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Abstract

We extend the CycleGAN architecture with a style-based generator and show the efficacy of
the proposed domain adaptation-based method between two histopathology image domains
- Hematoxylin and Eosin (H&E) and HER2 immunohistochemically (IHC) images. Using
the proposed method, we re-used large set of pre-existing annotations for detection of
tumor infiltrating lymphocytes (TILs), which were originally done on H&E, towards a
TIL detector applicable on HER2 THC images. We provide analytical validation of the
resulting TIL detector. Furthermore, we show that the detected stromal TIL densities are
significantly prognostic as a biomarker for patient stratification on a triple-negative breast
cancer (TNBC) cohort.
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1. Introduction

Tumor infiltrating lymphocytes (TILs) are indicators of improved prognosis in breast cancer.
TILs can be characterized as round to polygonal relatively small cells with little cytoplasm
and a nucleus with homogeneous texture. In this work, we build a deep learning based
system to detect TILs on HER2 stained THC images. We aim to minimize the effort needed
to collect large amounts of ground truth annotations for TIL detection by using a domain
adaptation-based system that will re-use pre-existing annotations on H&E slides from an
independent cohort to train a model that works on IHC (HER2 stained) images. We show
clinical relevance of this method by performing patient stratification on an unseen cohort
with n=145 samples. Patient stratification is the task of identifying a sub-cohort of patients
with improved overall or progression-free survival; in this case by using stromal TIL (sTIL)
density as a biomarker.

2. CycleGAN with Adaptive Instance Normalization

We augment the original CycleGAN architecture (Zhu et al., 2017) by a style encoder to
make it adaptive to any given input style using Adaptive Instance Normalization (AdaIN).

AdaIN(z,y) = o(y) (W) + uly)
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Figure 1: Left: Modified CycleGAN generator with AdaIN. Style encoder E is used to learn
style features from a style image. The full CycleGAN architecture is not shown for clarity
purposes. Right: A UNet model with EfficientNet backbone was trained on synthetic IHC
images only using the annotations transferred from corresponding H&FE patches.

The input content x is first instance normalized (IN) (Ulyanov et al., 2016) and then scaled
and shifted with parameters obtained from style features y. The style features are computed
from an image encoded vector from the style image. To incorporate this, the generator
network of the CycleGAN needs an additional input - the style vector, which is computed
through another CNN - the style encoder E. The schema of the modified CycleGAN
generator is shown in Figure 1. With the incorporation of style encoders F4 and Ep,
the two adversarial losses Eég N and EgﬁN are modified, while other losses like the cycle
loss remain the same. Let x4, zp represent the content images and yg, y4 represents the
respective style image in domains A and B. Modified losses are as follows:

IGnig max LEAN = Eapoy 10g(Dp(28)) + Eoymiy yp~rp 108(1 — Dp(Gap(za, Es(yp))))

min max LEAN = Baynx, 10g(Da(24)) + Eoprgyamas 108(1 — Da(Gpa(zs, Ea(ya))))
BA A

The development set consisted of 60k H&E patches with TILs annotations from an in-
dependent cohort. The aforementioned Adaptive CycleGAN model was used to generate
synthetic IHC patches from H&E patches. Once the patches were synthesized, we were able
to re-use exactly the same ground truth masks as H&E domain for model training to train
a UNet with EfficientNet backbone. The model was applied to the whole slide image (WSI)
in a sliding window manner and cell centers were obtained from final posterior maps using
thresholding followed by non-maximal suppression.

3. Results

Analytical validation of the TIL detector was done against pathologist’s TIL annotations
performed on HER2 THC images. N=38 regions of interests (ROI) were annotated by one
pathologist that contained 3122 TIL annotations for testing. Detected TIL locations were
compared against the annotated TIL locations using Hungarian matching and an F1-score
of 0.68 was obtained. The absolute TIL count correlation between amount of detected
and annotated TILs (both on log scale) showed spearman correlation 0.93. For clinical
validation, the model was applied on a TNBC patient cohort of N=145 patients. The
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patients were treated with standard of care treatment (surgery and chemo/radiotherapy)
and information on Overall Survival (OS) and Progression-free Survival (PFS) was analyzed.
TIL density in tumor associated stromal regions (sTILs density) was computed within a
pathologist delineated tumor core region leaving out areas of DCIS and normal tissue. An
in-house epithelial detection (two clas model segmenting epithelial regions from others)
model was used to detect and exclude the epithelial regions within the tumor core region
to obtain area for TIL density computation in stromal regions (number of TILs/mm?).
We performed a 2-fold pre-validation to determine a sTIL density cut-point to stratify the
patients with respect to OS and PFS into two groups. Log-rank test was performed to find
out the significance of these two groups. We observed that the sTIL density is significantly
prognostic for OS (log-rank p-value = 0.0062, HR=0.454) as well as for PFS (log-rank
p-value = 0.0033, HR=0.463).

Patient stratification for overall survival (OS) Patient stratification for progression free survival (PFS)
Strata =+ density sTiLs low == density sTILs high Strata == density sTiLs low == density sTiLs high

1.00 1.00
20.75 20.75
= 3
© [
s °
20.50 20.50
© o
2 2
I 2
3025 0.5

: p = 0.0062 : p = 0.0033
0.00 0.00
0 40 80 120 160 0 40 80 120 160
Time in months Time in months
Number at risk Number at risk
& =161 42 12 3 0 g2 =|61 35 11 3 0
B =84 71 26 7 0 » =84 65 25 5 0
0 40 80 120 160 0 40 80 120 160
Time in months Time in months

Figure 2: Kaplan-Meier plot for patient stratification with OS and PFS.

4. Discussion and outlook

We propose a novel workflow to re-use annotations effectively between different domains.
The TIL detector obtained provides analytically and prognostically relevant TIL statistics.
This approach will enable us in the future to reuse large sets with pre-existing annotations
on multiple image domains to train effective models and obtain novel biomarkers.
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