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Figure 1: Rolling Forcing performs real-time streaming text-to-video generation at 16 fps on a single
GPU and is capable of producing multi-minute-long videos with minimal error accumulation. More
results, code, and demo can be found at the project page.

ABSTRACT

Streaming video generation, as one fundamental component in interactive world
models and neural game engines, aims to generate high-quality, low-latency, and
temporally coherent long video streams. However, most existing work suffers
from severe error accumulation that often significantly degrades the generated
stream videos over long horizons. We design Rolling Forcing, a novel video
generation technique that enables streaming long videos with minimal error ac-
cumulation. Rolling Forcing comes with three novel designs. First, instead of
iteratively sampling individual frames, which accelerates error propagation, we
design a joint denoising scheme that simultaneously denoises multiple frames
with progressively increasing noise levels. This design relaxes the strict causality
across adjacent frames, effectively suppressing error growth. Second, we intro-
duce the attention sink mechanism into the long-horizon stream video generation
task, which allows the model to keep key–value states of initial frames as a global
context anchor and thereby enhances long-term global consistency. Third, we de-
sign an efficient training algorithm that enables few-step distillation over largely
extended denoising windows. This algorithm operates on non-overlapping win-
dows and mitigates exposure bias conditioned on self-generated histories. Ex-
tensive experiments show that Rolling Forcing enables real-time streaming gen-
eration of multi-minute videos on a single GPU, with substantially reduced error
accumulation.

∗Work done during internship at ARC Lab, Tencent PCG.
†Corresponding authors.
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Figure 2: Different paradigms in autoregressive video generation. History corruption (Chen et al.,
2024; Guo et al., 2025) in (a) compromises temporal consistency, while planning generation (Zhang
& Agrawala, 2025; Xiang et al., 2025) in (b) is incompatible with sequential streaming video gen-
eration. Self Forcing (Huang et al., 2025) in (c) can achieve consistent sequential streaming but
suffers from severe error accumulation while generating long videos. The proposed Rolling Forcing
in (d) supports streaming long video generation with superior temporal consistency and minimal
error accumulation.

1 INTRODUCTION

Modern video diffusion models (OpenAI, 2024; Polyak et al., 2024) have demonstrated impressive
capabilities in generating short video clips with rich detail and coherent motion. However, interac-
tive applications such as world models (Bruce et al., 2024), neural game engines (Valevski et al.,
2024), and immersive XR environments require the ability to stream each frame with minimal la-
tency while maintaining visual quality and temporal coherence over long horizons. Unlike offline
video generation, where the entire sequence is synthesized together at one go, the streaming video
generation operates in an online fashion: frames are generated sequentially and immediately con-
sumed by downstream tasks or displayed to users. Such online nature imposes unique challenges,
as the model must maintain long-horizon consistency while accommodating real-time constraints in
an autoregressive manner.

Real-time streaming video generation methods, such as CausVid (Yin et al., 2025) and Self Forc-
ing (Huang et al., 2025) (illustrated in Fig. 2(c)), distill a pretrained bidirectional video diffusion
model into a fast, causal autoregressive generator. While they enable consistent sequential genera-
tion, their strictly causal frame prediction causes each frame to inherit errors from its predecessors,
allowing small imperfections to compound over long horizons and eventually leading to noticeable
drift and quality degradation. Two representative approaches have been explored for improving
video generation over long horizons, as illustrated in Fig. 2(a,b). The first approach explores history
corruption, which injects noise into past frames to reduce over-reliance on histories (Chen et al.,
2024; Guo et al., 2025). History corruption mitigates drift by narrowing the gap between self-
generated and ground-truth context, but it deprives the model of clean references and compromises
temporal consistency. The second approach explores planning generation by first synthesizing dis-
tant key frames and then interpolating intermediates (Zhang & Agrawala, 2025; Xiang et al., 2025).
Anchoring distant frames to the initial context mitigates drift, but the introduced out-of-order sched-
ule violates strict sequential emission, which is unsuitable for real-time streaming.

We design Rolling Forcing, an autoregressive long video generation technique that mitigates er-
ror accumulation while maintaining real-time performance as illustrated in Fig. 2. Rolling Forcing
comes with three new designs. First, instead of iteratively denoising a single frame at a time as
in most existing work, Rolling Forcing introduces rolling-window denoising to process multiple
consecutive frames simultaneously. Within each window, frames are connected by bidirectional at-
tention and assigned progressively increasing noise levels. Such mutual refinement corrects local
errors before any frame is finalized, thereby suppressing long-horizon drift. In addition, this design
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allows us to emit a clean frame after each single forward pass, achieving real-time throughput on
a single GPU despite a much larger attention window. Second, we adapt the attention sink mech-
anism (Xiao et al., 2023) to the streaming video generation task, thereby strengthening long-term
global consistency. Specifically, we persist the key–value states of the initial frames as a global
context anchor and dynamically adjust their Rotary Position Embeddings (RoPE) (Su et al., 2024),
which freezes the relative positions of initial frames to the current denoising frames and prevents
excessive offsets. Note that the KV caching is applied to the recent clean frames as well to re-
duce latency and maintain temporal consistency. Third, we design an efficient training algorithm
that enables few-step distillation over the extended denoising windows. This algorithm operates
on non-overlapping windows that collectively cover all video frames, mitigating exposure bias by
conditioning on self-generated histories during training. Extensive experiments show that Rolling
Forcing achieves real-time streaming generation of multi-minute videos on a single GPU, with sub-
stantially reduced error accumulation as illustrated in Fig. 1.

The contributions of this work can be summarized in three key aspects. First, we introduce a rolling-
window joint denoising technique that processes multiple frames in a single forward pass, enabling
mutual refinement while preserving real-time latency. Second, we introduce the attention sink mech-
anism into the streaming video generation task, a pioneering effort that enables caching the initial
frames as consistent global context for long-term coherence in video generation. Third, we de-
sign an efficient training algorithm that operates on non-overlapping windows and conditions on
self-generated histories, enabling few-step distillation over extended denoising windows and con-
currently mitigating exposure bias.

2 RELATED WORK

Bidirectional Video Generation Models. Video generation has advanced rapidly in recent years,
with modern approaches mostly adopting the paradigms of denoising diffusion. Video diffusion has
been explored in both pixel space (Ho et al., 2022; Singer et al., 2022) and latent space (Blattmann
et al., 2023b;a), with architectures evolving from early Space–Time U-Nets (Blattmann et al., 2023a;
Hong et al., 2022) to more recent DiT-based designs (Peebles & Xie, 2023; Gupta et al., 2024).
Significant industrial investment has driven the development of large video diffusion models, leading
to several multi-billion parameter models, including open-source models such as Wan (Wan et al.,
2025) and Hunyuan (Kong et al., 2024), and closed-source models such as Sora (OpenAI, 2024),
Movie-Gen (Polyak et al., 2024), and Seaweed (Seawead et al., 2025). Notably, these models operate
as bidirectional video diffusion models, as they have access to both past and future frames during
denoising. While this bidirectional context enables high-quality synthesis for offline generation, it
is incompatible with the causality that is necessitated in real-time streaming video generation.

Autoregressive Video Generation Models. To enable long video generation, several studies have
extended the generation paradigm from bidirectional to autoregressive, which naturally supports
gradual rollout over extended time horizons. Autoregressive models are typically trained with next-
token prediction objectives and generate spatiotemporal tokens sequentially at inference time (Bruce
et al., 2024; Kondratyuk et al., 2023; Wang et al., 2024; Weissenborn et al., 2019; Yan et al., 2021).
More recently, a separate line of research combines autoregressive modeling with denoising diffu-
sion (Chen et al., 2024; Gu et al., 2025; Guo et al., 2025; Jin et al., 2024; Li et al., 2024; Liu et al.,
2024; Weng et al., 2024; Yin et al., 2025; Zhang et al., 2025; Zhang & Agrawala, 2025; Huang
et al., 2025; Henschel et al., 2025), where frames are generated one-by-one in an outer loop and
each frame is gradually denoised in an inner loop. Within this family, Rolling Diffusion (Ruhe
et al., 2024) and its variants (Kim et al., 2024; Teng et al., 2025; Sun et al., 2025; Xie et al., 2025;
Chen et al., 2025; Teng et al., 2025) merge the outer and inner loops: the diffusion model jointly
denoises multiple frames at progressively increasing noise levels. However, these methods mostly
suffer from exposure bias and error accumulation when generating long videos. Another line of re-
search addresses error accumulation with planning generation (Long et al., 2024; Zhao et al., 2024;
Hu et al., 2024; Xie et al., 2024; Zhang & Agrawala, 2025; Bansal et al., 2024; Yang et al., 2024;
Xiang et al., 2025), which predicts distant future frames first and then interpolates the intermediate
frames. While effective for reducing drift, it breaks the strict sequential order required for real-time
streaming. In contrast, our work enables much longer streaming video generation with minimal
error accumulation while addressing exposure bias.
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Concurrent and Closed-Source Work. Two concurrent works are also devoted to the streaming
generation of long videos. Specifically, StreamDiT (Kodaira et al., 2025) adopts the FIFO-style
denoising (Kim et al., 2024) for streaming video generation. It modifies the pretrained model ar-
chitecture by introducing micro-steps and window attention, necessitating extensive additional pre-
training with large-scale data and computation. In contrast, our method keeps the pretrained model
architecture unchanged, can be trained efficiently in only 3,000 steps, and does not require any video
data. APT2 (Lin et al., 2025b) instead explores adversarial distillation (Lin et al., 2025a) for stream-
ing video generation. It denoises videos block-by-block and involves multiple costly post-training
stages, including diffusion adaptation, consistency distillation, adversarial training, and long-video
training. APT2 is trained on one-minute-long videos, whereas ours is trained only on 5-second clips,
yet can extend to multi-minute sequences during inference. Note that both StreamDiT and APT2
are closed-source and trained based on internal video diffusion models (Movie-Gen (Polyak et al.,
2024) and Seaweed (Seawead et al., 2025)), while our model is trained on public datasets and relies
on an open-source model (i.e., Wan2.1 (Wan et al., 2025)) as its foundation.

3 METHODS

3.1 PRELIMINARIES: EXPOSURE BIAS IN AUTOREGRESSIVE VIDEO DIFFUSION MODELS

An autoregressive video diffusion model is a hybrid generative framework that integrates autore-
gressive chain-rule decomposition with denoising diffusion for video generation. Formally, given
a sequence of N video frames x1:N = (x1, x2, . . . , xN ), their joint distribution can be factorized
using the chain rule: p(x1:N ) =

∏N
i=1 p(x

i | x<i). Each conditional distribution p(xi | x<i) is
modeled through a diffusion process, where each frame is generated by progressively denoising
Gaussian noise while conditioning on the previously generated frames. In practice, one may also
generate a chunk of consecutive frames instead of a single frame at each step (Yin et al., 2025;
Teng et al., 2025; Huang et al., 2025). For clarity, we refer to each chunk simply as a frame in the
following text.

Autoregressive video diffusion models are trained either (1) from scratch with frame-wise denois-
ing loss or (2) by distilling a pretrained bidirectional model. The first approach is trained under
the paradigm of Teacher Forcing (TF) or Diffusion Forcing (DF) (Chen et al., 2024). In TF, the
conditional distribution for the ith frame at noise level tj is p(xi

tj | x<i
0 ), where all conditional his-

tory frames are the ground-truth clean frames from the training data. While in DF, the conditional
distribution is p(xi

tj | x<i
t≥0

), where the history frames are the ground-truth frames corrupted with
independent noise levels. Since training relies on ground-truth histories while inference relies on the
model’s own predictions, a train–test gap known as exposure bias arises (Schmidt, 2019). Mitigating
the exposure bias is difficult because the denoising loss requires pairs of model predictions and the
corresponding ground truth conditioned on them, which are unavailable.

The second approach of distillation, however, provides a way to bypass the denoising loss and
mitigate exposure bias. CausVid (Yin et al., 2025) distills a pretrained bidirectional model into
a few-step causal model. It adopts a Distribution Matching Distillation (DMD) loss (Yin et al.,
2024b) that minimizes the reverse KL divergence across randomly sampled timesteps t between the
smoothed data distribution pdata(xt) and the student generator’s output distribution pgen(xt). The
gradient of the reverse KL can be approximated as the difference between two score functions:

∇θLDMD ≜ Et (∇θKL (pgen,t∥pdata,t))

≈ −Et

(∫
(sdata (Ψ (Gθ(ϵ), t) , t)− sgen (Ψ (Gθ(ϵ), t) , t))

dGθ(ϵ)

dθ
dϵ

)
, (1)

where Ψ represents the forward diffusion process, ϵ is random Gaussian noise, Gθ is the generator
parameterized by θ, and sdata and sgen represent the score functions trained on the data and genera-
tor’s output distribution, respectively. Since training with DMD loss does not require ground-truth
image or video data (Yin et al., 2024a), Self Forcing (Huang et al., 2025) mitigates the exposure
bias by conditioning each frame on previously self-generated histories during training. However,
although exposure bias is alleviated, severe error accumulation still occurs once generation extends
beyond the trained temporal window.
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Figure 3: Illustration of the Rolling Forcing denoising process with T = 4. Rolling Forcing jointly
denoises a short window of consecutive frames that are assigned progressively higher noise levels
and connected by bidirectional attention. The KV cache of recent frames is preserved as temporal
context to maintain short-term consistency, while the KV cache of the initial frames is preserved as
global context to ensure long-term consistency. During training, only a subset of denoising windows
requires gradient computation, as highlighted by the red windows. These windows are mutually
exclusive yet collectively cover all video frames.

3.2 AUTOREGRESSIVE VIDEO GENERATION VIA ROLLING DIFFUSION WINDOW

In Self Forcing (SF), videos are generated frame-by-frame in a strict causal manner. Consider a
noise schedule {t0 = 0, t1, . . . , tT = 1000} with total noise levels T + 1. At each denoising step
tj and frame index i, the model denoises an intermediate noisy frame xi

tj conditioned on previous
clean frames x<i

0 and then injects Gaussian noise with a lower noise level into the predicted denoised
clean frame via the forward diffusion process Ψ. This produces a noisy frame xi

tj−1
which will be

used as the input to the next denoising step. Formally, in SF, the denoising process is achieved
by: xi

tj−1
= Ψ

(
Gθ(x

i
tj , tj , x

<i
0 ), tj−1

)
, and xi

tT ∼ N (0, I). However, this formulation has no
bidirectional attention between the current denoising frame xi and its history x<i, where the strict
causality forces every frame to inherit and compound the errors from its predecessors over time.

The proposed Rolling Forcing relaxes this constraint by extending the single-frame denoising win-
dow into a rolling window spanning multiple frames, as illustrated in Fig. 3. Each denoising window
contains consecutive frames with progressively higher noise levels in temporal order, akin to Rolling
Diffusion (Ruhe et al., 2024). The length of the denoising window Lwin is set to the number of de-
noising time steps, i.e., Lwin = T . To ensure continuity, the next noise level of the ith frame is
aligned with the current noise level of the (i − 1)th frame, allowing the window to roll forward
infinitely. At each roll, a clean frame is generated, and pure Gaussian noise is appended as the next
frame to be synthesized. Formally, for the denoising window starting at the ith frame, the denoising
distribution of Rolling Forcing can be defined by:

pθ

(
xi:i+T−1
t0:T−1

| xi:i+T−1
t1:T , x<i

0

)
= Ψ

(
Gθ(x

i:i+T−1
t1:T , t1:T , x

<i
0 ), t0:T−1

)
, (2)

where xi:i+T−1
t1:T denotes the noisy frames in the denoising window, and xi:i+T−1

t0:T−1
denotes the window

output with each frame denoised to a lower noise level. The generator Gθ predicts clean frames
conditioned on the input noisy frames, their noise levels t1:T , and the clean history frames x<i

0 .
Ψ injects Gaussian noise ϵt0:T−1

at noise levels t0:T−1 into the predicted clean frames, producing
frames with reduced noise levels.

Since the length of the denoising window equals the number of denoising steps T , which is typi-
cally large (i.e., ∼ 50) in video diffusion models (Wan et al., 2025), the denoising window itself
becomes prohibitively large. To manage such large windows, previous work either processes every
frame independently on multiple GPUs (Kim et al., 2024), or reduces T to ∼ 30 using few-step
samplers (Xie et al., 2025). In contrast, we adopt diffusion distillation (Yin et al., 2024b;a), which
reduces the number of denoising steps T to just 5 while preserving generation quality, thereby mak-
ing the denoising windows compact enough to fit on a single GPU while maintaining real-time
latency.
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3.3 TEMPORAL AND GLOBAL HISTORY CONTEXT

Algorithm 1 Rolling Forcing Training
Require: Denoise timesteps {t0, t1, . . . , tT }
Require: Number of video frames N
Require: AR diffusion model Gθ (returns KV em-

beddings via GKV
θ )

1: loop
2: Initialize model output Xθ ← []
3: Initialize KV cache KV← []

4: Initialize x1:T−1
t1:T−1

with Gθ

5: Sample j ∼ Uniform{0, 1, . . . , T − 1}
6: for i = 1, . . . , N do
7: Sample xi+T−1

tT
∼ N (0, I)

8: Set xi:i+T−1
t1:T

← xi:i+T−2
t1:T−1

∥xi+T−1
tT

9: Select and apply RoPE to KV (Sec. 3.3)
10: if i ≡ j (mod T ) then
11: Enable gradient computation
12: x̂i:i+T−1

0 ← Gθ(x
i:i+T−1
t1:T

, t1:T ,KV)

13: Xθ.append(x̂
i:i+T−1
0 )

14: Disable gradient computation
15: else
16: x̂i:i+T−1

0 ← Gθ(x
i:i+T−1
t1:T

, t1:T ,KV)
17: end if
18: KV.append(GKV

θ (x̂i
0, t0,KV))

19: xi+1:i+T−1
t1:T−1

← Ψ(x̂i+1:i+T−1
0 , t1:T−1)

20: end for
21: Update θ via DMD loss (Eq. (1))
22: end loop

As the clean history frames x<i
0 accumulate dur-

ing generation, handling them directly becomes
computationally expensive. To address this, fol-
lowing Huang et al. (2025), we cache the key
and value states of the history frames, thereby
avoiding redundant recomputation when gener-
ating new frames, as illustrated in Fig. 3. Note
that although the attention within the denoising
window is bidirectional, the attention between
the frames in the denoising window and the KV
cache of history frames remains causal. While
KV caching reduces computation, the computa-
tional complexity still grows quadratically with
the cache size as frames accumulate, and the
cache may become large enough to cause out-of-
memory errors. Given a denoising window start-
ing at the ith frame xi:i+T−1

t1:T , we address this is-
sue by retaining only the KV cache of the most
recent Ltem history frames xi−Ltem:i−1

0 as tempo-
ral context to preserve short-term temporal con-
sistency. However, relying solely on short-term
history causes a gradual drift of long-range prop-
erties of the generated video (like exposure, color
tone, white balance, etc.) as generation proceeds.

To maintain long-term global consistency, we
cache the KV states of the initial Lglo generated
frames x1:Lglo

0 as global context, analogous to at-
tention sink tokens in streaming language models (Xiao et al., 2023). The cache sizes Ltem and Lglo

are chosen such that the total attention window size matches that of the bidirectional teacher model,
i.e., Ltem+Lglo+Lwin = Lbidirectional. However, directly caching the initial frames leads to spilling
problems. Modern video diffusion DiTs (Peebles & Xie, 2023) typically use RoPE (Su et al., 2024)
for relative positional encoding. As the indices of the denoising frames i : i+ T − 1 increase, their
relative distance to the initial cached frames grows, eventually exceeding the trained range of RoPE
and producing unnatural artifacts. To resolve this, we cache the key states of the global context
frames x1:Lglo

0 before applying the RoPE transformation. During generation, we dynamically apply
RoPE to these cached key states at the effective indices i−Ltem−Lglo : i−Ltem−1, treating them
as being positioned immediately before the temporal context frames xi−Ltem:i−1

0 . This adjustment
preserves a fixed relative position w.r.t. the denoising frames, preventing excessive offsets.

3.4 ROLLING FORCING POST-TRAINING

Rolling Forcing distills a pretrained bidirectional video diffusion model (Wan et al., 2025) to a few-
step causal autoregressive generator using the DMD loss (Eq. (1)). As DMD matches the holistic
distribution of the entire video sequence to the data distribution D(pdata(x

1:N )∥pθ(x1:N )), the cal-
culation of the DMD loss requires a predicted clean video x̂1:N

0 during training. In SF, the predicted
clean video is generated by:

x̂1:N
0 =

{
x̂i
0 = Gθ(x

i
tj , tj , x

<i
0 ) | i = 1, 2, . . . , N

}
, (3)

where j ∼ Uniform{0, 1, . . . , T − 1} indicates each frame’s noise level tj before denoising. For
Rolling Forcing, as the denoising window consists of multiple frames at different noise levels, we
select the jth frame in each window and combine the selected frames as the predicted clean video:

x̂1:N
0 =

{
x̂i
0 = (x̂i:i+T−1

0 )j = Gθ(x
i:i+T−1
t1:T , t1:T , x

<i
0 )j | i = 1, 2, . . . , N

}
, (4)

where j ∼ Uniform{0, 1, . . . , T−1} represents both the frame’s index within the denoising window
and the frame’s noise level tj . However, Eq. (4) incurs T times higher computational complexity
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Table 1: Comparisons with relevant baselines. We compare Rolling Forcing with representative
open-source autoregressive video generation models.

Model #Params Throughput Latency Evaluation Scores ↑
∆Quality

Drift ↓(FPS) ↑ (s) ↓ Temporal Subject Background Motion Aesthetic Imaging
Flickering Consistency Consistency Smoothness Quality Quality

Non-Streaming
FramePack (Zhang & Agrawala, 2025) 13B 0.92 65 99.26 91.65 93.55 99.03 59.93 65.20 3.45

Diffusion Forcing Causal
SkyReels-V2 (Chen et al., 2025) 1.3B 0.49† 112† 97.43 89.23 93.45 98.76 61.55 62.90 5.59
MAGI-1 (Teng et al., 2025) 4.5B 0.19† 282† 98.21 90.86 93.25 99.20 59.91 59.87 2.15

Distilled Causal
CausVid (Yin et al., 2025) 1.3B 15.38 0.78 96.84 87.99 89.99 98.09 60.95 66.38 2.18
Self Forcing (Huang et al., 2025) 1.3B 15.38 0.78 97.49 86.48 90.29 98.47 60.54 68.68 1.66
Rolling Forcing (Ours) 1.3B 15.79 0.76 97.61 92.80 93.71 98.70 62.39 70.75 0.01

† Numbers adopted from Huang et al. (2025).

than Eq. (3), because the query size is T times larger. Given that DMD loss is already computation-
ally expensive, this additional cost can easily lead to out-of-memory error even on GPUs with 80G
of memory.

To address this issue, instead of backpropagating through every window (which requires gradients
for each forward pass), we sample a subset of non-overlapping windows to construct the predicted
clean video, as illustrated in Fig. 3. Gradient computation is performed only on these selected
windows, significantly reducing memory usage while retaining effective supervision. Formally, the
predicted clean video is given by:

x̂1:N
0 =

{
x̂i:i+T−1
0 = Gθ(x

i:i+T−1
t1:T , t1:T , x

<i
0 ) | i ≡ j (mod T ), 1 ≤ i ≤ N

}
, (5)

where j ∼ Uniform{0, 1, . . . , T − 1}. In each iteration, we reduce the number of forward passes
requiring gradient computation from N in Eq. (4) to ⌈N/T ⌉1. The Rolling Forcing training is il-
lustrated in Alg. 1. Similar to SF, the input noisy frames xi:i+T−1

t1:T during training are generated by
the model rather than taken from ground truth, thus mitigating the exposure bias. However, unlike
Eq. (3) or Eq. (4), where every frame in the predicted clean video x̂1:N

0 is denoised from the same
noise level tj , the frames in Eq. (5) are denoised from varying noise levels t1:T . Consequently,
frames denoised from different noise levels have different quality and clarity, leading to unnatu-
ral video x̂1:N

0 and camera movement in DMD training. To address this issue, we adopt a mixed
training strategy that alternates between SF training (Eq. (3)) and Rolling Forcing training (Eq. (5))
with equal probability. The SF objective serves as a regularizer, encouraging the model to produce
videos with natural camera movement. The inference adopts the Rolling Forcing paradigm alone as
elaborated in Alg. 2.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Model. We implement Rolling Forcing with Wan2.1-T2V-1.3B (Wan et al., 2025) as our base model,
which generates 5s videos at 16 FPS with a resolution of 832× 480. Following CausVid (Yin et al.,
2025) and Self Forcing (Huang et al., 2025), we first initialize the base model with causal attention
masking on 16k ODE solution pairs sampled from the base model. For both ODE initialization
and Rolling Forcing training, we sample text prompts from a filtered and LLM-extended version
of VidProM (Wang & Yang, 2024). We set T = 5 and perform chunk-wise denoising with each
chunk containing 3 latent frames. The model is trained for 3,000 steps with a batch size of 8 and a
trained temporal window of 27 latent frames. We use the AdamW optimizer for both the generator
Gθ (learning rate 1.5 × 10−6) and the fake score sgen (learning rate 4.0 × 10−7). The generator is
updated every 5 steps of fake score updates.

Evaluation. We adopt the VBench (Huang et al., 2024) quality matrices to evaluate the generation
quality over 200 randomly sampled MovieGen (Polyak et al., 2024) prompts, where the matrices

1We omit the denoising windows at the start of the video for clarity in Eqs. (2) and (5), where the window
has fewer than T frames. Gradient computation is still required if the window index i satisfies i ≡ j (mod T ).
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Figure 4: Qualitative comparisons. We compare Rolling Forcing with representative open-source
autoregressive video generation models on long video generation.

measure multiple dimensions, including temporal flickering, subject consistency, background con-
sistency, motion smoothness, aesthetic quality, and imaging quality. For fairness, all videos for
quantitative evaluation are generated with the same length (30s), frame rate (16 fps), and resolution
(832× 480). To assess quality drift in long video generation, following Zhang & Agrawala (2025);
Yin et al. (2025), we compute the absolute difference in imaging quality, ∆Quality

Drift , between the first
and the last 5 seconds of each video. The magnitude of ∆Quality

Drift directly reflects the severity of error
accumulation. Following Huang et al. (2025), we evaluate real-time performance in terms of both
throughput and latency. Unlike prior work that reports the first-frame latency, we measure latency
after the generation process reaches a stable speed.

4.2 COMPARISONS

We compare Rolling Forcing against several relevant open-source video generation models of com-
parable scale. Specifically, SkyReels-V2 (Chen et al., 2025) is trained under the Diffusion Forcing
paradigm (Chen et al., 2024), which corrupts historical frames during inference to alleviate error
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Ours full
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t=0s t=15s t=30s

Figure 5: Ablation studies on rolling diffusion window, mixed training strategy, and attention sink.

accumulation. MAGI-1 (Teng et al., 2025) adopts a FIFO-style denoising paradigm (Kim et al.,
2024) in both training and inference. We also compare against prior distillation-based approaches,
including CausVid (Yin et al., 2025) and Self Forcing (Huang et al., 2025). Note that SkyReels-
V2, CausVid, Self Forcing, and our Rolling Forcing are all initialized from the same base model,
Wan2.1-T2V-1.3B (Wan et al., 2025). Additionally, we compare with the non-streaming image-
to-video method FramePack (Zhang & Agrawala, 2025), which generates long videos in a non-
sequential order. We use the first frame generated by our method as the image input for FramePack.

As shown in Table 1, Rolling Forcing achieves the highest overall quality scores. In particular, it
obtains a substantially lower ∆Quality

Drift , demonstrating its effectiveness in suppressing error accumula-
tion. Qualitative comparisons in Fig. 4 further highlight that Rolling Forcing preserves high-fidelity
and consistent video quality over 2 minutes of autoregressive generation, while the compared mod-
els exhibit pronounced degradation, such as color shifts, artifacts, unnatural motion, etc. In addition,
Rolling Forcing achieves real-time generation with sub-second latency, marginally faster than Self
Forcing and CausVid, thereby establishing its suitability for long-horizon video streaming applica-
tions. Notably, Rolling Forcing even outperforms the non-streaming method FramePack in quality,
consistency, and drift control, despite FramePack being a 10 times larger image-to-video model.
As shown in Fig. 4, FramePack still suffers from severe error accumulation when generating long
videos and tends to generate static outputs. Note that FramePack generates videos in reverse order,
thus error accumulation is most severe at the beginning of the videos.

4.3 ABLATION STUDIES

Table 2: Ablation studies. RF refers to Rolling Forcing,
and SF refers to Self Forcing.

Model Evaluation Scores ↑
∆Quality

Drift ↓
Temp. Subj. Back. Mot. Aes. Img.

w/o RF inference 95.45 86.01 89.94 97.36 57.59 65.19 5.53
w/o RF training 95.91 87.50 90.86 98.05 60.41 69.24 0.89
w/o SF training 90.83 83.27 88.14 95.63 55.30 62.00 1.62
w/o attention sink 97.53 83.22 87.99 98.56 58.99 67.30 4.63

Ours full 97.61 92.80 93.71 98.70 62.39 70.75 0.01

We conduct ablation studies to assess
the contribution of several design op-
tions, as summarized in Table 2.

Rolling diffusion window. We eval-
uate two variants: w/o RF infer-
ence and w/o RF training. In w/o
RF inference, we remove the rolling
denoising window and adopt frame-
by-frame denoising during inference,
while keeping the same training procedure and model weights as our full method. In w/o RF train-
ing, the model is trained and inferred entirely with the frame-by-frame paradigm. As shown in
Fig. 5, both variants suffer from noticeable error accumulation within 30s, demonstrating that the
rolling window is crucial for suppressing long-term drift.

Mixed training strategy. To assess its effect, we remove the Self Forcing training objective (w/o
SF training). As reported in Table 2, this leads to substantial degradation in consistency and overall
quality, primarily due to unnatural camera motion.
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Attention sink. Finally, removing the global context frame (w/o attention sink) results in noticeable
drift in the generated videos, as illustrated in Fig. 5.

5 CONCLUSION

We presented Rolling Forcing, a framework for real-time long-horizon video generation that mit-
igates error accumulation while sustaining sub-second latency. By introducing a rolling-window
joint denoising strategy, Rolling Forcing enables mutual refinement across consecutive frames, ef-
fectively reducing long-term drift. The integration of the attention sink mechanism further enhances
global consistency by anchoring initial frames as persistent context, while our efficient training al-
gorithm enables few-step distillation over extended denoising windows while mitigating exposure
bias. Extensive experiments demonstrate that Rolling Forcing achieves state-of-the-art temporal co-
herence and visual fidelity over multi-minute streaming sequences, significantly outperforming prior
streaming approaches in both quality and efficiency.
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A ADDITIONAL IMPLEMENTATION DETAILS

Algorithm 2 Rolling Forcing Inference
Require: Denoise timesteps {t0, t1, . . . , tT }
Require: Number of video frames N
Require: AR diffusion model Gθ (returns KV em-

beddings via GKV
θ )

1: Initialize model output Xθ ← []
2: Initialize KV cache KV← []

3: Initialize x1:T−1
t1:T−1

with Gθ

4: for i = 1, . . . , N do
5: Sample xi+T−1

tT
∼ N (0, I)

6: Set xi:i+T−1
t1:T

← xi:i+T−2
t1:T−1

∥xi+T−1
tT

7: Select and apply RoPE to KV (Sec. 3.3)
8: x̂i:i+T−1

0 ← Gθ(x
i:i+T−1
t1:T

, t1:T ,KV)

9: Xθ.append(x̂
i
0)

10: KV.append(GKV
θ (x̂i

0, t0,KV))

11: xi+1:i+T−1
t1:T−1

← Ψ(x̂i+1:i+T−1
0 , t1:T−1)

12: end for

KV Cache. We configure the KV cache and de-
noising window sizes as Ltem = 3, Lglo = 3, and
Lwin = 15 latent frames. When updating the KV
cache with GKV

θ , the attention window attends
only to recent frames, excluding the global con-
text. This design reflects that, apart from the ini-
tial frames serving as the global context anchor,
other cached frames are retained solely for pre-
serving short-term temporal consistency. During
inference, we persist the KV states of the global
context frames while discarding obsolete tempo-
ral frames, thereby maintaining constant memory
usage. At the start of the video, when the denois-
ing window still includes the first frame, no tem-
poral or global context is used.

Training. During training, the number of gen-
erated frames N is randomly sampled between 21
(the sequence length of the bidirectional teacher
model) and 27 latent frames. The DMD loss is computed on the last 21 frames. Since in
Wan2.1 (Wan et al., 2025) the first VAE-encoded frame is not temporally compressed and thus
exhibits different statistics, we decode frames 0:N−21 to RGB and re-encode the (N−21)-th frame
into the latent space. This re-encoded frame is then concatenated with latent frames N−21:N−1
for loss computation. In this way, the first frame is only spatially compressed, ensuring consistency
with the statistical distribution of the bidirectional teacher model.

Noise schedule and model parameterization. Following the Wan2.1 and Self Forcing, we adopt
the flow matching framework (Lipman et al., 2022; Liu et al., 2022), with time step shifting t′(k, t) =
(kt/1000)/(1 + (k − 1)(t/1000)) · 1000 and a shift factor k = 5. The forward process is specified
as xt =

t′

1000x+ 1−t′

1000ϵ, ϵ ∼ N (0, I) with t ∈ [0, 1000]. The data prediction model is given by:

Gθ(x, t, c) = cskip · ϵ− cout · vθ(cin · xt, cnoise(t
′), c). (6)

We keep the preconditioning coefficients the same as the base models’ configuration, i.e., cskip =
cin = cout = 1 and cnoise(t) = t. Our few-step diffusion process employs a uniform 5-step schedule
[t5, t4, t3, t2, t1] = [1000, 800, 600, 400, 200]. We adopt a 5-step schedule rather than 4, as our
method achieves comparable and even slightly faster generation speed than 4-step Self Forcing.

Indices of the 200 sampled MovieGen prompts. 0, 5, 10, 15, 24, 30, 34, 38, 44, 48, 53, 60, 67, 71, 75, 79, 84, 88, 92,

98, 103, 108, 112, 116, 122, 126, 131, 137, 142, 146, 150, 157, 165, 171, 176, 182, 188, 196, 200, 207, 211, 215, 219, 225, 229, 233, 237,

242, 246, 250, 256, 261, 267, 272, 277, 284, 288, 294, 299, 303, 308, 312, 317, 321, 327, 331, 336, 340, 344, 348, 353, 357, 362, 367, 372,

376, 380, 388, 392, 396, 400, 408, 415, 423, 428, 433, 437, 441, 446, 452, 456, 460, 464, 469, 473, 477, 482, 487, 491, 495, 502, 507, 511,

515, 521, 525, 529, 533, 540, 544, 548, 553, 558, 569, 574, 578, 585, 590, 598, 602, 609, 614, 619, 626, 632, 636, 641, 647, 651, 657, 661,

666, 671, 677, 681, 686, 690, 695, 699, 704, 708, 712, 717, 722, 726, 730, 734, 739, 743, 747, 752, 756, 761, 766, 772, 776, 781, 786, 791,

795, 799, 803, 808, 812, 816, 820, 825, 829, 834, 838, 845, 849, 855, 860, 865, 870, 875, 880, 884, 888, 892, 897, 904, 908, 915, 924, 928,

933, 937, 942, 946, 954, 959, 964, 970, 976, 980, 986, 991, 996.

B INTERACTIVE VIDEO STREAMING

In Fig. 6, we demonstrate that Rolling Forcing enables interactive video streaming, allowing users
to modify prompts during generation to steer the video content. Implementing this functionality is
straightforward: we discard the cross-attention cache of previous text prompts and apply the new
prompts in cross-attention. Rolling Forcing is able to perform various changes including subject
switch, subject introduction, scene switch, and action switch.
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A�horse�is�running�in�desert. ->�A�Tiger�is�running�in�desert.

A�skeleton�is�dancing. ->�A�man�is�dancing.

A�vast�mountain�valley�at�morning. ->�A�sleek�futuristic�spacecraft�descends�over�the�ridge.

A�brown�puppy�sits�on�riverbank�pebbles�beside�a�river. ->�A�little�girl�in�a�light�blue�dress�walks�to�the�dog.

A�young�male�longboarder�accelerating�downhill. ->�The�longboarder�slides�into�the�forest.

A�skier�racing�down�a�steep�slope. ->�Stars�and�moons�swirling�around�the�skier.

An�older�man�playing�the�piano. ->�The�old�man�is�eating�a�burger.

A�young�woman�with�a�bright�smile. ->�The�woman�is�waving�her�hands�enthusiastically.

Subject Switch

Subject Introduction

Scene Switch

Action Switch

Figure 6: Interactive Video Streaming. Rolling Forcing allows the users to change prompts while
streaming to steer the video content.

C EVALUATIONS ON 2-MINUTE VIDEOS

To further evaluate our method’s performance in long video generation, we compare it with real-
time baselines, i.e. CausVid (Yin et al., 2025) and Self Forcing (Huang et al., 2025), on 2-minute
videos. As shown in Table 3, Rolling Forcing demonstrates a more pronounced advantage in this
setting, outperforming both baselines across nearly all quality metrics and exhibiting significantly
lower quality drift. We also analyze the CLIP score (Radford et al., 2021) for each time segment
over the 2-minute generated videos in Fig. 7. The results show that Rolling Forcing achieves the
highest scores across segments, with the smallest score drop over time.
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Table 3: Evaluations on 2-minute videos. We compare Rolling Forcing with real-time baselines
and w/o RF training variant.

Model Evaluation Scores ↑
∆Quality

Drift ↓
Temp. Subj. Back. Mot. Aes. Img. Dyn.

CausVid (Yin et al., 2025) 96.67 84.69 89.53 98.04 62.16 63.62 52.08 3.35
Self Forcing (Huang et al., 2025) 97.44 71.95 88.73 98.19 50.66 60.03 51.02 14.4

Ours w/o RF training 96.87 84.38 91.93 98.39 58.61 66.55 56.75 1.39

Rolling Forcing (Ours) 96.90 91.47 95.29 98.29 65.21 68.96 57.14 0.49

To further demonstrate the effectiveness of the rolling denoising window strategy, we conduct an ab-
lation study on 2-minute videos by removing Rolling Forcing (RF) during training, where the model
is trained and inferred entirely under the frame-by-frame paradigm. As shown by the quantitative
metrics in Table 3, removing the rolling denoising window significantly harms consistency, quality,
and drift control. Qualitative comparisons in Fig. 8 also confirm that the rolling denoising window
substantially reduces error accumulation, leading to fewer artifacts in long video generation.

Figure 7: CLIP scores comparisons on 2-minute videos.

D VBENCH SCORES ACROSS ALL DIMENSIONS

We conduct a comprehensive evaluation on the full VBench benchmark (Huang et al., 2024) on 30s
video clips, using all 946 prompts and covering all 16 metrics reported in Tables 4 and 5. For detailed
metric definitions, we refer readers to the VBench paper. All values are computed with the official
standardized evaluation scripts. Our method achieves substantial improvements in overall quality,
particularly in frame-wise fidelity, and also outperforms distilled baselines on semantic scores.

Table 4: Full VBench quality evaluation on 30s videos.

Model Subject Background Temporal Motion Dynamic Aesthetic Imaging Quality
Consistency Consistency Flickering Smoothness Degree Quality Quality Score

CausVid (Yin et al., 2025) 89.50 90.00 99.41 98.06 63.88 61.82 65.30 80.89
Self Forcing (Huang et al., 2025) 88.61 89.53 98.90 98.57 68.05 60.60 68.98 81.39
Rolling Forcing (Ours) 94.80 95.69 98.93 98.63 60.14 62.81 72.31 84.08
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Figure 8: Ablations on Rolling Forcing. Removing the rolling denoising window significantly harms
consistency, quality, and drift control.

Table 5: Full VBench semantic evaluation on 30s videos.

Model Object Multiple Human
Color

Spatial
Scene

Temporal Appearance Overall Semantic
Class Objects Action Relationship Style Style Consistency Score

CausVid (Yin et al., 2025) 78.56 58.84 81.00 81.02 59.62 31.32 22.51 20.04 23.16 65.85
Self Forcing (Huang et al., 2025) 80.06 62.88 83.00 79.80 74.76 30.59 23.78 20.41 24.80 69.17
Rolling Forcing (Ours) 85.92 64.86 73.00 88.16 78.84 30.52 23.52 19.45 24.56 69.78

E ANALYSIS OF ATTENTION SINK

To better understand the mechanism of the attention sink in streaming video generation, we visualize
the model’s attention maps in Fig. 9. The visualizations reveal that early layers exhibit local attention
patterns, while deeper layers allocate more attention weight to the global context. This indicates that
the attention sink tokens function effectively by providing essential information to the denoising
window.

The reasons for the attention sink phenomenon are complex. Similar to findings in LLMs (Xiao
et al., 2023), we identify several possible explanations for its emergence in streaming video gener-
ation: 1) Inherent statistical difference: The latent representation of the first frame has inherently
different statistics, as it is only spatially compressed, unlike subsequent frames which are also tem-
porally compressed. 2) Information retrieval: The model learns to use the global context as a sink
to retrieve important information such as color tone, white balance, etc. 3) Softmax constraint: As
in LLMs, the softmax function requires attention weights to sum to one. The initial tokens may
thus serve as a sink to absorb residual attention weight. This is a complex and promising research
direction that extends beyond the scope of this work, and we encourage further investigation by the
community.

F DYNAMIC ROPE

The placement of RoPE indices for the global context frames is critical. Suppose the indices of the
denoising window are i:i+ T−1, and the temporal context frames are i−Ltem:i−1. We investigate
several options for assigning indices to the global context frames:

1. immediately preceding the temporal context, i − Ltem − Lglo:i − Ltem−1 (our adopted
design);

2. fixed at 0:Lglo−1 without dynamic RoPE adjustment;
3. overlapping with the temporal context, i− Lglo:i−1;
4. within the denoising window, within i:i+ T−1;
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Figure 9: Visualization of the average attention logits.

5. after the denoising window, beyond i+ T .

Empirically, option 2 produces strong “jumping” artifacts due to relative positions exceeding the
trained offset range, as shown in Fig. 10. Option 3 introduces flickering, as the model confuses
global and temporal contexts. Option 4 collapses into static outputs, since the generated frames are
forced to replicate the global context. Option 5 induces unnatural motion, as the model attempts to
converge toward the misplaced global anchor. Among these, only option 1 yields consistent videos
with minimal artifacts.

Frame iFrame i-1 Frame i+1

Figure 10: Fixed RoPE indices produce strong “jumping” artifacts, where the video abruptly resets
to the initial frame during streaming.

G HUMAN PREFERENCE STUDIES

We conduct human preference studies where users select their preferred method based on error
accumulation control and overall video quality. As shown in Fig. 11, our Rolling Forcing receives
significantly more votes than all other methods, demonstrating its superior generation quality as
perceived by human evaluators.

H DISCUSSIONS OF DMD TRAINING

Training efficiency and quality of subset gradient computation. Although we would like to
conduct an ablation study on subset gradient computation to directly assess its impact on training
quality, it is infeasible to remove it entirely. The use of subset gradient computation allows Rolling
Forcing to be trained on 80G GPUs; without it, the theoretical VRAM requirement would be ap-
proximately 5 × 80 = 400G, which is impractical to train. Nevertheless, as shown in Table 3,
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Figure 11: Human preference studies.

our method significantly outperforms the baselines, demonstrating its high quality. In terms of effi-
ciency, our method does require more training iterations than Self Forcing (3000 vs. 600). However,
the increased training time has a negligible impact on the user experience.

Pros and cons of subset gradient computation. The primary advantage of subset gradient com-
putation is that it enables DMD distillation on the extended rolling denoising windows. The main
disadvantage is a train-test discrepancy: during training, videos are composed of subsets of win-
dows, whereas during inference, the final output videos are composed of the first frames from all
windows.

Table 6: Quality Metrics Across Runs
run1 run2 run3

Quality Drift 0.01 0.04 0.03
Quality Score 84.08 83.24 85.83

Mixed training strategy. Our mixed training
strategy involves alternating between Self Forcing
(SF) and Rolling Forcing (RF) with equal proba-
bility. The model architecture and parameter sizes
are identical for both strategies, utilizing the same
global and temporal context sizes. The sole dis-
tinction lies in the generation process: SF produces
videos frame-by-frame, whereas RF uses a rolling denoising window. Training is stable, as evi-
denced by three runs with different random seeds; both the quality drift and quality score remain
approximately constant, as shown in Table 6.

I LIMITATIONS

While Rolling Forcing substantially suppresses error accumulation in real-time streaming video
generation, several limitations remain. First, although the global context helps stabilize long-horizon
consistency, frames generated in the middle are discarded once they leave the temporal context. As
a result, the model retains no memory of mid-sequence content, suggesting that incorporating more
advanced memory mechanisms is a promising direction for future exploration. Second, training
Rolling Forcing is computationally demanding: the enlarged attention window and the DMD loss
significantly increase GPU memory usage, which may limit scalability to higher-capacity models.
Developing more efficient training or distillation strategies to mitigate these costs is therefore an
important avenue for future work. Third, as mentioned in Huang et al. (2025), the rolling diffusion
window may increase latency in interactive applications, as future frames are partially pre-generated
before the current frame is finalized. As Rolling Forcing natively supports both inference strategies,
future work may consider a mixed inference strategy that interactively switches between frame-by-
frame denoising during interaction and rolling denoising otherwise.
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J BROADER SOCIETAL IMPACT

This work introduces real-time, long-horizon text-to-video generation, which can broaden access
to interactive media, live storytelling, and educational tools by enabling continuous and responsive
video synthesis. However, the ability to produce realistic long-duration content in real time also
heightens risks of misuse, such as generating misleading live streams or amplifying harmful biases
over extended outputs. We encourage future research to explore safeguards, including content filter-
ing, bias mitigation, and responsible deployment practices, to ensure these capabilities are used for
positive impact.
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