
Published as a conference paper at COLM 2025

Hyperparameter Loss Surfaces Are Simple Near their Optima

Nicholas Lourie
New York University
nick.lourie@nyu.edu

He He
New York University
hhe@nyu.edu

Kyunghyun Cho
New York University & Genentech
kyunghyun.cho@nyu.edu

Abstract

Hyperparameters greatly impact models’ capabilities; however, modern
models are too large for extensive search. Instead, researchers design
recipes that train well across scales based on their understanding of the
hyperparameters. Despite this importance, few tools exist for understand-
ing the hyperparameter loss surface. We discover novel structure in it and
propose a new theory yielding such tools. The loss surface is complex,
but as you approach the optimum simple structure emerges. It becomes
characterized by a few basic features, like its effective dimension and the
best possible loss. To uncover this asymptotic regime, we develop a novel
technique based on random search. Within this regime, the best scores from
random search take on a new distribution we discover. Its parameters are
exactly the features defining the loss surface in the asymptotic regime. From
these features, we derive a new asymptotic law for random search that
can explain and extrapolate its convergence. These new tools enable new
analyses, such as confidence intervals for the best possible performance or
determining the effective number of hyperparameters. We make these tools
available at https://github.com/nicholaslourie/opda.

Figure 1: The hyperparameter loss surface has simple structure near the optimum. Using
this structure, we can reason about how the validation score will improve as we run an
algorithm like random search. The plots compare the theoretical functional form against
the empirical rate of progress using 1,024 training runs in each. The ground truth (dashed
blue) closely adheres to the theoretical form (solid yellow), with that form remaining fully
inside its 95% confidence bands. Across all three scenarios—language model pretraining (log
loss), supervised finetuning (error rate), and image classification (error rate)—the simple structure
near the optimum drives the practical outcomes of hyperparameter search after just 1 or 2 iterations.

1 Introduction

Hyperparameters affect every aspect of foundation models, from efficiency to generalization.
Unfortunately, extensive hyperparameter search becomes impossible at scale. Instead,
researchers must design recipes that work across scales based on their understanding of the
hyperparameters. Still, few tools exist for understanding the hyperparameter loss surface.

1

https://github.com/nicholaslourie/opda

Published as a conference paper at COLM 2025

We want to understand the surface, but it is too expensive to explore it—instead we must
exploit its structure. We need an empirical theory of the hyperparameter loss surface. A
similar theory, scaling laws, has had tremendous success at balancing data and compute
without search (Rosenfeld et al., 2020; Kaplan et al., 2020; Hoffmann et al., 2022); however,
scale is just one aspect of a model’s design. Researchers must also consider things like the
data mix, regularization, and architecture. µTransfer offers insights on optimization hyper-
parameters such as the initialization and the learning rate (Yang et al., 2021); nonetheless, it
does not offer a general theory of the loss surface or reveal whether it has deeper structure.

We discover such structure exists and propose a new theory describing it. While the
hyperparameter loss surface is complex, as you approach the optimum simple structure
emerges. In a large area around it, the surface’s structure is dominated by a few basic
features: the effective dimension, the noise due to random seeds, and the best possible loss.
Here, in the asymptotic regime, the surface looks like a quadratic polynomial with additive,
normally distributed noise.

To find the asymptotic regime, we look for the shadow it casts on random search. In it, the
scores from random search take on a specific distribution: the noisy quadratic. So, we look for
a threshold after which the scores follow this distribution. Imagine you run random search,
obtain validation scores, and plot their distribution, then you will see the distribution’s tail
matches a noisy quadratic. The point at which they match defines the asymptotic regime.

The noisy quadratic comes from a new limit theorem we prove for random search. Under
regularity conditions, the best validation scores will follow a noisy quadratic. This theorem
explains and extrapolates how random search converges—uncovering its asymptotic law.

Beyond search, the noisy quadratic captures properties of the hyperparameter loss surface.
Each of the distribution’s parameters corresponds to a different one: the effective number of
hyperparameters, the variance due to random seeds, the concentration of probability near
the optimum, and the best hyperparameters’ loss. By fitting the distribution, we can estimate
these properties. Thus, the noisy quadratic lets us find both where simple structure emerges
and what it looks like. Better still, since the noisy quadratic is a parametric distribution, we
can construct confidence intervals for these properties using maximum likelihood theory.

Of course, a good theory must reflect the data. We validate our theory in three practical
scenarios: language model pretraining, supervised finetuning, and image classification (§4).
Training 1,024 models in each, we test that our theoretical form fits the empirical distribution
from random search (§4.1). In all three scenarios, the theoretical form adheres closely to
the ground truth. Moreover, the asymptotic regime is always large—occupying a third to
half of the search space. Beyond fit, we test our assumptions: is the noise actually normal
with constant variance (§4.2)? In fact, it converges to normality long before the asymptotic
regime, and while the variance begins inflated it quickly converges to a constant. Last, we
test our theory’s application. In each scenario, we extrapolate how random search will
converge based on the first 48 search iterations (§4.3). While our point estimates mostly
smooth their nonparametric baselines, the confidence bands show a dramatic improvement.

With our theory, researchers can identify the asymptotic regime, understand its structure,
extrapolate how random search will converge, and infer properties of the hyperparameter
loss surface—all while quantifying their uncertainty. So that others may use these tools in
their own research, we make them available at: https://github.com/nicholaslourie/opda.

Simple Structure Emerges Around the Optimum

Simple Structure. In a large
area around the optimum, the
hyperparameter loss surface
is approximately a quadratic
polynomial plus noise which
is normally distributed with
constant variance.

Around the optimum. This
structure emerges for all the
points whose loss is better
than some threshold. Beyond
this threshold, the scores from
random search follow a noisy
quadratic distribution (right).

2

https://github.com/nicholaslourie/opda

Published as a conference paper at COLM 2025

2 A Theory Based on Simple Structure

Our theory starts with a simple claim: near the best hyperparameters, the loss surface
is approximately quadratic with additive normal noise. This structure emerges for those
hyperparameters (xxx) whose expected loss (Y) is better than some threshold: E[Y | xxx] ≤ θ,
and that threshold defines the asymptotic regime. But, how do we find it?

Finding the asymptotic regime in a high dimensional search space would be challenging;
instead, we look for the effect it leaves upon random search. Within the asymptotic regime,
the scores found by random search follow a new parametric family: the noisy quadratic
distribution. By finding where these scores converge to it, we find the threshold defining
the asymptotic regime. The noisy quadratic’s parameters then let us infer other properties
of the loss surface, such as the best possible performance and its effective dimension.

Here, we derive these results informally, for proofs see §F.

2.1 Formalizing Hyperparameter Search

Imagine fitting a neural network—perhaps pretraining a language model.1 Many choices
must be made: Which architecture? What learning rate? Each one is a hyperparameter, and
each hyperparameter takes a value from the hyperparameter search space, xxx = [x1, . . . , xd] ∈ X.
Evaluating the network then produces a score, y ∈ Y ⊂ R, such as cross-entropy. This score
is a random variable that depends on the initialization and the data order as well as the
hyperparameters: Y | xxx. Its conditional distribution defines the hyperparameter loss surface,
and in particular we will be interested in its mean: g(xxx) = E[Y|xxx].
To optimize it, we use a hyperparameter tuning algorithm. Each round, the algorithm
(randomly) selects a hyperparameter configuration, XXXi, evaluates it to obtain a score, Yi,
then keeps the best one found so far:

Tk := min
i=1...k

Yi (1)

We can think of k → Tk as a random function, which we call the tuning process.

The tuning process captures the whole distribution of outcomes from hyperparameter
search; however, it is a complex, high dimensional object. Instead of the whole distribution,
it is convenient to consider a summary like the median. Letting M[X] be the median of X,
the tuning curve is the function, τ : R>0 → Y:2

τ(k) := M[Tk] (2)
The tuning curve concisely describes how hyperparameter search might progress. In general,
it depends on the model, the search space, and the search algorithm. Holding the model
fixed, we can compare the efficiency of different tuning algorithms; holding the algorithm
fixed, we can compare the difficulty of tuning different models.

A simple standard for comparing models is random search. In it, we sample hyperparameter
configurations from a fixed search distribution, XXXi ∼ X . Since configurations are sampled
independently, their scores are independent as well. In essence, the scores come from a
fixed score distribution, Yi ∼ Y . By analyzing this distribution, we can understand the whole
tuning process. For example, the best loss after k rounds is just the minimum of k draws, and
the minimum’s cumulative distribution function (CDF), Fk(y) = P(Tk ≤ y), has a simple
relationship to the CDF of one sample, F(y) = P(Yi ≤ y):

Fk(y) = 1 − P

(
min

i=1...k
Yi > y

)
= 1 − ∏

i=1...k
P(Yi > y) = 1 − (1 − F(y))k (3)

Thus, the distribution from one round of random search defines the distribution from k
rounds. If we can estimate the distribution’s tail, then we can extrapolate infinitely into
the future—capturing the entire tuning process. To accomplish this, we need to find an
appropriate parametric form.

1This section closely follows our formalization in Lourie et al. (2024) (§3.1).
2Following Lourie et al. (2024), we extend the definition of the tuning curve from k ∈ N to all

k ∈ R>0 by defining Tk as the random variable with CDF F(y)k.

3

Published as a conference paper at COLM 2025

Figure 2: With more iterations, random search finds better hyperparameters. As the best
score improves, the region of better hyperparameters shrinks around the optimum; thereby,
the Taylor polynomial gives better approximations at the hyperparameters that improve the score.

2.2 The Deterministic Case

Imagine the loss surface has no noise—that evaluating hyperparameters is deterministic.
How would random search behave? At any point in time, the only hyperparameters that
matter are the ones that might improve the loss. As search continues, you find better
hyperparameters, and the region of even better ones shrinks about the optimum. As this
region shrinks, the Taylor polynomial becomes a better approximation within it. Figure 2
illustrates this idea.

At the optimum, (xxx∗, y∗), the gradient is 000 so the Taylor series is given by the Hessian, Hxxx∗ :

g(xxx) ≈ y∗ +
1
2
(xxx − xxx∗)T Hxxx∗(xxx − xxx∗) (4)

At the same time, any continuous probability density is roughly constant on a small enough
interval; thus, near the optimum, the search distribution is approximately uniform.

Putting these facts together, we derive the tail of the score distribution via a geometric
argument. Consider the event Y = g(XXX) ≤ y. Rearranging the Taylor approximation gives:

1
2
(xxx − xxx∗)T Hxxx∗(xxx − xxx∗) ≤ y − y∗ (5)

Since xxx∗ is a minimum, the Hessian is positive semi-definite. If we marginalize out the null
dimensions, then this equation defines an ellipsoid. P(Y ≤ y) is proportional to its volume,
which is proportional to (y − y∗)

d∗/2, where d∗ is the rank of the Hessian. Thus, as y → y∗:

F(y) = P(Y ≤ y) ∝ (y − y∗)
d∗/2 (6)

Motivated by this analysis, we define the convex quadratic distribution, Qmin(ω, β, γ), by
F(y; ω, β, γ) := ω(y − α)γ/2. Usually, we prefer an alternative parametrization. Let β be the
maximum of the distribution’s support. F(β) = ω(β − α)γ/2 = 1, so ω = (β − α)−γ/2 thus:

F(y; α, β, γ) :=
(

y − α

β − α

)γ/2

(7)

We can differentiate the CDF to obtain the probability density function (PDF):

f (y; α, β, γ) =
γ

2(β − α)

(
y − α

β − α

) γ−2
2

(8)

Each parameter relates to a different aspect of the hyperparameter loss surface: α is the best
possible score, β measures how concentrated the distribution is near the minimum, and γ is
the effective number of hyperparameters—which is always less than the nominal number.

In summary, we derive a new parametric family: the quadratic distribution. This family
describes the score distribution’s tail when optimizing a deterministic function via random
search. For minimization, the left tail approaches the convex quadratic distribution; for
maximization the right tail approaches the concave quadratic distribution. We give formulas
for both in §A. For more details on the derivation, see §E.

4

Published as a conference paper at COLM 2025

2.3 The Stochastic Case

The validation score is rarely a deterministic function of the hyperparameters. More often,
the score varies due to random factors such as the initialization and data order.

Still, even when the scores are random, their conditional mean, E[Y|XXX], is not. We could
apply our previous analysis to the mean, but we would need to bridge the gap between it
and the actual observations. Taking inspiration from classic regression analysis, we might
consider whether Y varies about the mean with additive noise. Let g(XXX) = E[Y|XXX], then we
assume Y = g(XXX) + E where E ∼ N (0, σ). This simple assumption seems too good to be
true, but in fact it gives a great fit to the data (§4.1). Even more surprisingly, if you retrain
the same hyperparameters many times, the scores do in fact become normally distributed
with constant variance as you enter the asymptotic regime (§4.2). Thus, additive noise offers
a realistic model for this random variation.

Assuming Y = g(XXX) + E, the tail of g(XXX) converges to a quadratic distribution, so:

Y ≈ Q + E, Q ∼ Qmin(α, β, γ), E ∼ N (0, σ) (9)

This sum defines a new family: the noisy quadratic distribution, Q(α, β, γ, σ). It comes in
two variants: the convex (Qmin) and concave (Qmax) noisy quadratic distributions. Moreover,
when σ = 0, we recover the (noiseless) quadratic distribution as a special case.3

Let Φ be the CDF of the standard normal distribution. The CDF of the noisy quadratic is:

F(y; α, β, γ, σ) = Φ
(

y − β

σ

)
+ E1

0

[
Vγ/2

]
, V ∼ N

(
y − α

β − α
,

σ

β − α

)
(10)

The noisy quadratic’s PDF is:

f (y; α, β, γ, σ) =
γ

2(β − α)
E1

0

[
V

γ−2
2

]
, V ∼ N

(
y − α

β − α
,

σ

β − α

)
(11)

Thus, we can express the noisy quadratic distribution’s CDF and PDF in terms of properties
of the normal distribution. For mathematical details, see §F.2. Equations 10 and 11 require
numerical methods to evaluate, so we provide robust implementations in our library opda.

In summary, we extend the quadratic distribution to a more general family: the noisy quadratic
distribution. This family describes the score distribution—and thus the outcomes—of random
search in typical deep learning scenarios. When minimizing, the score distribution’s left tail
converges to a convex noisy quadratic; when maximizing, its right tail converges to a concave
noisy quadratic. See §B for formulas for both.

2.4 Applying the Theory in Practice

The noisy quadratic distribution is a powerful tool for studying neural networks. With it,
we can answer two types of questions: we can use it to reason about random search, and we
can use random search to understand the hyperparameter loss surface.

For random search: its convergence is described by the tuning curve, and the tuning curve
is determined by the noisy quadratic. In particular, random search is fast when the effective
number of hyperparameters (γ) is low.4 For a given model, we can find how easy it is to
tune by estimating its tuning curve using the noisy quadratic (e.g., see §4.3).

For the hyperparameter loss surface: its most important properties are captured by the
noisy quadratic’s parameters. When minimizing (maximizing), α (β) is the average score
of the best hyperparameters and γ is the effective number of them. We can estimate these
quantities by fitting the noisy quadratic. Moreover, we can use maximum likelihood theory
to test hypotheses and create confidence intervals for them (e.g., via a likelihood ratio test).
For example, you could test if adding a new hyperparameter increases the effective number.

3When the variant is clear from context, we write the distribution unadorned: Q(α, β, γ, σ). We
differentiate the quadratic, Q(α, β, γ), and noisy quadratic, Q(α, β, γ, σ), by the presence of σ.

4In our derivation (§2.2), the effective number of hyperparameters is the rank of the Hessian.

5

https://github.com/nicholaslourie/opda

Published as a conference paper at COLM 2025

To apply our theory, you must pick a search space and search distribution. A few tips. With
a small number of discrete hyperparameters, you can evenly stratify over them to ensure
good coverage. More generally, the noisy quadratic emerges when there exist coordinates in
which the hyperparameters are uniform and the loss surface adheres to its 2nd order Taylor
polynomial. Sampling on the right scales really helps. Start bounded hyperparameters on
a logit, positive ones on a log, and real-valued ones on a linear scale. Afterwards, adjust
as necessary. Sample uniformly (on that scale) between the bounds you would normally
choose for a grid search. Tighter bounds speed up convergence, but they still must contain
the optimum. To find the asymptotic regime, fit the noisy quadratic to the empirical CDF
(eCDF) with several thresholds until you find the loosest one that gives a good visual fit.5

3 Experimental Setup

To test our theory, we run random search on representative scenarios: Llama 33M (Touvron
et al., 2023) on SlimPajama (Soboleva et al., 2023) for language modeling, DeBERTaV3 (He
et al., 2023) on MultiNLI (Williams et al., 2018) for supervised finetuning, and ResNet18 (He
et al., 2016) on ImageNet (Russakovsky et al., 2015) for vision pretraining. To fully capture
the score distribution, we train 1,024 separate hyperparameter configurations in each.

Llama 33M is a smaller variant of Llama, a causal transformer (Vaswani et al., 2017). We
pretrain it on SlimPajama-6B,6 a subset of the SlimPajama web corpus. We tune the learning
rate, β1 and β2 for Adam (Kingma & Ba, 2015), warmup steps, weight decay, and dropout.

DeBERTaV3 is a pretrained BERT-like model (Devlin et al., 2019). In Lourie et al. (2024), we
finetuned it on MultiNLI, a natural language inference benchmark. We tuned the learning
rate, fraction of first epoch for warmup, batch size, number of epochs, and dropout.

ResNet18 is a convolutional network with residual connections. We train it with momentum
SGD and a 1-cycle policy (Smith & Topin, 2018) on ImageNet, an image classification
benchmark used for vision pretraining. We tune the learning rate, peak epoch, momentum,
batch size, epochs, weight decay, label smoothing, and blurpool (an architectural parameter).

For the models’ search distributions see §C. Our analysis and random search results (includ-
ing sampled configurations and full learning curves) are available in opda (v0.8.0).

We validate our theory in three parts.

Assessing Goodness of Fit. We confirm the noisy quadratic matches the score distribution
from random search. To do so, we estimate the score distribution using the eCDF and the
nonparametric confidence bands from Lourie et al. (2024). We then fit the noisy quadratic to
its tail via censored maximum spacing estimation (Cheng & Amin, 1983; Ranneby, 1984).
We select the threshold for the asymptotic regime via visual diagnostics.

Testing Additive Normal Errors. We verify our strongest assumptions: normality and
homoskedasticity of the variation due to random seeds. For this, we take the ResNet18
results, pick the configurations scoring at the 12.5th, 25th, up to 100th percentile, and retrain
each 128 times to obtain large samples from score distributions with fixed hyperparameters.

Estimating and Extrapolating the Tuning Curve. To demonstrate how to use our results
to evaluate a model, we subsample 48 iterations of random search without replacement
from the full 1,024 for each model. For the ground truth eCDF, we use all 1,024 iterations.
For nonparametric estimates, we construct the eCDF and Lourie et al.’s (2024) confidence
bands from the subsample. For parametric estimates, we select the asymptotic regime via
visual diagnostics using only the subsample, fit the noisy quadratic distribution to the tail
via censored maximum spacing estimation (Cheng & Amin, 1983; Ranneby, 1984), and
compute parametric confidence bands from the nonparametric ones as consonance regions
(Easterling, 1976). We compute these via brute-force search with a grid of 64 log-spaced
values for σ, 128 linearly spaced values for α, and 256 linearly spaced values for β.

5For an example, see the Extrapolating Random Search section of the Validating the Parametric
Analysis in Practice notebook in opda (v0.8.0).

6https://huggingface.co/datasets/DKYoon/SlimPajama-6B

6

https://github.com/nicholaslourie/opda/tree/v0.8.0
https://nbviewer.org/github/nicholaslourie/opda/blob/v0.8.0/nbs/experiments/validating-the-parametric-analysis-in-practice.ipynb#Extrapolating-Random-Search
https://github.com/nicholaslourie/opda/blob/v0.8.0/nbs/experiments/validating-the-parametric-analysis-in-practice.ipynb
https://github.com/nicholaslourie/opda/blob/v0.8.0/nbs/experiments/validating-the-parametric-analysis-in-practice.ipynb
https://github.com/nicholaslourie/opda/tree/v0.8.0

Published as a conference paper at COLM 2025

Figure 3: A comparison of the score distribution (empirical) and noisy quadratic (theoretical).
The top row depicts CDFs, the bottom row depicts tuning curves. Each column corresponds
to a different scenario: pretraining Llama 33M on SlimPajama-6B (cross-entropy), finetuning
DeBERTaV3 on MultiNLI (error rate), and training ResNet18 on ImageNet (error rate). The
asymptotic regime is the performance threshold beyond which the theoretical approximations
apply. All estimates use the scenarios’ full 1,024 iterations of random search. In the asymptotic
regime, the noisy quadratic distribution matches the score distribution from random search.

4 Testing the Theory

4.1 Assessing Goodness of Fit

Our main claim is that simple structure in the hyperparameter loss surface determines
practical outcomes from search. Using this structure, we derived theoretical forms for the
score distribution and tuning curve. Figure 3 compares these forms to what you actually
observe.

Across three scenarios, the empirical and theoretical distributions show an excellent fit. In
each, both the noisy quadratic’s CDF and its median tuning curve closely adhere to the
ground truth. They remain within the 95% confidence bands at all times. And, as theory
predicts, the point estimates fit the ground truth almost perfectly in the asymptotic regime.

Besides showing our assumptions are satisfied, these results show the theory is practically
relevant. It is not enough for the hyperparameter loss surface to have structure at the
optimum; that structure must occupy enough space around it to be useful. Figure 3 confirms
this. In each scenario, a large fraction of the score distribution falls within the asymptotic
regime: 44% for Llama 33M, 57% for DeBERTaV3, and 34% for ResNet18. These search
spaces are broad, typical of what practitioners might use when tuning a new model. Still,
almost the entire tuning curve falls in the asymptotic regime, from the first few iterations.
These results also generalize when you use the same search space on new architectures (see
§D). Empirically, the asymptotic regime explains much of the behavior you see in practice.

7

Published as a conference paper at COLM 2025

Figure 4: Diagnostics for the score distribution’s normality given fixed hyperparameters.
The top row shows histograms with kernel density estimates; the bottom shows Q-Q plots.
Columns represent configurations across error rate percentiles for ResNet18 on ImageNet.
All except the worst performing hyperparameters demonstrate a very high degree of normality.

Figure 5: A comparison of standard deviations for the score given fixed hyperparameters.
The x-axis gives configurations at different error rate percentiles for ResNet18 on ImageNet.
Points are standard deviations at those percentiles. Confidence intervals are simultaneous.
The standard deviation quickly converges to a constant long before the asymptotic regime.

4.2 Testing Additive Normal Errors

If you fix the hyperparameters, are the scores really normal with constant variance? Often,
bad hyperparameters are unstable so we only expect this structure after the scores exceed
some threshold (the asymptotic regime). We take search results from ResNet18, pick the
configurations at the 12.5%, 25%, to 100% best error rates, and retrain each 128 times. The
claim has two parts: the scores are normally distributed, and their variances are constant.

Testing Normality. We test normality using the venerable normal probability plot. In
addition, we show histograms and kernel density estimates (KDEs) to offer a more intuitive
visualization. Figure 4 displays the results. On the top, besides the worst hyperparameters,
the distributions exhibit a familiar bell curve. The normal probability plots are even more
decisive. On the bottom, the sample quantiles almost all fall on the y = x line, corresponding
to the quantiles of the normal. Each plot from 25% on up displays a high degree of normality.

Testing Constant Variance. We test constant variance by plotting simultaneous confidence
intervals for the standard deviation across the error rates. As we have confirmed normality,
we use the χ2 confidence interval for the standard deviation of a normal distribution; as
the intervals are independent, we make them simultaneous via a Šidák correction. Figure 5
shows the result. The standard deviation drops to a constant around 37.5%. From then on,
all confidence intervals contain a common value (1.2e-3, the mean of the last three points).
The intervals are small, so it is unlikely any large differences exist. Thus, the standard
deviation begins inflated, but converges to a constant long before the asymptotic regime.

Both analyses suggest the same conclusion: bad hyperparameters exhibit bad structure, but
as hyperparameters improve—as you approach the optimum—simple structure emerges.

8

Published as a conference paper at COLM 2025

Figure 6: Examples of nonparametric (empirical) and noisy quadratic (theoretical) estimates.
The top shows CDFs, the bottom shows tuning curves. Columns are different scenarios: pre-
training Llama 33M on SlimPajama-6B (cross-entropy), finetuning DeBERTaV3 on MultiNLI
(error rate), and training ResNet18 on ImageNet (error rate). The asymptotic regime is the
threshold beyond which the noisy quadratic was fit. Estimates use 48 iterations of search.
The noisy quadratic distribution gives tighter bands for the tuning curve at the same confidence.

4.3 Estimating and Extrapolating the Tuning Curve

We found simple structure in the hyperparameter loss surface. But, how can we use it?
We want better tools for designing experiments—for answering questions like: did a new
method actually improve the model, or did we just improve its hyperparameters? To answer
this, we can estimate the model’s tuning curve, or performance as a function of tuning effort
(Dodge et al., 2019; Lourie et al., 2024); however, such estimates can be unreliable. With the
noisy quadratic, we can construct better estimates and confidence bands. In particular, we
can extrapolate how the score might improve as we continue hyperparameter search.

To explore this use case, we subsample 48 search iterations in each of the three scenarios. For
each subsample, we plotted the eCDF to visually determine a threshold for the asymptotic
regime. We chose thresholds based on where the eCDF began to show the expected structure.
We estimated thresholds of 3.66 for Llama, 0.104 for DeBERTaV3, and 0.302 for ResNet18.
Then, we fit the noisy quadratic distribution to these subsamples using the thresholds.

Figure 6 compares the parametric estimates against nonparametric baselines from Lourie
et al. (2024). The parametric point estimates smooth out their nonparametric counterparts.
This makes sense as both attempt to fit the same data: when the sample is not representative,
they err in a similar way. This variation underscores the need for confidence bands. There,
the approaches give dramatically different results. The parametric bands enclose the ground
truth when the nonparametric ones do;7 however, while the nonparametric bands become
trivial after 8 iterations, the parametric bands extrapolate past all 48 used to construct them.

7At 80% confidence, at least 1 of the 3 bands will fail to contain the ground truth 48.8% of the time.

9

Published as a conference paper at COLM 2025

5 Related Work

Hyperparameters have always been an essential part of deep learning (Orr & Müller, 1998;
Montavon et al., 2012); however, foundation models pose new challenges due to their cost.

Some researchers have sought theoretical solutions, such as µTransfer (Yang et al., 2021).
µTransfer reparametrizes several important hyperparameters, such as the learning rate
or initialization variance, so that their optimal values stay constant across scales. When
successful, this lets you find hyperparameters at small scales and transfer to large ones.

To balance resources at scale, researchers turn to empirical scaling laws (Hestness et al.,
2017; Rosenfeld et al., 2020; Kaplan et al., 2020; Hoffmann et al., 2022). Scaling laws predict
how loss improves as more resources become available. The first scaling laws revealed that
loss has a power law relationship with parameters and data (Rosenfeld et al., 2020; Kaplan
et al., 2020). Since then, researchers have discovered scaling laws for many other quantities
(Liu et al., 2024; Ludziejewski et al., 2024; Kumar et al., 2025). Like our work, scaling laws
find structure in the loss surface—most often a power law, which is equivalent to linear
structure on log scales. Unlike our work, scaling laws focus on specific inputs. Aside from
scale, there are many hyperparameters that impact performance.

Several authors have explored structure in the hyperparameter loss surface (Pushak & Hoos,
2018). Pushak & Hoos (2022) look at AutoML pipelines and find that, while researchers
typically use complex optimization algorithms, the loss surface is often unimodal or even
convex. Conversely, Sohl-Dickstein (2024) discovers intricate, fractal-like structure at the
boundary of where training succeeds for neural networks. In contrast to prior work, we
focus exclusively on the hyperparameters around the optimum—the area of most practical
interest. By focusing there, we are able to uncover the quadratic structure with normal noise,
a structure that is far more regular than those previously found.

We uncover this structure via a limit theorem for random search. Similar limits are explored
in extreme value theory (Coles, 2001; de Haan & Ferreira, 2006). For example, the Pickands-
Balkema-De Haan theorem gives conditions under which the tail of a distribution converges
to a generalized Pareto distribution (Pickands, 1975; Balkema & de Haan, 1974), which
relates closely to the (noiseless) quadratic. Rather than the general theorems of extreme
value theory, we analyze a specific mechanism in order to build an empirical theory of the
hyperparameter loss surface.

6 Conclusion

The hyperparameter loss surface has simple structure near the optimum: it is approximately
quadratic with additive normal noise. Surprisingly, this structure describes the surface quite
well and holds over a large region about the optimum—up to 57% of the search space.

Using this structure, we derived a theory of random search in deep learning. We developed
a parametric family for the score distribution’s tail. This family comes in two forms: the
quadratic in the deterministic case, and the noisy quadratic in the stochastic one.

The noisy quadratic distribution generalizes the first, and has four interpretable parameters:8
α, the average performance of the best possible hyperparameters, β, a measure of the
probability in the asymptotic regime, γ, the effective number of hyperparameters, and σ, the
scale of the noise due to random seeds. These parameters correspond to characteristics of
the loss surface. Thus, our theory lets you reason about random search based on properties
of the loss surface, but also to reason about the loss surface based on the behavior of random search.

We studied the loss surface to design better tools for deep learning experiments. While
hyperparameter tuning is an orthogonal goal, our discoveries might suggest more efficient
algorithms, e.g. Bayesian optimization kernels that exploit the quadratic-normal structure.

Our theory offers new tools for deep learning and foundation model research. So that others
may use them, we make them available at: https://github.com/nicholaslourie/opda.

8When maximizing instead of minimizing, the roles of α and β are reversed.

10

https://github.com/nicholaslourie/opda

Published as a conference paper at COLM 2025

Acknowledgments

We thank the anonymous reviewers for their valuable feedback. In addition, we thank
Wanmo Kang for helpful suggestions while developing this work. This work was supported
by the Institute of Information & Communications Technology Planning & Evaluation (IITP)
with a grant funded by the Ministry of Science and ICT (MSIT) of the Republic of Korea
in connection with the Global AI Frontier Lab International Collaborative Research. This
work was also supported by the Samsung Advanced Institute of Technology (under the
project Next Generation Deep Learning: From Pattern Recognition to AI) and the National
Science Foundation (under NSF Award 1922658). This work was supported in part through
the NYU IT High Performance Computing resources, services, and staff expertise.

References
A. A. Balkema and L. de Haan. Residual Life Time at Great Age. The Annals of Probability, 2

(5):792 – 804, 1974. doi: 10.1214/aop/1176996548. URL https://doi.org/10.1214/aop/
1176996548.

R. C. H. Cheng and N. A. K. Amin. Estimating Parameters in Continuous Univariate Distri-
butions with a Shifted Origin. Journal of the Royal Statistical Society: Series B (Methodological),
45(3):394–403, 7 1983. ISSN 0035-9246. doi: 10.1111/j.2517-6161.1983.tb01268.x. URL
https://doi.org/10.1111/j.2517-6161.1983.tb01268.x.

S. Coles. An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics.
Springer, 2001. ISBN 9781852334598.

L. de Haan and A. Ferreira. Extreme Value Theory: An Introduction. Springer Series in Opera-
tions Research and Financial Engineering. Springer New York, 2006. ISBN 9780387239460.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Jill Burstein, Christy
Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association
for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.
org/N19-1423.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy Schwartz, and Noah A. Smith. Show
your work: Improved reporting of experimental results. In Kentaro Inui, Jing Jiang,
Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 2185–2194, Hong Kong, China, November
2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1224. URL
https://aclanthology.org/D19-1224.

Robert G. Easterling. Goodness of fit and parameter estimation. Technometrics, 18(1):1–9,
1976. doi: 10.1080/00401706.1976.10489394. URL https://www.tandfonline.com/doi/
abs/10.1080/00401706.1976.10489394.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778, 2016. doi: 10.1109/CVPR.2016.90.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-
enhanced bert with disentangled attention. In International Conference on Learning Repre-
sentations, 2021. URL https://openreview.net/forum?id=XPZIaotutsD.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. DeBERTav3: Improving DeBERTa us-
ing ELECTRA-style pre-training with gradient-disentangled embedding sharing. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=sE7-XhLxHA.

11

https://doi.org/10.1214/aop/1176996548
https://doi.org/10.1214/aop/1176996548
https://doi.org/10.1111/j.2517-6161.1983.tb01268.x
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/D19-1224
https://www.tandfonline.com/doi/abs/10.1080/00401706.1976.10489394
https://www.tandfonline.com/doi/abs/10.1080/00401706.1976.10489394
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA

Published as a conference paper at COLM 2025

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan
Kianinejad, Md. Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling
is predictable, empirically, 2017. URL https://arxiv.org/abs/1712.00409.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai,
Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark,
Thomas Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karén Simonyan, Erich Elsen, Oriol Vinyals, Jack
Rae, and Laurent Sifre. An empirical analysis of compute-optimal large language model
training. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems, volume 35, pp. 30016–30030. Curran
Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper files/paper/2022/
file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models, 2020. URL https://arxiv.org/abs/2001.08361.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations, 2015. URL https://arxiv.org/abs/
1412.6980.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks, 2014.
URL https://arxiv.org/abs/1404.5997.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q.
Weinberger (eds.), Advances in Neural Information Processing Systems, volume 25. Curran
Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper files/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

Tanishq Kumar, Zachary Ankner, Benjamin Frederick Spector, Blake Bordelon, Niklas Muen-
nighoff, Mansheej Paul, Cengiz Pehlevan, Christopher Re, and Aditi Raghunathan. Scal-
ing laws for precision. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=wg1PCg3CUP.

Xiaoran Liu, Hang Yan, Chenxin An, Xipeng Qiu, and Dahua Lin. Scaling laws of roPE-
based extrapolation. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=JO7k0SJ5V6.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and
Saining Xie. A convnet for the 2020s. In 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 11966–11976, 2022. doi: 10.1109/CVPR52688.2022.01167.

Nicholas Lourie, Kyunghyun Cho, and He He. Show your work with confidence: Confi-
dence bands for tuning curves. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.),
Proceedings of the 2024 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 3455–3472,
Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.naacl-long.189. URL https://aclanthology.org/2024.naacl-long.189.

Jan Ludziejewski, Jakub Krajewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul,
Szymon Antoniak, Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Piotr Sankowski,
Marek Cygan, and Sebastian Jaszczur. Scaling laws for fine-grained mixture of ex-
perts. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pp. 33270–33288. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/
ludziejewski24a.html.

Grégoire Montavon, Geneviève Orr, and Klaus-Robert Müller. Neural Networks: Tricks of the
Trade. Lecture Notes in Computer Science. Springer Berlin, Heidelberg, 2nd edition, 2012.
ISBN 9783642352881.

12

https://arxiv.org/abs/1712.00409
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1404.5997
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://openreview.net/forum?id=wg1PCg3CUP
https://openreview.net/forum?id=JO7k0SJ5V6
https://aclanthology.org/2024.naacl-long.189
https://proceedings.mlr.press/v235/ludziejewski24a.html
https://proceedings.mlr.press/v235/ludziejewski24a.html

Published as a conference paper at COLM 2025

Geneviève Orr and Klaus-Robert Müller. Neural Networks: Tricks of the Trade. Lecture Notes
in Computer Science. Springer, 1998. ISBN 9783540653110.

James Pickands, III. Statistical Inference Using Extreme Order Statistics. The Annals of
Statistics, 3(1):119 – 131, 1975. doi: 10.1214/aos/1176343003. URL https://doi.org/10.
1214/aos/1176343003.

Yasha Pushak and Holger Hoos. Algorithm configuration landscapes: More benign than
expected? In Anne Auger, Carlos M. Fonseca, Nuno Lourenço, Penousal Machado, Luı́s
Paquete, and Darrell Whitley (eds.), Parallel Problem Solving from Nature – PPSN XV, pp.
271–283, Cham, 2018. Springer International Publishing. ISBN 978-3-319-99259-4.

Yasha Pushak and Holger Hoos. Automl loss landscapes. ACM Trans. Evol. Learn. Optim., 2
(3), November 2022. doi: 10.1145/3558774. URL https://doi.org/10.1145/3558774.

Bo Ranneby. The maximum spacing method. an estimation method related to the maximum
likelihood method. Scandinavian Journal of Statistics, 11(2):93–112, 1984. ISSN 03036898,
14679469. URL http://www.jstor.org/stable/4615946.

Jonathan S. Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive
prediction of the generalization error across scales. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=ryenvpEKDr.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. Imagenet large scale visual recognition challenge. Int. J. Comput. Vision, 115
(3):211–252, dec 2015. ISSN 0920-5691. doi: 10.1007/s11263-015-0816-y. URL https:
//doi.org/10.1007/s11263-015-0816-y.

Leslie N. Smith and Nicholay Topin. Super-convergence: Very fast training of neural
networks using large learning rates, 2018. URL https://arxiv.org/abs/1708.07120.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel
Hestness, and Nolan Dey. SlimPajama: A 627B token cleaned and
deduplicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama, 2023.
URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Jascha Sohl-Dickstein. The boundary of neural network trainability is fractal, 2024. URL
https://arxiv.org/abs/2402.06184.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien
Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and
efficient foundation language models, 2023. URL https://arxiv.org/abs/2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Marilyn Walker, Heng Ji, and Amanda
Stent (eds.), Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp.
1112–1122, New Orleans, Louisiana, June 2018. Association for Computational Linguistics.
doi: 10.18653/v1/N18-1101. URL https://aclanthology.org/N18-1101.

13

https://doi.org/10.1214/aos/1176343003
https://doi.org/10.1214/aos/1176343003
https://doi.org/10.1145/3558774
http://www.jstor.org/stable/4615946
https://openreview.net/forum?id=ryenvpEKDr
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://arxiv.org/abs/1708.07120
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://arxiv.org/abs/2402.06184
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/N18-1101

Published as a conference paper at COLM 2025

Ge Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi,
Nick Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neu-
ral networks via zero-shot hyperparameter transfer. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, volume 34, pp. 17084–17097. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper files/paper/2021/file/
8df7c2e3c3c3be098ef7b382bd2c37ba-Paper.pdf.

14

https://proceedings.neurips.cc/paper_files/paper/2021/file/8df7c2e3c3c3be098ef7b382bd2c37ba-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/8df7c2e3c3c3be098ef7b382bd2c37ba-Paper.pdf

Published as a conference paper at COLM 2025

A The Quadratic Distribution

As derived in §2.2, the formulas for the convex quadratic distribution are:

F(y; α, β, γ) :=
(

y − α

β − α

)γ/2

(12)

f (y; α, β, γ) =
γ

2(β − α)

(
y − α

β − α

) γ−2
2

(13)

The equivalent formulas for the concave quadratic distribution are:

F(y; α, β, γ) := 1 −
(

β − y
β − α

)γ/2

(14)

f (y; α, β, γ) =
γ

2(β − α)

(
β − y
β − α

) γ−2
2

(15)

The quadratic distribution is supported only on the interval α ≤ y ≤ β. These formulas are
valid within that interval. Outside of it, the density is 0; below it, the CDF is 0; above it,
the CDF is 1. The quadratic distribution family is a special case of the four parameter beta
distribution, and closely relates to its other special case, the power function distribution.

For more derivations, properties, and discussion of the quadratic distribution, see The
Quadratic Distribution section of the Parametric Analysis notebook in opda (v0.8.0).

B The Noisy Quadratic Distribution

As derived in §2.3, the formulas for the convex noisy quadratic distribution are:

F(y; α, β, γ, σ) = Φ
(

y − β

σ

)
+ E1

0

[
Vγ/2

]
, V ∼ N

(
y − α

β − α
,

σ

β − α

)
(16)

f (y; α, β, γ, σ) =
γ

2(β − α)
E1

0

[
V

γ−2
2

]
, V ∼ N

(
y − α

β − α
,

σ

β − α

)
(17)

The equivalent formulas for the concave noisy quadratic distribution are:

F(y; α, β, γ, σ) = Φ
(

y − α

σ

)
− E1

0

[
Vγ/2

]
, V ∼ N

(
β − y
β − α

,
σ

β − α

)
(18)

f (y; α, β, γ, σ) =
γ

2(β − α)
E1

0

[
V

γ−2
2

]
, V ∼ N

(
β − y
β − α

,
σ

β − α

)
(19)

Unlike the quadratic distribution, the noisy quadratic is supported on the entire real line.

For more derivations, properties, and discussion of the noisy quadratic distribution, see The
Noisy Quadratic Distribution section of the Parametric Analysis notebook in opda (v0.8.0).

15

https://nbviewer.org/github/nicholaslourie/opda/blob/v0.8.0/nbs/theory/parametric-analysis.ipynb#The-Quadratic-Distribution
https://nbviewer.org/github/nicholaslourie/opda/blob/v0.8.0/nbs/theory/parametric-analysis.ipynb#The-Quadratic-Distribution
https://github.com/nicholaslourie/opda/blob/v0.8.0/nbs/theory/parametric-analysis.ipynb
https://github.com/nicholaslourie/opda/tree/v0.8.0
https://nbviewer.org/github/nicholaslourie/opda/blob/v0.8.0/nbs/theory/parametric-analysis.ipynb#The-Noisy-Quadratic-Distribution
https://nbviewer.org/github/nicholaslourie/opda/blob/v0.8.0/nbs/theory/parametric-analysis.ipynb#The-Noisy-Quadratic-Distribution
https://github.com/nicholaslourie/opda/blob/v0.8.0/nbs/theory/parametric-analysis.ipynb
https://github.com/nicholaslourie/opda/tree/v0.8.0

Published as a conference paper at COLM 2025

C Models and Search Distributions

As described in §3, we use random search results for Llama 33M, DeBERTaV3, and ResNet18.

For Llama 33M, we used the following search distribution:

lr ∼ LogUniform(1e−5, 1e−1)
beta1 ∼ Uniform(0.7, 1)
beta2 ∼ Uniform(0.8, 1)

warmup steps ∼ DiscreteUniform(0, 3000)
weight decay ∼ LogUniform(1e−4, 1e0)

dropout ∼ Uniform(0, 0.1)

For DeBERTaV3, we used the following search distribution in Lourie et al. (2024):

batch size ∼ DiscreteUniform(16, 64)
num epochs ∼ DiscreteUniform(1, 4)

warmup proportion ∼ Uniform(0, 0.6)
learning rate ∼ LogUniform(1e−6, 1e−3)

dropout ∼ Uniform(0, 0.3)

Note that warmup proportion is the proportion of the first epoch only.

For ResNet18, we used the following search distribution:

epochs ∼ DiscreteUniform(20, 100)
batch size ∼ DiscreteUniform({128, 256, 512, 1024})

lr ∼ LogUniform(5e−3, 5e1)
proportion ∼ Uniform(0, 0.8)

lr peak epoch = ⌊proportion× epochs⌋
momentum ∼ Uniform(0.7, 1.0)

weight decay ∼ LogUniform(1e−6, 1e−3)
label smoothing ∼ Uniform(0.0, 0.5)

use blurpool ∼ DiscreteUniform(0, 1)

In §D, we present additional results that validate our theory’s generality and how it applies
across architectures. For it, we compare DeBERTaV3 to DeBERTa (He et al., 2021), both tuned
using DeBERTaV3’s search distribution above. We also run random search on AlexNet
(Krizhevsky et al., 2012; Krizhevsky, 2014), ResNet18 (He et al., 2016), and ConvNext Tiny
(Liu et al., 2022) using ResNet18’s search distribution above, except fixing use blurpool
to 0 because ConvNext does not use maxpool (or blurpool) layers and thus we can not
consistently apply the hyperparameter to all three.

D Generalization Across Architectures

While our theory is general, it is also asymptotic; thus, it is natural to ask: how quickly does
the asymptotic approximation apply in practice? For Llama 33M, DeBERTaV3, and ResNet18
we saw the asymptotic regime covered 44%, 57%, and 34% of the score distribution—
applying from the first or second iteration of random search. Still, perhaps the asymptotic

16

Published as a conference paper at COLM 2025

Figure 7: A comparison of the noisy quadratic (theoretical) and the score distribution
(empirical) across different architectures trained on ImageNet. Each column corresponds
to a different model: AlexNet, ResNet18, and ConvNext. All models use the same search
distribution, and the estimates use 512, 495, and 512 iterations of random search, respectively.
Empirical estimates are from the empirical distribution, while theoretical estimates use the
noisy quadratic fitted to the tail via censored maximum spacing estimation. For all three
models tuned with the same search distribution, the asymptotic regime covers a large fraction of the
search space and the noisy quadratic demonstrates an excellent fit to the score distribution.

regime applies only because these architectures are so advanced, or the search spaces match
them particularly well.

To investigate such questions, we compare ResNet18 with two other architectures: AlexNet
(Krizhevsky et al., 2012; Krizhevsky, 2014) and ConvNext Tiny (Liu et al., 2022). AlexNet
goes from ResNet into the past: many consider it the first major architecture of the current
deep learning renaissance and, as such, it is considerably less advanced than ResNet—
missing later innovations such as batch normalization or residual connections. On the other
hand, ConvNext goes from ResNet into the future: it starts with the ResNet architecture
and applies lessons learned from transformer-based models. We obtain 512, 495, and 512
iterations of random search for AlexNet, ResNet18, and ConvNext, using the same search
distribution across all three (see §C). By using the same search distribution across all three
models, we guarantee it is not unusually well-suited to any specific one.

Similarly, we use the same search space across DeBERTa (He et al., 2021) and DeBERTaV3,
for which we obtain 1,024 search iterations each. Figures 7 and 8 present the results.

The asymptotic regime is large in practice. Across all architectures, the asymptotic regime
is more than large enough to be practically relevant. Of the search distributions, it covers 18%
for AlexNet, 36% for ResNet18,9 and 20% for ConvNext Tiny as well as 54% for DeBERTa
and 57% for DeBERTaV3. In other words, it characterizes the tuning curve after 1-4 iterations

9In this experiment use blurpool is fixed to 0, which changes the asymptotic regime for ResNet18.

17

Published as a conference paper at COLM 2025

Figure 8: A comparison of the noisy quadratic (theoretical) and the score distribution
(empirical) across different models finetuned on MultiNLI. Each column corresponds to a
different one: DeBERTa and DeBERTaV3. Both models use the same search distribution,
and the estimates each use 1,024 iterations of random search. Empirical estimates are from
the empirical distribution, while theoretical estimates use the noisy quadratic fitted to the
tail via censored maximum spacing estimation. For both models tuned with the same search
distribution, the asymptotic regime covers a large fraction of the search space and the noisy quadratic
demonstrates an excellent fit to the score distribution.

of random search. Thus, our theory describes random search with a realistic budget. The
search distribution can not be the driving factor behind this result because we use the same
one across each set of architectures. Moreover, while the better architectures display larger
asymptotic regimes (e.g., ResNet18 and ConvNext), our theory even describes an older less
advanced architecture like AlexNet after just a handful of search iterations.

The effective number of hyperparameters is stable across architectures. An interesting
thing happens when we use the same search space across the different architectures: the
effective number of hyperparameters (γ) remains constant. For AlexNet, ResNet, and Con-
vNext Tiny, the estimate of γ is 2. DeBERTa and DeBERTaV3 exhibit a similar phenomenon:
both models have γ = 1. This result suggests an intuitive conclusion: the effective number of
hyperparameters seems to be more a property of the search space, i.e. the hyperparameters
themselves. Thus, it exhibits some stability across models.

Convergence is not necessary. In modern deep learning, training is often limited by
compute. As a result, our theory must apply even when the network is not trained to
convergence. Fortunately, the ConvNext Tiny results demonstrate this to be true. Despite
its name, ConvNext Tiny is significantly larger than ResNet18 (29M vs 12M parameters)—
instead, it is more comparable to ResNet50. As our training recipe was chosen for ResNet18,
it does not use enough compute (epochs) for ConvNext Tiny to fully converge. This fact is
evident in the best accuracy achieved: 74.9% as opposed to 82.1% in Liu et al. (2022). Even
in this compute-limited regime, the theory still obtains an excellent fit.

18

Published as a conference paper at COLM 2025

E Deriving the Quadratic Distribution

Recall §2.2, we wish to derive a limiting form for the score distribution’s tail. Near the
minimum, we approximate the hyperparameter loss surface, g(xxx), by a Taylor polynomial
and we approximate the search distribution by a uniform.

At the minimum, (xxx∗, y∗), the gradient is 000 and the Hessian is positive semi-definite with
eigenvalues λi ≥ 0. Without loss of generality, let the nonzero eigenvalues be λ1, . . . , λd∗ .
Since the Hessian is real and symmetric, it is diagonalizable: Hxxx∗ = QΛQT , where Q is
orthogonal and Λ is the diagonal matrix of eigenvalues.

The second order Taylor polynomial can be written as:

g(xxx) ≈ y∗ +
1
2
(xxx − xxx∗)T Hxxx∗(xxx − xxx∗)

= y∗ +
1
2
(xxx − xxx∗)TQΛQT(xxx − xxx∗)

= y∗ +
1
2
(
xxx′ − xxx′∗

)T Λ
(
xxx′ − xxx′∗

)
= y∗ +

1
2

d∗

∑
j=1

λi

(
x′j − x′∗j

)2

where xxx′ = QTxxx, and we think of QT as a change of coordinates. Since QT is orthogonal, if
XXX is (approximately) uniform then so is XXX′ = QTXXX.

Consider the event Y = g(XXX) ≤ y. Rearranging the Taylor approximation, we obtain:

d∗

∑
j=1

λi
2

(
x′j − x′∗j√

y − y∗

)2

≤ 1

This formula is the equation for an ellipsoid along the nonzero eigenvectors. Effectively,
we marginalize over the null eigenvectors, along which we assume the loss surface is
approximately constant.

The volume of this ellipsoid is proportional to
√

y − y∗ raised to the dimension, or
(y − y∗)

d∗/2. Since the search distribution is approximately uniform, the probability of
the event Y = g(XXX) ≤ y is then proportional to this volume:

F(y) = P(Y ≤ y) ∝ (y − y∗)
d∗/2

For an even more detailed discussion, simulations, and visualizations of the convergence,
see the Approximating the Tail section of the Parametric Analysis notebook in opda (v0.8.0).

F Proofs & Theorems

In §2 and §E, we derived our results without emphasizing formality. We did this for two
reasons. First, there are many ways to formalize the theorem—without a particular goal,
any specific choice is arbitrary. Second, whether the limit applies in practice is ultimately
an empirical question. Consider the normal distribution: numerous versions of the central
limit theorem exist, each applying in its own context. What is important is not that one set
of conditions produces the normal distribution, but that many do. Therefore, we expect it
might appear and, accordingly, use diagnostics like normal probability plots to determine if
it has. That in mind, we now illustrate one way to formalize things.

F.1 The Deterministic Case

We prove a limit theorem for minimization via random search in the deterministic case.

19

https://nbviewer.org/github/nicholaslourie/opda/blob/v0.8.0/nbs/theory/parametric-analysis.ipynb#Approximating-the-Tail
https://github.com/nicholaslourie/opda/blob/v0.8.0/nbs/theory/parametric-analysis.ipynb
https://github.com/nicholaslourie/opda/tree/v0.8.0

Published as a conference paper at COLM 2025

First, we need the following proposition, which gives a kind of inverse continuity near the
minimum:
Proposition F.1. Let X ⊂ Rd be compact, Y ⊂ R, g : X → Y continuous, and y∗ = g(xxx∗) its
unique minimum. Then ∀δ > 0, ∃ϵ such that |g(xxx)− y∗| < ϵ implies ∥xxx − xxx∗∥ < δ.

Proof. For contradiction, assume δ > 0 is such that the conclusion is false. Let ϵi be any
sequence such that ϵi → 0. For each ϵi, there exists some xxxi such that |g(xxxi)− y∗| < ϵi but
∥xxxi − xxx∗∥ > δ, otherwise the conclusion would be true.

Consider the sequence xxxi. Since X is compact, it has a convergent subsequence: xxxik → xxx∞.
By construction, |g(xxxik) − y∗| < ϵik . As ϵi → 0, we have g(xxxik) → y∗, and because g is
continuous:

g(xxx∞) = g
(

lim
ik→∞

xxxik

)
= lim

ik→∞
g(xxxik) = y∗

However, ∥xxxik − xxx∗∥ > δ so xxx∞ ̸= xxx∗, contradicting uniqueness of the minimum.

Theorem F.2. Let X ⊂ Rd be compact, Y ⊂ R, g : X → Y thrice continuously differentiable,
y∗ = g(xxx∗) its unique minimum in the interior of X, Hxxx∗ the Hessian at xxx∗ having full rank, and
XXX ∼ X a distribution over X with continuous PDF, µ(xxx). If Y = g(XXX) is a random variable with
CDF F(y), there exists a quadratic distribution with CDF Q(y) such that limy→y∗ F(y)/Q(y) = 1.

Proof. Write the 2nd order Taylor approximation of g at xxx∗ as t(xxx) = y∗ + 1/2(xxx −
xxx∗)T Hxxx∗(xxx − xxx∗). Consider some neighborhood of ∥xxx − xxx∗∥ < δ. By Proposition F.1, we can
require y be sufficiently close to y∗ to guarantee xxx is in it. Throughout the neighborhood, let
ϵ be the Taylor approximation’s worst case error:

t(xxx)− ϵ < g(xxx) < t(xxx) + ϵ (20)

Consider F(y) = P(Y ≤ y). By Equation 20, P(t(xxx) + ϵ ≤ y) ≤ P(g(xxx) ≤ y) ≤ P(t(xxx)−
ϵ ≤ y). We can write this equivalently as:

P(t(xxx) ≤ y − ϵ1) ≤ P(g(xxx) ≤ y) ≤ P(t(xxx) ≤ y + ϵ1) (21)

Let us analyze P(t(xxx) ≤ y).

We will need the fact that X is approximately uniform near xxx∗. Let c = µ(xxx∗). As µ is
continuous, µ(xxx) → c as xxx → xxx∗. Let η be the maximum difference in the neighborhood:

c − η < µ(xxx) < c + η (22)

In this sense, we can think of X as approximately uniform with density between c ± η.

Returning to the Taylor approximation, g is thrice continuously differentiable so the Hessian
is real symmetric thus diagonalizable: Hxxx∗ = UTΛU, with U an orthonormal matrix and
Λ = diag(λ1, . . . , λd) the eigenvalues. Think of U as a change of coordinates, uuu = Uxxx. Since
U is orthonormal with |det U| = 1, by the change of variables theorem the density of X in
these new coordinates is still approximately c ± η.

Finally, consider the event: P(t(xxx) ≤ y). In the coordinates uuu, Hxxx∗ is a diagonal matrix and
t(uuu) = y∗ + 1/2 ∑d

i=1 λi(ui − u∗i)
2; therefore, t(uuu) ≤ y defines an ellipse:

d

∑
i=1

λi
2
(ui − u∗i)

2 ≤ y − y∗

The volume of this ellipse is:

(y − y∗)
d/2

 πd/2

Γ
(

d
2 + 1

) d

∏
i=1

√
2
λi


Take all the terms that do not depend on y as a constant, C. The volume is then: C(y − y∗)

d/2.
The probability P(t(xxx) ≤ y) is the density integrated over this volume. The density is

20

Published as a conference paper at COLM 2025

between c − η and c + η, thus the probability is between products of these values and the
volume:

C(y − y∗)
d/2(c − η) < P(t(xxx) ≤ y) < C(y − y∗)

d/2(c + η) (23)

Combining Equations 21 and 23, we have:

C(y − ϵ − y∗)
d/2(c − η) < P(g(xxx) ≤ y) < C(y + ϵ − y∗)

d/2(c + η)

Using the parametrization of the (convex) quadratic distribution’s CDF as Q(y) = ω(y −
α)γ/2, let ω = Cc, α = y∗, and γ = d. Then dividing by Q(y) we have:

(c − η)

c

(
1 − ϵ

y − y∗

)d/2

<
F(y)
Q(y)

<
(c + η)

c

(
1 +

ϵ

y − y∗

)d/2

(24)

Consider what happens as y → y∗. By Proposition F.1 the neighborhood about xxx∗ shrinks.
As a result, η → 0 and since g is thrice differentiable the Taylor approximation’s error goes
to 0 at 3rd order while y − y∗ goes to 0 at 2nd order, thus ϵ/(y − y∗) → 0. Therefore, the
upper and lower bounds in Equation 24 go to 1 and thus F(y)/Q(y) → 1 as well. In other
words:

lim
y→y∗

F(y)
Q(y)

= 1

Thus, we obtain a limit theorem for random search under minimization, maximization being
similar.

A few remarks are in order. We have shown convergence under one set of conditions;
however, convergence can happen under other conditions as well. For example, we used
uniqueness of the minimum to ensure that as y approaches y∗, the corresponding xxx also
approaches xxx∗, the center of our Taylor approximation. If a finite number of distinct minima
exist, this condition still holds as we approach the global minimum. Even with multiple
global minima, they can be added together without issue.10 For example, the volume of
their ellipses will be: ∑n

j=1 Cj(y − y∗)
d/2 = (y − y∗)

d/2 ∑n
j=1 Cj. As this example shows, many

variants of the theorem are possible.

One assumption in particular merits deeper discussion: that the Hessian is full rank. Em-
pirically, this assumption is rarely true. In all our experiments, the effective number of
hyperparameters was fewer than the nominal number—in other words, the Hessian was
rank deficient. Here is one way to close this gap: if g is constant along the kernel of the
Hessian, then you can marginalize over the kernel and consider g as a function of the
quotient space, in which the Hessian will have full rank.

In the end, we just need the hyperparameter loss to be approximately quadratic in some
coordinates for which the search distribution is approximately uniform. Designing the
search space so these assumptions are better satisfied will speed up convergence. For
example, you can search for each hyperparameter using a uniform distribution on the
appropriate scale (e.g., a log scale for the learning rate). Similarly, you can tighten the search
space around the optimum so the Taylor approximation is a better fit.

F.2 The Stochastic Case

For the stochastic case, the noisy quadratic distribution is defined as the sum of a quadratic
and a normal random variable. If the conditional mean g(XXX) = E[Y|XXX] satisfies the con-
ditions of Theorem F.2, then it will converge to a quadratic distribution. If in addition
Y = g(XXX) + E, E ∼ N (0, σ) then one just needs σ to be small enough, otherwise the noise
(E) will contaminate points where the quadratic distribution is a good approximation with
the points where it is a bad one.

We derive the formulas for the CDF and PDF. We will show them for minimization.
10This reasoning also applies to discrete hyperparameters, which essentially multiply local minima.

21

Published as a conference paper at COLM 2025

First, we will need the definition of the partial expectation from a to b:

Eb
a[Z] := P(a ≤ Z ≤ b) E[Z|a ≤ Z ≤ b] =

∫ b

a
z fZ(z)dz (25)

Now, we will prove the formulas.

Proposition F.3. Let Y = Q + E, with Q ∼ Qmin(α, β, γ) and E ∼ N (0, σ). If FY(y) is the CDF
of Y then:

FY(y) = Φ
(

y − β

σ

)
+ E1

0

[
Vγ/2

]
, V ∼ N

(
y − α

β − α
,

σ

β − α

)

Proof. Let FQ(y) denote the CDF of Q. Since Y is the sum of two independent random
variables, we can apply the convolution formula for the CDF of a sum: FY(y) = E[FQ(y−E)].
Note that this expectation is taken over the normal variable, E. Recall:

FQ(y) =


0 y < α(

y−α
β−α

)γ/2

α ≤ y ≤ β

1 y > β

Then, using properties of expectations, we have:

FY(y) = E[FQ(y − E)]

= E
y−β
−∞ [1] + E

y−α
y−β

[(
(y − E)− α

β − α

)γ/2
]
+ E∞

y−α[0]

= Φ
(

y − β

σ

)
+ E

y−α
y−β

[(
(y − α)− E

β − α

)γ/2
]

where Φ is the standard normal distribution’s CDF. Applying the change of variables:

V =
(y − α)− E

β − α

and noting that V is normally distributed with mean (y− α)/(β− α) and standard deviation
σ/(β − α), we obtain the desired formula:

FY(y) = Φ
(

y − β

σ

)
+ E1

0

[
Vγ/2

]
, V ∼ N

(
y − α

β − α
,

σ

β − α

)
(26)

Proposition F.4. Let Y = Q + E, with Q ∼ Qmin(α, β, γ) and E ∼ N (0, σ). If fY(y) is the PDF
of Y then:

fY(y) =
γ

2(β − α)
E1

0

[
V

γ−2
2

]
, V ∼ N

(
y − α

β − α
,

σ

β − α

)

Proof. Let fQ(y) denote the PDF of Q. By the convolution formula for the PDF of a sum we
have: fY(y) = E[fQ(y − E)]. Note that this expectation is taken over the normal variable, E.
Recall:

fQ(y) =


0 y < α

γ
2(β−α)

(
y−α
β−α

) γ−2
2

α ≤ y ≤ β

0 y > β

22

Published as a conference paper at COLM 2025

Then, using properties of expectations, we have:

fY(y) = E[fQ(y − E)]

= E
y−β
−∞ [0] + E

y−α
y−β

 γ

2(β − α)

(
(y − E)− α

β − α

) γ−2
2

+ E∞
y−α[0]

=
γ

2(β − α)
E

y−α
y−β

((y − α)− E
β − α

) γ−2
2



Applying the change of variables:

V =
(y − α)− E

β − α

and noting that V is normally distributed with mean (y− α)/(β− α) and standard deviation
σ/(β − α), we obtain the desired formula:

fY(y) =
γ

2(β − α)
E1

0

[
V

γ−2
2

]
, V ∼ N

(
y − α

β − α
,

σ

β − α

)
(27)

23

	Introduction
	A Theory Based on Simple Structure
	Formalizing Hyperparameter Search
	The Deterministic Case
	The Stochastic Case
	Applying the Theory in Practice

	Experimental Setup
	Testing the Theory
	Assessing Goodness of Fit
	Testing Additive Normal Errors
	Estimating and Extrapolating the Tuning Curve

	Related Work
	Conclusion
	The Quadratic Distribution
	The Noisy Quadratic Distribution
	Models and Search Distributions
	Generalization Across Architectures
	Deriving the Quadratic Distribution
	Proofs & Theorems
	The Deterministic Case
	The Stochastic Case

