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ABSTRACT

Network quantization has gained increasing attention since it can significantly
reduce the model size and computational overhead. However, due to the dis-
crete nature of quantization, a small change in full-precision weights might in-
cur large change in quantized weights, which leads to severe loss fluctuations
and thus results in sharp loss landscape. The fluctuating loss makes the gradients
unstable during training, resulting in considerable performance degradation. Re-
cently, Sharpness-Aware Minimization (SAM) has been proposed to smooth the
loss landscape and improve the generalization performance of the models. Never-
theless, how to customize SAM to the quantized models is non-trivial due to the
effect of the clipping and discretization in quantization. In this paper, we propose
a novel method, dubbed Sharpness-Aware Quantization (SAQ), to smooth the loss
landscape and improve the generalization performance of the quantized models,
which explores the effect of SAM in model compression, particularly quantization
for the first time. Specifically, we first propose a unified view for quantization and
SAM, where we consider them as introducing quantization noises and adversarial
perturbations to the model weights. According to whether the quantization noises
and adversarial perturbations depend on each other, SAQ can be divided into three
cases. We then analyze and compare different cases comprehensively. Extensive
experiments on both convolutional neural networks and Transformers show that
SAQ improves the generalization performance of the quantized models, yielding
the SOTA results in uniform quantization. For example, on ImageNet, our SAQ
outperforms the model trained with the conventional optimization procedure (i.e.,
SGD) by 1.1% on the Top-1 accuracy on 4-bit ResNet-50. Our 4-bit ResNet-34
surpasses the previous SOTA quantization method by 1.0% on the Top-1 accuracy.

1 INTRODUCTION

With powerful high-performance computing and massive labeled data, convolutional neural net-
works (CNNs) and Transformers have dramatically improved the accuracy of many computer vision
(CV) and natural language processing (NLP) tasks, such as image classification (He et al., 2016;
Dosovitskiy et al., 2021), dense prediction (Ren et al., 2015; Carion et al., 2020), sentence classi-
fication (Wang et al., 2019a; Devlin et al., 2019), and machine translation (McCann et al., 2017;
Vaswani et al., 2017), to the level of being ready for real-world applications. Despite the remark-
able breakthroughs that deep learning has achieved, the considerable computational overhead and
model size greatly hampers the development and deployment of deep learning techniques at scale,
especially on resource-constrained devices such as mobile phones. To obtain compact models, many
network quantization methods (Hubara et al., 2016; Zhou et al., 2016) have been proposed to tackle
the efficiency bottlenecks.

Despite the high compression ratio, training a low-precision model is very challenging due to the
discrete and non-differentiable nature of network quantization. Compared with the full-precision
ones, the low-precision models represent weights, activations, and even gradients with only a small
set of values, which limits the representation power of the quantized models. As shown in Figure 1,
a slight change in full-precision weights coming from the gradient update or quantization noises
might incur large change in quantized weights due to discretization, which leads to drastic loss
fluctuations and results in much sharper loss landscape (Liu et al., 2021a). As a result, the enormous
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(a) Full-precision ResNet-18
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(b) 2-bit ResNet-18

Figure 1: The loss landscapes of the full-precision and 2-bit ResNet-18 models on ImageNet. We
plot the loss landscapes using the visualization method in (Li et al., 2018). More visualizations can
be found in Section C of the appendix.

loss fluctuations make gradients unreliable during optimization, which misleads weight update and
thus incurs a performance drop.

There have been some studies showing that flat minima of the loss function found by stochastic
gradient-based methods result in good generalization (Hochreiter & Schmidhuber, 1995; Keskar
et al., 2017; Dziugaite & Roy, 2017; Jiang et al., 2020). Recently, Sharpness-Aware Minimization
(SAM) (Foret et al., 2021) and its variants (Kwon et al., 2021; Zhuang et al., 2022; Kim et al., 2022)
have been proposed to smooth the loss landscape and significantly improve model generalization
ability. Specifically, SAM first introduces perturbations to model weights and then minimizes a per-
turbed loss to seek parameters that lie in neighborhoods with uniformly low training loss. However,
all the existing methods are based on full-precision over-parameterized models. How to perform
sharpness-aware minimization on the compressed models has rarely been explored, especially on
the quantized ones, which is a new and important problem. A simple solution is to directly apply
SAM to train the quantized models, which may lead to sub-optimal performance since the clipping
and discretization operation in quantization might hamper the introduced perturbations.

In this paper, we propose a novel method, called Sharpness-Aware Quantization (SAQ), to find
minima with both low loss value and low loss curvature and thus improve the generalization per-
formance of the quantized models. To our knowledge, this is a pioneering work to study the effect
of SAM in model compression, especially in network quantization. To this end, we first provide
a unified view for quantization and SAM, where we formulate them as introducing quantization
noises ϵq and adversarial perturbations ϵ̂s to the model weights. According to whether ϵq and ϵ̂s are
dependent on each other, our SAQ can be split into three cases. We then study and compare these
cases comprehensively. Extensive experiments on both CNNs and Transformers show the promising
performance of our proposed method.

Our main contributions are summarized as follows:

• We propose a Sharpness-Aware Quantization (SAQ) method to seek flatter minima for the quan-
tized models in order to materially improve the generalization performance. To our knowledge,
this is a pioneering work that jointly performs the model compression (i.e., quantization) and the
loss landscape smoothing.

• We provide a unified view for the landscape smoothing of the quantized models, where we con-
sider quantization and SAM as introducing quantization noises and adversarial perturbations to
the model weights, respectively. Relying on this, we present three cases of SAQ according to
whether quantization noises and adversarial perturbations depend on each other. We then analyze
and make comprehensive comparisons among different cases.

• Extensive experiments on CNNs and Transformers show that our SAQ improves quantized mod-
els’ generalization performance and performs favorably against SOTA uniform quantization meth-
ods. For example, on ImageNet, our 4-bit ResNet-50 surpasses the previous standard optimization
scheme (i.e., SGD) by 1.1% on the Top-1 accuracy. Moreover, our 4-bit ResNet-34 exceeds the
SOTA method by 1.0% on the Top-1 accuracy.
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2 RELATED WORK

Network quantization. Network quantization seeks to reduce the model size and computational
cost by mapping weights, activations, and even gradients of a CNN or ViT to low-precision ones.
Existing quantization methods can be roughly divided into two categories according to the quanti-
zation bitwidth, namely, fixed-point quantization (Zhou et al., 2016; Cai et al., 2017; Hou & Kwok,
2018; Choi et al., 2018; Zhuang et al., 2018; Zhang et al., 2018; Jung et al., 2019; Esser et al.,
2020; Chen et al., 2021; Kim et al., 2021b; Liu et al., 2021b; Han et al., 2021) and binary quantiza-
tion (Hubara et al., 2016; Rastegari et al., 2016; Liu et al., 2018; Lin et al., 2017; Liu et al., 2021a;
Bai et al., 2021; Qin et al., 2022). To reduce the quantization error, existing methods (Choi et al.,
2018; Zhang et al., 2018; Jung et al., 2019; Esser et al., 2020; Bhalgat et al., 2020; Yamamoto, 2021)
explicitly parameterize the quantizer and train it jointly with network parameters. To reduce the op-
timization difficulty incurred by the non-differentiable discretization, extensive methods (Ding et al.,
2019; Yang et al., 2019; Gong et al., 2019; Lee et al., 2021; Kim et al., 2021a) have been proposed
to approximate the gradients. To encourage more information to be maintained by the quantized
weights, several weight regularization methods (Han et al., 2021; Liu et al., 2022b) have been pro-
posed to alleviate the discrepancy between the full-precision and low-precision weights. Compared
with these methods, our SAQ focuses on improving the generalization performance of the quantized
models from a new perspective by smoothing the loss landscape.

Loss geometry and generalization. Hochreiter et al. (Hochreiter & Schmidhuber, 1995) pioneered
the proposition that flat local minima may generalize better in neural networks. Following that, sev-
eral studies have been proposed to investigate the relation between the geometry of the loss landscape
and the generalization performance of the models (Keskar et al., 2017; Smith & Le, 2018; Dziugaite
& Roy, 2017; Chaudhari et al., 2017; Jiang et al., 2020; Moosavi-Dezfooli et al., 2019; Liu et al.,
2020). Recently, Sharpness-Aware Minimization (SAM) (Foret et al., 2021) seeks to find parameters
that lie in a region with uniformly low loss value and shows promising performance across various
architectures and benchmark datasets. Concurrent works have also been proposed to introduce ad-
versarial weight perturbations to improve the robustness against adversarial examples (Wu et al.,
2020) or generalization performance (Zheng et al., 2021). However, the computational overhead of
these methods is roughly doubled compared with those using conventional optimizers (e.g., SGD).
To address this issue, ESAM (Du et al., 2022a), LookSAM (Liu et al., 2022a) and SAF (Du et al.,
2022b) have been proposed to accelerate the SAM optimization without performance drop. Apart
from the efficiency issues, several methods including ASAM (Kwon et al., 2021), GSAM (Zhuang
et al., 2022) and Fisher SAM (Kim et al., 2022) have been proposed to improve the performance of
SAM. More recently, SAM has been applied to improve the performance of the pruned models (Na
et al., 2022). While these methods target on full-precision models, our proposed SAQ focuses on
improving the generalization performance of the quantized models, which is a pioneering one in the
sense that we jointly perform model compression (i.e., quantization) and loss landscape smoothing.

3 PRELIMINARY

3.1 NETWORK QUANTIZATION

In this paper, we use uniform quantization which is hardware-friendly (Zhou et al., 2016). Given
an L-layer deep model, let wl and xl be the weight and input activation w.r.t. the l-th layer. For
simplicity, we omit the layer index l afterwards. Before performing quantization, we first normalize
weight w and input activation x into the scale of [0, 1] by applying clipping as

ŵ =


1
2

(
w
αw

+ 1
)
, if − 1 < w

αw
< 1

0, if w
αw

≤ −1

1, if w
αw

≥ 1

, x̂ =


x
αx

, if 0 < x
αx

< 1

0, if x
αx

≤ 0

1, if x
αx

≥ 1

, (1)

where αw and αx are layer-wise trainable clipping levels that limit the range of weight and activa-
tion, respectively. We then quantize the normalized value ẑ ∈ {ŵ, x̂} to the discrete one z̄ ∈ {w̄, x̄}
by z̄ = D(ẑ, s) = s · ⌊ ẑ

s ⌉, where ⌊·⌉ is a rounding operator that returns the nearest integer of a given
value and s = 1/(2b − 1) is the normalized step size for b-bit quantization. Lastly, we obtain the
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quantized w and x by
Qw(w) = αw(2w̄ − 1), Qx(x) = αxx̄. (2)

During training, the rounding operation ⌊·⌉ is non-differentiable. To overcome this issue, follow-
ing (Zhou et al., 2016; Hubara et al., 2016), we apply the straight-through estimation (STE) (Bengio
et al., 2013) to approximate the gradient of the rounding operator by identity mapping for backprop-
agation, namely, ∂z̄/∂ẑ ≈ 1.

3.2 SHARPNESS-AWARE MINIMIZATION

Without loss of generality, let S = {(xi, yi)}ni=1 be the training data. The goal of model training is
to minimize the empirical risk L(w) = 1

n

∑n
i=1 ℓ(w,xi, yi), where ℓ(w,xi, yi) is a loss function

for the sample (xi, yi) with model weights w. Instead of seeking a single place with a local minimal
loss, Sharpness-Aware Minimization (Foret et al., 2021) (SAM) seeks a region that has uniformly
low training loss (both low loss and low curvature). Specifically, the formulation of SAM is a min-
max optimization problem which is defined as

minw max∥ϵ∥2≤ρ L(w + ϵ), (3)
where ρ is a pre-defined constant that constrains the radius of the neighborhood. In Eq. (3), the inner
optimization problem attempts to find weight perturbations ϵ in an ℓ2 Euclidean ball with radius ρ
that maximizes the perturbed loss L(w + ϵ). To solve the inner problem, SAM approximates the
optimal ϵ to maximize L(w + ϵ) using a first-order Taylor expansion as

ϵ̂ = argmax∥ϵ∥2≤ρL(w + ϵ) ≈ argmax∥ϵ∥2≤ρL(w) + ϵ⊤∇wL(w) ≈ ρ
∇wL (w)

∥∇wL (w)∥2
. (4)

By substituting Eq. (4) back into Eq. (3), we then have the following optimization problem:
minw L(w + ϵ̂). (5)

Lastly, SAM updates the model weights based on the gradient ∇wL(w)|w+ϵ̂.

4 PROPOSED METHOD

As shown in Figure 1, the low-precision model shows a much sharper loss landscape compared
with the full-precision one. Thus, small perturbations on the full-precision weights may incur large
changes in the quantized weights, which leads to severe loss oscillation. As a result, the gradients
are unstable during training, which might mislead weight update and the resulting quantized model
might converge to poor local minima.

4.1 UNIFIED VIEW FOR SHARPNESS-AWARE QUANTIZATION

Motivated by SAM, we propose Sharpness-Aware Quantization (SAQ) to smooth the loss landscape
and improve the generalization performance of the quantized models. Specifically, we consider
quantization and SAM as introducing quantization noises ϵq and adversarial perturbations ϵs to the
model weights w, respectively, which provides a unified view for the loss landscape smoothing of
the quantized models. Specifically, the optimization problem can be defined as

minw,αw,αx
L(w + ϵq + ϵ̂s) where ϵ̂s = argmax∥ϵs∥2≤ρLp(w), (6)

where L(w + ϵq + ϵ̂s) is a perturbed quantization loss and Lp(w) is a perturbed loss. Note that ϵq
and ϵ̂s are the outputs of some functions and will be discussed in Section 4.2.

4.2 LEARNING FOR SHARPNESS-AWARE QUANTIZATION

To solve the optimization problem in Eq. (6), we need to obtain ϵq as well as ϵ̂s. According to
whether ϵq and ϵ̂s are dependent on each other, we can transform the loss function in Eq. (6) to
different objectives, as shown in Table 1. For convenience, we define the quantization error function
ϵq(w) and the perturbation function ϵ̂s(w) as

ϵq(w) = Qw(w)−w, ϵ̂s(w) = ρ
∇wL (w)

∥∇wL (w)∥2
. (7)
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Table 1: Objectives for different cases of SAQ.

Name Objective function

Unified L(w + ϵq + ϵ̂s)
Case 1 L(w + ϵq(w) + ϵ̂s(w))
Case 2 L((w + ϵ̂s(w)) + ϵq(w + ϵ̂s(w)))
Case 3 L((w + ϵq(w)) + ϵ̂s(w + ϵq(w)))

Case 1: We calculate the quantization noises ϵq
and optimal perturbations ϵ̂s independently. In this
case, the perturbed loss is defined as Lp(w) =
L(w+ϵs). By maximizing the perturbed loss with
ℓ2-norm constraint, the optimal perturbations can
be approximated by ϵ̂s(w). In this way, the opti-
mization problem can be transformed to

minw,αw,αx
L(w + ϵq(w) + ϵ̂s(w)). (8)

With Eq. (7), we have w + ϵq(w) = Qw(w). Then, the above problem can be rewritten as

minw,αw,αx
L(Qw(w) + ϵ̂s(w)). (9)

In this case, the optimal perturbations introduced to the quantized weights Qw(w) depend on the
gradient of the full-precision weights w. Using the chain rule, the full-precision weights’ gradient
can be computed by

∂Lp(w)

∂wi
=

∂Lp(w)

∂Qw(wi)

∂Qw(wi)

∂wi
=

{
∂Lp(w)
∂Qw(wi)

if − 1 ≤ wi

αl
w
≤ 1

0 otherwise
, (10)

where wi is the i-th element of w for layer l and αl
w is the corresponding clipping level. Due to the

clipping operation, the difference between the full-precision weights’ gradient ∂Lp(w)/∂wi and the
quantized weights’ gradient ∂Lp(w)/∂Qw(wi) results in a perturbation mismatch problem, which
makes the training process noisy and degrades the quantization performance.

Besides, Case 1 assumes that ϵq and ϵ̂s are computed independently, which ignores the dependency
between them. To address this issue, we introduce another two cases of SAQ in the following.

Case 2: We first combine model weights with the optimal perturbations ϵ̂s and then introduce the
quantization noises ϵq to the perturbed model weights. In this way, the optimization problem is
transformed to

minw,αw,αx
L((w + ϵ̂s(w)) + ϵq(w + ϵ̂s(w))). (11)

Same as Case 1, the perturbed loss is Lp(w) = L(w + ϵs) and the optimal perturbations can be
obtained by ϵ̂s(w). In this case, the quantization noises ϵq(w+ ϵ̂s(w)) is represented as a function
of the optimal perturbations ϵ̂s(w). Using Eq. (7), we reformulate the problem as

minw,αw,αx
L(Qw(w + ϵ̂s(w))). (12)

Nevertheless, the introduced small perturbations may not change the resulting quantized weights
due to the discretization process, i.e., Qw(w+ ϵ̂s(w)) = Qw(w). As a result, L(Qw(w+ ϵ̂s(w)))
might be reduced to L(Qw(w)), which degenerates to the conventional quantization.

Case 3: We first combine model weights with the quantization noises ϵq and then introduce the
optimal perturbations ϵ̂s. In this way, the optimization problem becomes

minw,αw,αx
L((w + ϵq(w)) + ϵ̂s(w + ϵq(w))). (13)

In this case, we define the perturbed loss as Lp(w) = L(w + ϵq(w) + ϵs) and obtain the optimal
perturbations by ϵ̂s(w+ ϵq(w)) which is expressed as a function of the quantization noises ϵq(w).
With Eq. (7), the optimization problem can be rewritten as

minw,αw,αx
L(Qw(w) + ϵ̂s(Qw(w))), (14)

where we introduce perturbations to the quantized weights Qw(w) rather than the full-precision
weights w as in Case 2. In this way, the introduced perturbations will not be diminished by the
quantization operation. Moreover, compared with Case 1, Case 3 does not suffer from the perturba-
tion mismatch issue since the optimal perturbations depend on the gradient of the quantized weights
instead of the full-precision ones. In summary, Case 3 is the best suited to smooth the loss landscape
of the quantized models.

Final optimization problem. Note that for all cases, we seek a solution on the surface of L(w +
ϵq + ϵ̂s) instead of the vanilla quantization loss L(Qw(w)) as indicated in Eq. (6). Due to the
discrete nature of network quantization, the loss gap between L(w+ ϵq + ϵ̂s) and L(Qw(w)) could
be amplified with the decrease of bitwidth, which makes optimization challenging and thus leads to
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a performance drop, especially for extreme low-bit cases. To reduce the loss gap, we introduce an
additional vanilla quantization loss into the objective and reformulate the optimization problem as

minw,αw,αx
L(w + ϵq + ϵ̂s) + L(Qw(w)) where ϵ̂s = argmax∥ϵ∥2≤ρLp(w). (15)

Similar to Eq. (4), the gradient of L(Qw(w)) has been computed during the backpropagation when
solving the inner optimization problem. Therefore, we can reuse them while solving the outer
optimization problem, which is computationally efficient. By solving the problem in Eq. (15), we
enforce the quantized models to find flatter minima with both low loss and low curvature.

5 EXPERIMENTS

Datasets and evaluation metrics. We evaluate our method on ImageNet (Deng et al., 2009) which
is a large-scale dataset containing 1.28 million training images and 50k validation samples with 1k
classes. We measure the performance of different methods using the Top-1 and Top-5 accuracy.

Compared methods. To investigate the effectiveness of the proposed method, we apply SAQ to
both CNNs and vision Transformers, including ResNet-18 (He et al., 2016), ResNet-34, ResNet-50,
MobileNetV2 (Sandler et al., 2018) and ViT (Dosovitskiy et al., 2021). We compare with enormous
fixed-point quantization methods, including DoReFa-Net (Zhou et al., 2016), PACT (Choi et al.,
2018), LQ-Nets (Zhang et al., 2018), DSQ (Gong et al., 2019), FAQ (McKinstry et al., 2019),
QIL (Jung et al., 2019), Auxi (Zhuang et al., 2020), LSQ (Esser et al., 2020), APOT (Li et al., 2020),
LSQ+ (Bhalgat et al., 2020), LLSQ (Zhao et al., 2020), DAQ (Kim et al., 2021a), BRECQ (Li et al.,
2021a), EWGS (Lee et al., 2021), BR (Han et al., 2021) and LLT (Wang et al., 2022).

Implementation details. Our implementations are based on PyTorch (Paszke et al., 2019). We
first train the full-precision models and use them to initialize the low-precision ones. Following
LSQ (Esser et al., 2020), we quantize both weights and activations for all matrix multiplication
layers, including convolutional layers, fully-connected layers, and self-attention layers. For the first
and last layers, we quantize both weights and activations to 8-bit to preserve the performance. We
do not apply advanced training strategies such as knowledge distillation in our method.

For CNNs, we use the uniform quantization method mentioned in Section 3.1. Relying on SGD with
the momentum term of 0.9, we apply SAQ with Case 3 to train the quantized models unless otherwise
specified. Following APOT (Li et al., 2020), we use weight normalization before quantization.
We initialize the clipping levels to 1. We fine-tune 90 epochs for ResNet-18, ResNet-34, ResNet-
50 and 150 epochs for MobileNetV2. The mini-batch size and weight decay are set to 512 and
1×10−4, respectively. The learning rate is initialized to 0.02 and decreased to 0 following the cosine
annealing (Loshchilov & Hutter, 2017). For ViTs, we use LSQ+ (Bhalgat et al., 2020) uniform
quantization following Q-ViT (Li et al., 2022). We initialize the clipping levels by minimizing the
quantization error following (Li et al., 2021b). Based on AdamW (Loshchilov & Hutter, 2019), we
apply SAQ with Case 3 for optimization. The learning rate is initialized to 2×10−4 and decreased to
0 using the cosine annealing. The quantized model is trained for 150 epochs with a mini-batch size
of 1,024. We do not apply the learning rate warmup and the automatic mixed-precision training
strategy following Q-ViT. We put more implementation details in Section A and more ablation
studies in Section B of the appendix.

5.1 MAIN RESULTS

We apply SAQ to quantize ResNet-18, ResNet-34 and ResNet-50 on ImageNet. From Table 2, SAQ
outperforms existing SOTA uniform quantization methods by a large margin. The improvement is
more obvious with the increase of bitwidth. For example, for 2-bit ResNet-34, the Top-1 accuracy
improvement of SAQ over LSQ is 0.2% while for the 4-bit one is 1.0%. We speculate that the
loss landscape of the quantized models becomes sharper with the decrease of bitwidths due to the
discretization in quantization as shown in Figure A in the appendix. As a result, smoothing the loss
landscapes of the 2-bit quantized models is harder than the 4-bit counterparts. Moreover, for 2-bit
quantization, deeper models show more obvious accuracy improvement over the SOTA methods.
For instance, SAQ surpasses Auxi by 0.7% on 2-bit ResNet-50 while only bringing 0.3% Top-1
accuracy improvement over BR on 2-bit ResNet-18. Note that SAQ even outperforms APOT, a non-
uniform quantization method, on different architectures. These results strongly show the promising
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Table 2: Performance comparisons of different methods with ResNet-18, ResNet-34 and ResNet-
50 on ImageNet. We obtain the results of DoReFa-Net from (Choi et al., 2018). “W/A” refers to
the bitwidth of weights and activations, respectively. “FP” represents the Top-1 accuracy of the
full-precision models. “-” denotes that the results are not reported.

Network Method
Bitwidth Accuracy (%) Bitwidth Accuracy (%)
(W/A) Top-1 Top-5 (W/A) Top-1 Top-5

ResNet-18
(FP: 70.7)

DoReFa-Net∗ 2/2 62.6 84.4 4/4 68.1 88.1
PACT∗ 2/2 64.4 85.6 4/4 69.2 89.0

LQ-Nets∗ 2/2 64.9 85.9 4/4 69.3 88.8
DSQ 2/2 65.2 - 4/4 69.6 -

BRECQ 2/2 - - 4/4 69.6 -
FAQ 2/2 - - 4/4 69.8 89.1
QIL∗ 2/2 65.7 - 4/4 70.1 -
LLT∗ 2/2 66.0 86.2 4/4 70.4 89.6
Auxi 2/2 66.7 87.0 4/4 - -

DAQ∗ 2/2 66.9 - 4/4 70.5 -
LSQ† 2/2 66.9 - 4/4 71.1 90.0

EWGS∗ 2/2 67.0 - 4/4 70.6 -
BR 2/2 67.2 87.3 4/4 70.8 89.6

APOT∗ 2/2 67.3 87.5 4/4 70.7 89.6
SAQ (Ours) 2/2 67.5 87.5 4/4 71.6 90.1

ResNet-34
(FP: 74.1)

LQ-Nets∗ 2/2 69.8 89.1 4/4 - -
DSQ 2/2 70.0 - 4/4 72.8 -
FAQ 2/2 - - 4/4 73.3 91.3
QIL∗ 2/2 70.6 - 4/4 73.7 -

APOT∗ 2/2 70.9 89.7 4/4 73.8 91.6
DAQ∗ 2/2 71.0 - 4/4 73.7 -
Auxi 2/2 71.2 89.8 - -

EWGS∗ 2/2 71.4 - 4/4 73.9 -
LSQ 2/2 71.6 90.3 4/4 74.1 91.7

SAQ (Ours) 2/2 71.8 90.5 4/4 75.1 92.2

ResNet-50
(FP: 76.8)

DoReFa-Net∗ 2/2 67.1 87.3 4/4 71.4 89.8
LQ-Net∗ 2/2 71.5 90.3 4/4 75.1 92.4

FAQ 2/2 - - 4/4 76.3 93.0
PACT∗ 2/2 72.2 90.5 4/4 76.5 93.2
APOT∗ 2/2 73.4 91.4 4/4 76.6 93.1

LSQ 2/2 73.7 91.5 4/4 76.7 93.2
Auxi 2/2 73.8 91.4 4/4 - -

SAQ (Ours) 2/2 74.5 91.9 4/4 77.6 93.6
∗ denotes that the first and last layers are not quantized.
† represents that models are trained with the weight decay of 1× 10−4 for fair comparisons.

performance of SAQ. Remarkably, our 4-bit ResNet-34 surpasses the full-precision model by 1.0%
on the Top-1 accuracy. One possible reason is that performing quantization with SAQ helps to
remove redundancy and regularize the networks. Similar phenomena can also be observed in LSQ.

To show the effectiveness of our method on lightweight models, we apply SAQ to quantize Mo-
bileNetV2. From Table 3, our SAQ yields better performance than the SOTA uniform quantization
methods. For example, SAQ exceeds BR by 0.2% on the Top-1 accuracy. We also apply SAQ to
ViT (Dosovitskiy et al., 2021). We implement LSQ+ following (Li et al., 2022) and compare our
method with it. From Table 3, our SAQ shows consistently superior performance over the baseline
LSQ+. For example, on ViT-S/16, SAQ obtains 0.8% improvement on the Top-1 accuracy.

5.2 ABLATION STUDIES

Performance comparisons of different cases. To investigate the effectiveness of different cases
introduced in Section 4.2, we apply different methods to quantize ResNet-18 and ResNet-50 on Im-
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Table 3: Performance comparisons in terms of MobileNetV2, ViT-S/32, ViT-S/16 and ViT-B/32 on
ImageNet. We obtain the results of PACT from (Wang et al., 2019b).

Network Method Bitwidth (W/A) Top-1 Acc. (%) Top-5 Acc. (%)

MobileNetV2
(FP: 71.9)

PACT 4/4 61.4 83.7
DSQ∗ 4/4 64.8 -

BRECQ 4/4 66.6 -
LLSQ∗ 4/4 67.4 88.0
EWGS 4/4 70.3 -

BR 4/4 70.4 89.4
SAQ (Ours) 4/4 70.6 89.5

ViT-S/32
(FP: 68.5)

LSQ+ 4/4 68.0 88.1
SAQ (Ours) 4/4 68.6 88.4

ViT-S/16
(FP: 77.2)

LSQ+ 4/4 76.1 93.0
SAQ (Ours) 4/4 76.9 93.5

ViT-B/32
(FP: 70.7)

LSQ+ 4/4 72.1 90.4
SAQ (Ours) 4/4 72.7 90.7

∗ denotes that the first and last layers are not quantized.

Table 4: Performance comparisons of different cases on ImageNet. λmax denotes the largest eigen-
value of the Hessian of the converged quantized model.

Network Method
Bitwidth Accuracy (%)

λmax
Bitwidth Accuracy (%)

λmax
(W/A) Top-1 Top-5 (W/A) Top-1 Top-5

ResNet-18

SGD 2/2 66.8 87.3 47.3 4/4 71.1 89.8 59.3
Case 1 2/2 67.4 87.4 9.6 4/4 71.5 90.0 5.3
Case 2 2/2 67.3 87.3 18.7 4/4 71.2 89.9 19.5
Case 3 2/2 67.5 87.5 6.5 4/4 71.6 90.1 5.0

ResNet-50

SGD 2/2 73.9 91.6 60.1 4/4 76.5 93.1 71.8
Case 1 2/2 74.3 91.8 12.6 4/4 77.3 93.5 6.6
Case 2 2/2 74.2 91.8 24.4 4/4 77.0 93.3 14.0
Case 3 2/2 74.5 91.9 9.5 4/4 77.6 93.6 6.3

ageNet. We use “SGD” to represent training the quantized models with the vanilla SGD. To measure
the loss curvature, we report the largest eigenvalue λmax of the Hessian of the converged quantized
models following (Chen et al., 2022; Foret et al., 2021). Here, lower λmax indicates smoother loss
landscapes. From Table 4, Case 1, Case 2 and Case 3 all yield significantly higher accuracy and
lower λmax than the SGD counterpart. This strongly shows that our method is able to smooth
the loss landscape and improve the generalization performance of the quantized models. Among
the three cases, Case 2 performs the worst with the lowest accuracy and the highest λmax, which
suggests that the perturbations introduced by SAM might be diminished due to the discretization,
leading to sub-optimal performance. Moreover, Case 3 consistently performs better than Case 1.
For example, on 4-bit ResNet-50, Case 3 exceeds Case 1 by 0.3% on the Top-1 accuracy as well as
achieving lower λmax. These results indicate that the perturbation mismatch issue in Case 1 might
degrade the quantization performance.

Besides, we also show the loss and Top-1 accuracy curves of 4-bit ResNet-18 in Figure 2. At the
beginning of training, the performance of SAQ is comparable to SGD. After the fourth epoch, we
observe that SAQ yields much lower loss and higher Top-1 accuracy for both training and validation.
For example, SAQ outperforms SGD by ∼2% on the Top-1 validation accuracy at the fifth epoch.
These results justify that SAQ converges to a better and flatter local minimum.

Effect of different losses in the objective function. To investigate the effect of different com-
ponents in the objective in Eq. (15), we apply different methods to quantize ResNet-18. From
Table 5, using the loss L(w + ϵq + ϵ̂s) surpasses the one equipped with the vanilla quantization
loss L(Qw(w, b)) by 0.3% on the Top-1 accuracy for 2-bit quantization. This result supports that
smoothing the loss landscape improves the generalization performance of the quantized models. By
combining L(Qw(w, b)) and L(w+ ϵq + ϵ̂s), we empirically observe Top-1 accuracy improvement
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Figure 2: The training (dashed line) as well as validation (solid line) losses and accuracy compar-
isons between SGD and our SAQ with 4-bit ResNet-18 on ImageNet.

Table 5: Effect of different losses in the objective function on ImageNet.

Network L(Qw(w, b)) L(w + ϵq + ϵ̂s)
Bitwidth Accuracy (%) Bitwidth Accuracy (%)
(W/A) Top-1 Top-5 (W/A) Top-1 Top-5

ResNet-18
✓ 2/2 66.8 87.3 4/4 71.1 89.8

✓ 2/2 67.1 87.3 4/4 71.3 90.0
✓ ✓ 2/2 67.5 87.5 4/4 71.6 90.1

of 0.4% and 0.3% for 2-bit and 4-bit quantization, respectively. This strongly justifies that intro-
ducing the vanilla quantization loss L(Qw(w, b)) into the objective helps to mitigate the loss gap
incurred by the introduced perturbations and boosts the performance of the low-precision models.

More results on transfer learning. To evaluate the transfer power of different quantized models, we
conduct transfer learning experiments on new datasets, including CIFAR-10 (Krizhevsky & Hinton,
2009), CIFAR-100, Oxford-IIIT Pets (Parkhi et al., 2012), and Oxford Flowers-102 (Nilsback &
Zisserman, 2008). We use the quantized models trained on ImageNet to initialize the model weights.
We then fine-tune all layers using vanilla SGD. For the results on different transfer learning datasets,
we repeat the experiments 5 times and report the mean as well as the standard deviation of the
Top-1 accuracy. More implementation details can be found in Section A in the appendix. From
Table 6, our SAQ leads to much better transfer performance. For example, on Oxford-IIIT Pets, SAQ
quantized 4-bit ResNet-50 brings 1.0% Top-1 accuracy improvement over the SGD counterpart.
These results justify that our SAQ is able to improve the generalization performance by smoothing
the loss landscape of the quantized models.

Table 6: Transfer performance comparisons on downstream tasks. We measure the performance of
different methods using the Top-1 accuracy (%).

Network Method CIFAR-10 CIFAR-100 Oxford Flowers-102 Oxford-IIIT Pets

4-bit ResNet-50
SGD 97.0±0.0 82.4±0.2 96.1±0.2 94.9±0.2

SAQ (Ours) 97.1±0.1 83.1±0.2 96.4±0.4 95.9±0.2

6 CONCLUSION AND FUTURE WORK

In this paper, we have devised a new training approach, called Sharpness-Aware Quantization
(SAQ), to improve the generalization capability of the quantized models, which jointly performs
compression (i.e., quantization) and loss landscape smoothing for the first time. To this end, we
have provided a unified view for the loss landscape smoothing of the quantized models by formu-
lating quantization and SAM as introducing quantization noises and adversarial perturbations to the
model weights. According to whether the quantization noises and adversarial perturbations are de-
pendent on each other, we have split our SAQ into three cases. We then have fully studied and
compared different cases. Extensive experiments on various datasets with different architectures
including CNNs and Transformers have demonstrated that our proposed method consistently im-
proves the performance of the quantized models and yields the SOTA uniform quantization results.
In the future, we may extend our method to jointly perform pruning, quantization and loss land-
scape smoothing to obtain more compact models with better performance. We may also consider
combining data selection or mixed-precision training to achieve better training efficiency.
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Appendix

A MORE IMPLEMENTATION DETAILS

In this section, we provide more implementation details of SAQ. Following SAM (Foret et al., 2021)
and GSAM (Zhuang et al., 2022), we apply m-sharpness strategy with m = 128. For both CNNs and
ViTs, we use inception-style pre-processing (Szegedy et al., 2015) without strong data augmentation.
Specifically, we randomly crop 224 × 224 patches from an image or its horizontal flip counterpart
for training. At test time, a 224 × 224 centered crop is chosen. For the hyper-parameter ρ, we
conduct grid search over {0.02, 0.05, 0.1, 0.15, 0.2, . . . , 0.7} to find appropriate values. We put the
detailed settings of ρ in Table A. To compute the largest eigenvalue λmax of the Hessian of different
quantized models on ImageNet, we use the power iteration algorithm following (Dong et al., 2019).
To reduce the computational cost, we randomly sample 10k training images for computation.

For the transfer learning experiments in Section 5.2, we train all models for 100 epochs. We use
SGD with a momentum term of 0.9 for optimization. The learning rate is initialized to 0.01 and
decreased to 0 using the cosine annealing. The mini-batch size and the weight decay are set to 64
and 0, respectively.

Table A: Hyper-parameter ρ for different quantized models on ImageNet.

Network ResNet-18 ResNet-34 ResNet-50 MobileNetV2 ViT-S/32 ViT-S/16 ViT-B/32

Bitwidth 2 4 2 4 2 4 4 4 4 4
ρ 0.35 0.50 0.2 0.5 0.25 0.6 0.4 0.01 0.01 0.01

B SAQ VS. TRAIN FLAT AND THEN QUANTIZE

To further investigate the effectiveness of SAQ, we compare our method with “SAM → SGD” that
first obtains a full-precision model with SAM and then trains a quantized model with SGD using
full-precision model weights as initialization. We also include “SGD” that trains the quantized
models with the vanilla SGD for comparisons. From Table B, SAM → SGD slightly improves
the Top-1 accuracy (0.2%) over SGD at 2-bit quantization. We speculate that smoothing the loss
landscape of the pre-trained models provides a better weight initialization for the quantized models.
However, due to the large distribution gap between the quantized weights and full-precision weights,
the performance gain of SAM → SGD over SGD is limited. Importantly, SAQ performs significantly
better than SAM → SGD. For example, on ResNet-18, SAQ exceeds SAM → SGD by 0.5% on the
Top-1 accuracy. These results show the superiority of jointly performing quantization and the loss
landscape smoothing.

Table B: Performance comparisons of different methods on ImageNet. The Top-1 accuracy of the
full-precision ResNet-18 and ResNet-34 with SAM are 70.9% and 74.4%.

Network Method
Bitwidth Accuracy (%) Bitwidth Accuracy (%)
(W/A) Top-1 Top-5 (W/A) Top-1 Top-5

ResNet-18
(FP: 70.7)

SGD 2/2 66.8 87.3 4/4 71.1 89.8
SAM → SGD 2/2 67.0 87.5 4/4 71.1 89.9
SAQ (Ours) 2/2 67.5 87.5 4/4 71.6 90.1

ResNet-34
(FP: 74.1)

SGD 2/2 71.4 90.2 4/4 74.4 91.9
SAM → SGD 2/2 71.6 90.2 4/4 74.4 92.0
SAQ (Ours) 2/2 71.8 90.5 4/4 75.1 92.2

C VISUALIZATION OF THE LOSS LANDSCAPES

In this section, we show the loss landscape of different quantized models on ImageNet using the
visualization method in (Li et al., 2018). We show the results in Figures A and B. The x- and y-
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(c) 4-bit ResNet-18 obtained by SGD
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(d) 4-bit ResNet-18 obtained by SAQ

Figure A: The loss landscapes of the 2/4-bit ResNet-18 obtained by different methods on ImageNet.
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(a) 4-bit ViT-B/32 obtained by SGD
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(b) 4-bit ViT-B/32 obtained by SAQ

Figure B: The loss landscapes of the 4-bit ViT-B/32 obtained by different methods on ImageNet.

axes of the figures represent two randomly sampled orthogonal directions. From the results, the
loss landscapes of the quantized models become smoother and flatter with the increase of bitwidth,
suggesting that smoothing the loss landscapes of the 4-bit quantized models is easier than the 2-
bit counterparts. Moreover, the loss landscapes of the quantized models obtained by SAQ are less
chaotic and show larger contour interval compared with the SGD counterpart, indicating that SAQ
is able to find flatter and smoother minima over SGD.
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