of T1 to key hyperparameters: the number of attention heads (corre-
sponding to channel dimension C), convolutional kernel size, and FFN expansion ratio. All models
are trained with 40% missing ratio and evaluated on test sets with varying missingness (10%, 30%,
50%, 70%). Results show averaged performance across these test conditions on ETT, Weather, and
Electricity datasets in Figure 4. T1 demonstrates robust performance across all tested configurations.

64 128 256
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Figure 4: Hyperparameter Sensitivity analysis with respect to the number of heads, FFN ratio, and
kernel size.

The model shows minimal sensitivity to variations in the number of heads (64, 128, 256), kernel
sizes (31, 51, 71), and FFN expansion ratios (1, 2, 4) across all datasets. Among these, C=128 pro-
vides a reasonable balance across diverse datasets and missing ratios, which motivates our default
configuration. This stability suggests that T1’s Channel-Head Binding mechanism and architectural
constraints provide natural regularization, making the model less dependent on precise hyperpa-
rameter tuning while maintaining consistent imputation quality across diverse datasets and missing
ratios.

Table 9: Detailed numerical results for the hyperparameter sensitivity analysis on the number of
attention heads under varying missing ratios (0.1, 0.3, 0.5, 0.7).

Number of Heads 64 128 256
Metric MSE MAE MSE MAE MSE MAE

E
T

T
h1

0.1 0.023 0.102 0.025 0.104 0.027 0.110
0.3 0.032 0.116 0.033 0.118 0.036 0.124
0.5 0.047 0.139 0.048 0.140 0.050 0.144
0.7 0.095 0.196 0.091 0.192 0.093 0.194

Avg 0.049 0.138 0.049 0.139 0.052 0.143

E
T

T
h2

0.1 0.023 0.088 0.024 0.089 0.024 0.091
0.3 0.028 0.099 0.029 0.100 0.029 0.102
0.5 0.036 0.115 0.037 0.116 0.038 0.117
0.7 0.054 0.145 0.055 0.145 0.055 0.146

Avg 0.035 0.111 0.036 0.112 0.037 0.114

E
T

T
m

1

0.1 0.013 0.074 0.013 0.073 0.013 0.075
0.3 0.016 0.081 0.016 0.080 0.017 0.082
0.5 0.022 0.093 0.021 0.092 0.022 0.092
0.7 0.039 0.123 0.037 0.119 0.037 0.120

Avg 0.022 0.093 0.022 0.091 0.022 0.092

E
T

T
m

2

0.1 0.012 0.057 0.011 0.055 0.012 0.056
0.3 0.014 0.064 0.014 0.062 0.014 0.063
0.5 0.018 0.074 0.018 0.073 0.018 0.073
0.7 0.027 0.092 0.026 0.091 0.026 0.092

Avg 0.018 0.072 0.017 0.070 0.018 0.071

W
ea

th
er

0.1 0.023 0.034 0.022 0.033 0.023 0.034
0.3 0.025 0.037 0.025 0.036 0.025 0.037
0.5 0.029 0.043 0.028 0.042 0.029 0.043
0.7 0.040 0.063 0.041 0.068 0.041 0.065

Avg 0.029 0.044 0.029 0.045 0.029 0.045

E
le

ct
ri

ci
ty 0.1 0.033 0.117 0.032 0.114 0.031 0.111

0.3 0.037 0.123 0.037 0.121 0.036 0.119
0.5 0.045 0.136 0.045 0.134 0.043 0.132
0.7 0.069 0.174 0.070 0.174 0.068 0.172
Avg 0.046 0.138 0.046 0.136 0.044 0.133

Overall Average 0.033 0.099 0.033 0.099 0.034 0.100
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Table 9 details the sensitivity analysis for the number of attention heads (nh), which determines
channel capacity (nh = C) under our binding mechanism. Results indicate that nh = 128 provides
a favorable balance that ensures robust generalization across diverse data scales and missing ratios.
While a larger capacity (nh = 256) yields marginal benefits on high-dimensional datasets such as
Electricity, it compromises stability on smaller ones. Conversely, a reduced capacity (nh = 64)
limits the representation of fine-grained series such as the ETTm datasets. This evidence justifies
our choice of 128 as a universal default and confirms that T1 achieves robust imputation independent
of dataset-specific parameter tuning.

D ADDITIONAL EXPERIMENTS AND ANALYSIS

D.1 IMPACT OF HEAD SCALING

To distinguish the contribution of the Channel-Head Binding mechanism from the effect of simply
increasing the attention head count, we performed a scalability analysis using iTransformer as a
baseline. We examined whether augmenting the number of heads nheads in standard Multi-Head
Attention could reproduce the performance gains observed in T1.

The evaluation encompassed two scaling strategies designed to match the head capacity of T1 at 128
heads. In the first configuration, we increased nheads while maintaining a constant model dimension,
which results in a reduced head dimension dk. In the second configuration, we increased nheads
while fixing the head dimension, a setup that scales the model dimension dmodel proportionally.

As detailed in Tables 10 and 11, increasing the head count in standard Multi-Head Attention does
not consistently improve performance. For datasets such as ETTh1 and ETTm2, performance tends
to plateau or deteriorate under configurations with high head counts. This trend may stem from
optimization challenges or overfitting associated with the excessive fragmentation of the feature
space or the rapid growth in parameters.

Most importantly, even the optimal iTransformer configuration yields an MSE of 0.072 on Weather,
which remains considerably higher than the 0.029 MSE achieved by T1. These results suggest that
the performance advantage of T1 derives from the structural efficacy of the Channel-Head Bind-
ing mechanism in ensuring semantically aligned information transfer, rather than merely from the
increased quantity of attention heads.

Table 10: Impact of increasing the number of attention heads (nheads) in iTransformer while keeping
the model dimension (dmodel) fixed. Best results for each dataset are highlighted in bold.

Dataset Configuration 0.1 0.3 0.5 0.7 Avg
nheads dmodel dk MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

8 128 16 0.089 0.203 0.102 0.215 0.128 0.239 0.203 0.292 0.131 0.237
16 128 8 0.093 0.208 0.104 0.219 0.130 0.240 0.202 0.292 0.132 0.240
32 128 4 0.095 0.211 0.106 0.220 0.129 0.241 0.202 0.292 0.133 0.241
64 128 2 0.097 0.214 0.110 0.225 0.133 0.244 0.211 0.298 0.138 0.245

128 128 1 0.099 0.216 0.110 0.225 0.135 0.245 0.212 0.298 0.139 0.246

E
T

T
m

2

8 128 16 0.024 0.095 0.027 0.101 0.033 0.113 0.049 0.140 0.033 0.112
16 128 8 0.025 0.096 0.027 0.102 0.033 0.113 0.048 0.139 0.033 0.113
32 128 4 0.025 0.098 0.028 0.103 0.033 0.113 0.047 0.138 0.033 0.113
64 128 2 0.026 0.100 0.028 0.104 0.033 0.114 0.047 0.137 0.034 0.114

128 128 1 0.026 0.100 0.029 0.105 0.033 0.114 0.047 0.136 0.034 0.114

W
ea

th
er

8 512 64 0.087 0.139 0.089 0.139 0.090 0.140 0.093 0.142 0.090 0.140
16 512 32 0.112 0.176 0.112 0.176 0.113 0.177 0.115 0.177 0.113 0.177
32 512 16 0.081 0.130 0.082 0.131 0.083 0.132 0.088 0.136 0.083 0.132
64 512 8 0.086 0.136 0.087 0.137 0.088 0.137 0.091 0.139 0.088 0.137

128 512 4 0.069 0.110 0.070 0.110 0.072 0.112 0.077 0.116 0.072 0.112
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Table 11: Impact of increasing the number of attention heads (nheads) in iTransformer while keeping
the head dimension (dk) fixed. Best results for each dataset are highlighted in bold.

Dataset Configuration 0.1 0.3 0.5 0.7 Avg
nheads dmodel dk MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

8 128 16 0.089 0.203 0.102 0.215 0.128 0.239 0.203 0.292 0.131 0.237
16 256 16 0.090 0.206 0.103 0.217 0.130 0.240 0.216 0.300 0.135 0.241
32 512 16 0.109 0.227 0.120 0.237 0.146 0.257 0.239 0.318 0.154 0.260
64 1024 16 0.129 0.248 0.144 0.259 0.171 0.279 0.256 0.329 0.175 0.279

128 2048 16 0.323 0.379 0.330 0.383 0.347 0.391 0.389 0.410 0.347 0.391
E

T
T

m
2

8 128 16 0.024 0.095 0.027 0.101 0.033 0.113 0.049 0.140 0.033 0.112
16 256 16 0.025 0.097 0.028 0.103 0.033 0.114 0.051 0.144 0.034 0.114
32 512 16 0.029 0.105 0.032 0.110 0.037 0.120 0.050 0.141 0.037 0.119
64 1024 16 0.060 0.158 0.061 0.159 0.063 0.162 0.069 0.169 0.063 0.162

128 2048 16 0.067 0.171 0.069 0.172 0.071 0.174 0.075 0.179 0.071 0.174

W
ea

th
er

8 512 64 0.087 0.139 0.089 0.139 0.090 0.140 0.093 0.142 0.090 0.140
16 1024 64 0.088 0.138 0.087 0.138 0.089 0.139 0.092 0.140 0.089 0.139
32 2048 64 0.113 0.176 0.113 0.176 0.114 0.177 0.115 0.177 0.114 0.177
64 4096 64 0.113 0.176 0.113 0.176 0.114 0.177 0.115 0.177 0.113 0.177

128 8192 64 0.113 0.176 0.113 0.177 0.114 0.177 0.115 0.178 0.114 0.177

D.2 SENSITIVITY ANALYSIS ON TRAINING MASK RATIOS

In practical deployment scenarios, test-time missing ratios are often unknown and dynamic. To vali-
date the robustness of our training strategy, we conducted a comprehensive ablation study by training
T1 with various masking ratios (0.1, 0.3, 0.5, 0.7) and evaluating them across a comprehensive range
of test ratios.

Table 12: Impact of training mask ratios on generalization performance.Bold indicates the best
performance for each test condition.

Training Missing Ratio 0.1 0.3 0.5 0.7
Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

0.1 0.023 0.102 0.023 0.103 0.026 0.109 0.034 0.124
0.3 0.038 0.126 0.033 0.118 0.035 0.122 0.040 0.133
0.5 0.074 0.168 0.051 0.145 0.050 0.142 0.052 0.148
0.7 0.192 0.260 0.106 0.208 0.080 0.181 0.076 0.177
Avg 0.082 0.164 0.053 0.143 0.048 0.139 0.051 0.145

E
T

T
h2

0.1 0.023 0.090 0.024 0.091 0.026 0.096 0.029 0.108
0.3 0.030 0.105 0.030 0.103 0.030 0.105 0.032 0.113
0.5 0.044 0.129 0.039 0.121 0.038 0.119 0.039 0.124
0.7 0.074 0.173 0.063 0.159 0.054 0.145 0.052 0.143
Avg 0.043 0.124 0.039 0.118 0.037 0.116 0.038 0.122

E
T

T
m

1

0.1 0.013 0.074 0.013 0.073 0.013 0.076 0.016 0.083
0.3 0.018 0.086 0.016 0.080 0.016 0.082 0.018 0.087
0.5 0.033 0.112 0.022 0.093 0.021 0.092 0.022 0.094
0.7 0.096 0.181 0.038 0.122 0.033 0.113 0.031 0.111
Avg 0.040 0.113 0.022 0.092 0.021 0.090 0.022 0.094

E
T

T
m

2

0.1 0.012 0.059 0.012 0.059 0.012 0.060 0.014 0.068
0.3 0.016 0.069 0.015 0.068 0.015 0.067 0.016 0.072
0.5 0.023 0.087 0.020 0.080 0.019 0.077 0.019 0.079
0.7 0.041 0.122 0.030 0.102 0.027 0.094 0.026 0.093
Avg 0.023 0.084 0.019 0.077 0.018 0.075 0.019 0.078

W
ea

th
er

0.1 0.022 0.034 0.021 0.031 0.034 0.068 0.030 0.058
0.3 0.028 0.046 0.024 0.034 0.031 0.055 0.029 0.051
0.5 0.040 0.071 0.028 0.040 0.034 0.055 0.030 0.048
0.7 0.064 0.110 0.038 0.057 0.047 0.078 0.035 0.052
Avg 0.039 0.065 0.028 0.041 0.036 0.064 0.031 0.052

E
le

ct
ri

ci
ty 0.1 0.034 0.117 0.037 0.123 0.044 0.140 0.053 0.154

0.3 0.042 0.132 0.042 0.131 0.046 0.140 0.056 0.157
0.5 0.070 0.176 0.052 0.148 0.052 0.147 0.059 0.159
0.7 0.240 0.347 0.115 0.230 0.071 0.177 0.068 0.168
Avg 0.097 0.193 0.061 0.158 0.053 0.151 0.059 0.160
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Table 12 presents the detailed results across six datasets. As expected, models generally achieve
optimal performance when the training missing ratio closely aligns with the test ratio. However, the
results demonstrate that T1 maintains high robustness even under distribution shifts; performance
degradation is significant only when there is an extreme discrepancy between training and testing
conditions (e.g., training at 0.1 and testing at 0.7).

These findings support our choice of a 0.4 training mask ratio as a practical default. As a moderate
masking level, it provides reasonable coverage across both sparse and dense test conditions without
requiring prior knowledge of test-time missing distributions. This allows a single T1 model to be
deployed across diverse missing patterns without instance-specific tuning.

D.3 COMPARISON WITH A DIFFUSION-BASED MODEL

We compare T1 against SSSD (Alcaraz & Strodthoff, 2023), a diffusion-based imputation model
that achieves strong performance through iterative stochastic refinement.

Imputation Performance. Table 13 presents the comparison across seven datasets under varying
missing ratios. T1 achieves lower MSE on most configurations, with notable improvements on
ETTm2 (83.18% average MSE reduction) and Illness (81.70%).

Table 13: Performance comparison between T1 and the diffusion-based model SSSD across varying
missing ratios.

Models T1 (Ours) SSSD Improvement (%)
Metric MSE MAE MSE MAE MSE MAE

E
T

T
h1

0.1 0.024 0.104 0.028 0.115 12.1 9.65
0.3 0.033 0.118 0.037 0.130 11.2 9.75
0.5 0.048 0.139 0.052 0.152 9.1 8.35
0.7 0.093 0.193 0.087 0.193 -6.7 0.39

Avg 0.049 0.138 0.051 0.148 6.44 7.03

E
T

T
h2

0.1 0.024 0.089 0.043 0.132 45.21 32.04
0.3 0.029 0.100 0.056 0.150 48.76 33.40
0.5 0.037 0.116 0.087 0.187 57.05 37.80
0.7 0.055 0.146 0.214 0.294 74.18 50.40

Avg 0.036 0.113 0.100 0.191 56.30 38.41

E
T

T
m

1

0.1 0.013 0.073 0.018 0.092 30.16 20.52
0.3 0.016 0.080 0.025 0.103 35.96 22.28
0.5 0.021 0.091 0.038 0.122 44.21 25.20
0.7 0.037 0.120 0.080 0.169 53.89 29.29

Avg 0.022 0.091 0.040 0.122 41.05 24.32

E
T

T
m

2

0.1 0.011 0.056 0.044 0.133 74.00 58.16
0.3 0.014 0.063 0.071 0.172 80.39 63.64
0.5 0.018 0.073 0.131 0.238 86.28 69.39
0.7 0.026 0.091 0.330 0.383 92.06 76.25

Avg 0.017 0.070 0.144 0.231 83.18 66.86

W
ea

th
er

0.1 0.023 0.034 0.026 0.031 12.05 -9.83
0.3 0.025 0.037 0.030 0.039 15.2 13.86
0.5 0.029 0.043 0.036 0.048 20.3 39.86
0.7 0.041 0.066 0.051 0.069 19.76 3.87

Avg 0.029 0.045 0.036 0.047 16.84 1.94

E
xc

ha
ng

e 0.1 0.001 0.014 0.003 0.035 54.25 59.34
0.3 0.002 0.016 0.004 0.041 53.80 61.40
0.5 0.002 0.019 0.007 0.058 71.78 67.19
0.7 0.003 0.025 0.024 0.103 89.04 75.86

Avg 0.002 0.018 0.009 0.059 67.22 65.95

Il
ln

es
s

0.1 0.016 0.073 0.109 0.166 85.59 55.83
0.3 0.020 0.081 0.141 0.193 86.06 58.27
0.5 0.031 0.098 0.195 0.231 84.10 57.50
0.7 0.085 0.157 0.293 0.293 71.05 46.47

Avg 0.038 0.102 0.184 0.221 81.70 54.52
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Computational Efficiency. Table 14 compares computational requirements. T1’s single-pass ar-
chitecture provides substantial efficiency gains: approximately 1,344× faster inference and 4,295×
faster training compared to SSSD’s multi-step denoising process. T1 also requires significantly
fewer parameters (0.54M vs. 48.11M) and less memory (234MB vs. 5,646MB), making it more
practical for resource-constrained deployment scenarios.

Table 14: Computational efficiency comparison between T1 and SSSD.

Metric T1 (Ours) SSSD Ratio

Parameters (M) 0.54 48.11 89× smaller
GFLOPs 0.155 1.863 12× less
Training Memory (MB) 234 5646 24× less
Inference (ms/sample) 0.60 811 1,344× faster
Training (ms/iter) 47 201,845 4,295× faster
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D.4 VISUALIZATION OF CROSS-VARIABLE ATTENTION PATTERNS
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(a) Time series with masking patterns and mean attention heatmap to target variable (var4)
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(b) Inter-variable attention maps (7×7) for top 10 heads
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(c) Attention difference from clean condition
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Figure 5: Extended attention analysis under varying missingness patterns (expansion of Figure 3(b)).
(a) Left: Example time series (var4 from ETTh1) with four masking strategies targeting peak, non-
peak, high-variance, and low-variance regions. Right: Mean attention weights to the target variable
across 10 heads and 5 conditions. (b) Full 7×7 inter-variable attention maps for the top-10 heads
(sorted by clean attention weights). Magenta lines indicate the target variable (var4). (c) Atten-
tion difference from the clean condition, showing how each head adapts its attention distribution in
response to different missing patterns. Red indicates increased attention; blue indicates decreased
attention.

To provide quantitative illustration of Channel-Head Binding effects, we extend Figure 3(b) with
detailed attention maps. While Figure 3(b) visualizes the top-20 heads, here we focus on the top-10
heads for clearer presentation of attention dynamics under different masking conditions.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

We use a single ETTh1 test sample with 7 variables. Following the experimental setup in Sec-
tion 4.2.4, we mask 30% of the target variable (var4) using four strategies targeting different tem-
poral characteristics: peak regions, non-peak regions, high-variance segments, and low-variance
segments.

Figure 5(b) reveals that different heads learn specialized attention patterns. Some heads exhibit
strong diagonal patterns indicating self-variable focus, while others develop off-diagonal connec-
tions capturing cross-variable dependencies.

Figure 5(c) demonstrates that these attention patterns adapt to the missingness configuration rather
than remaining static. When var4 is masked, many heads reduce their attention to var4 and redis-
tribute it to other variables. This indicates that the model recognizes unreliable sources and seeks
information from alternative variables, enabled by Channel-Head Binding.

E CASE STUDY OF PHYSIONET2012

E.1 DATASET CHARACTERIZATION

PhysioNet Challenge 2012 contains multivariate clinical time series from 4,000 ICU patients with
37 physiological variables recorded over approximately 48 hours. The dataset exhibits substantial
variable-level heterogeneity in missing rates, reflecting real-world clinical measurement protocols.
Vital signs (13 variables) range from 19% to 94% missing, where continuously monitored signals
(e.g., HR at 19%) contrast sharply with intermittently recorded ones (e.g., NISysABP at 94%). Lab
measurements (23 variables) range from 51% to 100% missing, as they require explicit sample
collection. This heterogeneity—where missing rates vary by an order of magnitude even within the
same category—makes PhysioNet2012 an ideal testbed for evaluating T1’s imputation robustness
under realistic, non-uniform missingness.

Table 15: PhysioNet2012 variable-level missing rate distribution by category.

Category # Vars Missing Rate Examples
Vital Signs 13 0.19 – 0.94 HR (0.19), Urine (0.37), Temp (0.67), NISysABP (0.94)
Lab Measurements 23 0.51 – 1.00 Mg (0.51), PaO2 (0.90), Cholesterol (1.00)

E.2 PER-VARIABLE IMPUTATION PERFORMANCE

To examine per-variable imputation behavior, we report MSE and MAE for six representative vari-
ables spanning diverse missing rates (0.19 to 0.91) under the 0.5 additional masking condition (total
∼90% missing). Table 16 presents results for both vital signs (HR, Urine, Temp) and lab mea-
surements (Mg, PaO2, HCT). Variables were selected to represent diverse missing rates across both
categories.

Table 16: Per-variable imputation performance on PhysioNet2012 under 0.5 additional masking.
Variables span diverse missing rates (0.19–0.91) across vital signs and lab measurements. Best
results are in red bold, and second best are blue underlined.

Variable Category Natural
Missing Rate

T1 (Ours) TimesNet DLinear ImputeFormer SAITS PatchTST
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

HR Vital 0.19 0.189 0.296 0.237 0.347 0.245 0.356 0.392 0.431 0.208 0.309 0.351 0.439
Urine Vital 0.37 0.364 0.297 0.408 0.318 0.408 0.322 0.458 0.330 0.426 0.279 0.420 0.332
Temp Vital 0.67 0.239 0.179 0.306 0.222 0.300 0.214 0.339 0.186 0.327 0.186 0.317 0.227
Mg Lab 0.51 0.126 0.171 0.190 0.225 0.195 0.228 0.207 0.203 0.133 0.165 0.299 0.321
PaO2 Lab 0.90 0.067 0.085 0.082 0.118 0.083 0.117 0.094 0.077 0.094 0.079 0.091 0.120
HCT Lab 0.91 0.069 0.087 0.094 0.128 0.094 0.127 0.097 0.076 0.097 0.076 0.095 0.127

T1 achieves the lowest MSE across all six variables, demonstrating consistent improvements regard-
less of the inherent missing rate. Notably, the model maintains its performance advantage even for
variables with extremely high missing rates (e.g., PaO2, HCT), confirming its capability to robustly
reconstruct dynamics from sparse, irregular observations where baseline methods often struggle.
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E.3 QUALITATIVE VISUALIZATION

To provide a clear comparison among different models, we present imputation showcases for three
representative variables in Figures 6–8, which are produced by the following models: T1, Times-
Net (Wu et al., 2023), PatchTST (Nie et al., 2023), DLinear (Zeng et al., 2023), ImputeFormer (Nie
et al., 2024), and SAITS (Du et al., 2023). All results are shown under 50% additional masking.
Among the compared models, T1 produces the most accurate imputations across various sparsity
levels.
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Figure 6: Visualization of imputation results on PhysioNet2012 for HR.
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Figure 7: Visualization of imputation results on PhysioNet2012 for Temp.
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Figure 8: Visualization of imputation results on PhysioNet2012 for PaO2.

F FULL RESULTS

Table 17: Full results with point missing ratios( 0.1, 0.3, 0.5, 0.7) across datasets.

Models T1 (Ours) TimeMixer++ ModernTCN iTransformer Timesnet PatchTST DLinear ImputeFormer Saits CSDI BRITS PSW-I
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

0.1 0.024 0.104 0.090 0.201 0.053 0.162 0.087 0.201 0.094 0.211 0.044 0.146 0.161 0.274 0.064 0.158 0.026 0.109 0.039 0.129 0.052 0.146 0.079 0.188
0.3 0.033 0.118 0.098 0.208 0.054 0.161 0.100 0.213 0.100 0.214 0.050 0.152 0.107 0.222 0.129 0.204 0.044 0.132 0.060 0.154 0.077 0.180 0.105 0.213
0.5 0.048 0.139 0.125 0.229 0.073 0.181 0.127 0.237 0.120 0.229 0.074 0.180 0.153 0.251 0.238 0.279 0.085 0.181 0.089 0.187 0.122 0.234 0.125 0.234
0.7 0.093 0.193 0.215 0.290 0.153 0.251 0.203 0.293 0.208 0.293 0.161 0.261 0.300 0.347 0.459 0.421 0.214 0.291 0.146 0.241 0.233 0.334 0.194 0.289

Avg 0.049 0.138 0.132 0.232 0.083 0.189 0.129 0.236 0.130 0.237 0.082 0.185 0.180 0.273 0.223 0.266 0.092 0.178 0.083 0.178 0.121 0.223 0.126 0.231

E
T

T
h2

0.1 0.024 0.089 0.057 0.148 0.041 0.131 0.051 0.148 0.052 0.153 0.036 0.122 0.066 0.172 0.132 0.212 0.132 0.254 0.058 0.110 0.126 0.247 0.035 0.124
0.3 0.029 0.100 0.060 0.151 0.041 0.130 0.055 0.154 0.054 0.156 0.039 0.127 0.055 0.156 0.183 0.251 0.155 0.276 0.054 0.127 0.162 0.281 0.041 0.133
0.5 0.037 0.116 0.067 0.160 0.048 0.141 0.064 0.166 0.063 0.167 0.048 0.141 0.067 0.171 0.356 0.342 0.230 0.331 0.075 0.150 0.232 0.337 0.047 0.145
0.7 0.055 0.146 0.087 0.186 0.075 0.178 0.085 0.193 0.092 0.201 0.075 0.178 0.104 0.215 1.047 0.611 0.583 0.507 0.116 0.188 0.385 0.443 0.059 0.165

Avg 0.036 0.113 0.068 0.161 0.051 0.145 0.064 0.165 0.065 0.169 0.049 0.142 0.073 0.178 0.429 0.354 0.275 0.342 0.075 0.144 0.226 0.327 0.046 0.142

E
T

T
m

1

0.1 0.013 0.073 0.035 0.117 0.022 0.101 0.041 0.132 0.025 0.106 0.019 0.092 0.147 0.248 0.025 0.102 0.015 0.082 0.020 0.091 0.024 0.099 0.034 0.112
0.3 0.016 0.080 0.036 0.118 0.023 0.100 0.046 0.140 0.025 0.106 0.022 0.097 0.063 0.164 0.041 0.121 0.021 0.094 0.027 0.102 0.037 0.123 0.040 0.120
0.5 0.021 0.091 0.042 0.128 0.032 0.116 0.057 0.156 0.035 0.121 0.031 0.112 0.089 0.188 0.075 0.154 0.038 0.122 0.036 0.117 0.063 0.167 0.048 0.133
0.7 0.037 0.120 0.094 0.180 0.085 0.179 0.110 0.208 0.095 0.187 0.081 0.173 0.229 0.300 0.203 0.244 0.129 0.210 0.054 0.144 0.158 0.276 0.066 0.158

Avg 0.022 0.091 0.052 0.136 0.040 0.124 0.063 0.159 0.045 0.130 0.038 0.119 0.132 0.225 0.086 0.155 0.051 0.127 0.034 0.114 0.070 0.166 0.047 0.131

E
T

T
m

2

0.1 0.011 0.056 0.024 0.088 0.019 0.084 0.024 0.095 0.021 0.088 0.017 0.074 0.037 0.127 0.061 0.121 0.057 0.155 0.022 0.067 0.069 0.177 0.016 0.083
0.3 0.014 0.063 0.026 0.090 0.020 0.085 0.027 0.101 0.021 0.089 0.019 0.079 0.028 0.105 0.067 0.132 0.071 0.174 0.027 0.077 0.108 0.225 0.018 0.088
0.5 0.018 0.073 0.030 0.098 0.025 0.096 0.032 0.111 0.026 0.098 0.023 0.087 0.035 0.118 0.093 0.160 0.093 0.200 0.036 0.091 0.211 0.318 0.021 0.096
0.7 0.026 0.091 0.041 0.119 0.041 0.125 0.046 0.136 0.040 0.125 0.036 0.114 0.060 0.160 0.382 0.317 0.190 0.273 0.055 0.111 0.592 0.536 0.029 0.110

Avg 0.017 0.070 0.030 0.099 0.026 0.098 0.032 0.111 0.027 0.100 0.024 0.089 0.040 0.128 0.151 0.183 0.103 0.201 0.035 0.087 0.245 0.314 0.021 0.094

W
ea

th
er

0.1 0.023 0.034 0.028 0.048 0.035 0.076 0.087 0.137 0.036 0.079 0.032 0.063 0.043 0.093 0.030 0.039 0.024 0.028 0.045 0.035 0.026 0.039 0.092 0.062
0.3 0.025 0.037 0.030 0.047 0.031 0.059 0.088 0.137 0.033 0.065 0.032 0.058 0.033 0.063 0.033 0.042 0.026 0.031 0.092 0.038 0.037 0.062 0.098 0.066
0.5 0.029 0.043 0.034 0.052 0.034 0.062 0.090 0.138 0.037 0.069 0.036 0.064 0.038 0.070 0.039 0.049 0.033 0.041 0.098 0.043 0.076 0.113 0.107 0.072
0.7 0.041 0.066 0.045 0.071 0.051 0.093 0.093 0.140 0.055 0.102 0.049 0.089 0.060 0.110 0.065 0.084 0.055 0.078 0.099 0.051 0.307 0.256 0.131 0.088

Avg 0.029 0.045 0.034 0.055 0.038 0.072 0.090 0.138 0.040 0.079 0.037 0.069 0.044 0.084 0.042 0.053 0.034 0.045 0.084 0.042 0.112 0.117 0.107 0.072

PE
M

S0
3 0.1 0.014 0.076 0.035 0.131 0.049 0.162 0.036 0.134 0.048 0.160 0.032 0.120 0.126 0.269 0.025 0.096 0.049 0.134 0.113 0.141 0.048 0.128 0.044 0.142

0.3 0.015 0.078 0.036 0.131 0.034 0.128 0.029 0.116 0.040 0.138 0.029 0.116 0.047 0.155 0.028 0.103 0.055 0.147 0.067 0.147 0.055 0.144 0.046 0.146
0.5 0.018 0.089 0.039 0.136 0.036 0.132 0.036 0.130 0.046 0.152 0.034 0.128 0.054 0.166 0.050 0.151 0.060 0.155 0.068 0.158 0.074 0.179 0.049 0.150
0.7 0.035 0.130 0.064 0.175 0.106 0.242 0.092 0.206 0.101 0.236 0.055 0.166 0.150 0.290 0.216 0.349 0.077 0.181 0.078 0.177 0.125 0.255 0.056 0.159

Avg 0.021 0.093 0.044 0.143 0.056 0.166 0.048 0.147 0.059 0.171 0.038 0.133 0.094 0.220 0.080 0.175 0.060 0.154 0.082 0.155 0.076 0.176 0.049 0.149

E
xc

ha
ng

e 0.1 0.001 0.014 0.002 0.019 0.005 0.047 0.003 0.029 0.003 0.029 0.002 0.023 0.006 0.047 0.018 0.042 0.099 0.275 0.008 0.053 0.024 0.113 0.026 0.022
0.3 0.002 0.016 0.002 0.020 0.007 0.057 0.003 0.031 0.003 0.028 0.002 0.023 0.003 0.033 0.016 0.044 0.127 0.304 0.006 0.051 0.050 0.175 0.028 0.023
0.5 0.002 0.019 0.002 0.022 0.010 0.067 0.004 0.035 0.003 0.030 0.002 0.026 0.004 0.037 0.019 0.057 0.184 0.351 0.006 0.053 0.113 0.272 0.032 0.026
0.7 0.003 0.025 0.003 0.029 0.013 0.078 0.005 0.042 0.005 0.041 0.004 0.037 0.008 0.057 0.071 0.135 0.311 0.447 0.008 0.060 0.272 0.434 0.039 0.033

Avg 0.002 0.018 0.002 0.023 0.009 0.062 0.004 0.034 0.003 0.032 0.003 0.027 0.005 0.044 0.031 0.070 0.180 0.344 0.007 0.054 0.115 0.249 0.031 0.026

Il
ln

es
s

0.1 0.016 0.073 0.167 0.254 0.216 0.356 0.122 0.223 0.435 0.388 0.100 0.208 0.414 0.468 0.478 0.435 0.397 0.405 1118. 12.22 0.234 0.293 0.029 0.086
0.3 0.020 0.081 0.170 0.252 0.134 0.256 0.151 0.247 0.480 0.404 0.080 0.176 0.173 0.282 0.545 0.468 0.484 0.447 677.8 10.65 0.317 0.343 0.056 0.109
0.5 0.031 0.098 0.220 0.282 0.189 0.292 0.208 0.291 0.585 0.459 0.107 0.200 0.227 0.304 0.643 0.515 0.629 0.508 362.9 7.886 0.451 0.419 0.070 0.124
0.7 0.085 0.157 0.396 0.377 0.500 0.495 0.340 0.370 0.834 0.583 0.234 0.308 0.565 0.516 0.880 0.603 0.944 0.621 189.5 5.476 0.701 0.543 0.114 0.170

Avg 0.038 0.102 0.238 0.291 0.260 0.350 0.205 0.283 0.583 0.458 0.130 0.223 0.345 0.392 0.636 0.505 0.614 0.495 586.9 9.057 0.426 0.399 0.067 0.122

E
le

ct
ri

ci
ty 0.1 0.031 0.112 0.056 0.153 0.124 0.260 0.060 0.170 0.092 0.208 0.079 0.198 0.240 0.394 0.049 0.142 0.133 0.260 0.130 0.219 0.116 0.242 0.073 0.177

0.3 0.036 0.119 0.050 0.145 0.088 0.208 0.053 0.153 0.095 0.213 0.070 0.185 0.102 0.235 0.054 0.148 0.138 0.264 0.135 0.226 0.135 0.265 0.089 0.196
0.5 0.043 0.131 0.064 0.165 0.085 0.205 0.068 0.174 0.103 0.224 0.076 0.193 0.121 0.257 0.069 0.171 0.149 0.272 0.145 0.237 0.171 0.305 0.115 0.220
0.7 0.063 0.162 0.116 0.226 0.189 0.337 0.180 0.300 0.128 0.255 0.130 0.258 0.302 0.437 0.133 0.247 0.189 0.311 0.167 0.258 0.247 0.378 0.148 0.239

Avg 0.043 0.131 0.071 0.172 0.121 0.253 0.090 0.199 0.105 0.225 0.089 0.208 0.191 0.331 0.076 0.177 0.152 0.277 0.144 0.235 0.168 0.298 0.106 0.208
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1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Table 18: The standard deviation of Table 17.

Models T1 (Ours) TimeMixer++ ModernTCN iTransformer Timesnet PatchTST DLinear ImputeFormer Saits CSDI BRITS PSW-I
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

0.1 0.001 0.001 0.008 0.011 0.004 0.006 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.007 0.010 0.002 0.005 0.002 0.002 0.008 0.004 0.008 0.004
0.3 0.000 0.001 0.011 0.012 0.001 0.002 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.023 0.017 0.006 0.009 0.004 0.004 0.004 0.008 0.004 0.008
0.5 0.000 0.000 0.016 0.015 0.002 0.003 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.046 0.029 0.015 0.017 0.008 0.007 0.003 0.009 0.003 0.009
0.7 0.002 0.002 0.024 0.016 0.008 0.007 0.003 0.002 0.004 0.003 0.004 0.005 0.002 0.001 0.093 0.058 0.033 0.030 0.016 0.012 0.004 0.006 0.004 0.006

Avg 0.001 0.001 0.015 0.013 0.004 0.004 0.001 0.001 0.001 0.002 0.002 0.003 0.001 0.001 0.042 0.029 0.014 0.015 0.008 0.006 0.005 0.007 0.005 0.007

E
T

T
h2

0.1 0.000 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.002 0.000 0.001 0.001 0.002 0.006 0.004 0.017 0.018 0.027 0.005 0.007 0.002 0.007 0.002
0.3 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.023 0.009 0.017 0.016 0.003 0.005 0.005 0.002 0.005 0.002
0.5 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.075 0.026 0.020 0.011 0.012 0.005 0.006 0.003 0.006 0.003
0.7 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.003 0.003 0.003 0.003 0.001 0.001 0.077 0.024 0.139 0.062 0.037 0.007 0.001 0.003 0.001 0.003

Avg 0.000 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.045 0.016 0.048 0.027 0.020 0.005 0.005 0.003 0.005 0.003

E
T

T
m

1

0.1 0.000 0.000 0.000 0.001 0.001 0.002 0.001 0.001 0.002 0.004 0.000 0.000 0.004 0.004 0.004 0.005 0.002 0.008 0.001 0.002 0.001 0.002 0.001 0.002
0.3 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.001 0.003 0.003 0.000 0.000 0.001 0.001 0.012 0.009 0.004 0.011 0.001 0.002 0.009 0.009 0.009 0.009
0.5 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.002 0.004 0.003 0.000 0.001 0.001 0.001 0.032 0.021 0.010 0.018 0.002 0.003 0.000 0.008 0.000 0.008
0.7 0.000 0.001 0.006 0.004 0.001 0.002 0.003 0.002 0.009 0.006 0.018 0.017 0.002 0.001 0.103 0.056 0.029 0.032 0.003 0.003 0.003 0.009 0.003 0.009

Avg 0.000 0.000 0.002 0.002 0.001 0.001 0.001 0.002 0.004 0.004 0.005 0.004 0.002 0.002 0.038 0.023 0.011 0.017 0.002 0.002 0.003 0.007 0.003 0.007

E
T

T
m

2

0.1 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.004 0.006 0.008 0.015 0.001 0.002 0.003 0.003 0.003 0.003
0.3 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.007 0.011 0.016 0.001 0.002 0.004 0.009 0.004 0.009
0.5 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.010 0.011 0.015 0.004 0.002 0.008 0.007 0.008 0.007
0.7 0.000 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.001 0.001 0.000 0.001 0.000 0.000 0.097 0.053 0.021 0.012 0.017 0.004 0.006 0.002 0.006 0.002

Avg 0.000 0.001 0.001 0.002 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.029 0.019 0.013 0.014 0.006 0.002 0.005 0.005 0.005 0.005

W
ea

th
er

0.1 0.001 0.001 0.000 0.001 0.002 0.006 0.000 0.000 0.001 0.003 0.001 0.001 0.001 0.002 0.002 0.004 0.000 0.001 0.045 0.035 0.005 0.010 0.005 0.010
0.3 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.003 0.000 0.001 0.001 0.001 0.003 0.004 0.000 0.001 0.092 0.038 0.004 0.003 0.004 0.003
0.5 0.000 0.001 0.000 0.000 0.001 0.002 0.000 0.000 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.003 0.001 0.002 0.098 0.043 0.000 0.009 0.000 0.009
0.7 0.000 0.001 0.000 0.001 0.002 0.004 0.001 0.000 0.001 0.002 0.002 0.004 0.001 0.001 0.004 0.006 0.002 0.004 0.099 0.051 0.002 0.001 0.002 0.001

Avg 0.000 0.001 0.000 0.001 0.001 0.003 0.000 0.000 0.001 0.002 0.001 0.002 0.001 0.001 0.003 0.004 0.001 0.002 0.084 0.042 0.003 0.006 0.003 0.006

PE
M

S0
3 0.1 0.000 0.001 0.001 0.002 0.002 0.003 0.001 0.003 0.002 0.005 0.002 0.004 0.001 0.001 0.003 0.006 0.000 0.001 0.113 0.141 0.008 0.009 0.008 0.009

0.3 0.000 0.000 0.001 0.002 0.001 0.002 0.000 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.002 0.005 0.001 0.002 0.067 0.147 0.009 0.000 0.009 0.000
0.5 0.000 0.001 0.000 0.001 0.000 0.001 0.001 0.001 0.002 0.003 0.000 0.000 0.000 0.000 0.009 0.019 0.001 0.003 0.068 0.158 0.003 0.006 0.003 0.006
0.7 0.003 0.007 0.001 0.002 0.002 0.002 0.003 0.004 0.016 0.021 0.000 0.001 0.000 0.000 0.073 0.080 0.002 0.004 0.078 0.177 0.009 0.007 0.009 0.007

Avg 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.005 0.007 0.001 0.002 0.001 0.001 0.022 0.028 0.001 0.003 0.082 0.155 0.007 0.006 0.007 0.006

E
xc

ha
ng

e 0.1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.011 0.010 0.008 0.013 0.008 0.053 0.000 0.002 0.000 0.002
0.3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.007 0.009 0.012 0.006 0.051 0.001 0.005 0.001 0.005
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.010 0.010 0.010 0.006 0.053 0.005 0.005 0.005 0.005
0.7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.068 0.084 0.005 0.008 0.008 0.060 0.009 0.004 0.009 0.004

Avg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.028 0.008 0.011 0.007 0.054 0.004 0.004 0.004 0.004

Il
ln

es
s

0.1 0.001 0.003 0.050 0.043 0.037 0.026 0.000 0.004 0.023 0.011 0.003 0.002 0.038 0.023 0.030 0.017 0.054 0.039 596.549 5.643 0.005 0.005 0.005 0.005
0.3 0.001 0.002 0.045 0.042 0.019 0.018 0.000 0.003 0.017 0.010 0.003 0.004 0.010 0.008 0.031 0.015 0.073 0.042 411.993 5.189 0.007 0.004 0.007 0.004
0.5 0.001 0.001 0.044 0.040 0.023 0.015 0.000 0.001 0.016 0.009 0.001 0.000 0.014 0.009 0.026 0.011 0.075 0.038 213.524 3.328 0.006 0.007 0.006 0.007
0.7 0.004 0.003 0.024 0.031 0.049 0.016 0.009 0.004 0.015 0.006 0.010 0.006 0.019 0.012 0.039 0.011 0.092 0.043 119.279 2.150 0.007 0.006 0.007 0.006

Avg 0.002 0.002 0.041 0.039 0.032 0.019 0.002 0.003 0.018 0.009 0.004 0.003 0.020 0.013 0.031 0.014 0.073 0.041 335.336 4.078 0.006 0.006 0.006 0.006

E
le

ct
ri

ci
ty 0.1 0.000 0.001 0.007 0.008 0.004 0.007 0.002 0.003 0.001 0.000 0.001 0.002 0.005 0.004 0.003 0.004 0.003 0.002 0.025 0.019 0.008 0.005 0.008 0.005

0.3 0.000 0.000 0.007 0.008 0.002 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.004 0.002 0.002 0.021 0.018 0.002 0.001 0.002 0.001
0.5 0.000 0.000 0.008 0.007 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.004 0.007 0.003 0.002 0.019 0.015 0.003 0.002 0.003 0.002
0.7 0.001 0.002 0.007 0.007 0.012 0.014 0.002 0.002 0.003 0.003 0.001 0.001 0.002 0.001 0.016 0.020 0.007 0.008 0.016 0.012 0.002 0.009 0.002 0.009

Avg 0.000 0.001 0.007 0.007 0.005 0.006 0.001 0.001 0.001 0.001 0.000 0.001 0.002 0.002 0.007 0.009 0.004 0.003 0.020 0.016 0.004 0.004 0.004 0.004

Table 19: The standard deviation of Table 3.

Dataset T1 (Ours) TimeMixer++ ModernTCN iTransformer TimesNet PatchTST DLinear ImputeFormer SAITS
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.004 0.003 0.010 0.010 0.011 0.008 0.002 0.002 0.003 0.002 0.003 0.003 0.003 0.001 0.008 0.010 0.002 0.005
ETTh2 0.002 0.001 0.002 0.001 0.004 0.003 0.006 0.002 0.002 0.002 0.000 0.001 0.006 0.003 0.022 0.008 0.014 0.015
ETTm1 0.003 0.001 0.002 0.002 0.003 0.003 0.003 0.002 0.007 0.005 0.000 0.000 0.004 0.005 0.005 0.006 0.004 0.008
ETTm2 0.001 0.001 0.000 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.002 0.001 0.008 0.004 0.010 0.014
Weather 0.001 0.001 0.001 0.001 0.003 0.007 0.001 0.000 0.003 0.003 0.002 0.002 0.001 0.002 0.002 0.004 0.001 0.001
PEMS03 0.000 0.001 0.003 0.004 0.002 0.004 0.001 0.003 0.002 0.005 0.003 0.005 0.001 0.001 0.004 0.008 0.001 0.001
Exchange 0.001 0.001 0.000 0.000 0.000 0.001 0.002 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.006 0.010 0.007 0.013
Illness 0.011 0.007 0.037 0.038 0.044 0.033 0.007 0.005 0.017 0.007 0.023 0.008 0.038 0.021 0.016 0.008 0.045 0.034
Electricity 0.002 0.001 0.007 0.007 0.004 0.007 0.002 0.004 0.001 0.000 0.001 0.002 0.006 0.005 0.003 0.004 0.003 0.002

Avg 0.003 0.002 0.007 0.007 0.008 0.007 0.003 0.002 0.004 0.003 0.004 0.002 0.007 0.004 0.008 0.007 0.010 0.010

Table 20: The standard deviation of Table 4.
PhysioNet2012 - Natural ( 80%) + Additional Missing

Additional T1 (Ours) TimeMixer++ ModernTCN iTransformer TimesNet PatchTST DLinear ImputeFormer SAITS
Missing Ratio MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

0.1 (Total: 82%) 0.003 0.002 0.001 0.001 0.031 0.027 0.012 0.006 0.014 0.006 0.026 0.018 0.006 0.003 0.010 0.009 0.019 0.002
0.3 (Total: 86%) 0.005 0.002 0.376 0.001 0.029 0.024 0.006 0.005 0.010 0.005 0.018 0.014 0.005 0.003 0.010 0.008 0.010 0.002
0.5 (Total: 90%) 0.004 0.002 0.035 0.001 0.027 0.019 0.011 0.004 0.008 0.005 0.015 0.011 0.006 0.003 0.010 0.007 0.012 0.002
0.7 (Total: 94%) 0.006 0.002 0.164 0.002 0.018 0.013 0.009 0.003 0.008 0.003 0.012 0.008 0.010 0.003 0.009 0.006 0.010 0.002

Avg 0.004 0.002 0.144 0.001 0.026 0.021 0.010 0.004 0.010 0.005 0.018 0.013 0.007 0.003 0.010 0.007 0.013 0.002

AQI36 - Natural Missing Only (15-30%)
Test Set 0.007 0.003 0.015 0.005 0.007 0.004 0.008 0.004 0.008 0.007 0.004 0.004 0.005 0.006 0.024 0.024 0.007 0.007
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