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Abstract

Conditional deep generative models have emerged as powerful tools for generating realis-
tic images enabling fine-grained control over latent factors. In the medical domain, data
scarcity and the need to integrate information from diverse sources present challenges for ex-
isting generative models, often resulting in low-quality image generation and poor control-
lability. To address these two issues, we propose Multi-Source StyleGAN (MSSG). MSSG
learns jointly from multiple heterogeneous data sources with different available covariates
and can generate new images controlling all covariates together, thereby overcoming both
data scarcity and heterogeneity. We validate our method on semi-synthetic data of hand-
written digit images with varying morphological features and in controlled multi-source
simulations on retinal fundus images and brain magnetic resonance images. Finally, we ap-
ply MSSG in a real-world setting of brain MRI from different sources. Our proposed algo-
rithm offers a promising direction for unbiased data generation from disparate sources. For
the reproducibility of our experimental results, we provide detailed code implementation 1.

Keywords: Generative Models, StyleGAN, Multi-Source, MRI, Retinal Fundus Images.

1. Introduction

Many medical Deep Learning (DL) applications suffer from algorithmic biases, stemming
from training with limited and biased data sets due to data restriction and low disease
prevalence (Kazeminia et al., 2020; Bak et al., 2022). Currently, research has employed deep

1. https://github.com/weslai/msstylegans
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generative models to create synthetic Computer Tomography scans, brain Magnetic Res-
onance Images (MRIs) (Frid-Adar et al., 2018; Han et al., 2018; Hong et al., 2021; Xiang
et al., 2023) and retinal fundus images (Costa et al., 2017, 2018; Zhao et al., 2017). This
offers an opportunity to fill the data availability gap in the medical domain by augment-
ing available data with synthetic counterparts (Kazeminia et al., 2020). These applications
generate high-resolution medical images but are not able to generate images with specific
demographic and clinical characteristics. Other generative approaches use conditional Vari-
ational Autoencoders (VAEs) that learn causal relationships to infer brain MRIs with spe-
cific clinical and demographic characteristics (Reinhold et al., 2021; Jung et al., 2021) and
generate counterfactual brain MRIs (Pawlowski et al., 2020).
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Figure 1: Conditionally generated MRI
from the multi-source model. Age is fixed at
59. The model controls ventricle volumes and
grey matter volumes (white part of the brain
MRI) simultaneously.

In the medical domain, several crucial lim-
itations arise. Generally, data sets are small,
compared with natural image data sets, different
studies present diverging demographic and dis-
tributional stratifications, and different sources
release different sets of latent factors. Con-
sider the example of building a generative model
to synthesize brain MRIs for developing models
that predict dementia. One data source may be
a cohort study and collect data from a general
population, with age at collection sampled uni-
formly between 40 and 70; due to the cohort de-
sign, Cognitive Impairment (CI) has a very low
prevalence in this source. Another data source,
on the other hand, may be a specific Alzheimer’s
Disease (AD) cohort with a very high prevalence
of CI in the sampled individuals; since age is a
major risk factor for AD, this second data source
will likely also collect older individuals. In addi-
tion, the two studies’ collection protocols will be
differently designed to satisfy different aims. Hence, the available covariates for each study
will only partially overlap. While both studies are highly likely to collect information on age,
demographics, and sex, the first study might collect additional information on other neu-
rological issues, while the second study might collect clinical measurements specific to AD.
Indeed, this example is the very case for the UK Biobank (UKB), a UK-based population
study (Sudlow et al., 2015), and the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(Petersen et al., 2010). Generally, due to privacy concerns and high acquisition costs, med-
ical images are usually also released only in smaller studies and can not be scraped at the
same scale as natural images. For example, the UKB contains one of the largest brain MRI
studies to date and only acquired images of less than 50,000 individuals so far.

Training reliable generative models on medical imaging data is challenging due to several
factors. Limited data availability often leads to lower visual quality and incomplete coverage
of the image space. Additionally, the scarcity of labels restricts control over generated
images to the covariates present in a single dataset. Most existing conditional generative
models cannot leverage multiple data sources simultaneously unless label overlap is perfect
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(Han et al., 2021). Moreover, models trained on a single data source suffer from reduced data
availability. To address these limitations, we introduce Multi-Source StyleGAN (MSSG),
which is based on StyleGAN3 (Karras et al., 2021) but learns from multiple data sources
concurrently. This approach increases dataset size and enables conditional image generation
with all available latent covariates.

We first validate MSSG on a semi-synthetic data set of hand-written digits in which
we can directly control specific morphological characteristics (Castro et al., 2019). We also
investigate MSSG’s behavior on real-world medical imaging data from a single source with
a simulated data source split. Finally, we apply MSSG to the realistic setting of multiple
sources of brain MRI data. We show that MSSG can synthesize high-quality medical images
and jointly control latent structures present in those images.

2. Multi-Source StyleGAN

2.1. Conditional StyleGANs

Conditional Generative Adversarial Networks (GANs) generate natural images with speci-
fied categories (Mirza and Osindero, 2014). Given the training data and labels, the labels
are passed to the generator and the discriminator. In the generator, labels are concatenated
with noise into a latent representation. In the discriminator, labels are fitted as input and
the discriminator distinguishes synthetic images from real images based on labels. For con-
ditional StyleGANs, the generator transforms a one-hot-vector label c into an embedding
vector. This is passed to the mapping network M with a latent vector z. The mapping net-
work produces another latent vector w and this latent vector w is passed to the synthetic
network for image generation. The StyleGAN discriminator applies a conditional projec-
tion discriminator (Miyato and Koyama, 2018); see Section A for details.

Mixed-type latent-variable conditional GANs In this work, we focus on an extension
of conditional GANs that can (i) handle mixed-type latent factors and (ii) integrate data
sources that have different labels available. Here, the generator network takes in both a noise
variable z ∈ Rdz and a conditioning variable c ∈ Rdc , which may consist of binary, multi-
class (coded as a one-hot subvector), and continuous values. Analogously to the standard
StyleGAN definition, the generator maps c through an embedding network and concatenates
them to the noise variables z to generate the image. The discriminator predicts 1+dc output
variables, with the first output denoting the standard fake/real prediction. The remaining
dc outputs are predictions for each of the input variables, with appropriate loss functions
for each variable (e.g., the cross-entropy loss for categorical subfeatures, and the quadratic
loss for continuous subfeatures). This requires a generative model of the latent distribution,
which will be learned independently from the covariates, as described in the next section.

2.2. Modeling of Latent Factors

For simplicity, we will focus on the case of two sources, D1 and D2. Each data source j

consists of image-covariate pairs, Dj =
{
(xji , c

j
i )
}
i
. The covariates consist of a shared part

cjshar that is available in both sources, a unique part cjuniq that is only available in source

j, and a hidden part cjhidd that is available in the other data source but not in j, i.e.,
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cj =
[
cjshar, c

j
uniq, c

j
hidd

]
. The shared part denotes variables that are available in both data

sets and coincide for both data sources, c1shar ≜ c2shar ∈ Rqshar . However, due to distribution
shift, the unconditional distribution may differ between data sources, p(c1shar) ̸= p(c2shar).
A typical example may be the age of each individual: different studies often collect data
in different age cohorts. The remaining variables are unique to each data source and may
have different dimensionality, qjuniq. These could be specific variables, such as different brain
volumes, and cataracts (a disease), which are not considered in each data source but related
to the shared variable. With only two data sources, c1uniq ≜ c2hidd and vice versa.

Figure 2: Latent space model of
MSSG. f1 approximates c2hidd from the

shared covariate cjshar and vice versa.
They are integrated into a joint latent
space ĉj = (cjshar, ĉ

j
hidd, c

j
uniq). The gen-

erator G gets the concatenated vector
from a latent noise z and the joint la-
tent space ĉj .

We assume that the conditional distribution does
not shift between data sets, that is, we assume that
p(c1hidd|c1shar = ξ) = p(c2uniq|c2shar = ξ) for any ξ. This
assumption allows us to model the distribution be-
tween the different latent variables. Hence, we fit
stochastic models f j that can sample from the con-
ditional distributions, respectively: on source 1, we
fit f1(c1shar) = ĉ1uniq, which can be used in source 2 to

impute the missing ĉ2hidd, and vice versa. Different
parametric and non-parametric statistical method-
ologies can be employed for such a distribution esti-
mation, such as structural equation modeling (Pearl,
2013; Pawlowski et al., 2020), Bayesian methods
(Saatchi and Wilson, 2017), or GAN-based meth-
ods (van Breugel et al., 2021). In this work, we use
Maximum Likelihood Estimation (MLE) of a hand-
designed parametric model for all conditional and un-
conditional distributions, see Section D. For all latent
factors, we fit models from which we can sample, in-
stead of only predicting the most likely outcome.

2.3. Training Paradigm

Before training the MSSG, we first fit the latent space models f1, f2 as described in the
previous section. In this work, all conditional models are parametrized by (generalized)
linear models or conditional Gaussian Mixture Models (GMMs). We adapt the standard
GAN training paradigm with alternating discriminator and generator update steps. Our
proposed model has a StyleGAN backbone, but in principle, it can be used with most GANs.
Figure 2 shows how the concatenated vector (z, cjshar, ĉ

j
hidd.c

j
uniq) is passed to the generator

G to generate images.

During the generator step, we sample the available ground-truth covariates cjshar and

cjuniq directly from the training data sets, for both data sources at equal proportions. We
then estimate the hidden variables from the latent space models fit in the initialization
stage, ĉ1hidd = f2(c1shar) and vice versa. We gather the latent data of both sources in a
joint batch and sample z from the noise distribution. We use c and z to generate an image
with the generator, Img = G(z, cshar, cuniq, ĉhidd). We then compute predictions from the
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discriminator, ŷ, ĉshar, ĉuniq, ĉhidd = D(Img), where ŷ is the binary label if the image is
generated or real, and propagate the loss as described in Section 2.1 to update the generator.

During the discriminator step, we generate covariates from the latent-variable model
described in the previous Section 2.2. The shared and unique covariates are sampled sep-
arately for each data source. We sample the hidden conditional covariates from the cor-
responding latent space model from the other source. We then generate synthetic images
with the generator and draw real samples from both sources at equal proportions. The dis-
criminator is again trained to both distinguish between fake and real images and to pre-
dict the correct latent covariates from the images. However, we only compute the loss over
the covariates for the real images to prevent shortcut learning, where the discriminator and
generator cooperate to minimize the loss without solving the training task.

2.4. Inference Stage

After training the proposed MSSG, we can generate images while controlling all covariates
from different sources jointly. To draw a fully random synthetic sample from any of the
available sources, we can draw a sample from the shared covariate model, cjshar and push it

through latent space models f1, f2, to generate cjuniq and cjhidd. Alternatively, of course, we
can directly set the variables cshar, cuniq and chidd to any desired values. This is shown in
Figure 2, where we describe how to use the joint latent covariables with GANs.

3. Experimental Evaluation

We first validate that MSSG can properly learn from multiple sources in the toy data set
MorphoMNIST that allows full control of latent factors. Subsequently, we apply our method
to real-world datasets – brain magnetic resonance images and retinal fundus images—from
the UK Biobank and simulate a multi-source scenario with a data split. Lastly, we explore
a fully realistic multi-source setting by incorporating images from ADNI into the UKB
setting. We compare our MSSG model with single-source StyleGANs, which are trained
without latent space models and only on a single source.

Evaluation Metrics Various image quality metrics have been proposed, including the In-
ception Score (Salimans et al., 2016), Precision-Recall (Kynkäänniemi et al., 2019), Fréchet
Inception Distance (FID) (Heusel et al., 2017), and Kernel Inception Distance (KID) (Gret-
ton et al., 2006). Here, we focus on the FID and report KID and further metrics, namely
Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), Structural Simi-
larity Index Measure (SSIM), Peak Signal-To-Noise Ratio (PSNR), in Section E.

Additionally, we evaluate the controllability of the latent factors in the generated im-
ages. Previous works such as the Intra-FID (Miyato and Koyama, 2018) do not apply to
images with continuous labels and do not address the controllability of specific covariates.
We propose a new metric, the strata prediction score, to evaluate the controllability of con-
tinuous covariates. We stratify test set samples into m marginal bins per covariate, with
each marginal bin containing 33% of the total sample size to maintain adequate representa-
tion. Within each bin, we generate 15, 000 images corresponding to the test set labels. Pre-
dictions for all covariates are made using separately trained prediction models on both real
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and generated images. The strata prediction score is then calculated as the weighted av-
erage Pearson correlation coefficient between predicted covariates from generated and test
set images across all bins. See Section C for details.

3.1. Validation in MorphoMNIST

Table 1: FID ↓ in three semi-multisource scenarios

FID ↓ Data sets
Methods MorphoMNIST MRI Retina

Source 1 (baseline) 3.28 22.11 30.19
Source 2 (baseline) 3.08 8.91 14.21
Multi-source (half) 3.13 13.81 14.62
Multi-source (full) 2.24 8.62 10.17

Setting MorphoMNIST (Castro
et al., 2019) is a semi-synthetic
dataset derived from the MNIST
benchmark. In contrast to MNIST,
MorphoMNIST allows explicit con-
trol of morphological features like
thickness, pixel intensity, slant
(rotation) in addition to the digit.
We modified the synthetic data generation model proposed by Pawlowski et al. (2020); Sec-
tion D.1 provides detailed information. The first data source includes thickness, digit,
and intensity, while the second source includes thickness, digit, and slant, i.e., the
shared variables are cshar = [thickness, digit], with c1uniq = c2hidd = intensity and

c2uniq = c1hidd = slant.

Evaluation As a baseline, we train conditional StyleGANs on each source independently,
each with a sample size of N = 24, 000. Our multi-source StyleGAN can integrate data
from different sources and thus can utilize more data than the single-source models. To
disentangle the effect of increased sample size and covariate aggregation, we first train our
model on a reduced data set with 12, 000 samples from each data source (i.e., N = 24, 000
in total), denoted by “half.” We also train a model on the full data set of N = 48, 000
images, denoted by “full.”
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Figure 3: The strata weighted Pearson’s
correlation ↑ between the outputs of predic-
tion models.

Table 1 (first column) shows that at com-
parable sample size, our multi-source model
achieves comparable image quality performance
to the baseline methods while using both full
data sets (which is not possible for the single-
source models) leads to a considerable improve-
ment in image quality. In Figure 3 we ex-
plore the controllability of the different models.
As expected, our multi-source models can reli-
ably control all three covariates, with slight im-
provements for larger sample sizes. The single-
source baseline models can only control the re-
spectively available covariates well but show low-
to-moderate correlation with the unavailable co-
variates due to the correlation between thick-
ness, intensity, and slant in the training data
(see Section D.1). Qualitatively, in Figure 7 we fix two covariates and show that our model
can control the remaining two variables; note that our model can jointly control the unique
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variables slant and intensity, even without instances in the training data with both vari-
ables concurrently available.

3.2. Validation on Real-World Data

Next, we validate MSSG in real-world scenarios with more subtle data dependencies, fo-
cusing on two medical imaging modalities: brain MRI, used in diagnosing conditions like
Alzheimer’s Disease; and retinal fundus images, used in diagnosing ophthalmological con-
ditions such as cataracts, and glaucoma, or diabetic retinopathy.

In the real-world setting, we use data from the UKB resource. To validate the models’
controllability, we divide each dataset into two artificial sources, allowing for a comprehen-
sive evaluation. This approach addresses the absence of covariate labels in real-world multi-
source settings, which we further explore in the next section.

Brain MRI We use the coronal middle slice of T1-weighted brain MRI scans, aligning
them with the MNI atlas. We split the data set into two sources with N = 13, 414 and N =
13, 408 samples, respectively. The first source has age and ventricle volume as covariates,
which are positively correlated due to ventricle enlargement with age (Kwon et al., 2014;
Nestor et al., 2008). The second source has age and grey matter volume, which are
negatively correlated (Giorgio et al., 2010; Callaert et al., 2014; Ramanoël et al., 2018).

Image quality between Source 1 and Source 2 differs strongly; our half-sized multi-source
model achieves better performance than the average of the two models, and the full model
outperforms all of the former models (Table 1, second column). As shown in Figure 3,
all models only reach low-to-moderate (but comparable) controllability of the individuals’
age. As in the MorphoMNIST example, ventricle and grey matter volumes can be jointly
controlled moderately well with our multi-source model. Note that all three variables – age,
ventricle volume, grey matter volume – are all very hard to discern from only single-
slice MRI (Ballester et al., 2021), explaining the lower controllability performance compared
to MorphoMNIST.

Figure 1 demonstrates the joint control of grey matter and ventricle volumes for fixed
age. Independent control of ventricle volumes leads to their enlargement, while the grey
matter consistently expands across every row, where ventricle and age remain constant.
A subtle brightening effect at the periphery of the MR images aligns with the anatomical
placement of grey matter at the brain’s edge. An intriguing observation is the inverse
relationship between ventricle volumes and grey matter volumes, suggesting a neurologically
negative correlation.

Retinal fundus images We again use age as a shared covariate. The first source includes
cataract as a binary conditional covariate, the second source contains spherical power as
a unique variable, representing the lens power required to correct myopia (nearsightedness)
or hyperopia (farsightedness). Due to the low incidence of cataract cases in the UKB
dataset (≈ 3.9%) and to prevent class imbalances, we split the data into two sources, with
60% normal and 40% cataract images. Each source has approximately 1920 images in the
training set. Due to the low sample size, in both sources, we included mirrored images and
ADA-style data augmentation (Karras et al., 2020a).

In Table 1 image quality for the single-source models varies and the half-sized multi-
source model is comparable to the better of the two, while the full multi-source model
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outperforms all other models. Controllability is less stable than for the previous data
sets (Figure 3). Spherical power can be controlled moderately well for those models that
include it, but both age and cataract vary more strongly. Potentially, our “half” model
overspecializes on modeling the cataract phenotype but underperforms on age, while the
full model strikes a more balanced performance. Figure 14 again shows that MSSG can
control the variables (cataract and spherical power) jointly when the age is set to 59.

3.3. Application in true multi-source setting

Finally, we investigate a real-world multi-source setting. We incorporate ADNI (Petersen
et al., 2010), a clinical dementia dataset, with UKB (Section 3.2). From ADNI, we select
covariates age, left hippocampus, and right hippocampus from SynthSeg (Billot et al.,
2023). Studies underscore the significant correlation between hippocampal volumes and
cognitive function (O’Shea et al., 2016; Evans et al., 2018), highlighting the relevance of these
covariates. For the UKB cohort, we consider age, ventricle, and grey matter volumes.
Notably, the ADNI cohort is older compared to UKB (≈ 74 versus ≈ 55, respectively).

Table 2: FID ↓ of UKB and ADNI in true multi-source
setting. “Joint” denotes both cohorts are merged.

FID ↓ Methods
Data sets Source UKB Source ADNI Multi-Source

UKB 8.0 74.5 15.5
ADNI 66.1 16.8 34.3
Joint 26.6 21.83 19.3

Table 2 compares FID scores;
MSSG outperforms the other mod-
els on the joint data set, while the
more specialized single-source mod-
els model their specific data sources
more closely (which would be ex-
pected). Table 6 demonstrates that
the multi-source model can model
all respective covariates with simi-
lar performance as the specialized baseline models. In Figure 10, we show brain MRI gen-
erated by the multi-source model jointly trained on UKB and ADNI, and Section F.2 shows
more qualitative examples of generated images.

4. Discussion & Conclusion

We introduced Multi-source StyleGAN (MSSG), a conditional generative image model capa-
ble of learning from multiple disparate data sources concurrently. Our experiments demon-
strate that integrating multi-source data does not compromise image quality compared to
single-source generation, and it can enhance data quality by leveraging a larger dataset.
Through various case studies, we validated MSSG’s ability to control variables from differ-
ent sources collectively, even without access to paired variables. We believe MSSG can ad-
dress data scarcity and label scarcity issues in medical image data, especially for rare dis-
eases. However, a limitation of our current method is its reliance on a hand-designed latent
space model, since we wanted to ascertain that the latent model has a good fit onto the
true latent distribution. Future work could explore using non-parametric general-purpose
models like DECAF (van Breugel et al., 2021) as a drop-in replacement. Additionally, ex-
tending our multi-source integration approach to other generative models such as VAEs and
diffusion models holds promise for future research.
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Appendix A. Background

GANs are among state-of-the-art architectures in DL to generate high-dimensional data
(Wang et al., 2020). The backbone of a GAN method contains two networks, a generator
network G and a discriminator network D (Goodfellow et al., 2014). The generator pro-
duces synthetic data from a noise vector z and the discriminator distinguishes it from real
data. In recent years, frameworks such as StyleGAN (Karras et al., 2019, 2020b, 2021)
and BigGAN (Brock et al., 2019) have developed GANs to generate high-quality images at
high resolutions. Recent diffusion models (Sohl-Dickstein et al., 2015) have been shown to
achieve promising image synthesis (Rombach et al., 2021; Song et al., 2020, 2021; Ho et al.,
2020), but have slower sampling times than GANs (Dhariwal and Nichol, 2021), require
larger training data sets (Moon et al., 2022), and can have a slow, computationally expen-
sive training process (for example, the training time on the CelebA-64x64 dataset required
around 24 hours with 16 V100 GPUs (Wang et al., 2023)).

Conditional GANs Conditional GANs (Mirza and Osindero, 2014) were introduced to
generate image data conditional on categorical factors. Several studies modified and im-
proved the performance of conditional GANs (Miyato and Koyama, 2018; Brock et al., 2019;
Karras et al., 2020b, 2021). Most works only handle categorical features instead of contin-
uous or mixed-type labels and usually ignore dependencies between input labels. One al-
ternative is ccGANs (Ding et al., 2021, 2023); however, ccGANs only tackle univariate con-
tinuous labels, such as angles and ages. Our proposed method targets multiple continuous
conditional labels and the problem of missing covariates in a database.

Multi-Source/Multi-Domain Image Generation There have been several prior works
on integrating multiple sources into a joint generative model but with a different focus from
our work. Most prominent are works on image-to-image translation; e.g., CycleGAN (Zhu
et al., 2017) is trained with cycle-consistency loss using unpaired images to translate im-
ages between two domains. DVG-Face (Fu et al., 2021) focuses on generating dual hetero-
geneous paired face images to preserve identity. Kang et al. (2023) proposed a method that
translates medical images across domains while preserving structural information during
translation. This method requires an image from the target domain and the structure and
texture features from the source domain as input. Furthermore, StarGAN v2 (Choi et al.,
2020) translates images between domains with a single generator and takes an image and
a style code as input to increase the diversity of translated images in the target domain.
MPG (Han et al., 2021) proposed a multi-attribute version of StyleGAN2 to generate pizza
images with specified ingredients and views. In this approach, a pre-trained view attribute
regressor is used to impute the missing values of labels. Our work differs from these ap-
proaches, as our proposed method trains on two datasets simultaneously and uses latent
space models to impute missing labels.

In another related research problem, image harmonization techniques (Bashyam et al.,
2022; Liu et al., 2021; Beizaee et al., 2023) address domain transfer, which is caused, e.g.,
by different MRI scanners or data collection setups (Liu et al., 2021). Here, techniques take
images as input and transfer them to different domains, but they are not able to control
the image characteristics, such as ventricle volumes.
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Appendix B. Multi-Source StyleGAN

Pseudo Code for the training paradigm Here, we provide the pseudo-code for training
the proposed multi-source GAN method Algorithm 1, which is described in Section 2.3. For
simplicity, we will focus on the case of two sources, D1 and D2. The required latent space
models f1 and f2 for the GAN training paradigm are hand-designed parametric models as
described in Section 2.2, but they are integrated into the training script.

Algorithm 1: Training a Multi-Source GAN

Require: f1, f2, G,D
Input: D1 =

{
(x1i , c

1
i )
}
i
, D2 =

{
(x2i , c

2
i )
}
i

1 Initialize Generator G and Discriminator D with random weights
2 Set number of steps S and batch size B
3 Set learning rates ηG and ηD
4 for step← 1 to S do
5 Sample batches of real images {x11, . . . , x1B}, {x21, . . . , x2B} from datasets D1 and D2

6 Sample batches of real labels {c11, . . . , c1B}, {c21, . . . , c2B} from datasets D1 and D2

7 Estimate the hidden variables ĉ1hidd = f2(c1shar), ĉ
2
hidd = f1(c2shar) by using latent

space models f1 and f2

8 Sample batches of noise vectors {z11 , . . . , z1B}, {z21 , . . . , z2B} from the noise distribution
9 Generate fake images {Img11 = G(z11 , c

1
1,shar, c

1
1,uniq, ĉ

1
1,hidd), . . . , Img1B =

G(z1B, c
1
B,shar, c

1
B,uniq, ĉ

1
B,hidd)} using Generator G for D1

10 Generate fake images {Img21 = G(z21 , c
2
1,shar, c

2
1,hidd, ĉ

2
1,uniq), . . . , Img2B =

G(z2B, c
2
B,shar, c

2
B,hidd, ĉ

2
B,uniq)} using Generator G for D2

11 Concatenate images {Img11, . . . , Img1B, Img21, . . . , Img2B} and labels
{ĉ11, . . . , ĉ1B, ĉ21, . . . , ĉ2B} from two sources

12 Use data from the specific loss of each covariate to update the Discriminator
13 Use data from the specific loss of each covariate (only with generated images) to

update the Generator
14 end

Generalization to more than 2 data sources Our proposed multi-source GAN can be
generalized to ≥ 3 data sources. Depending on which latent variables are available in which
data source, this leads to modeling choices within the latent space models. For example, if
a variable is available in sources 1 and 2 but not in source 3, we have to decide if we want
to sample it from a model derived from source 1 or source 2, or perhaps alternate between
these two. Therefore, this will be a more application-specific question. In this paper, we
mainly focus on dealing with two sources.

Appendix C. Implementation Details

Training details We implemented MSSG, using the StyleGAN3 source code (Karras
et al., 2021), keeping many of the default parameters. The generator in MSSG is based
on the StyleGAN3 generator, employing a latent noise vector z ∈ R512 and a conditional
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latent vector integrated with our joint conditional vector. The mapping network of the
generator consists of two fully connected layers, producing another latent vector w ∈ R512.
The discriminator, a StyleGAN2 Discriminator, is set to default configurations. Both the
generator and discriminator are trained using Adam optimizers. Models were trained with
ADA data augmentation to prevent overfitting. X-Flip was applied to the retinal data
sets, as the data sets are small. We adapted the conditional loss function from StyleGAN3,
modifying the discriminator’s output to predict correct labels and disabling the mapping
network in the discriminator. In preliminary experiments, we found that weighing the
fake/real loss and the covariate prediction loss equally led to considerably decreased image
quality. Instead, we multiply the covariate losses by a scaling parameter λ, set to 0.1
throughout our real-world experiments. For the first few iterations of training, we grow λ
exponentially from 0 to its target value. This helps emphasize image quality at the start,
reaching a maximum of 0.9 in semi-multisource cases and 0.1 in the true multi-source case.

With the extension to the real multi-source data sets, we can express also the property of
sources as an extra covariate cjsource in our conditional vector cj . This allows us to explicitly
sample from either of the data sources cjsource instead of it being expressed by the latent
noise vector z.

We trained our models on 2 A100 GPUs until the convergence of the FID score on a
validation set. The duration of training is data-set dependent. For MorphoMNIST, the
convergences of the FID score took 8192 steps for the proposed ”half” model and 22937 steps
for the proposed ”full” model, as the resolution of images is 32×32, and the baseline models
took 19661 and 18022 steps respectively. For MRI and retinal fundus image experiments,
we used a resolution of 128× 128. The convergence of the training took 13107 steps for the
proposed ”half” model and 18022 for the proposed ”full” model on the MRI experiments.
The baseline models on single-source data sets took 29286 and 19661 steps to reach the
convergence. In the retinal fundus image experiments, the proposed ”half” model took
57384 steps to converge and the proposed ”full” model took 47937 steps to converge. The
baseline single-source models took 39601 and 30719 steps to converge.

Evaluation details Quantitative evaluation consists of image quality assessment and
controllability analysis. Image quality is evaluated using FID and KID, while controllability
is measured through the proposed strata prediction score. In this evaluation, test sets are
stratified for each covariate, divided into m = 3 marginal bins. Each marginal bin contains
33% of the total samples. With three covariates in our experiments, this results in 33 = 27
subsets. Regression models, specifically, ResNet50s, are employed in each stratum to predict
covariates from both test sets and generated images. A total of 15, 000 images are generated
for each stratum and the score is computed as the weighted (by stratum size) average of the
Pearson correlation coefficients of predicted outputs from generated and test set images.

For MorphoMNIST, the ResNet50 regression models yield high performance, with Pear-
son correlation coefficients of 0.978 for thickness, 0.996 for intensity, and 0.999 for slant.

On the real-world MRI data from the UKB cohort, ResNet50 regression models achieve
correlations of 0.78 for age, 0.97 for ventricle volumes, and 0.87 for grey matter volumes.
In the ADNI cohort, ResNet50 models for age, left hippocampus, and right hippocampus
achieve correlations of 0.964, 0.980, and 0.984 respectively.
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For retinal fundus images in the UKB cohort, ResNet50 models exhibit correlations of
0.863 for age and 0.910 for spherical power. The binary covariate cataract achieves an
accuracy of 0.70 and a Pearson correlation coefficient of 0.338 (we use Pearson correlation
to stay consistent with the other measures).

Prediction models were trained using ResNet18, ResNet50, and ResNet100, and the
model with the best performance was selected for our metric.

Appendix D. Parametric Models

In the example of training two sources, our proposed method, MSSG, requires latent models
f2 to approximate the hidden covariates cjhidd for the first source D1, and vice versa. In
this work, we designed latent space models by using parametric models with MLE. That
means that, e.g., in the case of a linear regression model, we also need to estimate the
standard deviation of the noise term in addition to the weights and bias. For example,
assume that the shared variable is age, the unique variable in source 1 is blood pressure,
and the unique variable in source 2 is sex. We may then fit a linear regression model
blood pressure = f1(age) = αage+β+ϵ with ϵ ∼ N (0, σ2) on data source 1 to estimate α,
β, and σ. At the same time, we fit a logistic regression to model E[sex] = sigmoid(γage+δ)
on data source 2 for γ and δ (i.e., f2(age) is 1 with probability sigmoid(γage + δ) and 0
otherwise). Given these models, for an instance from source 1 we can then e.g. randomly
sample from p(sex|age) given the logistic regression model f2(age).

D.1. Synthetic Data

Morphological digits We synthesize the MNIST dataset with the tool from Castro
et al. (2019), randomly split it into two data sources, and train on them with our proposed
method. The first data source has access to thickness, intensity, and digit. The second
data source has access to thickness, slant, and digit. We modified the data generation
process from Pawlowski et al. (2020) to generate synthetic morphological digits. Thickness
is sampled from a gamma distribution Γ. Given thickness, intensity, and slant are sampled
as follows:

thickness = 0.5 + ϵt, ϵt ∼ Γ(10, 5)

intensity = 191 · σ(0.5 · ϵI + 2 · thickness− 5) + 64, ϵI ∼ N (0, 1)

slant = 56 · tanh(0.3 · ϵS + thickness− 2.5), ϵS ∼ N (0, 1)

σ(·) is the sigmoid function. The value range of the intensity is therefore between [64, 255]
and the digits rotate in the range of [−56, 56].

To estimate the covariates in our latent model, for thickness, we use a beta distribution
thickness ∼ β(4.13, 9.84). Intensity and slant are estimated by conditioning on thickness,
p(intensity|thickness) and p(slant|thickness). We fitted the known covariates into
a non-linear least square function with the sigmoid function to optimize the parameters.
Figure 4 shows that our latent models can approximate the actual label distributions well
in both sources.
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Figure 4: Samples from latent models fit the ground-truth MorphoMNIST distributions. The blue
legend shows samples from the ground truth and the orange dots show samples from latent models.

D.2. Real-World Data

Brain MRI For model training, covariates are fitted into separate latent space models.
We show here also how latent models f j approximate the covariates cj . For the UK Biobank,
Figure 5(a) shows that ventricle volumes and grey matter volumes are estimated well by
the latent model with the given ages. age is rescaled to the interval [0, 1] and modeled by a
beta distribution, while ventricle and grey matter volumes, conditioned on age, can be
sampled together by a Gaussian mixture regression model with 10 Gaussian components.

In the ADNI data set, we have three covariates, age, left hippocampus, and right

hippocampus. Another 8-component GMM regression is applied to learn to sample the left
hippocampus and right hippocampus. Age is again modeled by a beta distribution (with
independent parameters) and the left and right hippocampus are predicted by age.
Figure 5(b) depicts the fit of the trained latent model for the left and right hippocampus,
conditioned on the age.

In Figure 6(a) we illustrate how sampling from either of the two latent models leads
to varying latent space distributions. Given that the UKB cohort exhibits a younger age
distribution, the latent space model trained on the ADNI dataset shows a distribution shift
when sampling hippocampal volumes based on the age distribution of the UKB.

Retinal fundus images The shared covariate age was modeled as a rescaled beta distri-
bution, with minimum and maximum values set based on observed data. The binary variable
cataract is incorporated into a logistic regression model conditioned on age. Spherical

power is modeled using a Gaussian Mixture Model regression with 13 Gaussian compo-
nents, also conditioned on age. Figure 6(b) shows the distributions of the ground truth la-
bels and samples from the latent model.
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Figure 5: Latent models sample the distributions of the UKB and ADNI cohorts in the MRI
experiments.
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Figure 6: Latent models in the MRI and retinal fundus images experiments.
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Appendix E. Additional Experimental Results

In this section, we show additional training information and KID scores in Table 3 for semi-
multisource scenarios and Table 5 for the real-world multisource MRI. Furthermore, the
evaluations of pairwise metrics for semi-multisource scenarios, i. e. LPIPS, SSIM, and PSNR,
are depicted in Table 4. Nevertheless, it is not possible to evaluate the real-world multisource
MRI with pairwise metrics, since the ground truth covariates do not necessarily exist.

E.1. Validation in synthetic data

MorphoMNIST The experimental results of KID in Table 3(a) differ slightly from FID
scores reported in Section 3.1. However, by boosting the data size, our proposed model
reduces the KID score and reaches comparable results. The proposed method can control
three covariates, whereas single-source models can only control the existing covariates in
data sets. Furthermore, Table 4(a) shows the results of pairwise metrics, i. e. LPIPS, SSIM,
and PSNR. In these evaluations, we compared generated with real images from the test set,
given the same covariates. The proposed method outperforms the single-source StyleGAN3
models. By doubling the data size, our proposed method performs slightly better in the
evaluations of SSIM and PSNR.

Table 3: KID ↓ and additional information in three different semi-multisource scenarios. “GM”
denotes grey matter volumes, “SP” denotes spherical powers.

(a) MorphoMNIST

Methods KID ↓ mean (std) Training samples Covariates

Source 1 (baseline) 0.00121 (0.00238) 24000 Thickness, Intensity
Source 2 (baseline) 0.00087 (0.00208) 24000 Thickness, Slant
Proposed (half) 0.00128 (0.00225) 24000 Thickness, Intensity, Slant
Proposed (full) 0.00088 (0.00278) 48000 Thickness, Intensity, Slant

(b) MRI: UKB

Methods KID ↓ mean (std) Training samples Covariates

Source 1 (baseline) 0.02681 (0.00418) 13414 Age, Ventricle
Source 2 (baseline) 0.00818 (0.00231) 13408 Age, GM
Proposed (half) 0.01632 (0.00260) 13411 Age, Ventricle, GM
Proposed (full) 0.00932 (0.00230) 26822 Age, Ventricle, GM

(c) Retina: UKB

Methods KID ↓ mean (std) Training samples Covariates

Source 1 (baseline) 0.02029 (0.00400) 1922 Age, Cataract
Source 2 (baseline) 0.00811 (0.00182) 1918 Age, SP
Proposed (half) 0.00926 (0.00201) 1920 Age, Cataract, SP
Proposed (full) 0.00333 (0.00124) 3840 Age, Cataract, SP
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Table 4: Pairwise metrics: LPIPS ↓, SSIM ↑, and PSNR ↑ in three different semi-multisource
scenarios.

(a) MorphoMNIST

Methods LPIPS ↓ mean (std) SSIM ↑ mean (std) PSNR ↑ mean (std)

Source 1 (baseline) 0.093 (0.004) 0.345 (0.013) 34.7 (0.143)
Source 2 (baseline) 0.122 (0.004) 0.326 (0.013) 34.8 (0.107)
Proposed (half) 0.064 (0.004) 0.468 (0.020) 35.5 (0.121)
Proposed (full) 0.065 (0.003) 0.471 (0.017) 35.6 (0.146)

(b) MRI: UKB

Methods LPIPS ↓ mean (std) SSIM ↑ mean (std) PSNR ↑ mean (std)

Source 1 (baseline) 0.102 (0.001) 0.611 (0.003) 31.5 (0.026)
Source 2 (baseline) 0.094 (0.001) 0.588 (0.003) 31.3 (0.021)
Proposed (half) 0.072 (0.001) 0.617 (0.003) 31.6 (0.035)
Proposed (full) 0.071 (0.001) 0.654 (0.003) 31.6 (0.030)

(c) Retina: UKB

Methods LPIPS ↓ mean (std) SSIM ↑ mean (std) PSNR ↑ mean (std)

Source 1 (baseline) 0.347 (0.006) 0.429 (0.008) 28.8 (0.020)
Source 2 (baseline) 0.221 (0.007) 0.541 (0.011) 28.9 (0.030)
Proposed (half) 0.204 (0.012) 0.572 (0.009) 29.0 (0.031)
Proposed (full) 0.193 (0.008) 0.581 (0.010) 29.0 (0.043)

E.2. Validation in real-world data sets

E.2.1. MRI

Synthetic multi-source MRI Similar to the experimental results for MorphoMNIST,
we provide results of KID in Table 3(b). The tendency of the results is similar to those
of FID reported in Section 3.2. However, the source 2 model performs better than our
proposed ”full” model. The proposed ”half” model performs comparably to the average of
the source 1 and source 2 models. Table 4(b) depicts the results of pairwise metrics. Besides
the evaluation of PSNR, in which the results are similar between the proposed method and
the baselines, the multi-source StyleGAN3 outperforms the single-source baselines on the
evaluations of LPIPS and SSIM.

True multi-source MRI Table 5 again shows the KID. Interestingly, our proposed
MSSG outperforms the specialized single-source UKB model on the UKB test set. Further-
more, on the joint test sets (UKB and ADNI) our model still reaches the lowest KID score
compared to the single-source models. Table 6 depicts the results of the controllability of
models.
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Table 5: KID mean (std) ↓ for each method in corresponding test sets in true multi-source MRI
setting

KID ↓ mean (std) Methods
Data sets Source UKB Source ADNI Multi-Source

UKB 0.00771 (0.00247) 0.08759 (0.00804) 0.00660 (0.00167)
ADNI 0.08897 (0.00956) 0.01353 (0.00355) 0.02674 (0.00438)
Joint 0.02848 (0.00698) 0.02182 (0.00525) 0.01023 (0.00344)

Table 6: CS: Correlation score ↑ on corresponding covariates in true multi-source setting. Vntr:
Ventricle, GM: Grey Matter, LH: Left Hippocampus, RH: Right Hippocampus

CS ↑ Methods
Covariates Source UKB Source ADNI Multi-Source

Age (UKB) 0.704 -0.163 0.509
Age (ADNI) 0.264 0.402 0.532

Vntr 0.958 -0.601 0.879
GM 0.827 -0.189 0.755
LH -0.316 0.865 0.696
RH -0.486 0.886 0.845

E.2.2. Retinal fundus images

Synthetic multi-source Retina Table 3(c) illustrates the KID scores of the models
alongside the number of training samples. Similar to the trends observed in Table 1 for
FID scores, the KID scores demonstrate a consistent pattern. The proposed “half” model
achieves a comparable score to the source 2 model and outperforms the average of the
source 1 model and source 2. Upon increasing data samples, the “full” model significantly
reduces the KID score. Additionally, despite being trained on a low-data-sample regime,
all models, besides the source 1 model, demonstrate the capability to generate high-quality
images. Table 4(c) shows similar results as from the MRI use case. Nevertheless, the results
are generally worse than those on the MRI data. This could be caused by the availability
of fewer data samples (< 2000 for each source). In general, our proposed multi-source
models reach lower LPIPS scores and higher SSIM scores, compared with the single-source
models. Nevertheless, the PSNR scores are comparable between multi-source and single-
source models.

Appendix F. Visualizing generated imaging from MSSGs

Here, we further explore the multi-factor manipulation capabilities visually.

F.1. Synthetic Data: MorphoMNIST
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Figure 7: Morphological digits generated using the proposed ”full” MSSG.

Synthetic multi-source morphological digits In this section, we present additional
examples generated by the multi-source GAN. These figures were produced through the in-
terpolation of covariate values, ranging from the minimal to the maximal values, specifically
within a 30% range. This approach ensures the exclusion of outliers with extreme covariate
values. As depicted in Figure 7 and Figure 8(a), the multi-source GAN adeptly controls
three continuous covariates—thickness, intensity, and slant. In Figure 7(a), the shared co-
variate thickness is set to the mean value of the test set, which is 2.9. Intensity and slant
are modified, with images exhibiting an increase in intensity column-wise, resulting in a
brighter appearance. Additionally, there is a rotation effect from left to right row-wise, rang-
ing from −21.3 degrees to 50.5 degrees. Conversely, Figure 7(b) demonstrates various com-
binations of covariates (thickness and slant) with a fixed intensity. Here, the images become
thicker column-wise, and there is a rotation effect from left to right within a single row. Fi-
nally, in Figure 8(a), the slant (covariate from Source 2) is set to a constant value, while the
generated images are controlled by thickness and intensity. In this scenario, the images be-
come thicker in a column-wise manner while intensifying from left to right within each row.

F.2. Real-World Data: MRI

Synthetic multi-source MRI We split UKB randomly into two data sources and trained
them with our proposed method. Here, we show more generated examples from the multi-
source GAN. We created the following figures by interpolating the values of covariates,
starting from the minimal 30% until the maximal 30%. Figure 8(b) and Figure 9 show the
multi-source model can control three covariates in parallel. Figure 8(b) shows the tendency
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Figure 8: Morphological digits and Coronal MRIs (two use cases) generated using the proposed
”full” MSSG.

that if ventricle volumes increase row-wise, the grey matter volumes decrease (the slits on
the edge of the brain becomes wider). On the other hand, if the grey matter volumes
increase column-wise, this causes the shrinkage of ventricle volumes. This is related to the
anatomical nature of these two covariates in Figure 5(a). Ventricle volumes can be controlled
monotonically well. In Figure 9(a), the age and grey matter volumes are modified. The
grey matter increases horizontally from left to right. However, the age-related changes are
quite small. Figure 9(b) shows the change in brains when the age and ventricle volumes are
manipulated. Again, the size of ventricle volumes increases monotonically.
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Figure 9: Coronal MRI were generated using our ”full” multi-source GAN.
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True multi-source MRI We also implemented our experiments on the true multi-source
data sets, i. e. UKB and ADNI. Figure 10(a), demonstrates control over a younger age
distribution from UKB while increasing volumes of the right hippocampus column-wise.
Additionally, in Figure 10(b), the model regulates an older age distribution from ADNI,
increasing grey matter volumes column-wise, with noticeable changes in brain volumes.
Figure 11 shows additionally that the proposed MSSG can not only control covariates, i. e.
ventricle volumes and left hippocampus, but also modify data sources. Figure 12 gives
two further examples that MSSG controls various covariates across two data sources and
generates reasonable images.
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(a) MSSG controls the younger age distribu-
tion from UKB row-wise. In the mean-
while, the right hippocampus is modified
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57
.0

68
.0

79
.0

674.5k

90
.0

738.6k 808.8k 885.7k

Generated Images

grey matter

ag
e

(b) MSSG regulates the older age distribu-
tion from ADNI row-wise and increases
grey matter volumes column-wise.

Figure 10: Generated MRI from the proposed MSSG trained on the UKB and ADNI.
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Figure 11: Generated MRI from the proposed MSSG in the true multi-source scenario by controlling
ventricle volumes and left hippocampus volumes.
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Figure 12: Generated MRI from the proposed MSSG in the true multi-source scenario by controlling
various covariates.
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F.3. Real-World Data: Retinal Fundus Images

Synthetic multi-source Retina The following images are also generated when two co-
variates interpolately increase from the minimal 30% until the maximal 30%. Figure 13 de-
scribes generated retinal fundus images by controlling these three covariates independently.
In Figure 13(a) the variable cataract is set to 0 (no cataract) while the age and spherical
power are modified between the interval of the minimal 30% and the maximal 30%. The
brightness of images changes with the increasing spherical power. In Figure 13(b) gener-
ated images with the cases of cataracts are generally more blurry and the vessels can not
easily be observed, while the colors of images turn more yellow and grey compared to non-
cataract retinal images. Furthermore, Figure 15 presents two more examples of generated
retinal images when the age is 59 years old. We can observe in Figure 15(a) and Fig-
ure 15(b) that generated images are diverse, even though they belong to the same class.
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(b) Generated cataract retinal images

Figure 13: Generated retinal fundus images by the ”full” multi-source GAN. Here, the model
controls ages and spherical powers.
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Figure 14: Retinal fundus images generated by the “full” multi-source GAN. The model controls
cataract and spherical power, age is set to 59. “CAT.” represents Cataract.
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(b) Another example for generated retinal
images with an age of 59 years

Figure 15: Two different seeds from the ”full” multi-source GAN when generating retinal images.
Here, the model controls cataracts and spherical powers. Generated images are various, even though
they belong to the same class. ”CAT.” represents Cataract.
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