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Abstract

Extending image-based Large Multimodal001
Models (LMMs) to videos is challenging due to002
the inherent complexity of video data. The re-003
cent approaches extending image-based LMMs004
to videos either lack the grounding capabili-005
ties (e.g., VideoChat, Video-ChatGPT, Video-006
LLaMA) or do not utilize the audio-signals007
for better video understanding (e.g., Video-008
ChatGPT). Addressing these gaps, we propose009
PG-Video-LLaVA, the first LMM with pixel-010
level grounding capability, integrating audio011
cues by transcribing them into text to enrich012
video-context understanding. Our framework013
uses an off-the-shelf tracker and a novel ground-014
ing module, enabling it to spatially localize ob-015
jects in videos following user instructions. We016
evaluate PG-Video-LLaVA using video-based017
generative and question-answering benchmarks018
and introduce new benchmarks specifically de-019
signed to measure prompt-based object ground-020
ing performance in videos. Further, we pro-021
pose using open-source Vicuna LLM for video-022
based conversation benchmarking, as opposed023
to GPT-3.5 utilized in Video-ChatGPT, ensur-024
ing reproducibility of results which is a con-025
cern with the proprietary nature of GPT-3.5.026
Our framework builds on SoTA image-based027
LLaVA model and extends its advantages to the028
video domain, delivering promising gains on029
video-based conversation and grounding tasks.030
Our codes, pretrained models, and interactive031
demos will be made publicly available.032

1 Introduction033

Recent efforts on Large Multimodal Models034

(LMMs), spearheaded by GPT-4V (OpenAI,035

2023b), allow detailed conversations about images036

but generally do not scale well to videos. The mag-037

nitude of video data scales far beyond other modali-038

ties due to its massive volume on social and internet039

media. Furthermore, extending LMMs to videos040

is challenging due to their complex dynamics with041

long temporal context that needs to be understood042

What does the child in yellow hold outdoors?

The child in yellow holds a tennis racket.

Who walks to the door and opens it?

A man walks to the door and opens it.

Figure 1: Video spatial grounding on example videos
from Vid-STG (Zhang et al., 2020) (above) and HC-
STVG (Tang et al., 2021) (below) datasets. PG-Video-
LLaVA can generate textual responses with referred
objects grounded in the video content (tennis racket
and man are localized in the top and bottom examples,
respectively).

accurately. Although recent approaches towards 043

video-LMMs such as VideoChat (Li et al., 2023b), 044

Video-LLaMA (Zhang et al., 2023a), and Video- 045

ChatGPT (Maaz et al., 2023) have demonstrated 046

capabilities in video comprehension and dialogue, 047

they lack the crucial feature of visual grounding. 048

Visual grounding in videos aims to associate the 049

LMM responses to specific objects within the video 050

input. Addressing this gap, we introduce PG-Video- 051

LLaVA, the first video-LMM capable of localizing 052

objects appearing in LMM responses. This task 053

leads to enhanced intractability and demonstrates 054

deep understanding of video content. 055

In PG-Video-LLaVA, we address the unique 056

challenges posed by video data. The model is de- 057

signed to track objects within shorter video clips 058

that maintain consistent camera views, enabling 059

accurate visual grounding across scenes and mo- 060

tions. This tracking links spatio-temporal segments 061

directly to conversational elements, enhancing the 062
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model’s contextual understanding. A salient feature063

of PG-Video-LLaVA is its modular design, allow-064

ing for easy integration with existing grounding065

modules and the flexibility to adapt to future en-066

hancements in visual grounding technology. More-067

over, PG-Video-LLaVA enriches its capabilities by068

incorporating audio context. It achieves this by069

leveraging video audio in a form understandable070

to LLM, which is particularly useful in situations071

where the auditory information is essential to the072

conversation. This inclusion broadens the model’s073

understanding, making it more versatile in inter-074

preting video content.075

Furthermore, this work introduces an improved076

framework for benchmarking video-based con-077

versational models, pivoting from previous ap-078

proaches (Maaz et al., 2023) that predominantly079

used the proprietary GPT-3.5-Turbo model for eval-080

uation. Given that GPT-3.5-Turbo is subject to081

changes at any time and lacks transparency due082

to its closed-source nature, it presents challenges083

in terms of reliability and reproducibility. To ad-084

dress this, we propose the use of Vicuna, an open-085

source LLM for benchmarking. This shift not only086

enhances reproducibility but also improves trans-087

parency in the evaluation process. We evaluate PG-088

Video-LLaVA using our improved benchmarks and089

show notable improvements over existing video090

conversational models like Video-ChatGPT (Maaz091

et al., 2023) and Video-LLaMA (Zhang et al.,092

2023a) in ungrounded dialogues, achieving state-093

of-the-art (SoTA) performance.094

The key contributions of this work are:095

• We propose PG-Video-LLaVA, the first video-096

based LMM with pixel-level grounding ca-097

pabilities, featuring a modular design for en-098

hanced flexibility.099

• By incorporating audio context, PG-Video-100

LLaVA significantly enhances its understand-101

ing of video content, making it more compre-102

hensive and aptly suited for scenarios where103

the audio signal is crucial for video under-104

standing (e.g., dialogues and conversations,105

news videos, etc.).106

• We introduce improved quantitative bench-107

marks for video-based conversational mod-108

els. Our benchmarks utilize open-source Vi-109

cuna LLM to ensure better reproducibility and110

transparency. We also propose benchmarks to111

evaluate the grounding capabilities of video- 112

based conversational models. 113

2 Related Work 114

Recent advancements in Large Multimodal Models 115

(LMMs) (Liu et al., 2023a; Zhu et al., 2023; Dai 116

et al., 2023) and Large Language Models (LLMs) 117

(Chiang et al., 2023; OpenAI, 2023a; Touvron et al., 118

2023) have significantly transformed the artificial 119

intelligence landscape, particularly in natural lan- 120

guage processing and multimodal tasks. These 121

breakthroughs have enhanced machine learning 122

models’ ability to understand and generate human- 123

like text, while also enabling more effective inte- 124

gration of various data types like images, sounds 125

and videos with textual information. This progress 126

represents a major leap in creating AI systems that 127

can accurately interpret and interact with a diverse 128

range of content. 129

Large Language Models (LLMs): The natu- 130

ral language processing (NLP) field has under- 131

gone a revolution with the advent of LLMs such 132

as GPT (Brown et al., 2020), LLaMA (Touvron 133

et al., 2023), OPT (Zhang et al., 2022), and 134

MOSS (OpenLMLab, 2023), particularly noted 135

for their zero-shot learning abilities and adapt- 136

ability. The development of models like Instruct- 137

GPT (Ouyang et al., 2022) and ChatGPT (OpenAI, 138

2023a) has further propelled advancements in con- 139

versational AI and complex query handling, chiefly 140

through instruction tuning. Within the LLaMA 141

framework, the emergence of open-source models 142

such as Alpaca (Taori et al., 2023) and Vicuna (Chi- 143

ang et al., 2023) exemplifies how instruction tuning 144

can significantly boost model performance. This 145

shift towards open-source initiatives in language 146

modeling, highlighted by models like Alpaca and 147

Vicuna, indicates a growing trend towards more 148

accessible and collaborative approaches in the field. 149

In this work, we build on the open-source Vicuna 150

LLM and extend it with multimodal capabilities. 151

We also propose an open-source benchmark for 152

video conversation and reasoning tasks using Vi- 153

cuna LLM that is reproducible for fair evaluations. 154

Large Multimodal Models (LMMs): The field 155

of AI has witnessed significant advancements with 156

the development of vision-language models like 157

CLIP (Radford et al., 2021), renowned for their 158

impressive zero-shot capabilities using extensive 159

image-text pairs during training. These models 160

have proven effective in a variety of applications, 161
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from image detection and segmentation (Liang162

et al., 2023; Bangalath et al., 2022) to more com-163

plex tasks such as 3D modeling and video anal-164

ysis (Rozenberszki et al., 2022; Ni et al., 2022;165

Wang et al., 2021; Rasheed et al., 2023a). The166

introduction of BLIP-2 marked a pivotal transi-167

tion, pioneering the integration of image features168

encoded by a visual encoder with text embed-169

dings, setting the stage for the evolution into Large170

Multimodal Models (LMMs). This advancement171

influenced subsequent models like LLaVA (Liu172

et al., 2023b), InstructBLIP (Dai et al., 2023),173

and MiniGPT-4 (Zhu et al., 2023), which fur-174

ther refined image-text feature alignment and in-175

struction tuning. VideoChat (Li et al., 2023b),176

Video-ChatGPT (Maaz et al., 2023) and Video-177

LLaMA (Zhang et al., 2023a) represents an exten-178

sion of these LMMs, moving from image-based179

to video-based applications, while models such as180

Otter (Li et al., 2023a), mPLUG-Owl (Ye et al.,181

2023), LLaMa-Adapter (Gao et al., 2023), and182

InternGPT (Liu et al., 2023d) continue to push183

the boundaries of multimodal interaction. Despite184

these significant strides, challenges in achieving185

robust visual grounding in LMMs highlight key186

areas for ongoing research and development in this187

dynamic field. Further, effective integration of au-188

dio signals within LMMs for comprehensive video189

understanding is an open research question that this190

work aims to address.191

Visual-Language Grounding: Grounded Large192

Language Models (LLMs) have made notable193

progress in enhancing visual and language com-194

prehension. A diverse array of models includ-195

ing Kosmos-2 (Peng et al., 2023), Ferret (You196

et al., 2023), All-Seeing Model (Wang et al.,197

2023), LISA (Lai et al., 2023), BuboGPT (Zhao198

et al., 2023), Shikra (Chen et al., 2023), and199

GLaMM (Rasheed et al., 2023b) have employed200

various methodologies to master complex ground-201

ing tasks. These models demonstrate proficiency in202

tasks like referring expression comprehension and203

image segmentation, showcasing the advanced im-204

age understanding capabilities of LLMs. Method-205

ologically, Kosmos-2, Shikra, and All-Seeing fo-206

cus predominantly on creating language-based con-207

text for visual grounding. In contrast, BuboGPT208

merges visual elements with language, and LISA209

leverages vision-language embeddings for produc-210

ing segmentation masks. Furthermore, GLaMM211

is adept at generating natural language responses212

linked with object segmentation masks, facilitat-213

ing detailed visual-textual interactions. However, 214

challenges remain, such as LISA’s constrained per- 215

formance in multi-object scenarios and the limita- 216

tions of BuboGPT and GLaMM to image-based 217

applications, not extending to video processing. To 218

this end, we introduce PG-Video-LLaVA, a video 219

conversational model with pixel-level grounding 220

capability. Further, PG-Video-LLaVA incorporates 221

audio transcripts alongside visual and textual data, 222

aiming to provide a more detailed understanding 223

of video content. 224

3 PG-Video-LLaVA 225

3.1 Overview 226

In this paper, we introduce PG-Video-LLaVA, a 227

novel Large Multimodal Model (LMM) designed 228

to align video and audio representations with a 229

Large Language Model (LLM) giving the capabil- 230

ity to proficiently manage both video and audio 231

data in conversational contexts. Additionally, our 232

method integrates a specialized plug-and-play mod- 233

ule for effective video grounding (see Figure 2). 234

While PG-Video-LLaVA’s foundation is based on 235

the LLaVA-1.5 (Liu et al., 2023a) framework, its 236

unique combination of enhanced video encoding, 237

extensive training dataset, integrated audio process- 238

ing and grounding capability marks it as a forward 239

step in the field of LMMs. 240

Central to our model is an advanced CLIP-based 241

video encoder, which has been adapted to process 242

both spatial and temporal dimensions of video data. 243

This adaptation enables a deeper understanding 244

of video content, setting PG-Video-LLaVA apart 245

from conventional image-centric models. In addi- 246

tion, PG-Video-LLaVA leverages audio transcrip- 247

tion and filteraton techniques, inspired from Whis- 248

perX (Bain et al., 2023) and Whisper-AT(Gong 249

et al., 2023) allowing the model to process and 250

understand audio inputs effectively, enhancing its 251

overall multimodal interpretation capabilities. 252

3.2 Architecture 253

In PG-Video-LLaVA, the spatio-temporal feature 254

extraction is inspired by Video-ChatGPT (Maaz 255

et al., 2023). Our architecture utilizes the CLIP 256

ViT-L/14@336 as the visual encoder, which has 257

been adapted for video processing. Given a video 258

input Vi ∈ RT×H×W×C , where T denotes the 259

frame count, the encoder processes each of the T 260

frames independently, treating them as a series of 261

images. This leads to the generation of frame-level 262
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Visual Encoder (CLIP)

MLP

Large Language Model

Audio TranscriptUser Query

Scene Detection

Entitiy Matching 
Module

Response

Spatio-temporal Video RepresentationSystem Command

Voice Activity Detection

Phoneme 
Model

Audio Tagging

Whisper

System Command

User Query

Response

Spatial Pooling Temporal Pooling

….

….

….

Temporal Features Spatial Features

What is the person 
in the video doing?

The person in the video is a man who is sitting on the ground and petting a lion.

Tagging 
Module

Grounding Module

Class Agnostic Object 
Tracker

You are PG-Video-
LLaVA, a large vision 

language model 
trained with video 
instruction data.

lion | man | mountain

Proposal Refinement

Figure 2: Architecture of PG-Video-LLaVA: PG-Video-LLaVA integrates a CLIP-based visual encoder with a
multimodal language model for video understanding. The CLIP visual encoder extracts spatio-temporal features
from videos by averaging frame-level features across temporal and spatial dimensions. These features are then
projected into the LLM’s input space using a learnable Multi-Layer Perceptron (MLP). The system features a
grounding module for spatially locating textual descriptions within video frames, a class-agnostic object tracker,
and an entity-matching module. Audio processing incorporates voice activity detection, phoneme modeling,
and Whisper-based audio transcription, resulting in a multimodal pipeline that facilitates robust video-question
answering. The architecture is trained on a video instruction dataset, enabling the handling of diverse conversational
contexts with high accuracy.

embeddings xi ∈ RT×h×w×D, where h = H/p263

and w = W/p, with p being the patch size (14264

for ViT-L/14) and N = h× w indicating the total265

token count.266

To construct a comprehensive video-level rep-267

resentation, we apply average pooling across the268

temporal dimension of these frame-level embed-269

dings, resulting in a video-spatial representation270

vi ∈ RN×D. This temporal pooling technique271

effectively amalgamates information across mul-272

tiple frames. Similarly, for explicit temporal in-273

formation, we achieve temporal representation274

ti ∈ RT×D through average pooling along the spa-275

tial dimension. The final video-level features vi276

are a combination of these temporal and spatial277

features, as shown in the equation:278

vi = [ti zi] ∈ R(T+N)×D (1)279

These video-level features are projected into the280

embedding space of the language decoder using,281

a learnable Multi-Layer Perceptron (MLP), desig-282

nated as g, to serve as our cross-modal connector.283

This is inspired by LLaVA-1.5 (Liu et al., 2023a),284

and it aims to enhance the model’s performance285

compared to using a simple linear projection as in 286

Video-ChatGPT (Maaz et al., 2023). The process 287

yields language embedding tokens Qv. 288

Qv = g(vi) ∈ R(T+N)×K (2) 289

Text queries, denoted as Qt ∈ RL×K where L is 290

the length of the query, are tokenized to be dimen- 291

sionally compatible with these video embeddings. 292

The combination of Qv and Qt is then fed into the 293

language decoder, facilitating the seamless integra- 294

tion of video and textual data within the model (see 295

Figure 2). 296

3.2.1 Audio Modality Integration 297

In PG-Video-LLaVA, we have integrated an audio 298

processing pipeline that significantly enhances the 299

video-question answering capabilities by incorpo- 300

rating audio cues from the input, drawing inspira- 301

tion from the architecture of WhisperX (Bain et al., 302

2023). The process begins with the deployment of a 303

Voice Activity Detection (VAD) model. This model 304

is crucial for pinpointing speech-containing tem- 305

poral segments within the audio track. Following 306

the VAD’s identification of speech segments, these 307
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segments undergo processing—cutting, merging,308

and padding—to align with the input specifications309

of the Whisper model (OpenAI, 2022). Simulta-310

neously, a phoneme segmentation model operates311

in parallel, producing phone-level segmentations312

essential for the subsequent alignment of raw tran-313

scriptions with the audio.314

The VAD model serves a dual purpose: 1) iden-315

tifying speech segments and 2) aiding in filtering316

out non-speech audio components. To enhance317

the compatibility of transcriptions generated by318

Whisper with our model, we integrate Whisper-319

AT (Gong et al., 2023). This advanced version of320

the Whisper model specializes in audio tagging.321

It annotates the audio stream with labels from an322

extensive set of 527 audio event classes, allowing323

for precise temporal resolution.324

The audio transcripts are then subjected to a325

multi-stage filtering process. Initially, a VAD-326

based filter is applied, followed by a phoneme-327

based forced alignment using the Whisper model,328

ensuring temporally accurate text transcriptions.329

Utilizing Whisper’s language identification feature,330

we eliminate non-English speech segments at this331

stage. For each identified sentence segment, we332

apply Whisper-AT (Gong et al., 2023) for audio333

tagging, focusing on the top three predicted au-334

dio classes. Segments that do not predominantly335

feature ‘speech’, or where ‘music’ probabilities336

significantly exceed ‘speech’, are excluded from337

further processing.338

Finally, the integration of the audio transcript339

with the video component is executed through a340

carefully designed prompt template (Appendix-A).341

This template is pivotal in guiding the system to342

understand user instructions, assimilate the video343

frames, and incorporate the transcriptions gener-344

ated by the automatic speech recognition model.345

This structured approach ensures that PG-Video-346

LLaVA efficiently leverages all available modali-347

ties—visual and auditory—thereby enabling users348

to achieve task completion and query resolution349

based on a comprehensive analysis of both visual350

and auditory content (refer to Figure 2 for details).351

3.2.2 Grounding Module352

In PG-Video-LLaVA, our visual grounding ap-353

proach starts with processing video-question pairs354

to generate textual descriptions. These descrip-355

tions are then used for grounding within the video356

frames. Key noun phrases are extracted from the357

generated text using Vicuna, targeting the most358

critical content aspects. Simultaneously, an image 359

tagging model, RAM (Zhang et al., 2023b), tags 360

visual elements in each frame, creating a detailed 361

map of the video content. 362

The video is segmented into smaller parts us- 363

ing PySceneDetect (Castellano, 2023), based on 364

changes in scene composition. This segmentation 365

facilitates a more focused grounding process. In 366

each segment, our grounding ensemble, composed 367

of GroundingDINO (Liu et al., 2023c), DEVA 368

(Cheng et al., 2023), and SAM (Kirillov et al., 369

2023), utilizes the image tags to create segmen- 370

tation masks and tracking IDs for the identified 371

visual elements. 372

The visual cues from these segmentation masks 373

are then matched with the textual noun phrases us- 374

ing CLIP (Radford et al., 2021). This matching 375

process links text to the corresponding visual ele- 376

ments in the video, enhancing our understanding 377

of the content. 378

In quantitative analysis (Section 4.4), from the 379

descriptive textual response to an interrogative text, 380

a referring expression or a phrase is extracted us- 381

ing Vicuna. This phrase is input into our ground- 382

ing module, which then generates segmentation 383

masks and tracking IDs. We measure the spatial 384

grounding accuracy of our model by calculating 385

the Intersection over Union (IoU) between these 386

segmentation masks and ground truth bounding 387

boxes. 388

4 Experiments 389

4.1 Implementation Details 390

We build our strong baseline on top of LLaVA-1.5 391

which utilizes CLIP ViT-L/14@336 as the image 392

encoder and Vicuna v1.5 as the LLM. We only 393

tune the MLP projection layers during training with 394

the VideoInstruct100K (Maaz et al., 2023) dataset, 395

while keeping the rest of the architecture frozen. 396

We finetune the model for 3 epochs using a learning 397

rate of 2e−5 and an overall batch size of 32. The 398

training of our 7B and 13B models took around 6 399

hours and 15 hours respectively on 4 A100 80GB 400

GPUs. 401

For audio transcript extraction, Whisper-base 402

model is used. Our grounding module is based 403

on GroundingDINO-T variant and CLIP ViT-B/32. 404

For the image-tagging model we use RAM Swin- 405

Large variant (with input size 384). DEVA Tracker 406

is applied under online-setting in our experiments. 407

Vicuna-13b-v1.5 model is used in performing 408
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Model Evaluation Metrics

Correctness Detail Orientation Contextual Understanding Temporal Understanding Consistency

LLaMA Adapter (Gao et al., 2023) 2.34± 0.03 2.44± 0.01 2.67± 0.02 2.25± 0.04 3.03± 0.04
Video Chat (Li et al., 2023b) 2.48± 0.02 2.81± 0.01 2.92± 0.00 2.29± 0.02 3.10± 0.02
Video-LLaMA (Zhang et al., 2023a) 2.29± 0.00 2.59± 0.02 2.68± 0.01 2.23± 0.06 2.88± 0.02
Video-ChatGPT (Maaz et al., 2023) (w/o audio) 2.49± 0.02 2.52± 0.03 2.85± 0.00 2.38± 0.09 3.09± 0.01
Video-ChatGPT (Maaz et al., 2023) (with audio) 2.63± 0.00 2.71± 0.00 2.99± 0.01 2.51± 0.05 3.23± 0.05
PG-Video-LLaVA (7B) (w/o audio) 2.69± 0.02 2.80± 0.02 3.10± 0.01 2.44± 0.03 3.39± 0.01
PG-Video-LLaVA (7B) (with audio) 2.75± 0.01 2.89± 0.00 3.16± 0.03 2.53± 0.08 3.47± 0.07
PG-Video-LLaVA (13B) (w/o audio) 2.80± 0.03 2.92± 0.01 3.22± 0.01 2.53± 0.03 3.44± 0.02
PG-Video-LLaVA (13B) (with audio) 2.84± 0.02 2.97± 0.01 3.22± 0.01 2.54± 0.02 3.56± 0.06

Table 1: Performance benchmarking of video-based conversational models using the benchmarking framework
from Video-ChatGPT (Maaz et al., 2023) with Vicuna-13b-v1.5 (Chiang et al., 2023) as the evaluator model. Results
indicate that PG-Video-LLaVA achieves favourable performance across all metrics.

video-based conversational benchmarking, zero-409

shot question answering evaluation, and extract-410

ing the key noun or referring expression from411

the model output in the quantitative evaluation of412

the spatial grounding task. Further, Vicuna-13b-413

v1.5 was used to implement the entity matching as414

in (Zhao et al., 2023).415

4.2 Stronger Baseline416

To evaluate the impact of the enhanced baseline417

on PG-Video-LLaVA, we apply the benchmark-418

ing framework from Video-ChatGPT (Maaz et al.,419

2023). This framework measures performance on420

several axes critical for video-based conversational421

agents, including correctness of information, de-422

tail orientation, contextual understanding, temporal423

understanding, and consistency.424

In order to facilitate a reliable and reproducible425

evaluation, we have modified the assessment426

pipeline introduced in Video-ChatGPT by replac-427

ing GPT-3.5-Turbo with open-source Vicuna-13b-428

v1.5. This adjustment addresses the limitations in429

reproducibility inherent to the closed-source na-430

ture of GPT-3.5-Turbo. Subsequently, we have re-431

assessed both PG-Video-LLaVA and other recent432

models to ensure a fair and consistent compari-433

son. Each experiment is performed 3 times and the434

mean and standard deviation are reported in Table 1.435

The results indicate that PG-Video-LLaVA outper-436

forms the foundational Video-ChatGPT model and437

exhibits superior performance when compared to438

other recent contributions in the domain. (See439

Appendix-E for qualitative results.)440

4.3 Effect of Audio Modality441

Table 1 shows that adding the audio modality helps442

to improve the performance metrics. Further, in443

Figure 4 it can be observed that the model which444

takes audio transcript produces correct outputs,445

whereas the model without audio modality fails 446

to capture those details from visual content alone. 447

Model VidSTG HC-STVG

Grounding DINO (Liu et al., 2023c) 25.3 19.5
Video-LLaMA (Zhang et al., 2023a) 28.6 26.1
Video-ChatGPT (Maaz et al., 2023) 32.8 20.8
PG-Video-LLaVA (7B) 34.2 28.3
PG-Video-LLaVA (13B) 35.1 27.3

Table 2: Performance of PG-Video-LLaVA and other
models on spatial grounding task: Evaluated using the
VidSTG and HC-STVG benchmarks, the results demon-
strate PG-Video-LLaVA’s favorable spatial grounding
capabilities, as evidenced by its ability to generate ac-
curate descriptive responses and effectively locate refer-
ring expressions within video frames. The table shows
the model’s progress, particularly in the 13B version,
showcasing its performance among other SoTA video-
conversational models.

4.4 Spatial Grounding in Videos 448

To quantitatively assess PG-Video-LLaVA’s spatial 449

grounding capability, we conducted quantitative 450

evaluations of PG-Video-LLaVA’s spatial ground- 451

ing capabilities using two benchmarks that are 452

derived from the test set of the VidSTG (Zhang 453

et al., 2020) and HC-STVG (Tang et al., 2021) 454

datasets. Due to the novelty of integrating spa- 455

tial grounding within video-conversational models, 456

we highlight the modular nature of our ground- 457

ing pipeline, which can be incorporated with other 458

state-of-the-art video conversation models. For 459

the VidSTG dataset, we selectively processed in- 460

terrogative prompts to assess the grounding ac- 461

curacy. The model generates descriptive textual 462

responses to these prompts, from which Vicuna- 463

13b-v1.5 extracts relevant referring expressions. 464

These expressions are then spatially grounded in 465

the video frames using our grounding pipeline. 466

For the HC-STVG dataset, interrogative prompts 467

are first mined from the text captions using Vi- 468
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What do you see in this video?

In the video, we see a giraffe standing on a diving board, and then it jumps into the water. The giraffe is the main focus of the video, and we see it in 
various positions throughout the video. 

What do you see in this video?

In the video, I see a large statue of a woman holding a torch in her right hand. The statue is located on top of a hill, and it is surrounded by a large body of 
water. The statue is lit up at night, and it is visible from a distance. The video also shows a boat passing by the statue.

What do you see in this video?

In the video, a young girl is performing a gymnastics routine on a balance beam. She starts by jumping onto the beam and then proceeds to perform 
various flips and turns. She finishes her routine by jumping off the beam and landing on a mat. 

Figure 3: Qualitative Results for Video Grounding: Visual representation of the grounding capability of advanced
video-conversational capabilities of PG-Video-LLaVA. The highlighted regions in each video frame indicate the
model’s ability to identify and spatially locate key subjects mentioned in the textual description, such as the giraffe,
the statue, and the gymnast on a balance beam.

Model MSVD-QA (Xu et al., 2017) MSRVTT-QA (Xu et al., 2016) TGIF-QA (Li et al., 2016) Activity Net-QA (Yu et al., 2019)

Accuracy Score Accuracy Score Accuracy Score Accuracy Score

FrozenBiLM (Yang et al., 2022) 32.2 – 16.8 – 41.0 – 24.7 –
LLaMA Adapter (Gao et al., 2023) 53.7 3.3 45.6 3.2 54.3 3.3 37.3 3.2
Video LLaMA (Zhang et al., 2023a) 48.6 3.2 32.8 2.8 51.4 3.4 27.1 2.9
Video-ChatGPT (Maaz et al., 2023) 62.6 3.6 50.0 3.3 66.5 3.7 40.8 3.3
PG-Video-LLaVA 64.1 3.7 51.6 3.3 66.8 3.8 39.9 3.3

Table 3: Zeroshot video-based question-answering: Comparison of PG-Video-LLaVA with other video generative
models. The latest available models are used for all the approaches and the benchmarks are calculated using open-
source Vicuna LLM. PG-Video-LLaVA performs better than the previously proposed video-based conversational
methods.

cuna and then used similarly to VidSTG prompts.469

(Appendix-B)470

The results shown in Table 2 position PG-Video-471

LLaVA alongside alternative methods using the472

same benchmarks, demonstrating our model’s en-473

hanced ability to accurately answer questions,474

thereby leading to improved spatial grounding per-475

formance.476

The qualitative results shown in Figure 3 em-477

phasize the model’s refined spatial grounding preci-478

sion. The accurate overlay of masks on the subjects479

within the videos confirms the model’s adeptness at480

correlating textual descriptors with visual elements,481

a critical aspect of contextual comprehension. This482

refined ability is crucial for applications that in-483

tegrate visual data with language, improving the484

model’s utility in environments that demand rich, 485

interactive visual and linguistic processing. 486

4.5 Zero-Shot Visual Question Answering 487

For PG-Video-LLaVA, zero-shot question- 488

answering (QA) capabilities were evaluated 489

quantitatively using several established open- 490

ended QA datasets: MSRVTT-QA (Xu et al., 491

2016), MSVD-QA (Xu et al., 2017), TGIF-QA (Li 492

et al., 2016), and ActivityNet-QA (Yu et al., 2019). 493

These datasets are benchmarks for assessing 494

a model’s ability to generate accurate answers 495

without any dataset-specific fine-tuning. We 496

adopted the zero-shot evaluation methodology 497

introduced in Video-ChatGPT (Maaz et al., 2023), 498

with Vicuna-13b-v1.5 as the evaluator model to 499

assess the model’s understanding and predictive 500
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What is the name of the product in this video?

The product in the video is a moisturizing lotion.Without Audio

The product in the video is Sunscreen Moisturizer SPF 30.With Audio

Audio Transcript: Everyone loves the way skin authority
sunscreens feel when they go on. …
Sunscreen moisturizer SPF 30 is a broad spectrum sunscreen
plus a daily moisturizer in one.

Can you suggest a title for this video clip based on what you see and hear?

Based on the video, I would suggest "The Future of 
Technology and Communication" as a title for the video clip. Without Audio

Based on the video, the title could be "The Future of AI: A 
Discussion on GPT-4 and Chat GPT."

With Audio

Audio Transcript: … just how amazing Chat GPT turn out
to be and then the improvement in GPT for. So GPT 4 has not
surprised me at all in terms of reception there. Chat GPT
surprised us a little bit, but I still ….
… You know, they're like, oh, it's better than 3.5, but I
thought it was going to be better than 3.5. …

What is Ross complaining about?

Ross is complaining about the taste of the beer he is 
drinking. He is seen making a face and spitting out the beer, 
while the other people in the scene watch him.

Without Audio

Ross is complaining about someone eating his sandwich at 
work. He is upset and frustrated about the situation.

With Audio

Audio Transcript: What's wrong, buddy? Someone at work
ate my sandwich. Well, what did the police say? My
thanksgiving leftover sandwich. I can't believe someone just
ate it. Ross it’s just a sandwich.

Figure 4: Qualitative Results for Including Audio Modality: The figure illustrates the integrated audio processing
pipeline that augments video-question answering with audio cues. It provides side-by-side comparisons showing
how audio cues offer additional context, leading to a more accurate interpretation of the video content.

accuracy, with scores assigned on a scale from 1 to501

5. The results are presented in Table 3.502

In comparison to Video-ChatGPT, PG-Video-503

LLaVA demonstrates superior performance, sur-504

passing not only the predecessor but also other505

notable models in the field, such as Frozen-506

BiLM (Yang et al., 2022) and Video Chat (Li et al.,507

2023b). The results from our evaluations indicate508

that PG-Video-LLaVA has significantly enhanced509

its ability to comprehend video content and gener-510

ate contextually relevant answers, thus establishing511

a new state-of-the-art in zero-shot VideoQA.512

5 Conclusion513

In this work, we introduced PG-Video-LLaVA, a514

novel video-based conversational model equipped515

with pixel-level grounding capabilities. PG-Video-516

LLaVA enhances image-based conversational mod- 517

els by extracting spatio-temporal features essential 518

for comprehensive video understanding. It incorpo- 519

rates filtered audio transcripts to enrich the interpre- 520

tation of visual scenes where audio cues are pivotal. 521

Additionally, we developed a novel grounding mod- 522

ule capable of tracking and generating pixel-level 523

grounding of objects within videos. To promote re- 524

producibility, we propose quantitative benchmarks 525

for video-based conversational models, utilizing 526

the open-sourced Vicuna LLM instead of GPT-3.5, 527

as employed by previous approaches. These bench- 528

marks are specifically designed to evaluate ground- 529

ing capabilities. In summary, this work represents 530

the first effort to integrate grounding capabilities 531

into video-based LMMs. 532
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6 Limitations533

Though we present a novel large multimodal model534

for video understanding, with unprecedented capa-535

bilities in multimodal fusion and visual ground-536

ing, we would like to acknowledge some of the537

limitations it encompasses, which points to open538

research directions. Especially, the adaptability539

of the proposed model’s video understanding ca-540

pabilities for extremely varied or uncommon real-541

world scenarios remains untested. Due to the inher-542

ent complexity of understanding long and diverse543

video content, and the lack of high-quality diverse544

human-annotated training data, the performance545

gains of our work demonstrated on standard video546

understanding datasets, might not always gener-547

alize into special cases such as egocentric videos.548

Though the proposed architecture sets the baseline549

for conversational grounding in videos and serves550

as a proof-of-concept, its capability derives mainly551

from the clever amalgamation of large pretrained552

foundational models. Embedding these abilities553

into the large multimodal model remains an open554

research problem and will be addressed in future555

work.556

7 Ethical Considerations557

The key potential risk of our work being misused558

lies in the possibility of fake textual content gen-559

eration based on video prompts. This adds to the560

already existing risk associated with large language561

models which are prone to be exploited by users562

with malicious intent to generate articles that ap-563

pear as if generated by a human.564

In this work, we utilize multiple open-source565

source code repositories, models, and datasets in-566

tended and licensed for research use only. They are567

also restricted to use cases that follow the license568

agreement of CLIP, LLaMA, Vicuna and GPT-4.569

Our work will be made publically available subject570

to a non-commercial license, and it should not be571

used outside of research purposes.572

8 Use of AI Assistants573

We acknowledge that LLMs were used as AI as-574

sistants in benchmarking conversational perfor-575

mance, spatial grounding, and zero-shot video-576

based question-answering as mentioned in Sec-577

tion 4. Further, the VideoInstruct100K dataset578

used to train our model contains AI-generated text,579

which resulted from the semi-automatic annotation580

involving ChatGPT/GPT-3.5.581
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Appendix806

A Audio Modality Integration807

Here, we outline the implementation details of au-808

dio modality integration in PG-Video-LLaVA.809

A.1 Audio Transcript Filtering810

To generate audio transcripts, we first experimented811

with using the state-of-the-art Whisper (OpenAI,812

2022) directly. However, the obtained transcripts813

were too noisy, contained hallucinations, and un-814

wanted text such as lyrics from songs. Passing815

these raw audio transcripts directly to the LLM816

without any filtering can negatively affect the over-817

all model’s performance. Therefore, a preprocess-818

ing method is required to filter out noisy text and819

keep only the parts of the audio that carry meaning-820

ful information.821

The following steps combining WhisperX(Bain822

et al., 2023) and Whisper-AT(Gong et al., 2023)823

are used to refine the original Whisper transcripts824

to be usable as inputs to the video LMM.825

1. We first apply VAD-based preliminary filter-826

ing to the audio, and then use the Whisper827

model with Phoneme-based forced alignment828

to get temporally aligned text transcriptions.829

2. As Whisper is able to identify the language830

spoken, all non-English speech can be ignored831

at this point since PG-Video-LLaVA generates832

responses in English.833

3. For each sentence segment obtained, slice834

the original audio at the corresponding times-835

tamps and pass to Whisper-AT to produce836

audio-tagging output.837

4. For each sentence segment, consider the top 3838

audio classes predicted.839

(a) If “speech” is not among the top 3 pre-840

dictions, the segment is ignored.841

(b) If P [music] > P [speech] and842

P [music] − P [speech] > threshold,843

the segment is ignored (the threshold is844

set empirically to 1.1).845

Figure 6 shows the effectiveness of our audio846

transcript preprocessing method in filtering out hal-847

lucinations, music, and garbage characters from the848

raw audio transcript.849

A.2 Integrating Audio Transcript into the 850

LLM 851

The following prompt template is used when com- 852

bining the spatiotemporal video features and audio 853

transcript with the user instruction text. 854

SYSTEM: 855

You are PG-Video-LLaVA, 856

a large vision-language 857

assistant. 858

You are able to understand 859

the video content that the 860

user provides, and assist 861

the user with a variety 862

of tasks using natural 863

language. 864

USER: 865

<Instruction> 866

<Video-Tokens> 867

The noisy audio transcript 868

of this video is: 869

<Audio-Transcript> 870

ASSISTANT: 871

B Visual Grounding: Quantitative 872

Evaluation 873

B.1 Overview 874

We introduce novel benchmarks for quantitatively 875

evaluating conversation-based video spatial ground- 876

ing, based on two existing spatio-temporal video 877

grounding datasets, VidSTG(Zhang et al., 2020) 878

and HC-STVG(Tang et al., 2021). 879

In conversation-based spatial grounding, the ob- 880

jective is to localize interrogative sentences with 881

unknown objects in the given video (e.g. “What is 882

caught by the squatting boy on the floor?” ). Unlike 883

grounding for declarative sentences where the ex- 884

plicit characteristics of objects (e.g. the class “toy” 885

and visual appearance “yellow”) are present within 886

the sentence itself, grounding for interrogative sen- 887

tences is challenging due to the fact that it can 888

only depend on relationships between the unknown 889

object and other objects (e.g. the action relation 890

“caught by the squatting boy” and spatial relation 891

“on the floor”) (Figure 5). A benchmark based on 892

this task can be regarded as a measure of the suf- 893

ficient relationship construction and cross-modal 894

relation reasoning ability of the video-language 895

model. 896

1



Interrogative Sentence: What is caught by the squatting boy on the floor? 
Declarative Sentence: A little boy with a Christmas hat is catching a yellow 

toy.

Figure 5: Interrogative vs declarative sentences

To evaluate our model for conversation-based897

video spatial grounding, we pass interrogative898

prompts to the model. It then generates descrip-899

tive textual responses to these prompts, from which900

Vicuna-13b-v1.5 extracts relevant referring expres-901

sions. These expressions are then passed into902

the GroundingDINO-based spatial grounding and903

tracking module. For the obtained object tracks,904

bounding box IoU is calculated by comparing them905

with the ground truth annotations.906

From the two spatiotemporal grounding datasets,907

to form a spatial-only grounding benchmark, we908

crop the video in the temporal axis to contain only909

the segment where the target object is present, and910

the mean spatial IoU is reported as the metric for911

comparison.912

It should be noted that we evaluate our model913

in these benchmarks only in the zero-shot setting,914

without any training on these datasets.915

1. Benchmark based on the VidSTG Dataset:916

VidSTG dataset consists of videos paired with mul-917

tiform sentences (both interrogative and declara-918

tive). To form a benchmark to quantitatively eval-919

uate the performance of conversation-based video920

spatial grounding, we leverage the 5693 video and921

interrogative sentence pairs in its test set.922

2. Benchmark based on HC-STVG Dataset:923

Unlike in VidSTG dataset, in HC-STVG dataset924

contains only declarative form sentences for all of925

its videos. Therefore interrogative sentences are926

first generated from the declarative text captions927

in 3025 samples of the test set using Vicuna-13b-928

v1.5 model. Then the evaluation is performed in a929

similar manner to VidSTG.930

B.2 Generating Interrogative Statements931

The original text annotations in the HC-STVG932

dataset are in the declarative statement format. In933

order to make our video prompt-based grounding934

evaluation pipeline, we extract interrogative state-935

ments (questions) from these text annotations using936

Vicuna-13b-v1.5 using the following prompt tem-937

plate.938

SYSTEM:939

You are an intelligent 940

chatbot designed for 941

generating question-answer 942

pairs from sentences. 943

USER: 944

Your task is to generate 945

a question and answer from 946

the given sentence. 947

The question should start 948

with ’Who’. 949

The question should refer 950

to the subject of the 951

given sentence. 952

The answer should include 953

the subject of the given 954

sentence. 955

Please generate the 956

response in the form of 957

a Python dictionary string 958

with keys ’Q’ for question 959

and ’A’ for answer. Each 960

corresponding value should 961

be the question and answer 962

text respectively. 963

For example, your response 964

should look like this: 965

{’Q’: ’Your question 966

here...’, ’A’: ’Your 967

answer here...’}. 968

Please note that the 969

generated question and 970

answer should only include 971

information from the given 972

sentence. 973

Please process the 974

following sentence: 975

The man in the suit goes 976

to the man in white and 977

looks at him. 978

ASSISTANT: 979

{’Q’: ’Who goes to the man 980

in white?’, ’A’:’The man 981

in the suit’} 982

USER: 983

Please process the 984

following sentence: 985

<DECLARATIVE_STATEMENT> 986

ASSISTANT: 987
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Hi, I'm Stephanie Ragnodden and I'm going to 
show you step 3 of a 4 step process to groom your 
horse to shine naturally. This time we're going to 
use a finishing brush with a cocoa fiber horse here 
mix because it just gives us a little bit more of an 
edge. …. We're struggling with the oil so we'll put 
the coat and always cleaning our brush on the 
curry and we're going to do this from the head all 
the way to the tail. Thanks for watching.

Hi, I'm Stephanie Ragnodden and I'm going to 
show you step 3 of a 4 step process to groom your 
horse to shine naturally. This time we're going to 
use a finishing brush with a cocoa fiber horse here 
mix because it just gives us a little bit more of an 
edge. …. We're struggling with the oil so we'll put 
the coat and always cleaning our brush on the 
curry and we're going to do this from the head all 
the way to the tail. Thanks for watching.

Yeah You know that? I didn't think that I had a 
debt to pay Till the king had take what I left away 
It was all my fault, you beat it to destiny But I 
remember you saying that yesterday There was a 
time when my heart wasn't on the show …YOUR 
BLESS BUT YOU are a forever Oh to be the best 
WOO Kennedy I'm not saying it right here YOUR 
BLESS I don't know what I thought I might say 
Seems like we never were talking right away 
Every other minute I'm fuffing my place 

1.5-1.1 2.5-1.1 2.5-1.1 2.5-1.1 2.5-1.1 1.5-1.1
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Figure 6: Filtering the audio transcript: to remove hallucinations (left), music (center), and garbage (right)
characters from the raw audio transcript.

B.3 Extracting Referring Expression Using988

Vicuna989

In the quantitative evaluation, we use the follow-990

ing prompt template with Vicuna-13b-v1.5 to ex-991

tract the referring expression from the output of992

the video-based LMM, which is used as the input993

prompt to the off-the-shelf-grounding module.994

SYSTEM:995

You are an intelligent996

chatbot designed for997

identifying the most998

relevant subject/object999

phrases in video-based1000

question-sentence pairs.1001

USER:1002

Your task is to compare1003

the question with the1004

sentence, and extract the1005

subject or object phrase1006

of the sentence that most1007

accurately answers the1008

given question.1009

The selected phrase should1010

be short and should1011

contain only one noun.1012

The selected phrase can1013

include adjectives that1014

explain the attributes of1015

the subject/object.1016

The selected phrase should1017

not exceed 4 words.1018

The selected phrase should1019

not include articles (’a’, 1020

’the’, ’and’). 1021

Please generate the 1022

response in the form of 1023

a Python dictionary string 1024

with keys ’OBJECT’, where 1025

its value is the extracted 1026

phrase in Python string 1027

format. 1028

DO NOT PROVIDE ANY OTHER 1029

OUTPUT TEXT OR EXPLANATION. 1030

Only provide the Python 1031

dictionary. 1032

For example, your response 1033

should look like this: 1034

{’OBJECT’: ’green toy’}. 1035

Please process the 1036

following video-based 1037

question-answer pair: 1038

Question: who is in front 1039

of the guitar at the show? 1040

Answer: A woman in a 1041

black dress is in front 1042

of the guitar on stage. 1043

ASSISTANT: 1044

{’OBJECT’: ’woman in 1045

black dress’} 1046

USER: 1047

Question: who points to 1048

the window? 1049

Answer: The old man is 1050
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pointing to the window.1051

1052

ASSISTANT:1053

{’OBJECT’: ’old man’}1054

USER:1055

Question: who is inside1056

the blue car?1057

Answer: The driver of the1058

blue car.1059

1060

ASSISTANT:1061

{’OBJECT’: ’driver’}1062

USER:1063

Please process the1064

following video-based1065

question-answer pair:1066

Question:1067

<INPUT_TO_VIDEO_LMM>1068

Answer:1069

<OUTPUT_OF_VIDEO_LMM>1070

ASSISTANT:1071

B.4 Entity Matching with Vicuna1072

As shown in Figure 2, our method employs an1073

LLM-powered entity matching module similar to1074

(Zhao et al., 2023) to match the key phrases in1075

the video-LMM’s output with the object tracks ob-1076

tained from the grounding and tracking module.1077

We use the same prompt template as (Zhao et al.,1078

2023).1079
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C Qualitative Results for Visual Grounding1080

Describe this video.

The video is a Christmas tree decoration tutorial featuring a woman in a red chair. The woman is seen decorating a Christmas tree 
with ornaments and lights. The video also features a Christmas tree with lights and ornaments in a living room. The woman is seen 
decorating the tree while a cat is sitting on the floor. The video is set to the song "I see trees of green red roses too I see them 
bloom from in you and I think to myself what a wonderful world I see skies of blue"

Describe this video.

The video is about a man named Sharin who talks about his classic Mercedes-Benz 190. He introduces us to Cherine Raudis, a 
woman who owns the car. The video is shot in a backyard and the man is sitting at a table with a cup of coffee. The video also 
shows the car being driven on the road and parked in front of a house.

Briefly describe the video.

The video shows a man in a red jacket and red hat brushing snow off his car in a snowy driveway. He uses a red brush to remove 
the snow from the top of the car, the sides, and the back windshield. He also uses a scraper to remove ice from the car. The man is 
careful to make sure that he cleans off all the snow and ice, including the brake lights, to ensure that his car is safe and ready to 
go.

Describe what you see in this video.

'The video shows Chef Ann Nolan cooking chocolate chip cookies in a Gen Air V2 convection oven. She explains 
the benefits of using true convection and demonstrates how evenly the cookies cook. The cookies are taken out of 
the oven and look delicious.'

Figure 7: Qualitative results for video grounding obtained using image tags as the queries to the off-the-shelf
grounding module and an entity matching module to match the image tags with the corresponding phrase in the
LMM output. (e.g., in the 4th row, the phrase ’Chef Ann Nolan’ is matched with the image tag ’woman’.)
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Who nods his head and turns?

A man in a white suit nods his head and turns.

Who pulls off the earrings on their right side?

A woman wearing a white dress and earrings on her right 
side is seen removing the earrings.

Who says a few words to the woman in plaid clothes?

A man in a black suit says a few words to the woman in 
plaid clothes.

Who puts things in the bowls on both sides as he walks?

A man in a black hat and a purple shirt puts things in the 
bowls on both sides as he walks.

Who turns around and walks next to the woman with 
yellow hair?

A man in a white lab coat turns around and walks next 
to a woman with yellow hair.

Who raises his hand and touches his head?

A man in a red shirt raises his hand and touches his 
head.

Who pulls the woman to sit down?

A man in a suit pulls the woman to sit down.

Who picks up the cup, drinks, puts down the cup and 
turns to look at the man next to her?

A woman in a green dress picks up a cup, drinks, puts 
down the cup, and turns to look at a man next to her.

Figure 8: Qualitative results for video grounding on example videos from the HC-STVG(Tang et al., 2021) dataset.
These results are obtained by using Vicuna with the prompt template in B.3 to extract the referring expression from
the LMM output which is then passed to the off-the-shelf grounding module.
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Who does the woman in the yellow dress hug?

The woman in the yellow dress hugs the man in the blue 
suit.

Who walks to the wooden frame?

A woman walks to the wooden frame in the video.

Who walks to the door and then turns?

A man walks to the door and then turns around to face 
the camera.

Who pushes the woman to the table?

A man in a white lab coat pushes the woman to the table.

Figure 9: Qualitative results for visual grounding on the HC-STVG dataset (failure cases): errors in our model’s
output (e.g., bottom-left: our model identifies the woman as a man), incorrect localizations in the off-the-shelf
grounding module (e.g., top-left), and incorrect tracking (e.g., top-right, bottom-right) result in these failure cases.

What does the adult hold outside the room?

The adult holds a bottle of champagne outside the 
room.

What does the adult in white clothes hug?

The adult in white clothes is hugging a small dog.

Who is in front of the guitar at the show?

The woman in the black dress is in front of the guitar.

What is beneath the adult on the boat?

The boat is on the water, and the man is sitting on the 
back of the boat.

Figure 10: Qualitative results for video grounding on example videos from the VidSTG(Zhang et al., 2020)
dataset
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D Quantitative Evaluations of1081

Video-based Conversation Performance1082

We leverage the video-based conversation per-1083

formance benchmarks introduced in Video-1084

ChatGPT(Maaz et al., 2023), while changing the1085

evaluation LLM from GPT-3.5-Turbo to Vicuna-1086

13b-v1.5 model. The prompt templates used with1087

Vicuna are as same as with (Maaz et al., 2023).1088

Video-based Generative Performance Bench-1089

marking: In this benchmark we continue to use1090

the same test set of 500 samples curated from the1091

ActivityNet-200(Heilbron et al., 2015) videos as in1092

(Maaz et al., 2023).1093

Zero-Shot Question-Answer Evaluation: Fol-1094

lowing Video-ChatGPT, we perform zero-shot1095

evaluation on four standard open-ended question-1096

answer datasets: MSRVTT(Xu et al., 2016),1097

MSVD(Xu et al., 2017), TGIF(Li et al., 2016),1098

and ActivityNet-QA(Yu et al., 2019). No specific1099

training is performed on these datasets, and the1100

evaluation is performed in a zero-shot manner.1101

E Qualitative Analysis of Conversation1102

Performance1103

The qualitative results in Figure 11 indicate the en-1104

hanced baseline’s impact on PG-Video-LLaVA’s1105

performance. The PG-Video-LLaVA (13B) model1106

exhibits improved accuracy in the information pre-1107

sented, a deeper level of descriptive detail, and a1108

stronger alignment with the context and temporal1109

progression of the videos. This advancement is par-1110

ticularly noticeable in the precise depiction of the1111

child’s engagement with their surroundings and the1112

giraffe’s behaviour, indicating a refined interpreta-1113

tion of both the activities and their settings. These1114

qualitative insights are consistent with the quantita-1115

tive results, highlighting the augmented baseline’s1116

role in advancing PG-Video-LLaVA’s capacity in1117

video understanding.1118
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Describe this Video.

The video shows a small child sitting on the floor in front of a fireplace, playing with a toy. The child is holding a toy and 
appears to be playing with it while sitting on the floor.

The video shows a young child playing with a toy in a living room. The child is sitting on the floor and playing with a toy 
car, which is placed on a rug. The room is furnished with a couch, a chair, and a TV. The child appears to be enjoying 
their playtime, and the scene captures a moment of innocent childhood fun.

The video shows a young child sitting on the floor in a living room, playing with a toy. The room is furnished with a 
couch, a chair, and a television. The child is holding a toy in his hand while playing with it. The room appears to be 
well-lit, with a fireplace in the background. The child seems to be enjoying himself, as he is laughing and smiling while 
playing with the toy. Overall, the video captures a joyful moment of a child's life, as he engages in playful activities in a
comfortable and cozy living room setting.

Describe this Video.

The video shows a giraffe performing a trick by standing on a diving board and then jumping into the water.

The video shows a giraffe standing on a diving board and jumping into a pool. The giraffe is seen standing on the 
diving board, looking down, and then jumping into the pool. The scene takes place outdoors, with a clear blue sky 
visible in the background. The giraffe appears to be enjoying the water and the experience of jumping into the pool.

The video features a giraffe standing on a diving board and jumping into a pool. The giraffe is seen swimming in the 
pool and then jumping out of it. The video is set in a pool area with a blue sky in the background. The giraffe's 
movements are graceful and fluid, and it appears to be enjoying itself. The video captures the unique and unexpected 
sight of a giraffe engaging in a human activity, showcasing its incredible agility and ability to adapt to new situations. 
Overall, the video is a delightful and entertaining spectacle that captures the beauty and grace of the giraffe in an 
unconventional setting.

Video-ChatGPT

PG-Video-LLaVA (7B)

PG-Video-LLaVA (13B)

Video-ChatGPT

PG-Video-LLaVA (7B)

PG-Video-LLaVA (13B)

Figure 11: Qualitative results comparison of Video-ChatGPT vs PG-Video-LLaVA (Ours) Qualitative analysis
of video descriptions generated by Video-ChatGPT, PG-Video-LLaVA (7B), and PG-Video-LLaVA (13B) models.
The evolution in model performance is evident, with enhancements in the accuracy of information, richness of
descriptive detail, and alignment with the video’s context and sequence of events as we move from the baseline
Video-ChatGPT to the more advanced PG-Video-LLaVA (13B) model.
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