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Abstract

Extending image-based Large Multimodal
Models (LMMs) to videos is challenging due to
the inherent complexity of video data. The re-
cent approaches extending image-based LMMs
to videos either lack the grounding capabili-
ties (e.g., VideoChat, Video-ChatGPT, Video-
LLaMA) or do not utilize the audio-signals
for better video understanding (e.g., Video-
ChatGPT). Addressing these gaps, we propose
PG-Video-LLaVA, the first LMM with pixel-
level grounding capability, integrating audio
cues by transcribing them into text to enrich
video-context understanding. Our framework
uses an off-the-shelf tracker and a novel ground-
ing module, enabling it to spatially localize ob-
jects in videos following user instructions. We
evaluate PG-Video-LLaVA using video-based
generative and question-answering benchmarks
and introduce new benchmarks specifically de-
signed to measure prompt-based object ground-
ing performance in videos. Further, we pro-
pose using open-source Vicuna LLM for video-
based conversation benchmarking, as opposed
to GPT-3.5 utilized in Video-ChatGPT, ensur-
ing reproducibility of results which is a con-
cern with the proprietary nature of GPT-3.5.
Our framework builds on SoTA image-based
LLaVA model and extends its advantages to the
video domain, delivering promising gains on
video-based conversation and grounding tasks.
Our codes, pretrained models, and interactive
demos will be made publicly available.

1 Introduction

Recent efforts on Large Multimodal Models
(LMMs), spearheaded by GPT-4V (OpenAl,
2023b), allow detailed conversations about images
but generally do not scale well to videos. The mag-
nitude of video data scales far beyond other modali-
ties due to its massive volume on social and internet
media. Furthermore, extending LMMs to videos
is challenging due to their complex dynamics with
long temporal context that needs to be understood

° What does the child in yellow hold outdoors? |

@ The child in yellow holds a tennis racket.

° Who walks to the door and opens it? |

@ A man walks to the door and opens it.

Figure 1: Video spatial grounding on example videos
from Vid-STG (Zhang et al., 2020) (above) and HC-
STVG (Tang et al., 2021) (below) datasets. PG-Video-
LLaVA can generate textual responses with referred
objects grounded in the video content (tennis racket
and man are localized in the top and bottom examples,
respectively).

accurately. Although recent approaches towards
video-LMMs such as VideoChat (Li et al., 2023b),
Video-LLaMA (Zhang et al., 2023a), and Video-
ChatGPT (Maaz et al., 2023) have demonstrated
capabilities in video comprehension and dialogue,
they lack the crucial feature of visual grounding.
Visual grounding in videos aims to associate the
LMM responses to specific objects within the video
input. Addressing this gap, we introduce PG-Video-
LLaVA, the first video-LMM capable of localizing
objects appearing in LMM responses. This task
leads to enhanced intractability and demonstrates
deep understanding of video content.

In PG-Video-LLaVA, we address the unique
challenges posed by video data. The model is de-
signed to track objects within shorter video clips
that maintain consistent camera views, enabling
accurate visual grounding across scenes and mo-
tions. This tracking links spatio-temporal segments
directly to conversational elements, enhancing the



model’s contextual understanding. A salient feature
of PG-Video-LLaVA is its modular design, allow-
ing for easy integration with existing grounding
modules and the flexibility to adapt to future en-
hancements in visual grounding technology. More-
over, PG-Video-LLaVA enriches its capabilities by
incorporating audio context. It achieves this by
leveraging video audio in a form understandable
to LLM, which is particularly useful in situations
where the auditory information is essential to the
conversation. This inclusion broadens the model’s
understanding, making it more versatile in inter-
preting video content.

Furthermore, this work introduces an improved
framework for benchmarking video-based con-
versational models, pivoting from previous ap-
proaches (Maaz et al., 2023) that predominantly
used the proprietary GPT-3.5-Turbo model for eval-
uation. Given that GPT-3.5-Turbo is subject to
changes at any time and lacks transparency due
to its closed-source nature, it presents challenges
in terms of reliability and reproducibility. To ad-
dress this, we propose the use of Vicuna, an open-
source LLLM for benchmarking. This shift not only
enhances reproducibility but also improves trans-
parency in the evaluation process. We evaluate PG-
Video-LLaVA using our improved benchmarks and
show notable improvements over existing video
conversational models like Video-ChatGPT (Maaz
et al.,, 2023) and Video-LLaMA (Zhang et al.,
2023a) in ungrounded dialogues, achieving state-
of-the-art (SoTA) performance.

The key contributions of this work are:

* We propose PG-Video-LLaVA, the first video-
based LMM with pixel-level grounding ca-
pabilities, featuring a modular design for en-
hanced flexibility.

* By incorporating audio context, PG-Video-
LLaVA significantly enhances its understand-
ing of video content, making it more compre-
hensive and aptly suited for scenarios where
the audio signal is crucial for video under-
standing (e.g., dialogues and conversations,
news videos, etc.).

* We introduce improved quantitative bench-
marks for video-based conversational mod-
els. Our benchmarks utilize open-source Vi-
cuna LLM to ensure better reproducibility and
transparency. We also propose benchmarks to

evaluate the grounding capabilities of video-
based conversational models.

2 Related Work

Recent advancements in Large Multimodal Models
(LMMs) (Liu et al., 2023a; Zhu et al., 2023; Dai
et al., 2023) and Large Language Models (LLMs)
(Chiang et al., 2023; OpenAl, 2023a; Touvron et al.,
2023) have significantly transformed the artificial
intelligence landscape, particularly in natural lan-
guage processing and multimodal tasks. These
breakthroughs have enhanced machine learning
models’ ability to understand and generate human-
like text, while also enabling more effective inte-
gration of various data types like images, sounds
and videos with textual information. This progress
represents a major leap in creating Al systems that
can accurately interpret and interact with a diverse
range of content.

Large Language Models (LLMs): The natu-
ral language processing (NLP) field has under-
gone a revolution with the advent of LLMs such
as GPT (Brown et al., 2020), LLaMA (Touvron
et al., 2023), OPT (Zhang et al., 2022), and
MOSS (OpenLMLab, 2023), particularly noted
for their zero-shot learning abilities and adapt-
ability. The development of models like Instruct-
GPT (Ouyang et al., 2022) and ChatGPT (OpenAl,
2023a) has further propelled advancements in con-
versational Al and complex query handling, chiefly
through instruction tuning. Within the LLaMA
framework, the emergence of open-source models
such as Alpaca (Taori et al., 2023) and Vicuna (Chi-
ang et al., 2023) exemplifies how instruction tuning
can significantly boost model performance. This
shift towards open-source initiatives in language
modeling, highlighted by models like Alpaca and
Vicuna, indicates a growing trend towards more
accessible and collaborative approaches in the field.
In this work, we build on the open-source Vicuna
LLM and extend it with multimodal capabilities.
We also propose an open-source benchmark for
video conversation and reasoning tasks using Vi-
cuna LLM that is reproducible for fair evaluations.
Large Multimodal Models (LMMs): The field
of Al has witnessed significant advancements with
the development of vision-language models like
CLIP (Radford et al., 2021), renowned for their
impressive zero-shot capabilities using extensive
image-text pairs during training. These models
have proven effective in a variety of applications,



from image detection and segmentation (Liang
et al., 2023; Bangalath et al., 2022) to more com-
plex tasks such as 3D modeling and video anal-
ysis (Rozenberszki et al., 2022; Ni et al., 2022;
Wang et al., 2021; Rasheed et al., 2023a). The
introduction of BLIP-2 marked a pivotal transi-
tion, pioneering the integration of image features
encoded by a visual encoder with text embed-
dings, setting the stage for the evolution into Large
Multimodal Models (LMMs). This advancement
influenced subsequent models like LLaVA (Liu
et al., 2023b), InstructBLIP (Dai et al., 2023),
and MiniGPT-4 (Zhu et al., 2023), which fur-
ther refined image-text feature alignment and in-
struction tuning. VideoChat (Li et al., 2023b),
Video-ChatGPT (Maaz et al., 2023) and Video-
LLaMA (Zhang et al., 2023a) represents an exten-
sion of these LMMs, moving from image-based
to video-based applications, while models such as
Otter (Li et al., 2023a), mPLUG-Owl (Ye et al.,
2023), LLaMa-Adapter (Gao et al., 2023), and
InternGPT (Liu et al., 2023d) continue to push
the boundaries of multimodal interaction. Despite
these significant strides, challenges in achieving
robust visual grounding in LMMs highlight key
areas for ongoing research and development in this
dynamic field. Further, effective integration of au-
dio signals within LMMs for comprehensive video
understanding is an open research question that this
work aims to address.

Visual-Language Grounding: Grounded Large
Language Models (LLMs) have made notable
progress in enhancing visual and language com-
prehension. A diverse array of models includ-
ing Kosmos-2 (Peng et al., 2023), Ferret (You
et al., 2023), All-Seeing Model (Wang et al.,
2023), LISA (Lai et al., 2023), BuboGPT (Zhao
et al., 2023), Shikra (Chen et al., 2023), and
GLaMM (Rasheed et al., 2023b) have employed
various methodologies to master complex ground-
ing tasks. These models demonstrate proficiency in
tasks like referring expression comprehension and
image segmentation, showcasing the advanced im-
age understanding capabilities of LLMs. Method-
ologically, Kosmos-2, Shikra, and All-Seeing fo-
cus predominantly on creating language-based con-
text for visual grounding. In contrast, BuboGPT
merges visual elements with language, and LISA
leverages vision-language embeddings for produc-
ing segmentation masks. Furthermore, GLaMM
is adept at generating natural language responses
linked with object segmentation masks, facilitat-

ing detailed visual-textual interactions. However,
challenges remain, such as LISA’s constrained per-
formance in multi-object scenarios and the limita-
tions of BuboGPT and GLaMM to image-based
applications, not extending to video processing. To
this end, we introduce PG-Video-LLaVA, a video
conversational model with pixel-level grounding
capability. Further, PG-Video-LLaVA incorporates
audio transcripts alongside visual and textual data,
aiming to provide a more detailed understanding
of video content.

3 PG-Video-LLaVA

3.1 Overview

In this paper, we introduce PG-Video-LLaVA, a
novel Large Multimodal Model (LMM) designed
to align video and audio representations with a
Large Language Model (LLM) giving the capabil-
ity to proficiently manage both video and audio
data in conversational contexts. Additionally, our
method integrates a specialized plug-and-play mod-
ule for effective video grounding (see Figure 2).
While PG-Video-LLaVA’s foundation is based on
the LLaVA-1.5 (Liu et al., 2023a) frameworKk, its
unique combination of enhanced video encoding,
extensive training dataset, integrated audio process-
ing and grounding capability marks it as a forward
step in the field of LMMs.

Central to our model is an advanced CLIP-based
video encoder, which has been adapted to process
both spatial and temporal dimensions of video data.
This adaptation enables a deeper understanding
of video content, setting PG-Video-LLaVA apart
from conventional image-centric models. In addi-
tion, PG-Video-LLaVA leverages audio transcrip-
tion and filteraton techniques, inspired from Whis-
perX (Bain et al., 2023) and Whisper-AT(Gong
et al., 2023) allowing the model to process and
understand audio inputs effectively, enhancing its
overall multimodal interpretation capabilities.

3.2 Architecture

In PG-Video-LLaVA, the spatio-temporal feature
extraction is inspired by Video-ChatGPT (Maaz
et al., 2023). Our architecture utilizes the CLIP
ViT-L/14@336 as the visual encoder, which has
been adapted for video processing. Given a video
input V; € RT*HxWxC ywhere T denotes the
frame count, the encoder processes each of the T'
frames independently, treating them as a series of
images. This leads to the generation of frame-level
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Figure 2: Architecture of PG-Video-LLaVA: PG-Video-LLaVA integrates a CLIP-based visual encoder with a
multimodal language model for video understanding. The CLIP visual encoder extracts spatio-temporal features
from videos by averaging frame-level features across temporal and spatial dimensions. These features are then
projected into the LLM’s input space using a learnable Multi-Layer Perceptron (MLP). The system features a
grounding module for spatially locating textual descriptions within video frames, a class-agnostic object tracker,
and an entity-matching module. Audio processing incorporates voice activity detection, phoneme modeling,
and Whisper-based audio transcription, resulting in a multimodal pipeline that facilitates robust video-question
answering. The architecture is trained on a video instruction dataset, enabling the handling of diverse conversational

contexts with high accuracy.

embeddings z; € RT**wxD where h = H/p
and w = W/p, with p being the patch size (14
for ViT-L/14) and N = h x w indicating the total
token count.

To construct a comprehensive video-level rep-
resentation, we apply average pooling across the
temporal dimension of these frame-level embed-
dings, resulting in a video-spatial representation
v; € RV*P This temporal pooling technique
effectively amalgamates information across mul-
tiple frames. Similarly, for explicit temporal in-
formation, we achieve temporal representation
t; € RT*P through average pooling along the spa-
tial dimension. The final video-level features v;
are a combination of these temporal and spatial
features, as shown in the equation:

v = [t 2] e RTTN)*D (1)

These video-level features are projected into the
embedding space of the language decoder using,
a learnable Multi-Layer Perceptron (MLP), desig-
nated as g, to serve as our cross-modal connector.
This is inspired by LLaVA-1.5 (Liu et al., 2023a),
and it aims to enhance the model’s performance

compared to using a simple linear projection as in
Video-ChatGPT (Maaz et al., 2023). The process
yields language embedding tokens @),,.

Text queries, denoted as Q; € REXK where L is
the length of the query, are tokenized to be dimen-
sionally compatible with these video embeddings.
The combination of (), and (); is then fed into the
language decoder, facilitating the seamless integra-
tion of video and textual data within the model (see
Figure 2).

3.2.1 Audio Modality Integration

In PG-Video-LLaVA, we have integrated an audio
processing pipeline that significantly enhances the
video-question answering capabilities by incorpo-
rating audio cues from the input, drawing inspira-
tion from the architecture of WhisperX (Bain et al.,
2023). The process begins with the deployment of a
Voice Activity Detection (VAD) model. This model
is crucial for pinpointing speech-containing tem-
poral segments within the audio track. Following
the VAD’s identification of speech segments, these



segments undergo processing—cutting, merging,
and padding—to align with the input specifications
of the Whisper model (OpenAl, 2022). Simulta-
neously, a phoneme segmentation model operates
in parallel, producing phone-level segmentations
essential for the subsequent alignment of raw tran-
scriptions with the audio.

The VAD model serves a dual purpose: 1) iden-
tifying speech segments and 2) aiding in filtering
out non-speech audio components. To enhance
the compatibility of transcriptions generated by
Whisper with our model, we integrate Whisper-
AT (Gong et al., 2023). This advanced version of
the Whisper model specializes in audio tagging.
It annotates the audio stream with labels from an
extensive set of 527 audio event classes, allowing
for precise temporal resolution.

The audio transcripts are then subjected to a
multi-stage filtering process. Initially, a VAD-
based filter is applied, followed by a phoneme-
based forced alignment using the Whisper model,
ensuring temporally accurate text transcriptions.
Utilizing Whisper’s language identification feature,
we eliminate non-English speech segments at this
stage. For each identified sentence segment, we
apply Whisper-AT (Gong et al., 2023) for audio
tagging, focusing on the top three predicted au-
dio classes. Segments that do not predominantly
feature ‘speech’, or where ‘music’ probabilities
significantly exceed ‘speech’, are excluded from
further processing.

Finally, the integration of the audio transcript
with the video component is executed through a
carefully designed prompt template (Appendix-A).
This template is pivotal in guiding the system to
understand user instructions, assimilate the video
frames, and incorporate the transcriptions gener-
ated by the automatic speech recognition model.
This structured approach ensures that PG-Video-
LLaVA efficiently leverages all available modali-
ties—visual and auditory—thereby enabling users
to achieve task completion and query resolution
based on a comprehensive analysis of both visual
and auditory content (refer to Figure 2 for details).

3.2.2 Grounding Module

In PG-Video-LLaVA, our visual grounding ap-
proach starts with processing video-question pairs
to generate textual descriptions. These descrip-
tions are then used for grounding within the video
frames. Key noun phrases are extracted from the
generated text using Vicuna, targeting the most

critical content aspects. Simultaneously, an image
tagging model, RAM (Zhang et al., 2023b), tags
visual elements in each frame, creating a detailed
map of the video content.

The video is segmented into smaller parts us-
ing PySceneDetect (Castellano, 2023), based on
changes in scene composition. This segmentation
facilitates a more focused grounding process. In
each segment, our grounding ensemble, composed
of GroundingDINO (Liu et al., 2023c), DEVA
(Cheng et al., 2023), and SAM (Kirillov et al.,
2023), utilizes the image tags to create segmen-
tation masks and tracking IDs for the identified
visual elements.

The visual cues from these segmentation masks
are then matched with the textual noun phrases us-
ing CLIP (Radford et al., 2021). This matching
process links text to the corresponding visual ele-
ments in the video, enhancing our understanding
of the content.

In quantitative analysis (Section 4.4), from the
descriptive textual response to an interrogative text,
a referring expression or a phrase is extracted us-
ing Vicuna. This phrase is input into our ground-
ing module, which then generates segmentation
masks and tracking IDs. We measure the spatial
grounding accuracy of our model by calculating
the Intersection over Union (IoU) between these
segmentation masks and ground truth bounding
boxes.

4 Experiments

4.1 Implementation Details

We build our strong baseline on top of LLaVA-1.5
which utilizes CLIP ViT-L/14@336 as the image
encoder and Vicuna v1.5 as the LLM. We only
tune the MLP projection layers during training with
the Videolnstruct100K (Maaz et al., 2023) dataset,
while keeping the rest of the architecture frozen.
We finetune the model for 3 epochs using a learning
rate of 2¢~° and an overall batch size of 32. The
training of our 7B and 13B models took around 6
hours and 15 hours respectively on 4 A100 80GB
GPUs.

For audio transcript extraction, Whisper-base
model is used. Our grounding module is based
on GroundingDINO-T variant and CLIP ViT-B/32.
For the image-tagging model we use RAM Swin-
Large variant (with input size 384). DEVA Tracker
is applied under online-setting in our experiments.

Vicuna-13b-v1.5 model is used in performing



Evaluation Metrics

Detail Orientation Contextual Understanding Temporal Understanding Consistency

Model
Correctness

LLaMA Adapter (Gao et al., 2023) 2.34 £0.03 2.44 £0.01
Video Chat (Li et al., 2023b) 2.48 £0.02 2.81+£0.01
Video-LLaMA (Zhang et al., 2023a) 2.29 £ 0.00 2.59 +0.02
Video-ChatGPT (Maaz et al., 2023) (w/o audio) ~ 2.49 £ 0.02 2.52+0.03
Video-ChatGPT (Maaz et al., 2023) (with audio)  2.63 4 0.00 2.71 £ 0.00
PG-Video-LLaVA (7B) (w/o audio) 2.69 £ 0.02 2.80 £ 0.02
PG-Video-LLaVA (7B) (with audio) 2.75 £ 0.01 2.89 + 0.00
PG-Video-LLaVA (13B) (w/o audio) 2.80 £ 0.03 2.92 +0.01
PG-Video-LLaVA (13B) (with audio) 2.84 +£0.02 2.97+0.01

2.67£0.02 2.25£0.04 3.03£0.04
2.92 £0.00 2.29 £0.02 3.10 £0.02
2.68 £0.01 2.23+£0.06 2.88 £0.02
2.85 4 0.00 2.38 +0.09 3.09 £ 0.01
2.99 £0.01 2.51£0.05 3.23 £0.05
3.10 £0.01 2.44 £0.03 3.39 £0.01
3.16 £0.03 2.53 £0.08 3.47 £0.07
3.22£0.01 2.53 £0.03 3.44 £0.02
3.22£+0.01 2.54+0.02 3.56 +0.06

Table 1: Performance benchmarking of video-based conversational models using the benchmarking framework
from Video-ChatGPT (Maaz et al., 2023) with Vicuna-13b-v1.5 (Chiang et al., 2023) as the evaluator model. Results
indicate that PG-Video-LLaVA achieves favourable performance across all metrics.

video-based conversational benchmarking, zero-
shot question answering evaluation, and extract-
ing the key noun or referring expression from
the model output in the quantitative evaluation of
the spatial grounding task. Further, Vicuna-13b-
v1.5 was used to implement the entity matching as
in (Zhao et al., 2023).

4.2 Stronger Baseline

To evaluate the impact of the enhanced baseline
on PG-Video-LLaVA, we apply the benchmark-
ing framework from Video-ChatGPT (Maaz et al.,
2023). This framework measures performance on
several axes critical for video-based conversational
agents, including correctness of information, de-
tail orientation, contextual understanding, temporal
understanding, and consistency.

In order to facilitate a reliable and reproducible
evaluation, we have modified the assessment
pipeline introduced in Video-ChatGPT by replac-
ing GPT-3.5-Turbo with open-source Vicuna-13b-
v1.5. This adjustment addresses the limitations in
reproducibility inherent to the closed-source na-
ture of GPT-3.5-Turbo. Subsequently, we have re-
assessed both PG-Video-LLaVA and other recent
models to ensure a fair and consistent compari-
son. Each experiment is performed 3 times and the
mean and standard deviation are reported in Table 1.
The results indicate that PG-Video-LLaVA outper-
forms the foundational Video-ChatGPT model and
exhibits superior performance when compared to
other recent contributions in the domain. (See
Appendix-E for qualitative results.)

4.3 Effect of Audio Modality

Table 1 shows that adding the audio modality helps
to improve the performance metrics. Further, in
Figure 4 it can be observed that the model which
takes audio transcript produces correct outputs,

whereas the model without audio modality fails
to capture those details from visual content alone.

Model VidSTG HC-STVG
Grounding DINO (Liu et al., 2023c) 253 19.5
Video-LLaMA (Zhang et al., 2023a) 28.6 26.1
Video-ChatGPT (Maaz et al., 2023) 32.8 20.8
PG-Video-LLaVA (7B) 34.2 28.3
PG-Video-LLaVA (13B) 35.1 27.3

Table 2: Performance of PG-Video-LLaVA and other
models on spatial grounding task: Evaluated using the
VidSTG and HC-STVG benchmarks, the results demon-
strate PG-Video-LLaVA'’s favorable spatial grounding
capabilities, as evidenced by its ability to generate ac-
curate descriptive responses and effectively locate refer-
ring expressions within video frames. The table shows
the model’s progress, particularly in the 13B version,
showcasing its performance among other SoTA video-
conversational models.

4.4 Spatial Grounding in Videos

To quantitatively assess PG-Video-LLaVA’s spatial
grounding capability, we conducted quantitative
evaluations of PG-Video-LLaVA’s spatial ground-
ing capabilities using two benchmarks that are
derived from the test set of the VidSTG (Zhang
et al., 2020) and HC-STVG (Tang et al., 2021)
datasets. Due to the novelty of integrating spa-
tial grounding within video-conversational models,
we highlight the modular nature of our ground-
ing pipeline, which can be incorporated with other
state-of-the-art video conversation models. For
the VidSTG dataset, we selectively processed in-
terrogative prompts to assess the grounding ac-
curacy. The model generates descriptive textual
responses to these prompts, from which Vicuna-
13b-v1.5 extracts relevant referring expressions.
These expressions are then spatially grounded in
the video frames using our grounding pipeline.
For the HC-STVG dataset, interrogative prompts
are first mined from the text captions using Vi-



What do you see in this video?

&0

In the video, we see a giraffe standing on a diving board, and then it jumps into the water. The giraffe is the main focus of the video, and we see it in
various positions throughout the video.

What do you see in this video?

&0

In the video, | see a large statue of a woman holding a torch in her right hand. The statue is located on top of a hill, and it is surrounded by a large body of
water. The statue is lit up at night, and it is visible from a distance. The video also shows a boat passing by the statue.

What do you see in this video?

@ In the video, a young girl is performing a gymnastics routine on a balance beam. She starts by jumping onto the beam and then proceeds to perform
various flips and turns. She finishes her routine by jumping off the beam and landing on a mat.

Figure 3: Qualitative Results for Video Grounding: Visual representation of the grounding capability of advanced
video-conversational capabilities of PG-Video-LLaVA. The highlighted regions in each video frame indicate the
model’s ability to identify and spatially locate key subjects mentioned in the textual description, such as the giraffe,
the statue, and the gymnast on a balance beam.

Model MSVD-QA (Xuetal.,,2017) MSRVTT-QA (Xuetal,2016) TGIF-QA (Lietal,2016) Activity Net-QA (Yu et al., 2019)
Accuracy Score Accuracy Score Accuracy Score Accuracy Score

FrozenBiLM (Yang et al., 2022) 32.2 - 16.8 - 41.0 - 24.7 -

LLaMA Adapter (Gao et al., 2023) 53.7 33 45.6 32 54.3 33 373 32

Video LLaMA (Zhang et al., 2023a) 48.6 32 32.8 2.8 514 34 27.1 29

Video-ChatGPT (Maaz et al., 2023) 62.6 3.6 50.0 33 66.5 3.7 40.8 33

PG-Video-LLaVA 64.1 3.7 51.6 33 66.8 3.8 39.9 33

Table 3: Zeroshot video-based question-answering: Comparison of PG-Video-LLaVA with other video generative
models. The latest available models are used for all the approaches and the benchmarks are calculated using open-
source Vicuna LLM. PG-Video-LLaVA performs better than the previously proposed video-based conversational

methods.

cuna and then used similarly to VidSTG prompts.
(Appendix-B)

The results shown in Table 2 position PG-Video-
LLaVA alongside alternative methods using the
same benchmarks, demonstrating our model’s en-
hanced ability to accurately answer questions,
thereby leading to improved spatial grounding per-
formance.

The qualitative results shown in Figure 3 em-
phasize the model’s refined spatial grounding preci-
sion. The accurate overlay of masks on the subjects
within the videos confirms the model’s adeptness at
correlating textual descriptors with visual elements,
a critical aspect of contextual comprehension. This
refined ability is crucial for applications that in-
tegrate visual data with language, improving the

model’s utility in environments that demand rich,
interactive visual and linguistic processing.

4.5 Zero-Shot Visual Question Answering

For PG-Video-LLaVA, zero-shot question-
answering (QA) capabilities were evaluated
quantitatively using several established open-
ended QA datasets: MSRVTT-QA (Xu et al.,,
2016), MSVD-QA (Xu et al., 2017), TGIF-QA (Li
et al., 2016), and ActivityNet-QA (Yu et al., 2019).
These datasets are benchmarks for assessing
a model’s ability to generate accurate answers
without any dataset-specific fine-tuning. We
adopted the zero-shot evaluation methodology
introduced in Video-ChatGPT (Maaz et al., 2023),
with Vicuna-13b-v1.5 as the evaluator model to
assess the model’s understanding and predictive
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o What is the name of the product in this video?

Without Audio

With Audio

o Can you suggest a title for this video clip based on what you see and hear?

Without Audio

The product in the video is a moisturizing lotion.

The product in the video is Sunscreen Moisturizer SPF 30.

Based on the video, | would suggest "The Future of
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Audio Transcript: Everyone loves the way skin authority
sunscreens feel when they go on. ...

Sunscreen moisturizer SPF 30 is a broad spectrum sunscreen
plus a daily moisturizer in one.

skinautherity

Audio Transcript: ... just how amazing Chat GPT turn out
to be and then the improvement in GPT for. So GPT 4 has not

Technology and Communication" as a title for the video clip.
@ surprised me at all in terms of reception there. Chat GPT
. . surprised us a little bit, but | still ....
With Audio Based on the video, the title could be "The Future of Al: A ... You know, they're like, oh, it's better than 3.5, but |

Discussion on GPT-4 and Chat GPT."

o What is Ross complaining about?

thought it was going to be better than 3.5. ...

Ross is complaining about the taste of the beer he is

Without Audio

With Audio

drinking. He is seen making a face and spitting out the beer,
@ while the other people in the scene watch him.

Ross is complaining about someone eating his sandwich at

Audio Transcript: What's wrong, buddy? Someone at work
ate my sandwich. Well, what did the police say? My
thanksgiving leftover sandwich. | can't believe someone just
ate it. Ross it’s just a sandwich.

work. He is upset and frustrated about the situation.

Figure 4: Qualitative Results for Including Audio Modality: The figure illustrates the integrated audio processing
pipeline that augments video-question answering with audio cues. It provides side-by-side comparisons showing
how audio cues offer additional context, leading to a more accurate interpretation of the video content.

accuracy, with scores assigned on a scale from 1 to
5. The results are presented in Table 3.

In comparison to Video-ChatGPT, PG-Video-
LLaVA demonstrates superior performance, sur-
passing not only the predecessor but also other
notable models in the field, such as Frozen-
BilLM (Yang et al., 2022) and Video Chat (Li et al.,
2023b). The results from our evaluations indicate
that PG-Video-LLaVA has significantly enhanced
its ability to comprehend video content and gener-
ate contextually relevant answers, thus establishing
a new state-of-the-art in zero-shot VideoQA.

5 Conclusion

In this work, we introduced PG-Video-LLaVA, a
novel video-based conversational model equipped
with pixel-level grounding capabilities. PG-Video-

LLaVA enhances image-based conversational mod-
els by extracting spatio-temporal features essential
for comprehensive video understanding. It incorpo-
rates filtered audio transcripts to enrich the interpre-
tation of visual scenes where audio cues are pivotal.
Additionally, we developed a novel grounding mod-
ule capable of tracking and generating pixel-level
grounding of objects within videos. To promote re-
producibility, we propose quantitative benchmarks
for video-based conversational models, utilizing
the open-sourced Vicuna LLM instead of GPT-3.5,
as employed by previous approaches. These bench-
marks are specifically designed to evaluate ground-
ing capabilities. In summary, this work represents
the first effort to integrate grounding capabilities
into video-based LMMs.



6 Limitations

Though we present a novel large multimodal model
for video understanding, with unprecedented capa-
bilities in multimodal fusion and visual ground-
ing, we would like to acknowledge some of the
limitations it encompasses, which points to open
research directions. Especially, the adaptability
of the proposed model’s video understanding ca-
pabilities for extremely varied or uncommon real-
world scenarios remains untested. Due to the inher-
ent complexity of understanding long and diverse
video content, and the lack of high-quality diverse
human-annotated training data, the performance
gains of our work demonstrated on standard video
understanding datasets, might not always gener-
alize into special cases such as egocentric videos.
Though the proposed architecture sets the baseline
for conversational grounding in videos and serves
as a proof-of-concept, its capability derives mainly
from the clever amalgamation of large pretrained
foundational models. Embedding these abilities
into the large multimodal model remains an open
research problem and will be addressed in future
work.

7 Ethical Considerations

The key potential risk of our work being misused
lies in the possibility of fake textual content gen-
eration based on video prompts. This adds to the
already existing risk associated with large language
models which are prone to be exploited by users
with malicious intent to generate articles that ap-
pear as if generated by a human.

In this work, we utilize multiple open-source
source code repositories, models, and datasets in-
tended and licensed for research use only. They are
also restricted to use cases that follow the license
agreement of CLIP, LLaMA, Vicuna and GPT-4.
Our work will be made publically available subject
to a non-commercial license, and it should not be
used outside of research purposes.

8 Use of AI Assistants

We acknowledge that LLMs were used as Al as-
sistants in benchmarking conversational perfor-
mance, spatial grounding, and zero-shot video-
based question-answering as mentioned in Sec-
tion 4. Further, the Videolnstruct100K dataset
used to train our model contains Al-generated text,
which resulted from the semi-automatic annotation
involving ChatGPT/GPT-3.5.
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Appendix
A Audio Modality Integration

Here, we outline the implementation details of au-
dio modality integration in PG-Video-LLaVA.

A.1 Audio Transcript Filtering

To generate audio transcripts, we first experimented
with using the state-of-the-art Whisper (OpenAl,
2022) directly. However, the obtained transcripts
were too noisy, contained hallucinations, and un-
wanted text such as lyrics from songs. Passing
these raw audio transcripts directly to the LLM
without any filtering can negatively affect the over-
all model’s performance. Therefore, a preprocess-
ing method is required to filter out noisy text and
keep only the parts of the audio that carry meaning-
ful information.

The following steps combining WhisperX(Bain
et al., 2023) and Whisper-AT(Gong et al., 2023)
are used to refine the original Whisper transcripts
to be usable as inputs to the video LMM.

1. We first apply VAD-based preliminary filter-
ing to the audio, and then use the Whisper
model with Phoneme-based forced alignment
to get temporally aligned text transcriptions.

2. As Whisper is able to identify the language
spoken, all non-English speech can be ignored
at this point since PG-Video-LLaVA generates
responses in English.

3. For each sentence segment obtained, slice
the original audio at the corresponding times-
tamps and pass to Whisper-AT to produce
audio-tagging output.

4. For each sentence segment, consider the top 3
audio classes predicted.

(a) If “speech” is not among the top 3 pre-
dictions, the segment is ignored.

(b) If P[music] >  P[speech] and
P[music] — Plspeech] > threshold,
the segment is ignored (the threshold is
set empirically to 1.1).

Figure 6 shows the effectiveness of our audio
transcript preprocessing method in filtering out hal-
lucinations, music, and garbage characters from the
raw audio transcript.

A.2 Integrating Audio Transcript into the
LLM

The following prompt template is used when com-
bining the spatiotemporal video features and audio
transcript with the user instruction text.

SYSTEM:

You are PG-Video-LLaVA,

a large vision-language
assistant.

You are able to understand
the video content that the
user provides, and assist
the user with a variety

of tasks using natural
language.

USER:

<Instruction>
<Video-Tokens>

The noisy audio transcript
of this video is:
<Audio-Transcript>

ASSTISTANT:

B Visual Grounding: Quantitative
Evaluation

B.1 Overview

We introduce novel benchmarks for quantitatively
evaluating conversation-based video spatial ground-
ing, based on two existing spatio-temporal video
grounding datasets, VidSTG(Zhang et al., 2020)
and HC-STVG(Tang et al., 2021).

In conversation-based spatial grounding, the ob-
jective is to localize interrogative sentences with
unknown objects in the given video (e.g. “What is
caught by the squatting boy on the floor?” ). Unlike
grounding for declarative sentences where the ex-
plicit characteristics of objects (e.g. the class “toy”
and visual appearance “yellow”) are present within
the sentence itself, grounding for interrogative sen-
tences is challenging due to the fact that it can
only depend on relationships between the unknown
object and other objects (e.g. the action relation
“caught by the squatting boy” and spatial relation
“on the floor”) (Figure 5). A benchmark based on
this task can be regarded as a measure of the suf-
ficient relationship construction and cross-modal
relation reasoning ability of the video-language
model.



Interrogative Sentence: What is caught by the squatting boy on the floor?

Declarative Sentence: A little boy with a Christmas hat is catching a yellow
toy.

~
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Figure 5: Interrogative vs declarative sentences

To evaluate our model for conversation-based
video spatial grounding, we pass interrogative
prompts to the model. It then generates descrip-
tive textual responses to these prompts, from which
Vicuna-13b-v1.5 extracts relevant referring expres-
sions. These expressions are then passed into
the GroundingDINO-based spatial grounding and
tracking module. For the obtained object tracks,
bounding box IoU is calculated by comparing them
with the ground truth annotations.

From the two spatiotemporal grounding datasets,
to form a spatial-only grounding benchmark, we
crop the video in the temporal axis to contain only
the segment where the target object is present, and
the mean spatial IoU is reported as the metric for
comparison.

It should be noted that we evaluate our model
in these benchmarks only in the zero-shot setting,
without any training on these datasets.

1. Benchmark based on the VidSTG Dataset:
VidSTG dataset consists of videos paired with mul-
tiform sentences (both interrogative and declara-
tive). To form a benchmark to quantitatively eval-
uate the performance of conversation-based video
spatial grounding, we leverage the 5693 video and
interrogative sentence pairs in its test set.

2. Benchmark based on HC-STVG Dataset:
Unlike in VidSTG dataset, in HC-STVG dataset
contains only declarative form sentences for all of
its videos. Therefore interrogative sentences are
first generated from the declarative text captions
in 3025 samples of the test set using Vicuna-13b-
v1.5 model. Then the evaluation is performed in a
similar manner to VidSTG.

B.2 Generating Interrogative Statements

The original text annotations in the HC-STVG
dataset are in the declarative statement format. In
order to make our video prompt-based grounding
evaluation pipeline, we extract interrogative state-
ments (questions) from these text annotations using
Vicuna-13b-v1.5 using the following prompt tem-
plate.

SYSTEM:

You are an intelligent
chatbot designed for
generating question—answer
pairs from sentences.

USER:

Your task is to generate

a question and answer from
the given sentence.

The question should start
with 'Who’.

The question should refer
to the subject of the
given sentence.

The answer should include
the subject of the given
sentence.

Please generate the
response in the form of

a Python dictionary string
with keys "Q’ for question
and "A’ for answer. Each
corresponding value should
be the gquestion and answer
text respectively.

For example, your response
should look like this:
{"Q": 'Your question
here...’”, "A’": ’"Your
answer here...’}.

Please note that the
generated question and
answer should only include
information from the given
sentence.

Please process the
following sentence:

The man in the suit goes
to the man in white and
looks at him.

ASSTISTANT:

{"Q": "Who goes to the man
in white?’, ’'A’:’The man
in the suit’}

USER:

Please process the
following sentence:
<DECLARATIVE_STATEMENT>

ASSISTANT:



Transcript Obtained from Whisper

Hi, I'm Stephanie Ragnodden and I'm going to
show you step 3 of a 4 step process to groom your
horse to shine naturally. This time we're going to
use a finishing brush with a cocoa fiber horse here
mix because it just gives us a little bit more of an
edge. .... We're struggling with the oil so we'll put
the coat and always cleaning our brush on the
curry and we're going to do this from the head all
the way to the tail. Thanks for watching.

Transcript Obtained from Our Filtering Pipeline

Transcript Obtained from Whisper

Yeah You know that? | didn't think that | had a
debt to pay Till the king had take what | left away
It was all my fault, you beat it to destiny But |
remember you saying that yesterday There was a
time when my heart wasn't on the show ...YOUR
BLESS BUT YOU are a forever Oh to be the best
WOO Kennedy I'm not saying it right here YOUR
BLESS | don't know what | thought | might say
Seems like we never were talking right away
Every other minute I'm fuffing my place

Transcript Obtained from Our Filtering Pipeline

Transcript Obtained from Whisper

1.5-1.12.5-1.12.5-1.12.5-1.12.5-1.11.5-1.1

Transcript Obtained from Our Filtering Pipeline

Hi, I'm Stephanie Ragnodden and I'm going to
show you step 3 of a 4 step process to groom your
horse to shine naturally. This time we're going to
use a finishing brush with a cocoa fiber horse here
mix because it just gives us a little bit more of an
edge. .... We're struggling with the oil so we'll put
the coat and always cleaning our brush on the
curry and we're going to do this from the head all

the way to the tail. Fhanksforwatehing:

1531125114251125112651116511

Figure 6: Filtering the audio transcript: to remove hallucinations (left), music (center), and garbage (right)

characters from the raw audio transcript.

B.3 Extracting Referring Expression Using

Vicuna

not include articles
"the’, "and’).
Please generate the

("a’,

In the quantitative evaluation, we use the follow-
ing prompt template with Vicuna-13b-v1.5 to ex-
tract the referring expression from the output of
the video-based LMM, which is used as the input

response in the form of
a Python dictionary string
with keys

"OBJECT’, where

prompt to the off-the-shelf-grounding module.

SYSTEM:

You are an intelligent
chatbot designed for
identifying the most
relevant subject/object
phrases in video-based
question-sentence pairs.

USER:
Your task i1s to compare
the question with the
sentence, and extract the
subject or object phrase
of the sentence that most
accurately answers the
given question.

The selected phrase should
be short and should
contain only one noun.

The selected phrase can
include adjectives that
explain the attributes of
the subject/object.
The selected phrase
not
The

should
exceed 4 words.

selected phrase should

its value is the extracted
phrase in Python string
format.

DO NOT PROVIDE ANY OTHER
OUTPUT TEXT OR EXPLANATION.
Only provide the Python
dictionary.

For example, your response
should look like this:
{"OBJECT’ : "green toy’}.
Please process the
following video-based
question—answer pair:
Question: who is in front
of the guitar at the show?
Answer: A woman in a
black dress is in front
of the guitar on stage.

ASSTISTANT:

{"OBJECT’ : ’"woman 1in
black dress’}

USER:

Question: who points to
the window?

Answer: The old man is



pointing to the window.

ASSISTANT:
{"OBJECT’ : ’"old man’}

USER:
Question: who is inside
the blue car?
Answer: The driver of the
blue car.

ASSISTANT:
{"OBJECT'’ : "driver’}

USER:

Please process the
following video-based
question—-answer pair:
Question:
<INPUT_TO_VIDEO_LMM>
Answer:
<OUTPUT_OF_VIDEO_LMM>

ASSISTANT:

B.4 Entity Matching with Vicuna

As shown in Figure 2, our method employs an
LLM-powered entity matching module similar to
(Zhao et al., 2023) to match the key phrases in
the video-LMM’s output with the object tracks ob-
tained from the grounding and tracking module.
We use the same prompt template as (Zhao et al.,
2023).



C Qualitative Results for Visual Grounding

Describe this video.

o

The video is a Christmas tree decoration tutorial featuring a woman in a red chair. The woman is seen decorating a Christmas tree
with ornaments and lights. The video also features a Christmas tree with lights and ornaments in a living room. The woman is seen
decorating the tree while a cat is sitting on the floor. The video is set to the song "I see trees of green red roses too I see them
bloom from in you and I think to myself what a wonderful world I see skies of blue"

C g

o Describe this video.

The video is about a man named Sharin who talks about his classic Mercedes-Benz 190. He introduces us to Cherine Raudis, a
woman who owns the car. The video is shot in a backyard and the man is sitting at a table with a cup of coffee. The video also
shows the car being driven on the road and parked in front of a house.

° Briefly describe the video.

The video shows a man in a red jacket and red hat brushing snow off his car in a snowy driveway. He uses a red brush to remove
the snow from the top of the car, the sides, and the back windshield. He also uses a scraper to remove ice from the car. The man is
careful to make sure that he cleans off all the snow and ice, including the brake lights, to ensure that his car is safe and ready to
go.

o Describe what you see in this video.

} 'The video shows Chef Ann Nolan cooking chocolate chip cookies in a Gen Air V2 convection oven. She explains
@ the benefits of using true convection and demonstrates how evenly the cookies cook. The cookies are taken out of
the oven and look delicious.'

Figure 7: Qualitative results for video grounding obtained using image tags as the queries to the off-the-shelf
grounding module and an entity matching module to match the image tags with the corresponding phrase in the
LMM output. (e.g., in the 4th row, the phrase *Chef Ann Nolan’ is matched with the image tag *woman’.)



Who nods his head and turns?
o © nods his head and turn ° Who pulls off the earrings on their right side?

@ A man in a white suit nods his head and turns.

) A woman wearing a white dress and earrings on her right
side is seen removing the earrings.

o Who says a few words to the woman in plaid clothes?
Who puts things in the bowls on both sides as he walks?

A man in a black hat and a purple shirt puts things in the
bowls on both sides as he walks.

plaid clothes.

@ A man in a black suit says a few words to the woman in

Who turns around and walks next to the woman with

X Who pulls the woman to sit down?
yellow hair?

A man in a suit pulls the woman to sit down.

@ A man in a white lab coat turns around and walks next

to a woman with yellow hair.

o Who picks up the cup, drinks, puts down the cup and

° Who raises his hand and touches his head? turns to look at the man next to her?

/)  Amanin ared shirt raises his hand and touches his A woman in a green dress picks up a cup, drinks, puts
head. down the cup, and turns to look at a man next to her.

Figure §: Qualitative results for video grounding on example videos from the HC-STVG(Tang et al., 2021) dataset.
These results are obtained by using Vicuna with the prompt template in B.3 to extract the referring expression from
the LMM output which is then passed to the off-the-shelf grounding module.



Who does the woman in the yellow dress hug? ° Who walks to the wooden frame?

The woman in the yellow dress hugs the man in the blue
suit.

G

@ A woman walks to the wooden frame in the video.

° Who walks to the door and then turns? o Who pushes the woman to the table?

@ A man walks to the door and then turns around to face

@ A man in a white lab coat pushes the woman to the table.
the camera.

Figure 9: Qualitative results for visual grounding on the HC-STVG dataset (failure cases): errors in our model’s
output (e.g., bottom-left: our model identifies the woman as a man), incorrect localizations in the off-the-shelf
grounding module (e.g., top-left), and incorrect tracking (e.g., top-right, bottom-right) result in these failure cases.

o What does the adult hold outside the room? o What does the adult in white clothes hug?

( The adult holds a bottle of champagne outside the . . . . .
e @ The adult in white clothes is hugging a small dog.

o Who is in front of the guitar at the show? o What is beneath the adult on the boat?

@ The boat is on the water, and the man is sitting on the

@ The woman in the black dress is in front of the guitar. Sk e e [EEL

Figure 10: Qualitative results for video grounding on example videos from the VidSTG(Zhang et al., 2020)
dataset



D Quantitative Evaluations of
Video-based Conversation Performance

We leverage the video-based conversation per-
formance benchmarks introduced in Video-
ChatGPT(Maaz et al., 2023), while changing the
evaluation LLM from GPT-3.5-Turbo to Vicuna-
13b-v1.5 model. The prompt templates used with
Vicuna are as same as with (Maaz et al., 2023).
Video-based Generative Performance Bench-
marking: In this benchmark we continue to use
the same test set of 500 samples curated from the
ActivityNet-200(Heilbron et al., 2015) videos as in
(Maaz et al., 2023).

Zero-Shot Question-Answer Evaluation: Fol-
lowing Video-ChatGPT, we perform zero-shot
evaluation on four standard open-ended question-
answer datasets: MSRVTT(Xu et al., 2016),
MSVD(Xu et al., 2017), TGIF(Li et al., 2016),
and ActivityNet-QA(Yu et al., 2019). No specific
training is performed on these datasets, and the
evaluation is performed in a zero-shot manner.

E Qualitative Analysis of Conversation
Performance

The qualitative results in Figure 11 indicate the en-
hanced baseline’s impact on PG-Video-LLaVA’s
performance. The PG-Video-LLaVA (13B) model
exhibits improved accuracy in the information pre-
sented, a deeper level of descriptive detail, and a
stronger alignment with the context and temporal
progression of the videos. This advancement is par-
ticularly noticeable in the precise depiction of the
child’s engagement with their surroundings and the
giraffe’s behaviour, indicating a refined interpreta-
tion of both the activities and their settings. These
qualitative insights are consistent with the quantita-
tive results, highlighting the augmented baseline’s
role in advancing PG-Video-LLaVA’s capacity in
video understanding.
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o Describe this Video.

" The video shows a small child sitting on the floor in front of a fireplace, playing with a toy. The child is holding a toy and
Video-ChatGPT . L T
appears to be playing with it while sitting on the floor.

PG-Video-LLaVA (7B) The video shows a young child playing with a toy in a living room. The child is sitting on the floor and playing with a toy
car, which is placed on a rug. The room is furnished with a couch, a chair, and a TV. The child appears to be enjoying
their playtime, and the scene captures a moment of innocent childhood fun.

PG-Video-LLaVA (13B) The video shows a young child sitting on the floor in a living room, playing with a toy. The room is furnished with a

couch, a chair, and a television. The child is holding a toy in his hand while playing with it. The room appears to be
well-lit, with a fireplace in the background. The child seems to be enjoying himself, as he is laughing and smiling while

playing with the toy. Overall, the video captures a joyful moment of a child's life, as he engages in playful activities in a
comfortable and cozy living room setting.

o Describe this Video.

Video-ChatGPT The video shows a giraffe performing a trick by standing on a diving board and then jumping into the water.

PG-Video-LLaVA (7B) T_h_e video shows a giraffe standing ona diying_ board and jumping into a pool. The giraffe is seen standing on the
diving board, looking down, and then jumping into the pool. The scene takes place outdoors, with a clear blue sky
visible in the background. The giraffe appears to be enjoying the water and the experience of jumping into the pool.

The video features a giraffe standing on a diving board and jumping into a pool. The giraffe is seen swimming in the
PG-Video-LLaVA (138) pool and then jumping out of it. The video is set in a pool area with a blue sky in the background. The giraffe's

movements are graceful and fluid, and it appears to be enjoying itself. The video captures the unique and unexpected

sight of a giraffe engaging in a human activity, showcasing its incredible agility and ability to adapt to new situations.

Overall, the video is a delightful and entertaining spectacle that captures the beauty and grace of the giraffe in an
unconventional setting.

Figure 11: Qualitative results comparison of Video-ChatGPT vs PG-Video-LLaVA (Ours) Qualitative analysis
of video descriptions generated by Video-ChatGPT, PG-Video-LLaVA (7B), and PG-Video-LLaVA (13B) models.
The evolution in model performance is evident, with enhancements in the accuracy of information, richness of
descriptive detail, and alignment with the video’s context and sequence of events as we move from the baseline
Video-ChatGPT to the more advanced PG-Video-LLaVA (13B) model.
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