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Abstract

Recently, multi-modal entity alignment has emerged as a pivotal endeavor for
the integration of Multi-Modal Knowledge Graphs (MMKGs) originating from
diverse data sources. Existing works primarily focus on fully depicting entity
features by designing various modality encoders or fusion approaches. However,
uncertain correspondences between inter-modal or intra-modal cues, such as weak
inter-modal associations, description diversity, and modality absence, still severely
hinder the effective exploration of aligned entity similarities. To this end, in
this paper, we propose a novel Tackling uncertain correspondences method for
Multi-modal Entity Alignment (TMEA). Specifically, to handle diverse attribute
knowledge descriptions, we design alignment-augmented abstract representation
that incorporates the large language model and in-context learning into attribute
alignment and filtering for generating and embedding the attribute abstract. In
order to mitigate the influence of the modality absence, we propose to unify all
modality features into a shared latent subspace and generate pseudo features via
variational autoencoders according to existing modal features. Then, we develop an
inter-modal commonality enhancement mechanism based on cross-attention with
orthogonal constraints, to address weak semantic associations between modalities.
Extensive experiments on two real-world datasets validate the effectiveness of
TMEA with a clear improvement over competitive baselines.

1 Introduction
Multi-Modal Knowledge Graphs (MMKGs) effectively store a substantial volume of knowledge
encompassing diverse modalities including visual, relational, and attribute information in a structured
and organized manner [23, 43, 44]. They greatly facilitate the advancement of various downstream
tasks such as recommender systems [41, 47, 12, 34], video understanding [40, 51, 39], and domain-
specific applications [7, 30, 35, 49]. In order to construct a more comprehensive multi-modal
knowledge base for supporting external knowledge comprehension and reasoning, the demand for
integrating MMKGs from heterogeneous data sources has become extremely urgent. As a result,
multi-modal entity alignment to match entities referring to identical real-world concepts from distinct
MMKGs has emerged as an increasingly critical task for their integration [23, 5, 6].

In the literature, early investigations into entity alignment primarily rely on translational models [9,
53, 31] or graph neural networks [36, 3] to capture semantic relatedness of aligned entities through the
geometrical structures in an embedding space. However, these methods were originally devised for
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Figure 1: A toy example to illustrate the uncertain correspondences
in multi-modal entity alignment, where entities are highlighted with
a yellow background.

traditional knowledge graphs
and struggle to accommodate
diverse multi-modal knowl-
edge, which makes it difficult
to fulfill the need for align-
ing entities across MMKGs.
Therefore, recent studies [5,
21, 19] have introduced di-
verse modality encoders or
fusion approaches tailored to
the characteristics of multi-
modal knowledge, striving to
fully extract information from
all modalities so as to effec-
tively portray the features of
entities. For modality en-
coders, MSNEA [6] devel-
ops vision-guided encoders
for relational and attribute
knowledge to achieve inter-
modal enhancement. ACK-
MMEA [19] unifies the en-
coding of multi-modal fea-
tures by designing a specialized graph neural network to ensure consistent modal aggregation.
Regarding fusion approaches, MMEA [5] synthesizes multiple representations by transferring each
uni-modal embedding into a common space. EVA [22] incorporates multi-modal features into a
combined embedding using an attention-driven modality weighting mechanism.

Although these methods have made remarkable progress in extracting and fusing multi-modal features
for entity representation, there still remain many substantial challenges, particularly the limitation
of uncertain correspondences between inter-modal or intra-modal cues of entities [33, 16]. Figure 1
illustrates a toy example of such uncertain correspondences. Firstly, the weak semantic associations
among diverse modal knowledge of entities pose a considerable challenge in inter-modal enhancement.
In MMKG1, “Twilight” has attributes “Release Date” and “Runtime Duration” along with an image
of a movie poster containing two roles. The poster does not include content that could semantically
overlap with these attributes, which makes it hard to capture their feature commonality to perform
inter-modal enhancement. Secondly, the distinct descriptive manners of entities across different
MMKGs complicate the matching of attributes with the same meanings between aligned entities.
For instance, “Release Date” for “Twilight” in MMKG1 and “Debut Date” for “Twilight (film)” in
MMKG2 both mean the initial release date of the movie. This requires a more profound semantic
understanding to ascertain if they convey the same meanings. Thirdly, MMKGs often lack complete
entity knowledge, with certain modalities entirely devoid of data. This impedes the differentiation
of whether two entities are aligned, as this distinction can be readily misled by consistent modality
features of unaligned entities. Due to missing attributes for “Kristen Stewart” in MMKG1 and
images for “KStew” in MMKG2, there is a high chance of erroneous matching “Bella Swan” in
MMKG2 based on its visual similarity to “Kristen Stewart”. Given the challenges presented above,
the exploration of tackling uncertain correspondences is crucial in multi-modal entity alignment task.

To address these challenges, in this paper, we propose a novel Tackling uncertain correspondences
method for Multi-modal Entity Alignment (TMEA). Specifically, we encode relational, attribute, and
visual knowledge into their preliminary feature representations in a Multi-modal Knowledge Encoder
(MKE) module. In MKE, to handle diverse attribute knowledge descriptions, we particularly design
alignment-augmented abstract representation that incorporates the Large Language Model [25] (LLM)
and in-context learning [13] into attribute alignment and filtering for generating and embedding the
attribute abstract. To mitigate the impact of the modality absence, we devise a Missing Modality
Imputation (MMI) module to complete the missing modality by unifying diverse modalities into a
shared latent subspace and generating a pseudo feature via Variational AutoEncoders (VAEs) [18]
according to existing modal features. For the purpose of addressing the weak semantic associations
between modalities, we develop an inter-modal commonality enhancement mechanism based on cross-
attention with orthogonal constraints in another Multi-modal Commonality Enhancement (MCE)
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module. Extensive experiments on two real-world datasets verify the effectiveness and superiority of
TMEA with an obvious improvement over competitive baselines 1. The main contributions of this
paper are summarized as follows:

• In this paper, we focus on tackling uncertain correspondences between inter-modal or
intra-modal cues of entities for multi-modal entity alignment, including weak inter-modal
associations, description diversity, and modality missing.

• We propose a novel TMEA model to address these three issues, by specially designing
the inter-modal commonality enhancement mechanism, alignment-augmented abstract
representation, and pseudo feature generation.

• We conduct extensive experiments on two real-world datasets, FB15K-DB15K and FB15K-
YG15K. The experimental results clearly demonstrate the effectiveness and superiority of
TMEA, with at least a 32.8% increase in Hits@1 over competitive baselines.

2 Related Work
In this section, we introduce the related research categorized into traditional entity alignment and
multi-modal entity alignment.

Traditional Entity Alignment. Traditional knowledge graphs are composed of textual symbol triples,
which often result in information overload [4]. Therefore, entity alignment was proposed to match
the identical entities in various KGs for their integration [9]. Existing methods mainly rely on entity
embedding techniques, which can be grouped into triple-based embedding [53, 31] and neighbor-
based embedding [36, 42]. Triple-based embedding defines an energy function to measure the
plausibility of triples. For example, MTransE [9] adopted TransE [2] as the entity encoder to embed
different KGs into independent vector spaces and then learned the transitions between aligned entities.
IPTransE [53] implemented an iterative strategy and employed it to supplement probably aligned
entities into the training set. Neighbor-based embedding exploits the subgraph structure organized by
partial relations between entities. For instance, GCN-Align [36] used graph convolutional networks
to aggregate the neighborhood information of entities. MixTEA [42] instructed the graph model
learning by an end-to-end mixture teaching of manually labeled mappings and probabilistic pseudo
mappings. PEEA [32] increased the connections between far-away entities and labeled ones by
incorporating positional information into the representation learning with a position attention layer.
However, they cannot accommodate diverse multi-modal knowledge and satisfy the requirement for
multi-modal entity alignment.

Multi-Modal Entity Alignment. Due to the urgent demand for the integration of MMKGs, extensive
research has been dedicated to multi-modal entity alignment [23, 6, 21, 19]. Initially, multi-modal
entity alignment was regarded as a special type of link prediction task, aiming to connect entities
through the “SameAs” relation [23]. Subsequently, the first attempt in multi-modal entity alignment
introduced the pioneering MMEA [5] approach, which transferred multi-modal representations into
a unified space by minimizing the distance between the fused embeddings and each uni-modal
embedding. Later, Liu et al. [22] believed that visual modality has abundant features as the advantage,
thus leveraging visual similarities to augment the training data by iteratively adding aligned pairs.
The previous studies employed independent encoders for feature extraction of each modality, without
considering interactions between different modalities. Therefore, MSNEA [6] proposed a modality
interaction mechanism to guide relationship learning and attribute selection using visual features, and
designed multi-modal contrastive learning to make features of aligned entities more similar. Owing
to the impact of contextual gaps on effectiveness, ACK-MMEA [19] utilized merge and generate
operators to build an attribute-consistent MMKG, and aggregated the consistent information through
graph neural networks. Despite their remarkable advancement, there still remain some significant
challenges like uncertain correspondences between inter-modal or intra-modal cues of entities.

3 Preliminary
Multi-Modal Knowledge Graph (MMKG). A MMKG consists of relational, attribute, and visual
knowledge and is formally defined as G = (E ,R, I,A,V, T , P). Here, E , R, I, A, V , T , P
denote the sets of entities, relations, images, attributes, attribute values, triples, and entity-image

1The code is available at https://github.com/liyichen-cly/TMEA.
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Figure 2: The framework overview of TMEA.

pairs, respectively. Specifically, the triple set T includes relational and attribute triples, denoted as
T = TR ∪ TA, where TR = {(eh, r, et) | eh, et ∈ E , r ∈ R} refers to the set of relational triples,
and TA = {(e, a, v) | e ∈ E , a ∈ A, v ∈ V} represents the set of attribute triples. P = {(e, i) | e ∈
E , i ∈ I} indicates that the image i describes the entity e.

Multi-Modal Entity Alignment (MMEA). We consider the MMEA task between two MMKGs
G1 and G2. The objective of MMEA is to pair 1-to-1 corresponding entities that describe identical
concepts in the real world but exist in separate MMKGs. Represented symbolically, the inputs are two
MMKGs G1 = (E1,R1, I1,A1,V1, T1,P1) and G2 = (E2,R2, I2,A2, V2, T2,P2), and the output
is the set of aligned entity pairs S = {(e1, e2) | e1 ∈ E1, e2 ∈ E2, e1 ≡ e2}, where ≡ means the
equivalence of two entities.

4 Methodology

In this section, we introduce the technical details of our proposed TMEA. As illustrated in Figure 2,
TMEA comprises three main modules: 1) Multi-modal Knowledge Encoder (MKE) module to
encode relational, attribute, and visual knowledge into their preliminary feature representations, with
alignment-augmented abstract representation to address diverse attribute knowledge descriptions; 2)
Missing Modality Imputation (MMI) module to unify diverse modalities into a shared latent subspace
and generate a pseudo feature via VAEs according to existing modal features for completing the
missing modality; 3) Multi-modal Commonality Enhancement (MCE) module to enhance semantic
associations between modalities by designing an inter-modal commonality enhancement mechanism
based on cross-attention with orthogonal constraints. For model optimization strategy, we integrate
multi-modal contrastive learning and bi-directional iteration.

4.1 Multi-Modal Knowledge Encoder
In this module, we encode the relational, attribute, and visual modalities of knowledge to acquire
their preliminary feature representations. In particular, to address the diversity of descriptive manners
of attribute knowledge, we design alignment-augmented abstract representation that incorporates the
large language model and in-context learning into attribute alignment and filtering for generating and
embedding the attribute abstract.

Relational Knowledge Encoder. Relational knowledge is composed of a set of relational triples, in
the form of (eh, r, et) ∈ TR. Here, we take TransE [2] with the swapping strategy [5] as the relational
knowledge encoder to interpret r as a translation vector from eh to et, making relationships captured
by simple geometric operations. The score function f(eh, r, et) and the margin-based loss LTranE

are defined as follows:

f(eh, r, et) =
∥∥eRh + r− eRt

∥∥2
2
, (1)
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LTranE =
∑
τ∈TR

∑
τ−∈T −

R

max
(
0, γ + f (τ)− f

(
τ−

))
, (2)

where eRh , eRt are initial relational feature vectors of eh and et, r is the feature embedding of r, ∥·∥2
is the L2 norm, γ is the margin hyperparameter , and T −

R is the set of negative examples. By this
means, we can obtain the initial relational feature of the entity, denoted as eR.

Attribute Knowledge Encoder. An attribute triple can be denoted as (e, a, v) ∈ TA. Aligning
attributes across different MMKGs is challenging due to the variations in the expression of identical
attributes. It necessitates more than a basic lexical comparison and requires a profound semantic
understanding to ascertain whether attributes with different labels indeed represent the same concept.
Recently, the powerful semantic understanding capabilities of LLMs have been proven across multiple
tasks [1, 8, 10]. The pre-existing knowledge within LLMs can help bridge gaps in information that
may not be explicitly stated. Moreover, in-context learning [37, 52] is a prompt engineering method
where task demonstrations are included in the prompt. With in-context learning, off-the-shelf LLM
can solve attribute alignment without fine-tuning. Therefore, we design an alignment-augmented
abstract representation that incorporates the GPT 3.5 [25] and in-context learning [13] into attribute
alignment and filtering for generating and embedding the attribute abstract. For attribute alignment,
the prompt is devised as shown in Appendix A. As the attributes that cannot be aligned often become
noise [45], we only retain those attributes that can be aligned according to the results of GPT 3.5.
Next, we convert the filtered attribute triples into a textual abstract sentence. For an entity e and its n
filtered attribute triples (e, a1, v1), (e, a2, v2), ..., (e, an, vn), the template of abstract sentence S is
“a1 is v1, a2 is v2, ..., an is vn”. Given two attribute triples (“Twilight”, “Release Date”, “2008.916”)
and (“Twilight”, “Runtime Duration”, “117”) related to “Twilight”, we construct a abstract sentence
of “Release Date is 2008.916, Runtime Duration is 117”. Then, we use a pre-trained BERT [11]
model to generate the representation of this sentence, thus forming the attribute embedding of the
entity in the following:

eA = WA
1

n

n∑
j=1

BERT (wj) + bA, (3)

where wj denotes the j-th word in S, BERT (·) represents the hidden feature vector in the last layer
of BERT, WA is the weight matrix, and bA is the bias vector.

Visual Knowledge Encoder. Visual knowledge is typically comprised of entity-image pairs, denoted
as (e, i) ∈ P . We employ a pre-trained Vision Transformer (ViT) [14] to extract image features.
Specifically, the last fully connected layer and softmax layer are removed to acquire the image
embeddings of entities. The initial visual feature embedding eI for (e, i) is generated as follows:

eI = WIV iT (i) + bI , (4)
where V iT (·) is the backbone of ViT, and WI , bI are the weight matrix and bias vector.

4.2 Missing Modality Imputation

In real-world scenarios, entities in MMKGs often lack the knowledge of certain modalities. This
omission can result from limitations in data collection methods or source availability. Incomplete
modal knowledge will potentially lead to erroneous alignment. Effectively addressing and compensat-
ing for these missing modalities to guarantee accurate integration are able to improve the robustness
of entity alignment process.

In this module, we intend to complete the missing modality by unifying the diverse modalities into a
shared latent subspace and generating a pseudo feature via Variational AutoEncoders (VAEs) [18, 28]
according to existing modal features. VAEs can learn latent representations of data, capturing essential
structure and distribution. We utilize VAEs to unify features of one target modality and concatenated
features of other modalities into a shared latent subspace. In this latent subspace, data from various
modalities become comparable. We can use the latent representation of concatenated features derived
from other modalities to approximate that of the target modality, thereby generating pseudo-features.

Typically, entities in MMKGs cannot lack relational knowledge, because entities without relations are
isolated nodes, rendering them devoid of the graph’s interconnected significance. Therefore, we aim
to complete the visual and attribute knowledge for entities. Specifically, we first reduce the dimension
of concatenated features of other modalities as follows:

gRI = WgaConcat(eR, eI) + bga, (5)

5



gRA = WgiConcat(eR, eA) + bgi, (6)
where Concat(·) is the concatenation operation, Wg∗, bg∗ are projection matrix and bias vector.
Then, we use multiple VAEs to learn the latent representations. For each VAE, x ∈ X is a feature
of target modality, z ∈ Z is the representation of x in the latent space, qϕ(z |x) is a probabilistic
encoder, and pθ(x |z) is a probabilistic decoder. The loss of VAEs is designed as follows:

LV AE(X) = E(x,z)∼qϕ(Z|X) [log pθ (x |z)]−DKL (qϕ (z |x) ∥pθ (z)) , (7)

Lv = LV AE(E
A) + LV AE(G

RI) + LV AE(E
I) + LV AE(G

RA), (8)
where DKL(·) is the KL divergence, E∗ is the set of entity features of modality ∗, and GR∗ is the
set of concatenated features of relation and modality ∗. To unify features of one target modality and
concatenated features of other modalities into a shared latent subspace, we minimize the distance of
their latent representations as follows:

Lmse = MSE(ZA,ZRI) +MSE(ZI ,ZRA), (9)

where MSE(·) is the mean-square error. Through this operation, we can use ZRI to approximate
ZA, and ZRA to approximate ZI . In the generation stage, we exploit the results of VAEs to complete
the missing modality. We input the latent representation zRI , zRA into the decoders pθ

(
eA |zA

)
,

pθ
(
eI |zI

)
to generate a pseudo feature ẽA, ẽI , respectively.

4.3 Multi-Modal Commonality Enhancement
Generally, tenuous semantic associations between disparate modal representations of knowledge
significantly hamper efforts toward inter-modal enhancement. In multi-modal tasks, semantic asso-
ciations between different modalities are often utilized to mutually enhance features across modal-
ities [50, 27]. If the semantic association is weak, mechanisms designed for interactions between
different modalities may negatively impact overall performance, potentially resulting in performance
worse than that of a single modality.

In this module, we enhance semantic associations between modalities by specially designing an inter-
modal commonality enhancement mechanism based on cross-attention with orthogonal constraints,
thereby facilitating a more holistic understanding of the entity. Cross-attention architectures have been
empirically substantiated to efficiently capture semantic associations between multiple modalities [38,
29]. Specifically, we consider two distinct modal features, denoted as x and y. x is designated as the
query, while y assumes the roles of both key and value within the attention. The attention mechanism
computes a weighted sum over y, prioritizing elements that are most relevant to x. This process
refines y based on the commonality with x. The attention is defined as follows:

Att(Q,K,V) = softmax

(
QKT

√
d

)
V, headj = Att

(
xWQ

j ,yW
K
j ,yWV

j

)
, (10)

MH(x,y) = Concat (head1, . . . , headη)Wh + bh, (11)
where Q,K, V denote the query, key and value respectively, softmax(·) is the activation function,
d is the dimension of key, η is the number of heads, WQ

j , WK
j , WV

j are projection matrices for j-th
attention head, and Wh, bh are the projection matrix and bias vector.

Building upon this cross-attention, we concurrently extract the commonalities among relational,
attribute, and visual modalities to enhance the overall representation. The operation is as follows:

eR+=wRReR + wRIMHRI(e
I , eR) + wRAMHRA(e

A, eR), (12)

eA+=wAAe
A+ wAIMHAI(e

I , eA) + wARMHAR(eR, eA), (13)

eI+=wIIe
I + wIRMHIR(eR, eI) + wIAMHIA(e

A, eI), (14)

where w∗#, ∗, # ∈ {R,A, I} are learnable weights normalized by the Softmax, and MH∗#(e
#, e∗)

is the result of multi-head cross-attention for commonality extraction between two modalities.

To amplify the commonalities among features, we additionally design an orthogonal constraint
loss, which ensures the difference calculated by subtracting the commonality features from the
original features, is dissimilar to the query features. For example, MHRI(e

I , eR) means the refined
version of eR highly relevant to eI . The difference can be calculated as eR −MHRI(e

I , eR),
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representing the content within eR that does not include any elements related to eI . Hence, it exhibits
an orthogonal relationship with eI . The orthogonal constraint loss is defined as follows:

Forth(x,y) = (xyT )2,Fd(e
∗, e#) = e∗ −MH∗#(e

#, e∗), ∗, # ∈ {R,A, I}, (15)

Lo =Forth(Fd(e
R, eI), eI) + Forth(Fd(e

R, eA), eA) + Forth(Fd(e
A, eR), eR)+

Forth(Fd(e
A, eI), eI) + Forth(Fd(e

I , eR), eR) + Forth(Fd(e
I , eA), eA),

(16)

where Forth(·) is the orthogonal constraint function, Fd(·) is the calculation function of difference,
Lo is designed orthogonal constraint loss for commonality enhancement.

In this way, we can accentuate the commonalities between modalities to distill inter-modal correspon-
dences for a more synergistic and semantically coherent representation.

4.4 Model Optimization
Through the multi-modal knowledge learning in the prior three modules, we can obtain enhanced
feature embeddings for relational, visual, and attribute modalities. By directly concatenating the
enhanced features, we generate an integrated multi-modal representation of an entity as follows:

eM = Concat(eR+, eI+, eA+), (17)

where eM is the holistic enhanced entity embedding of entity e.

To ensure that features of aligned entities from different MMKGs are more closely in the space and
make the overall modeling more robust, we employ the multi-modal contrastive learning [6, 48] as
our main optimization objective. Multi-modal contrastive learning contrasts the feature similarity of
positive entity pairs with negative entity pairs, from multiple perspectives of holistic multi-modal
representations and each uni-modal feature representation. Positive entity pairs refer to two aligned
entities, and negative entity pairs refer to two unaligned entities. The main objective of optimization
is defined as follows:

Lcl(E
∗
1,E

∗
2) =

1

2|H|
∑

(e1,e2)∈H

(1− y)d2(e∗1, e
∗
2) + ymax(γcl − d(e∗1, e

∗
2), 0)

2, (18)

Lmcl = Lcl(E
M
1 ,EM

2 ) + Lcl(E
R
1 ,ER

2 ) + Lcl(E
A
1 ,E

A
2 ) + Lcl(E

I
1 ,E

I
2 ), (19)

where Lmcl is the main objective of optimization, ∗ ∈ {M,R,A, I} denotes the modality, E∗
1, E∗

2
are the sets of entity feature embeddings of modality ∗ for G1 and G2, H is the set of sampled entity
pairs including positive and negative samples, d(·, ·) is the function of cosine similarity, y is the
indicator of whether an entity pair can be aligned, and γcl is the margin hyperparameter.

Combining all the designed losses above, the overall objective of optimization L is as follows:

L = LTransE + λ1Lo + Lmcl + Lv + λ2Lmse. (20)

In training stage, we minimize L and update the model parameters via the backpropagation. Owing
to the high cost of manual annotations and the expansive scale of MMKGs, the availability of aligned
entity pairs is frequently insufficient. Therefore, we adopt a bi-directional iterative strategy [24]
based on the asymmetric nature of alignment directions to boost the training. The specific algorithm
of this strategy is described in Appendix B.

5 Experiment
In this section, we provide extensive experiments on two real-world datasets. To begin, we offer a brief
description of experimental setups. Next, the experimental results and analysis are presented to verify
the effectiveness of TMEA. More details and results of experiments are provided in Appendix C.

5.1 Experimental Setups
Datasets. Following previous studies [5, 20], we selected two commonly used public datasets,
namely FB15K-DB15K and FB15K-YG15K [23], and allocated 20% of the aligned entity pairs as
training data. These datasets contain two pairs of aligned MMKGs with relational, attribute, and
visual knowledge.
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Table 1: The performance of multi-modal entity alignment on two datasets. The best results are
indicated in bold, and second-best results are marked with underlines.

Method FB15K-DB15K FB15K-YG15K
H@1 H@5 H@10 MR MRR H@1 H@5 H@10 MR MRR

IPTransE 0.040 0.112 0.173 387.512 0.086 0.031 0.095 0.144 522.235 0.070
GCN-Align 0.043 0.110 0.155 810.648 0.082 0.023 0.072 0.107 1109.845 0.053

BootEA 0.323 0.499 0.579 205.532 0.410 0.234 0.374 0.445 272.120 0.307
SEA 0.170 0.335 0.425 191.903 0.255 0.141 0.287 0.371 207.236 0.218
RAC 0.203 0.360 0.432 453.313 0.281 0.151 0.281 0.345 501.795 0.216
PEEA 0.143 0.254 0.299 1265.616 0.198 0.126 0.223 0.268 989.414 0.175

MixTEA 0.115 0.233 0.299 340.733 0.178 0.085 0.177 0.234 350.439 0.136

PoE 0.120 - 0.256 - 0.167 0.109 - 0.241 - 0.154
MMEA 0.265 0.451 0.541 124.807 0.357 0.234 0.398 0.480 147.441 0.317

EVA 0.556 0.666 0.716 139.995 0.609 0.103 0.217 0.278 616.789 0.164
MSNEA 0.653 0.768 0.812 54.025 0.708 0.443 0.626 0.698 85.074 0.529
MCLEA 0.441 0.640 0.710 84.628 0.534 0.406 0.579 0.645 123.394 0.488

ACK-MMEA 0.304 - 0.549 - 0.387 0.289 - 0.496 - 0.360
MoAlign 0.318 - 0.564 - 0.409 0.296 - 0.525 - 0.378

TMEA 0.867 0.929 0.944 26.343 0.895 0.818 0.891 0.916 32.864 0.853

Evaluation Metrics. We assessed the alignment probability between entities from different MMKGs
based on cosine similarity calculation. Then, we chose H@N (Hits@N), MRR (Mean Reciprocal
Rank), and MR (Mean Rank) as metrics to evaluate all the models. A higher value for H@N and
MRR indicates better performance, whereas a lower value for MR suggests the same.

Compared Methods We benchmarked TMEA against a selection of both representative and state-of-
the-art approaches. For traditional KGs: IPTransE [53], GCN-Align [36], BootEA [31], SEA [26],
RAC [46], PEEA [32], and MixTEA [42]. For MMKGs: PoE [23], MMEA [5], EVA [22],
MSNEA [6], MCLEA [21], ACK-MMEA [19], and MoAlign [20].

5.2 Performance Comparison

We compared TMEA with several representative and state-of-the-art baselines for multi-modal entity
alignment task on FB15K-DB15K and FB15K-YG15K datasets. Table 1 shows the performance of
all methods with 20% aligned entity pairs for training. Overall, our proposed TMEA achieves the best
performance on both datasets. Specifically, we have the following findings. First, TMEA exhibits
significant improvements with a notable margin compared to not only traditional but also multi-
modal methods. Compared to the strongest traditional alignment method, BootEA, TMEA achieves
at least a 168.4%, 63.0%, and 118.3% improvement in H@1, H@10, and MRR on two datasets,
respectively. When assessed against the leading multi-modal method, MSNEA, TMEA attained
at least a 32.8%, 16.3%, and 26.4% increase in H@1, H@10, and MRR, respectively. Besides,
we test the statistical significance and the results suggest TMEA has significant improvements
(p-value < 0.001) over baselines. Second, comparing multi-modal entity alignment methods to
traditional ones, we observe a clear advantage in favor of multi-modal approaches in most cases.
TMEA, MSNEA, and MCLEA surpass all traditional approaches, which suggests the effect of
leveraging the rich and varied information that multi-modal knowledge provides. This additional
context and modeling allow for a more comprehensive depiction of entity features, facilitating a
more accurate determination of potential alignments. Third, our TMEA method, leveraging only 20%
of aligned entity pairs for training, achieves a remarkable H@10 score of 0.944 and 0.916 on two
datasets. This large margin of superiority over other multi-modal entity alignment methods can be
attributed to the considering and effective tackling of uncertain correspondences in the alignment
process. By addressing these inherent issues, TMEA is demonstrated to enhance the precision and
reliability of entity alignment for MMKGs.

5.3 Ablation Study

To verify the influence of each part in TMEA, we conducted two sets of ablation studies, one set for
modality ablation and another for component ablation. The variants for modality ablation are named
w/o V, w/o R, and w/o A, corresponding to the removal of visual, relational, and attribute knowledge
respectively. In terms of component ablation, w/o MMI and w/o MCE refer to the elimination of
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Figure 3: The performance of TMEA and the strongest baseline, MSNEA, when varying ratios of
entities have visual or attribute modalities on FB15K-DB15K.

Table 2: The ablation study to verify the impact of modal-
ity and component on two datasets.

Method FB15K-DB15K FB15K-YG15K

H@1 H@10 MR H@1 H@10 MR

TMEA 0.867 0.944 26.343 0.818 0.916 32.864

w/o V 0.446 0.684 227.984 0.609 0.772 139.901
w/o R 0.630 0.742 290.519 0.657 0.834 96.719
w/o A 0.793 0.904 52.959 0.569 0.735 157.695

w/o AP 0.786 0.903 45.263 0.593 0.757 138.562
w/o MMI 0.852 0.935 32.867 0.779 0.885 56.569

w/o Lmse 0.841 0.922 37.829 0.797 0.900 47.584
w/o MCE 0.749 0.868 48.314 0.636 0.809 51.573
w/o Lo 0.842 0.931 30.239 0.794 0.904 44.741
w/o IT 0.728 0.834 64.875 0.645 0.825 112.248

modules MMI and MCE, w/o Lo and
w/o Lmse are the removal of constraint
losses, w/o AP denotes the absence of
preprocessing for attribute knowledge,
and w/o IT indicates the exclusion of the
iterative strategy. Table 2 shows the re-
sults of ablation study, demonstrating the
effectiveness of each part in TMEA. In
the results of the modality ablation study,
it is evident across both datasets that each
modality’s features apparently contribute
to the improvement of entity alignment
performance. Furthermore, the most ef-
fective modality varies across datasets,
which may depend on factors such as
data sparsity or noise. Regarding the re-
sults of component ablation, the effectiveness of each designed component is validated. First, the
considerable drop in performance without MCE module (w/o MCE) underscores the capability of
MCE module to bolster the commonality among modalities, mitigating the impact of weak semantic
associations. Second, the marked deterioration in performance without attribute preprocessing (w/o
AP) verifies the effect of integrating the LLM and in-context learning into filtering and abstract
sentence embedding. Third, removing MMI module (w/o MMI) leads to an increase in the MR
metric, and the effect is different on two datasets, indicating that the effectiveness of MMI module
is contingent on the proportion of missing modalities within the dataset. Last, the absence of the
iterative strategy (w/o IT) highlights the strategy’s role in boosting the robustness of the model, as
evidenced by a marked deterioration in MR upon its removal.

5.4 Modality Sensitivity Analysis
In MMKGs, entities often lack certain modalities of knowledge. Therefore, we address the missing
modalities for entities in MMI module. To validate the ability of TMEA to maintain robust perfor-
mance with missing modalities, we compared TMEA with the strongest baseline, MSNEA, under
varying ratios of missing modal knowledge. Figure 3 presents the results of TMEA and MSNEA
under scenarios with 20%, 40%, 60%, 80%, and 100% entities having visual and attribute modalities
on FB15K-DB15K, respectively. We observe that TMEA outperforms MSNEA at different ratios
obviously. In scenarios with missing visual modality, TMEA exhibits a slower performance decline
compared to MSNEA. Moreover, when only 20% of entities have visual modality, TMEA achieves
an MRR exceeding 0.5, while MSNEA falls below 0.4. For missing attribute modality, both TMEA
and MSNEA show a relatively minor performance decline. With only 20% of entities having attribute
modality, TMEA achieves an MRR and H@1 close to 0.8. MSNEA remains relatively unchanged
across different proportions due to its insufficient attribute learning of adaptive weights, even with a
substantial number of attribute features that only yield marginal improvements. This also indicates
that our attribute knowledge encoder more efficiently and fully leverages the semantics of attributes.

5.5 Label Dependency Analysis
The availability of aligned entity pairs is frequently insufficient. Importantly, the effective and
sufficient exploitation of multi-modal knowledge can significantly mitigate the dependency of methods
on alignment labels during training. For the purpose of assessing these methods’ reliance on the

9



0.0

0.2

0.4

0.6

0.8

1.0

20% 50% 80%

H
@
1

0.0

0.2

0.4

0.6

0.8

1.0

20% 50% 80%

H
@
10

0.0

0.2

0.4

0.6

0.8

1.0

20% 50% 80%

M
R
R

0.0

0.2

0.4

0.6

0.8

1.0

20% 50% 80%

H
@
1

0.0

0.2

0.4

0.6

0.8

1.0

20% 50% 80%
H
@
10

0.0

0.2

0.4

0.6

0.8

1.0

20% 50% 80%

M
R
R

FB15K-DB15K

FB15K-YG15K

0.00.5
1.0

20% 50% 80%H
@
1

PoE MMEA EVA MSNEA MCLEA ACK-MMEA MoAlign TMEA

Figure 4: Comparison results with different ratios of alignment labels.

quantity of aligned entity pairs, we conducted a series of experiments to train the models using 20%,
50%, and 80% aligned entity pairs. Figure 4 shows the comparison results of all multi-modal entity
alignment methods. From the overview, TMEA provides an obviously leading performance with
different proportions of training data. Only TMEA achieves H@1, H@10, and MRR scores above
0.8 across various percentages. Moreover, its performance does not show a clear decline even with
the reduction of training data proportions, unlike the majority of methods that experience a marked
loss in performance. For instance, ACK-MMEA and MoAlign achieve lower H@10 and MRR scores
than MCLEA with 50% of training data, yet surpass MCLEA when the training data is increased to
80% on FB15K-YG15K. This indicates their strong dependency on aligned entity pairs. When the
aligned sample pairs reach 80%, even though the performance of TMEA and MSNEA on the H@10
metric appears to be close, there is still a noticeable difference in MRR and H@1. This suggests that
MSNEA performs poorly in aligning difficult samples.

6 Conclusion
In this paper, we proposed a novel TMEA to tackle uncertain correspondences between inter-modal or
intra-modal cues of entities for multi-modal entity alignment. Specifically, we first developed a Multi-
modal Knowledge Encoder (MKE) module to encode relational, attribute, and visual knowledge into
their preliminary feature representations. In MKE, to address the diversity of descriptive manners
of attribute knowledge, we particularly designed alignment-augmented abstract representation that
incorporated the LLM and in-context learning into attribute alignment and filtering for generating
and embedding the attribute abstract. To mitigate the influence of the modality absence, we devised a
Missing Modality Imputation (MMI) module to complete the missing modality by unifying diverse
modalities into a shared latent subspace and generating a pseudo feature via VAEs based on existing
modal features. For enhancing the semantic associations between modalities, we invented an inter-
modal commonality enhancement mechanism based on cross-attention with orthogonal constraints in
Multi-modal Commonality Enhancement (MCE) module. Finally, extensive experiments on two real-
world datasets were conducted to verify the effectiveness of TMEA with a significant improvement
over competitive baselines.
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Appendix

A Prompt for Attribute Alignment

Aligning attributes necessitates a profound semantic understanding to ascertain whether attributes
with different literals indeed represent the same concept. Therefore, we incorporate the GPT 3.5 2

and in-context learning into aligning attributes from two MMKGs. The prompt used for attribute
alignment is shown in Table 3.

Table 3: The prompt used for attribute alignment.

You are an excellent attribute alignment expert, and now there are two sets of attributes in two
knowledge graphs (KGs). You need to align the attributes in both KGs one by one based on
whether they have the same meaning, but there may be attributes that cannot be aligned.
Here is an example:
The attributes and their values are
KG1: {(date of birth, 1880-10-12), (latitude, 54.20867775), (longitude, 9.70404945)},
KG2: {(birthDate, 1563.333), (activeYears, 1652), (birthYear, 1975), (long, 14.548)}.
The attributes that can be aligned are
(date of birth, birthDate)
(longitude, long)

Please align as many attributes as possible from the two KGs following. Directly output results
by line, without outputting duplicate or irrelevant information. Even if there is information that
cannot be aligned, do not output explanations.
The attributes and their values are
KG1: {(a1, v1), (a2, v2), ...},
KG2: {(a1, v1), (a2, v2), ...}.

B Iterative Strategy Algorithm

We adopt a bi-directional iterative strategy [24] based on the asymmetric nature of alignment directions
to boost the training. During the current iteration, if the entities e1 ∈ E1 and e2 ∈ E2 are the mutual
nearest neighbors of each other, they will be treated as a newly aligned pair to be added into the
training set for the subsequent iteration. Algorithm 1 outlines the details of this iterative process.

C More Experimental Details and Results

C.1 Dataset Description

We adopted two representative public datasets commonly used in multi-modal entity alignment
task [23, 6, 19], namely FB15K-DB15K and FB15K-YG15K. The statistical details of FB15K-
DB15K and FB15K-YG15K are presented in Table 4. FB15K is derived from Freebase 3, a large-scale
knowledge base acquired by Google 4. It is widely applied for knowledge graph completion tasks
and evaluating link prediction models. DB15K is a subset of DBpedia 5, while YG15K is a subset of
YAGO 6. The entities in FB15K can be aligned with the entities in DB15K and YG15K, respectively.

C.2 Metric Explanation

We chose H@N (Hits@N), MRR (Mean Reciprocal Rank), and MR (Mean Rank) as evaluation
metrics. According to similarity ranking, H@N counts the number of times the true aligned entity

2https://openai.com/blog/chatgpt
3https://developers.google.com/freebase
4https://www.google.com
5https://www.dbpedia.org/resources/knowledge-graphs
6https://yago-knowledge.org/
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Algorithm 1 Bi-Directional Iterative Strategy for MMKGs
Require: Two MMKGs G1, G2, a set of aligned entity pairs S, E ′1 ⊆ E1, E ′2 ⊆ E2 are entity sets

that does not exist in S respectively, EM
1 , EM

2 are sets of holistic enhanced entity embedding
respectively.

Ensure: Model parameters θ
1: Initialize model parameters θ
2: repeat
3: Train model on G1, G2, S until the loss of validation set does not decrease
4: for e ∈ E ′1 do
5: Get the embedding eM ∈ EM

1 of entity e
6: From E ′2, find the entity e′ whose feature e′M ∈ EM

2 is most similar to eM

7: if e′M is also most similar to the embedding of entity e from E ′1 then
8: S ← S ∪ {(e, e′)}
9: E ′1 ← E ′1 − e

10: E ′2 ← E ′2 − e′

11: end if
12: end for
13: until No more aligned entities are added to S

Table 4: Statistics of MMKGs in the dataset.

Statistics FB15K DB15K YG15K
# Entities 14,951 12,842 15,404
# Relations 1,345 279 32
# Attributes 116 225 7
# Relational Triples 592,213 89,197 122,886
# Attribute Triples 29,395 48,080 23,532
# Entity-Image Pairs 13,444 12,837 11,194
# Aligned Entity Pairs - 12,846 11,199

appears within the top-N predicted entities and calculates the average across all source entities. MRR
denotes the mean reciprocal rank of correctly aligned entities, and MR represents the mean rank of
correctly aligned entities. A higher value for H@N and MRR indicates better performance, whereas
a lower value for MR suggests the same. The formulas for calculating these metrics are as follows:

H@N =
1

|S|

|S|∑
i=1

I [ranki ≤ N] , (21)

MRR =
1

|S|

|S|∑
i=1

1

ranki
,MR =

1

|S|

|S|∑
i=1

ranki, (22)

where S refers to the set of aligned entity pairs, ranki denotes the rank of the correctly aligned entity
for the i-th query entity, and I [·] is the function of indicator.

C.3 Model Configurations

We initialized all weight matrices with Xavier Normal initializer [15]. For efficiency, we froze the
parameters of pre-trained ViT [14] and BERT [11] in the training stage. The dimensions of all
entity features and r were 100. In VAEs, the encoder and decoder were both composed of two fully
connected layers, and the dimension of the latent representations was set to 64. The number of heads
η is 2. In LTransE , we set γ as 1. In Lcl, γcl was 2. In the overall objective, λ1 and λ2 were 1e-2.
We used the mini-batch method with a batch size of 5000. The learning rate was 0.001 and Adam
optimizer [17] was adopted. Our model was implemented using the framework of PyTorch 7. The
experiments were conducted on a server with two Intel Xeon Silver 4214R CPUs @ 2.40GHz, four
NVIDIA GeForce RTX 3090 GPUs, and 256 GB RAM memory.

7https://pytorch.org/
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C.4 Baseline Description

We selected both representative and state-of-the-art baselines for performance comparison. The
descriptions of these baselines are introduced in detail as follows:

For traditional KGs:

• IPTransE [53] is the first to propose an iterative strategy for entity alignment to iteratively
create newly aligned entity pairs for soft alignment.

• GCN-Align [36] leverages the graph convolutional networks to aggregate structural and
attribute knowledge of entities.

• BootEA [31] adopts the iterative strategy for data augmentation and designs an alignment
editing method to reduce error accumulation during the process of iterations.

• SEA [26] exploits labeled data and abundant unlabeled data together and learns the difference
in degree of nodes with adversarial training.

• RAC [46] contrasts different views of entity representations by designing an unsupervised
contrastive loss and exploits the unlabeled data to augment supervision signals.

• PEEA [32] increases the connections between far-away entities and labels ones by incorpo-
rating positional information into the representation learning with a position attention layer
for fine-grained information.

• MixTEA [42] instructs the model learning by an end-to-end mixture teaching of manually
labeled mappings and probabilistic pseudo mappings.

For MMKGs:

• PoE [23] employs a Product of Experts approach to calculate the probability of alignment
following the generation of individual uni-modal representations, subsequently determining
the “SameAs” links between aligned entities.

• MMEA [5] initially produces entity representations with relational, visual, and numerical
features and transfers each uni-modal feature embedding into a unified space to facilitate
integration.

• EVA [22] adopts ResNet, GCN, feedforward network to learn images, graph structure,
and triples, and then incorporates multi-modal data into a combined embedding using an
attention-driven modality weighting.

• MSNEA [6] implements inter-modal enhancement that leverages visual features to steer
the learning of relational and attribute features, with multi-modal contrastive learning to
mitigate the overpowering impact of weak modalities.

• MCLEA [21] takes into account task-specific modalities and models the inter-modal re-
lationships for each entity representation. It then employs contrastive learning to jointly
capture both intra-modal and inter-modal interactions.

• ACK-MMEA [19] integrates consistent alignment knowledge via merge and generate
operators, and leverages a graph neural network called ConsistGNN to aggregate consistent
information.

• MoAlign [20] hierarchically incorporates neighbor features, multi-modal attributes, and
entity types by a hierarchical modifiable self-attention block in a transformer encoder to
maintain the unique semantics of different information.

The results of IPTransE, GCN-Align, SEA, PoE, and MMEA are reported in [5]. The results of
BootEA, RAC, EVA, and MSNEA are reported in [6]. The results of ACK-MMEA and MoAlign are
reported in [19] and [20]. The results of PEEA 8, MixTEA 9, and MCLEA 10 are reproduced by
running the codes in GitHub with default hyperparameter settings.

8https://github.com/OceanTangWei/PEEA
9https://github.com/Xiefeng69/MixTEA

10https://github.com/lzxlin/MCLEA
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C.5 Parameter Sensitivity

We have introduced coefficients λ1 and λ2 for the two constraint losses in the overall objective
function to balance the impact of different losses. Here, we investigate the performance change of
TMEA with varying coefficients. We conducted experiments by choosing values for λ1 and λ2 from
the list [1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1], and the results on FB15K-DB15K are illustrated in Figure 5.
The results indicate that the optimal values for λ1 and λ2 are 1e-2. When values are greater than 1e-2,
the performance shows a declining trend. This is because excessive emphasis on constraint behavior
can lead to a deviation in the optimization direction.
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Figure 5: The parameter sensitivity on FB15K-DB15K.

D Broader Impact

The impact of TMEA extends beyond its immediate application in integrating knowledge graphs from
diverse data sources. By addressing the challenges of tackling uncertain correspondences, TMEA
offers a framework that can be generalized to various multimodal learning tasks like multimodal
recommendation systems, multimodal document classification, and multimodal sentiment analysis.

For instance, in the domain of multi-modal recommendation systems, where diverse sources of
information need to be fused to provide personalized recommendations, TMEA can be adapted to
enhance the alignment between different modalities (e.g., user preferences, item descriptions, and
user-item interactions). By leveraging its alignment-augmented abstract representation and inter-
modal commonality enhancement mechanism, TMEA can effectively capture the subtle semantic
associations between modalities, leading to more accurate and personalized recommendations.

Furthermore, TMEA’s approach to handling diverse attribute knowledge descriptions and modality
absence can also benefit other multi-modal learning tasks, such as image-text matching, cross-
modal retrieval, and multimodal sentiment analysis. In these tasks, where aligning and integrating
information from multiple modalities is crucial, TMEA’s methodology of unifying modality features
and enhancing commonalities can contribute to improved performance and robustness.

By fostering an environment where multi-modal data is more accurately aligned and integrated, the
TMEA model paves the way for novel applications and research opportunities. For instance, in
healthcare, it could support more robust diagnostic tools and patient care strategies by providing a
comprehensive view of patient data across modalities. In financial markets, it might offer deeper
insights through the integration of textual reports, market data, and socio-economic indicators,
leading to more informed investment strategies. Beyond these, the model’s application could extend
to areas like intelligent urban planning, environmental monitoring, and personalized education, each
benefiting from the nuanced understanding and integration of diverse data streams.
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In summary, TMEA’s broader impact lies in its potential to advance the field of multi-modal learning
by providing a versatile framework that can be applied to a wide range of tasks or scenarios requiring
multi-modal fusion and alignment.

E Limitations

Although the TMEA method offers apparent advantages, its practical application is limited by several
factors. Firstly, the attribute knowledge encoder relies on the large language model trained on general
corpora, rather than KG-specific data. Consequently, the model’s semantic understanding may lack
the depth and specificity necessary for KG contexts. In the future, we will explore fine-tuning
open-source large language models to enhance semantic understanding specifically tailored to KG
attributes. Secondly, TMEA depends on aligned entity annotation data for feature extraction and
model optimization. This dependency presents challenges, particularly in scenarios where annotations
are scarce or costly to obtain. To address this issue, our future investigations will focus on fully
leveraging multi-modal data in unsupervised settings, aiming to mitigate the reliance on annotated
data while enhancing model performance.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please see the parts of abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in the Appendix E.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Please see Section 4.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please see Appendix C.3 and Appendix C.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Please see the code and datasets in our GitHub.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Appendix C.3, C.4 and Section 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please see Section 5 and Table 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please see Appendix C.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conduct the research with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see Appendix D.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The datasets are from https://github.com/mniepert/mmkb in [23].
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: The documentation is provided in our GitHub.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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