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Abstract

Image-based Joint-Embedding Predictive Architecture (IJEPA) offers an attractive1

alternative to Masked Autoencoder (MAE) for representation learning using the2

Masked Image Modeling framework. IJEPA drives representations to capture use-3

ful semantic information by predicting in latent rather than input space. However,4

IJEPA relies on carefully designed context and target windows to avoid representa-5

tional collapse. The encoder modules in IJEPA cannot adaptively modulate the type6

of predicted and/or target features based on the feasibility of the masked prediction7

task as they are not given sufficient information of both context and targets. Based8

on the intuition that in natural images, information has a strong spatial bias with spa-9

tially local regions being highly predictive of one another compared to distant ones.10

We condition the target encoder and context encoder modules in IJEPA with posi-11

tions of context and target windows respectively. Our “conditional” encoders show12

performance gains on several image classification benchmark datasets, improved13

robustness to context window size and sample-efficiency during pretraining.14

1 Introduction15

Masked Image Modeling (MIM) offers a scalable framework to learn representations from unlabelled16

data in a self-supervised manner by learning to predict masked regions given unmasked ones as17

context [1–8]. A distinction can be drawn for models under this framework based on whether the18

targets are predicted in input space (pixels, words, sounds etc.) by MAEs [4] or in latent space by19

JEPAs [8, 9]. Recently, Littwin et al. [10] suggest that JEPAs have an implicit bias for learning “high-20

influence” features compared to Masked Autoencoders (MAEs) which could explain their empirical21

success compared to MAEs. However, JEPAs require careful selection of context and target windows22

(window size and distance of separation) to drive the representations to capture useful information23

(semantics) from input images for a variety of high-level downstream tasks like image classification24

as well as fine-grained tasks like object counting and depth prediction. Sub-optimal choice of context25

and target windows, i.e. pairs with low mutual information, potentially leads to representational26

collapse. Our work attempts to alleviate these limitations in JEPAs [8, 9] — improve representational27

quality to solve downstream tasks and robustness to masking hyperparameters for pretraining.28

In natural images, it is intuitive to expect nearby regions to be highly predictive of one another29

(high mutual information) compared to distant ones. The feasibility of the masked prediction task30

in JEPAs is linked to the mutual information between context and target windows. Consider the31

scene in Figure 1 of the dog in the backyard, patches of grass co-occur with patches of flower pots32

but its plausible in other scenes for grass patches to co-occur with patches of sky, trees, water etc.33

Therefore grass alone is not a highly predictive contextual feature for flower pots. On the other hand,34

patches from the same object (eg. dog), are highly predictive of each other as they co-occur almost35

always. Good choices for context and target masks in MIM require a careful balance of the amount36

of mutual information between image regions in the context and target windows. When the mutual37
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Figure 1: Conditioning the Context and Target Encoders in IJEPA with positions of the target
(blue box) and context windows (red box) respectively. Patches marked with X indicate positional
information while those with solid color fill indicate feature information is extracted at those locations.

information between image regions in the context and target windows is too low the prediction task is38

very challenging. This forces the encoders to extract only the most feasible set of features to predict39

from the target given a context leading to representational collapse in the limiting case. While if the40

mutual information is too high it becomes rather trivial resulting in the representations not capturing41

sufficiently abstract information from the input image.42

In JEPAs (eg. IJEPA [8]), the context and target encoders are given insufficient information about the43

prediction task as they do not have access to both context and target windows. Therefore, the target en-44

coder module cannot adaptively modulate target features (feedback signal) based on the feasibility of45

prediction to the context encoder. Without providing the context encoder and target encoder modules46

sufficient information of the masked prediction task, they can only extract highly predictable features47

from the context and target windows which could lead to representational collapse. Since predictabil-48

ity of information in natural images has a strong spatial bias as outlined above, providing information49

of sizes of context and target windows and the distance of separation could alleviate this issue.50

We incorporate this intuition in IJEPA [8] by conditioning the context encoder with positions of the51

target window and conversely the target encoder with positions of the context window. Given this52

additional information of spatial locations of target patches allows the context encoder to modulate53

the type of features to capture (low-level features → color, texture, shape or higher-level features →54

object categories) from the input image. Conversely, the target encoder can use the positional informa-55

tion of the context window to adaptively modulate the type of target features that are feasible to predict56

for the context encoder module. Our proposed conditioning allows the context and target encoders to57

adapt the set of predictive features based on the size of context or target windows and/or their distance58

of separation. Such “conditional” encoders, we term Encoder Conditioned JEPAs (EC-JEPAs), when59

used as a drop-in replacement in IJEPA [8] lead to — i) improved representational quality measured by60

rank-based metrics (LiDAR [11] and RankMe [12]) as well as classification performance on benchmark61

datasets such as ImageNet [13] (see Table 1), out-of-distribution datasets such as CIFAR10, CI-62

FAR100, Food101 etc. ii) improved robustness to context window hyperparameters during pretraining63

(see Figure 2) crucial to prevent representational collapse during pretraining iii) improved sample-64

efficiency in pretraining measured by classification performance on ImageNet [13] (see Figure 3).65

2 Method66

We first review the IJEPA model [14] followed by our proposed modification to the same.67

2



IJEPA Let x ∈ RT×d and p ∈ RT×d denote the tokenized input image and position embeddings68

respectively, where T is the number of tokens, and d the token dimension (we assume position69

embeddings p are added to the image tokens to produce x). Let c denote a set of indices corresponding70

to the context tokens, such that xc = {xj}j∈c. Likewise, let t1, ..., tk denote k sets of indices with71

cardinality m = |t1| = |t2| = ...|tk| corresponding to the target token blocks (we use k = 4 in72

our experiments following IJEPA [14]). In the IJEPA formulation, an encoder function encodes the73

context tokens into latent representations zc = f(xc; θ) where θ are the encoder weights, which are74

then used to predict the target representations ztj = f(x; θ̃)tj for j = {1, ..., k}, where θ̃ are an75

exponential moving average of the weights θ, with the aid of a predictor function g. The predictor76

function takes as input the context representations zc, the target positions ptj , and predicts the targets77

representations ẑtj = g(zc, ptj ;ψ) for j = {1, ..., k} where ψ are the predictor weights.78

EC-IJEPA In our approach, we use the context and target positions to condition the encoders79

for pretraining. Namely zt
1,...,tk

c = f(xc, pt1 , ..., ptk ; θ), and similarly zctj = f(x, pc; θ̃)tj for80

j = {1, ..., k}. At inference, we simply condition the encoder on all position embeddings p. In81

practice, the functions f and g are instantiated as Vision Transformers (ViTs) [15], and are conditioned82

by appending the positions as additional tokens in the input sequence processed by the Transformer83

modules. This increase in sequence length however, could incur a non-negligible cost in memory and84

compute resources, especially during inference which now processes twice as many tokens as the85

baseline IJEPA. To reduce this computational and memory overhead, we introduce an aggregation step86

prior to conditioning. At both training and inference, we first reduce the conditioning position tokens87

to a smaller set, which are used as the conditioning tokens instead of the full sequence. Concretely,88

we use 1D average pooling on pc, pt1 , ..., ptk with a kernel and step size of m//21. During inference,89

we use 2D average pooling on all positions p with a kernel and stride size of [4, 4]. This incurs an90

additional T//16 tokens to be processed at inference. Finally, we note that we use 1D, rather than91

2D average pooling in training due to efficiency and implementation considerations, resulting in92

approximately 3% increase in FLOPs for training.93

3 Results94 Table 1: Classification performance
comparison on IN-1k dataset.

Model Accuracy

IJEPA (ViT-L/16) 74.8
EC-IJEPA (ViT-L/16) 76.7

IJEPA (ViT-H/14) 77.4
EC-IJEPA (ViT-H/14) 78.1

We evaluate the baseline IJEPA and our proposed encoder95

conditioned variant EC-IJEPA on several visual benchmarks96

consistent with prior work [14, 16]. We follow the setup97

from Assran et al. [14] to pretrain the baseline IJEPA and98

our proposed EC-IJEPA on the ImageNet-1k (IN-1k) dataset99

[13] (see Appendix A for more details). The pretrained100

encoders are then used to extract representations, by average101

pooling the output sequence of patch-level tokens from the102

encoder. We evaluate these representations on various downstream benchmark datasets using the103

linear probing protocol adopted by prior work [14, 17] (see Appendix A for more details).104

Table 1 shows the performance of IJEPA and EC-IJEPA on the IN-1k classification benchmark. We105

see that EC-IJEPA outperforms the baseline IJEPA with different encoder sizes.106

Table 2: RankMe and LiDAR scores for models pre-
trained on IN-1k. ViT-L/16 and ViT-H/14 encoders
have embedding sizes 1024 and 1280 respectively.

Architecture RankMe ↑ LiDAR ↑
IJEPA (ViT-L/16) 488.6 385.2

EC-IJEPA (ViT-L/16) 533.0 486.5
IJEPA (ViT-H/14) 540.8 437.2

EC-IJEPA (ViT-H/14) 567.3 547.0

Prior works [11, 12] introduced metrics107

for measuring representational quality that108

correlate with downstream task performance109

without the need for a downstream task.110

RankMe [12], is one such metric that measures111

the soft effective rank of embeddings. LiDAR112

[11] is another that builds on RankMe by113

defining a surrogate task to estimate the114

effective rank of a Linear Discriminant115

Analysis matrix. Both RankMe and LiDAR116

metrics empirically show that they serve as117

useful proxies of representational quality.118

Higher scores of these metrics are positively correlated and serve as a necessary condition for119

1Note that the target cardinality m is sampled out of a range as in IJEPA
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improved downstream performance for a given encoder architecture. We follow the setup from120

Garrido et al. [12] and Thilak et al. [11] including dataset size and construction to compute these121

metrics. Table 2 shows the RankMe and LiDAR metrics for IJEPA and EC-IJEPA pretrained on122

IN-1k. We see that EC-IJEPA shows higher scores for RankMe and LiDAR metrics compared to123

IJEPA which support the improvements in downstream task performance shown in Table 1.124

[0.45, 1.0] [0.55, 1.0] [0.65, 1.0] [0.75, 1.0] [0.85, 1.0]
Range for Encoder Context Window Scale

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

IJEPA
EC-IJEPA

Figure 2: Ablation on ranges of context
window scale used for pretraining.

Further, we measure the robustness of the baseline125

IJEPA and our variant EC-IJEPA to varying sizes for126

the context window. Figure 2 compares the classifica-127

tion scores of the baseline and our variant on IN-1k128

when pretrained for masked prediction task using a129

wider range of context window sizes using a ViT-L/16130

encoder. We see that the quality of representations131

learned by the baseline IJEPA is very sensitive to this132

hyperparameter. In contrast, our variant EC-IJEPA is133

more robust to a wider range of context window sizes134

used for masking during pretraining. This suggests that135

our simple positional conditioning alleviates represen-136

tational collapse in the encoders.137

Figure 3 shows the classification accuracy obtained by the baseline IJEPA and our variant EC-IJEPA138

on IN-1k over the pretraining cycle. We see that our EC-IJEPA is more sample-efficient for representa-139

tion learning as it obtains consistently higher classification accuracy throughout the pretraining cycle.140
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Figure 3: Classification performance on ImageNet-1k measured during pretraining cycle in IJEPA
(blue) and EC-IJEPA (orange) at two encoder sizes (left: ViT-L/16 and right: ViT-H/14).

Table 3 shows the classification performance of IJEPA and EC-IJEPA on various out-of-distribution141

datasets such as CIFAR10, CIFAR100, EuroSat, Food101 and SUN397. We see that EC-IJEPA142

consistently outperforms IJEPA which highlights the superior representational quality of the former.143

Table 3 also compares performance of models on tasks which require local information such as object144

counting (CLEVR/Count) and depth prediction (CLEVR/Dist) [18, 19] where the two models are145

comparable with one exception (ViT-L/16 encoder on CLEVR/Dist).146

Table 3: Classification performance on out-of-distribution datasets using two encoder sizes.

Model CIFAR10 CIFAR100 EuroSat Food101 SUN397 CLEVR/Count CLEVR/Dist

IJEPA (ViT-L/16) 92.5 75.0 96.7 75.3 69.5 74.5 65.3
EC-IJEPA (ViT-L/16) 93.4 76.7 95.7 76.5 71.2 75.2 60.0

IJEPA (ViT-H/14) 94.5 78.9 96.5 78.4 71.5 79.3 64.8
EC-IJEPA (ViT-H/14) 96.0 81.8 96.0 78.7 73.5 79.4 64.6

4 Conclusion147

Predictability of patch-level features in natural images has a strong spatial bias. We introduce a simple148

modification to the sequence of input tokens given to the encoder modules in JEPAs, we concatenate149

positions of target and context windows to the context and target encoders respectively. Using our150

“conditional” encoders as a drop-in replacement in IJEPA [14] shows improved representational151

quality for downstream image classification tasks and rank-based metrics (RankMe and LiDAR).152

Conditional encoders alleviate representational collapse across larger ranges of context window sizes153

and improve sample-efficiency during pretraining.154
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A Experimental Details231

Architecture Details. We instantiate the context, target and predictor modules in both IJEPA and232

EC-IJEPA models as Vision Transformers (ViTs) [15]. We experiment with two different model sizes233

for the encoder modules, i.e. ViT-Large and ViT-Huge, and a lower capacity ViT Predictor following234

IJEPA [14]. Table 4 and Table 5 respectively show the relevant architecture hyperparameters for the235

ViT-based encoders and predictors.236

Table 4: Encoder architecture using ViT-based models. The value after “/” indicates the patch size.

Architecture Depth Hidden Dimension Number of Heads

ViT-L/16 24 1024 16
ViT-H/14 32 1280 16

Table 5: Predictor architecture using ViT-based models. Number of heads is set to match that of the
encoder.

Architecture Depth Hidden Dimension Number of Heads

ViT-Predictor 12 384 16

Pretraining Details. We use the AdamW optimizer [20] 2 to train IJEPA and EC-IJEPA in all our237

experiments. Table 6 and Table 7 show the hyperparameters used to pretrain all models in this work.238

We follow the pretraining configuration from IJEPA [14]. We follow masking hyperparameters used239

to create context and target masks from IJEPA [14].240

Table 6: Pretraining hyperparameters used for ViT-L/16

Hyperparameter Value

Optimizer AdamW
Epochs 600

Max learning rate 0.001
LR Warmup type Linear
LR Decay type Cosine
Warmup epochs 15

Batch size 2048
Weight decay scheduler Cosine
Weight decay (start, end) [0.04, 0.4]

EMA momentum scheduler Linear
EMA momentum (start, end) [0.996 1.0]

Evaluation on ImageNet-1k We evaluate the pretrained encoders described above using linear241

probing on ImageNet-1k dataset [13]. We adapt the evaluation protocol from IJEPA [14] wherein242

the pretrained model weights are frozen and are used to extract a feature vector by average pooling243

(across the sequence length) the output tokens from the last layer of the encoder. A linear probe that244

consists of a batch normalization layer with non-learnable affine parameters followed by a linear245

layer is used to map this feature vector to the set of classification logits on ImageNet-1k dataset. The246

parameters of the linear probe are trained with the LARS [21] optimizer using a learning rate of 0.05,247

no weight decay and with a batch size of 16384 for 50 epochs.248

2https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
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Table 7: Hyperparameter configuration used to pretrain ViT-H/14

Hyperparameter Value

Optimizer AdamW
Epochs 300

Max learning rate 0.001
LR Warmup type Linear
LR Decay type Cosine
Warmup epochs 40

Batch size 2048
Weight decay scheduler Cosine
Weight decay (start, end) [0.04, 0.4]

EMA momentum scheduler Linear
EMA momentum (start, end) [0.996 1.0]

Evaluation on out-of-distribution (OOD) datasets We use CIFAR10, CIFAR100 [22], Eu-249

roSAT [23], Food101 [24], SUN397 [25], CLEVR/Count and CLEVR/Dist [18, 19] as unseen250

or OOD datasets w.r.t the pretraining dataset (ImageNet-1k). We again adopt the evaluation protocol251

of linear probing with a frozen backbone. We follow the evaluation protocol used in VISSL [17] also252

used in prior works [14, 16] to train and evaluate a linear probe for the OOD datasets. Table 8 lists253

the relevant hyperparameter configurations used in our experiments.254

Table 8: Hyperparameters used for linear evaluation on OOD datasets.

Dataset Optimizer Momentum Weight Learning rate Epochs
decay (LR)

CIFAR10 SGD with Nesterov 0.9 0.0005 0.01 28
CIFAR100 SGD with Nesterov 0.9 0.0005 0.01 28
EuroSAT SGD with Nesterov 0.9 0.0005 0.01 28
Food101 SGD with Nesterov 0.9 0.0005 0.01 28
SUN397 SGD with Nesterov 0.9 0.0005 0.01 28

CLEVR/Count SGD with Nesterov 0.9 0.0005 0.01 50
CLEVR/Dist SGD with Nesterov 0.9 0.0005 0.01 50

B Additional Results255

Average Pooling Ablation. EC-IJEPA uses average pooling with a kernel size and stride of [4, 4]256

respectively at inference time to create conditioning position tokens as described in Section 2. We257

perform an ablation experiment to measure the impact of kernel size and stride on downstream258

classification accuracy on ImageNet-1k [13] by varying these hyperparameters. Figure 4 shows the259

maximum classification accuracy achieved on ImageNet-1k validation as a function of kernel size260

and stride. We observe from Figure 4 that the highest accuracy is achieved with a kernel size of 4261

and stride of 4. Furthermore, we observe that there is a drop off in accuracy for kernel size of 1 and262

stride of 1. These observations suggest that the values for these hyperparameters used in Section 2263

are reasonable to extract representations from EC-IJEPA for classification tasks.264
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Figure 4: Linear probing accuracy on Imagenet-1k dataset w.r.t kernel size and stride.
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