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Abstract

We introduce Differential Performance Evaluation (DPE), a framework de-
signed to reliably evaluate Large Language Models (LLMs) for efficient code
generation. Traditional coding benchmarks often fail to provide reliable
insights into code efficiency, due to their reliance on simplistic test inputs and
the absence of effective compound metrics. DPE addresses these issues by
focusing on efficiency-demanding programming tasks and establishing an in-
sightful compound metric for performance evaluation. DPE operates in two
phases: To curate efficiency datasets, it selects efficiency-demanding tasks
from existing coding benchmarks and generates computationally expensive
inputs to stress the efficiency of LLM solutions. To assess the code efficiency,
DPE profiles the new solution and compares it globally against a set of ref-
erence solutions that exhibit distinct efficiency levels, where the matched
level defines its efficiency score. As a proof of concept, we use DPE to create
EVALPERF, a benchmark with 121 performance-challenging coding tasks.
Our comprehensive evaluation draws interesting findings on the efficiency
impact of model sizes, instruction tuning, and prompting. For example,
while the scaling law fails to account for code efficiency, general instruction
tuning benefits both code correctness and efficiency. We also evaluate the
evaluation by examining the effectiveness of DPE, showing that EVALPERF
is reliable and convenient to use even across platforms.

1 Introduction

With the increasing usage (GitHub, 2023; Amazon Web Services, 2023) of Large Language
Models (LLMs) for code generation, comprehensively evaluating these LLMs is crucial for
finding the next advancements. As such, the functional correctness in code generation (Chen
etal., 2021; Austin et al., 2021) has been well-studied, where given a coding instruction in nat-
ural language, LLMs produce solutions whose correctness is assessed through test execution.

While code correctness ensures the program performs its intended behaviors accurately,
code efficiency is equally crucial for building high-quality software. With the massive
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Figure 1: Overview of Differential Performance Evaluation
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deployment of coding copilots, these assistants can help developers write low-latency,
scalable, and cost-effective code by suggesting efficient algorithms, data structures, and
coding patterns. More importantly, code execution can be a bottleneck for running the
emerging Program-aided Language Models (Gao et al., 2023) (e.g., GPT-4), motivating the
generation of efficient code toward a smooth user experience.

Reasonably evaluating the code efficiency is important yet challenging. A naive evaluation
approach may simply record the execution runtime of validated solutions from existing bench-
marks. However, such a strategy fails to provide reliable performance insights for two reasons:

Limitation #1: Light computation. Existing coding tasks commonly involve minimal
computation, caused by small test inputs and simplistic control flow (e.g., adding two
numbers). However, it is not evaluation-friendly regarding code efficiency because lighter
computation can incur larger result flakiness at orders of magnitude (Appendix A.1) due to its
sensitivity to system noises. Meanwhile, code efficiency becomes less important at a tiny scale
since all complexities are “equal” when N is small. For example, a recursive implementation
can be no slower than an efficient iterative solution when computing the first few Fibonacci
numbers. Consequently, it is more meaningful to study code efficiency over large-scale data.

Limitation #2: Inadequate metric. Runtime speedup has been the de facto compound metric
in the literature (Mendis et al., 2019; Zheng et al., 2020; Baghdadi et al., 2021) of efficiency
optimization. While speedup is straightforward when studying a single optimization subject,
averaging speedups over multiple tasks is confusing when interpreting the overall code
efficiency of an LLM. For example, assuming model A is slower than B by 2x on 99 tasks
while outperforming B on the only task by 100, the average speedup says code from A

is generally faster than that of B by %3X994100x1 — 1 495  which may not align with general
user perception. While we defer detailed discussions in Appendix A.2, the misperception
comes from the huge scale variation of speedups across different tasks, calling for a more
insightful compound metric for code efficiency.

To this end, we propose Differential Performance Evaluation (DPE), a general framework to
curate performance-exercising programming challenges and perform effective code efficiency
evaluation. From the data and metric perspective, DPE argues that effective performance
benchmarking requires: (i) efficiency-challenging programming tasks to differentiate code
solutions, and (i) an unsightly metric to tell how far an LLM is to generate empirically optimal
code. At dataset curation time, DPE takes a set of coding tasks as input and transforms them
into tasks worth practicing for efficiency. Specifically, DPE generates performance-exercising
test inputs for each task by Synthesizing a Synthesizer (SAS). SAS prompts an LLM with
Chain-of-Thought (Wei et al., 2022) (CoT) few-shot learning to produce a scale-controllable test
input sampler. Next, we tune the sampler to generate challenging yet computable inputs via
exponential input sampling. Furthermore, we design filtering strategies to pick reliable tasks
for performance evaluation. For each performance-exercising task, DPE samples a rich set
of valid solutions and clusters them by performance characteristics. At evaluation time, DPE
profiles a given new solution along with reference solutions and the ranking of the matched
performance cluster determines its score. Below summarizes the contributions of this paper:

1. Dimension: While the correctness evaluation of code generation has been well studied,
we deliver a new and important aspect to the community by studying the data curation
and assessment for the efficiency evaluation of LLM-generated code.

2. Technique: We propose Differential Performance Evaluation (DPE) for effective efficiency
evaluation. DPE curates performance-demanding coding tasks by sampling synthesized
test input generators and using filters to ensure evaluator quality. A solution’s efficiency
is then globally assessed by referencing representative solutions.

3. Benchmark: Using DPE we create EVALPEREF, including 121 performance-exercising
programming tasks and test inputs. We also fully open-source and maintain the data
curation pipeline and evaluator at github.com/evalplus/evalplus as part of EvalPlus.

4. Study: We extensively study the code efficiency of popular LLMs and draw interesting
findings regarding the efficiency impact of model sizes, instruction tuning, and prompt-
ings. We also show that DPE can create inputs that are more performance-exercising
than prior art by 4.8 x and EVALPERF can lead to consistent performance evaluation even
across various platforms.
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2 Differential Performance Evaluation

Figure 1 illustrates the overview of Differential Performance Evaluation (DPE), including
(i) how to create a performance evaluation dataset to differentiate code performance (§§2.1
to 2.4); and (ii) how to evaluate new code solutions using the created dataset (§2.5).

At the high level, the input to the dataset creation phase is a set of programming tasks, e.g.,
from HumanEval (Chen etal., 2021) and MBPP (Austin et al., 2021). As output, DPE produces
a subset of performance-exercising tasks equipped with challenging test inputs. Specifically,
we follow the steps below to transform and select performance-exercising tasks:

1. Valid solution curation: Given a programming task, we collect a rich set of correct
solutions by sampling various LLMs and test execution.

2. Performance-exercising input generation: We maximize the performance difficulty of
a coding task by synthesizing a test generator aiming to produce costly test inputs.

3. Performance-exercising task selection: We profile validated solutions using performance-
exercising inputs and filter out tasks using various quality criteria.

4. Performance clustering: Based on the profiled performance, solutions for each task are
partitioned into several clusters for performance reference at evaluation time.

During evaluation, if passing the correctness tests, the new solutions are profiled to compare
against the reference solutions. Specifically, from slow to fast, the cumulative ratio of the
cluster that includes the matched reference solution is the efficiency score of the evaluated
solution. For example, in Figure 1 the new solution (the green box) matches the efficiency
of the representative solution of the “100%” cluster, leading to a score of 100 (%) for this task.

2.1 Valid Solution Curation

To start with, DPE takes a set of programming tasks as inputs and assumes such tasks are
equipped with task descriptions (i.e., base prompts for the LLMs) and correctness tests. For ex-
ample, these tasks can come from existing coding benchmarks such as HumanEval and MBPP.
Next, we sample plausible solutions from diverse code LLMs and validate these solutions via
test execution. Because correctness is the prerequisite for performance, we comprehensively
validate plausible solutions using the rigorous tests from EvalPlus (Liu et al., 2023a).

2.2 Synthesizing a Synthesizer: Performance-Exercising Input Generation
While performance-exercising inputs
are crucial, automating their creation LSRR

: PR Generate function ‘perf_input_gen(scale: int)' to produce a "large"
can be Challenglng, asitisnot always input to exercise the efficiency of the “prime_num® function:

as simple as producing large integers.
This is because these programming
problems can define “large” inputs
differently and require various struc-
tural and semantic constraints. For
instance, when testing is_prime(n),
a randomly large n often leads to a
quick path of False since most num-
bers are divisible by smaller numbers
(e.g., half of the integers are divisible
by two). Instead, the desirable test
inputs are large prime numbers.

To this end, we propose Synthesizing
a Synthesizer (SAS) to automatically
produce performance-exercising in-
puts of different programming tasks
by prompting powerful code LLMs
to generate test generators. Further-

. Ground-truth Solution
"""Wprite a function to check if a number is prime"""
import math
def prime_num(num):

if num < 2: return False

for i in range(2, math.isqrt(num)):

if num % i = 0: return False
return True

@ Chain of Thoughts

Analysis:

1. Input format: An integer 'n’

2. Time complexity: 0(n)

3. Space complexity: 0(1)

4. What kind of input can exercise its perf? Large prime numbers

4 Input Generator

# can reuse the “prime_num’ function
# larger ‘scale’ means larger input
# use case: prime_num(xperf_input_gen(scale))
def perf_input_gen(scale: int):
for i in range(scale, 2, -1):
if prime_num(i): return (i,)
return (2,)

Figure 2: Exemplifying Synthesizing a Synthesizer.
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more, the generator function is controllable through a scale factor, allowing for tuning the
complexity of generated test inputs.

Generating input generator. SAS applies few-shot prompting with Chain of Thoughts (CoT)
for input generator synthesis, exemplified in Figure 2. Specifically, the end goal of prompting
is to obtain the generator function (i.e., perf_input_gen) illustrated in the “Input Generator”
block (at the bottom). The generator function takes a scale factor as input and outputs
performance-exercising test inputs according to the scale. The generator is expected to
respect monotonicity over the scale factor, i.e., a larger scale factor should lead the generator
to produce a more challenging input. The context for generating the generator includes
three parts: (i) an instruction clarifying the goal of code generation; (ii) a ground-truth
solution helping the LLM understand the overall semantic and complexity; and (iii) a few
question-answer pairs to activate CoT reasoning of the task complexity. By initializing the
prompt using such few-shot samples, we further load the “instruction” and “ground-truth
solution” block for a programming task under test synthesis and let a generative LLM follow
the few-shot demonstration and produce a test input sampler.

Exponential input sampling. For each coding task, we sample performance-exercising inputs
by running the generator function (i.e., perf_input_gen) using different scale factors (i.e.,
scale). Specifically, we start by setting the scale factor to 1 and sample test inputs by doubling
the factor round by round. The sampled test inputs are evaluated through execution, and we
stop generation when an input hits a time or memory limit on any validated solution (§2.1).
By expanding the scale factor exponentially, we obtain the most performance-exercising
input within our computational limits. Meanwhile, we use test execution to drop ill-formed
generators and retry another sample of input generators at failure.

Insight. Prior work (Liu et al., 2023a; Li et al., 2022) also prompts LLMs to generate test inputs
directly. However, such an approach is inapplicable for generating challenging inputs whose
text representation can be huge, blowing up the context limits of LLMs. Meanwhile, it is also
hard for LLMs to strictly follow the structural requirements and diversify the inputs during
long-context generation. Hence, we highlight the indirect generation of complex test inputs
via input generator synthesis. Recently, Zhang et al. (2023) proposed ALGO which uses
ChatGPT Code Interpreter to create input generators for exhaustive validation. Different
than ALGO, SAS aims for performance-exercising inputs via few-shot CoT and scale tuning,
which does not rely on the powerful ChatGPT Code Interpreter.

2.3 Performance-Exercising Task Selection

Even with the most challenging test input, a programming task might not meet the
requirement of performance diversity and runtime variation (e.g., add two numbers). Con-
sequently, we propose filtering strategies to drop undesired programming tasks. For every
programming task, we profile all valid solutions {s1,s,,--,5, } curated in §2.1 multiple times.
Therefore, for solution s; we profile its execution for k times and obtain a list of execution

time! T;=[t1, - t;]. As such, a selected programming task must meet the following criteria:

1. Sufficient computation: A performance-exercising task must experience a reasonably
long execution. As such, we require min{mean (T;) | i € [1,n] } > t;,s;,, meaning that the
execution of any solution must run longer than #,,gj.

2. Low performance variation: We require Poo{CV(T;) | i € [1,n]} < CVipesn, where
CV(T;) =std(Ti) /mean(T;), i.e., coefficient of variation, and Pog is the 99% largest variation.

3. Performance diversity: We apply a clustering method (to be discussed in §2.4) to
adaptively cluster the solutions into several groups at different levels of efficiency.
Therefore, we require the number of output clusters to be greater than K where K > 1.

2.4 Adaptive Performance Clustering

Given a performance-exercising task, we cluster its reference solutions by their performance
characteristics and use them to differentiate new solutions at evaluation time.

IFor clarity, in this section, we use “execution time” or “runtime” to refer to the execution cost,
which in practice can be generalized to other metrics such as the number of instructions.
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def thresh(t): # smaller runtime = higher variation, needs larger thresh
return BIAS + math.sqrt(WEIGHT / t)

def clusterld(timeld: List[float]) — List[List[float]]:

timeld = np.sort(timeld)[::-1] # slow to fast

rdiff = -np.diff(timeld) / timeld[:-1] # relative drop in 0-100%
splitters = [i+1 for i, r in enumerate(rdiff) if r > thresh(timeld[i])]
return np.split(timeld, splitters) # return a list of clusters

Figure 3: The algorithm to adaptively segment solutions for each task based on their efficiency.

Figure 3 elucidates our adaptive clustering algorithm. Commencing from Line 4, the cluster-
ing algorithm takes a list of mean execution time (i.e., 1-dimension) as input and dynamically
partitions them into clusters based on their relative scale. Subsequently, we sort the execution
time from slow to fast in Line 5. Denoting the sorted time1d as T = [f,f,, -+, F¢], in Line 6, we
compute the relative difference in percentage, i.e., 6f; = t’}ﬁ Following this, in Line 7, the al-

gorithm employs an adaptive thresholding mechanism to determine the segmentation points
over the sorted T. Considering Figure 6, which indicates that smaller executions often exhibit
larger variations, Line 7 calls the adaptive thresholding function in Line 1 which produces
larger thresholds for smaller runtime. Specifically, to build a segmentation pointatt; (leftinclu-
sive), the algorithm mandates that 6t; > bias ++/w/i;, where bias and w are hyper-parameters
of the threshold minima and scale, respectively. Therefore, in Line 8, the algorithm returns
the runtime clusters for each task by splitting them over the provided segmentation points.

2.5 Efficiency Scoring by References

In the final stage of dataset curation, we retain the slowest solution per cluster along with its cu-
mulative percentage in each task. These solutions serve as benchmarks for efficiency scoring.
During evaluation, both the reference solutions and the new solution are profiled in the same
environment for performance assessment. Notably, we opt for a single representative solution
per cluster as profiling all solutions during evaluation would be extremely time-consuming.

Differential Performance Score. For each task, we denote the reference solutions from the
m clusters as [s1,52,++,5] and their corresponding cumulative ratios [r1,r2,--,*n| (r1 >0 and
rm =100%). Meanwhile, we profile each reference point multiple times and obtain its mean
runtime #;. Given a new and validated solution s* to evaluate, we use the same profiling pro-
cedure and obtain a mean runtime of t*. As such, we compute a Differential Performance Score

(DPS) for s* as max <{O} U{ri [E:>E Yiepm ) , i.e., the cumulative ratio of the reference that
is immediately slower than s*. In addition, we also provide a normalized version of DPS by
ablating the volume of solutions at each level, i.e., DPSporm =max ({0} U{L|E>F}ie [1,,11]) .

The above discusses how to compute the performance score for one coding task, to compute
the dataset-wise performance score we simply average over all passed tasks.

Exemplification. For example, a DPS of 80% implies that overall the LLM generates code
whose efficiency can match or improve 80% of all LLM-generated solutions. Similarly, a
DPSnorm of 80% indicates that the code efficiency of the LLM can overall match or improve
80% of performance clusters, by ignoring the size of each cluster.

Lastly, DPS is not free as it requires to collect reference solutions of diverse efficiency levels.

3 EVALPERF: A Benchmark for Code Efficiency Evaluation

Based on Differential Performance Evaluation, we build EVALPERF, a new dataset with 121
performance-exercising programming tasks, for effective evaluation of code efficiency.
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We put HumanEval+ (164 tasks) and MBPP+ (399 tasks) together as the initial tasks to DPE,
given their more rigorous tests (Liu et al., 2023a) to safeguard correctness. To echo §2.1, we
sample and test code solutions from 21 open LLMs that achieve over a pass@1 score of 50 on the
EvalPlus leaderboard (Xie et al., 2024), where we sample 50 solutions for each model at a tem-
perature of 0.8 for diversified generation. Next, we generate test input samplers (§2.2) using
two few-shot samples and we start the generation at the “Chain of Thoughts” block in Figure 2
right after providing the ground-truth solution. Specifically, we use AWQ-quantized (Lin
et al., 2024) DeepSeekCoder-instruct-33B (DeepSeek Al, 2023) as the generative LLM to
produce 16 input generator samples for each task at a temperature of 0.8. We then sample
concrete test inputs from these generators, starting with a scale factor of 2! and increasing it
exponentially until hitting the 20-second time wall or the 16GB memory wall. Of course, some
generators could be broken and we filter them out via the running itself and its generated tests.

Task selection and clustering require profiling of these solutions. Specifically, we use the
number of executed assembly instructions as the profile metric. This profile can be easily and
natively obtained by querying the Performance Monitoring Units (PMU) of modern CPUs
through system calls, such as perf_event (Weaver, 2013a) in Linux, which is pervasively
available on most platforms. Compared to physical runtime, the #instruction is much more
stable, resulting in negligible variation. Compared to software profilers such as architecture
simulators, hardware counters provide low overhead (Wikipedia, 2024) and are easy to use
through simple system calls. As such, we profile the #instructions for each solution over
the performance-exercising input and filter the tasks using the criteria in §2.3. Specifically,
we filter out tasks whose solutions can finish in #4,,.s;, = 10k instructions which is the scale of
instructions for printing “hello world”. We omit the variation criterion as we use the hardware
performance counters for cost measurement. For clustering (§2.4), we set the base threshold
(i.e., bias) as 20% and the weight (i.e., w) as 10k instructions for the adaptive threshold function
in Figure 3, and for diversity require each task to have at least K =4 performance clusters. As
such, we build EVALPERF, a dataset with 121 performance-exercising coding tasks, equipped
with computationally challenging inputs and solutions for performance reference.

Lastly, our future efforts will continuously extend EVALPERF using more coding tasks.

4 Evaluation

In §4.1 we study the code efficiency of recent code LLMs on EVALPERF and in §4.2 we
evaluate the effectiveness of Differential Performance Evaluation.

4.1 Evaluating Code Efficiency

Setup. Following recent work (Lozhkov et al., 2024), we evaluate the performance as well as
the correctness of programs synthesized by a series of open model families, including CODEL-
LAMA (Rozieére et al., 2023), DeepSeekCoder (DeepSeek Al, 2023), StarCoder (Li et al., 2023),
and StarCoder2 (Lozhkov etal., 2024). For proprietary models, we evaluate GPT-4 Turbo (Ope-
nAl, 2023) (i.e., gpt-4-0125-preview) which is to date the leading model on the EvalPlus
leaderboard (Xie et al., 2024). Specifically, we use up to four variants for each model type:

1. base: the base pre-trained model without instruction tuning.

2. instruct: the instruction-tuned model using its specialized instruction format.

3. perf-instruct: the instruction-tuned model using a prompt asking the model to “solve
the programming task efficiently by writing a fast implementation”.

4. perf-CoT: the instruction-tuned model with a zero-shot chain-of-thought prompt (Kojima
etal., 2022) by adding “Think step by step” before the perf-instruct prompt.

By default, we generate 50 samples at a temperature of 0.2 for each programming task
following Lozhkov et al. (2024). Yet, for cost mitigation, we limit it to 10 samples for GPT-4
Turbo. This approach is justified by the GPT-4 Turbo’s higher accuracy in generating correct
code. For correctness evaluation, we compute a comprehensive pass@1 on the sum of 164
HumankEval+ tasks and 399 MBPP+ tasks. For code efficiency analysis, for each task, we
compute the average DPS and DPSyorm values for the first 10 correct solutions in the 50
samples and report the score averaged across all tasks. Notably, we compare models in a
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Figure 4: Pairwise comparison of DPS with model variant pairs. Each pair of variants is com-
pared over the common set of passing solutions. Within each block, the bottom-left number
comes from the corresponding variant in the y-axis and the top-right number is for the x-axis.

pairwise fashion and compute the efficiency scores over the common set of passing solutions
to eliminate correctness inconsistency.

Impact of instruction tuning. Code instruction tuning finetunes the base model over
high-quality code which can significantly improve the correctness in code generation (Wei
et al., 2024; DeepSeek Al, 2023). Surprisingly, as is suggested by Figure 4, correct code
generated by instruction-tuned models also tends to be more efficient than that of the base
model (except for StarCoder2-15B). For example, instruction-tuned DeepSeekCoder-6.7B
improves the base model by 19% regarding DPS. This interesting finding implies that general
instruction tuning methods can improve multiple code quality aspects beyond correctness,
even if the existing instruction tuning methods were not designed to optimize code efficiency.

Impact of prompting. For instruction-following models, besides the general chat template
(i.e., instruct), we also use two performance-encouraging zero-shot prompting methods
(i.e., perf-instruct and perf-CoT). Overall the performance-encouraging prompts neither
consistently nor noticeably improve the code efficiency compared to using the basic
prompting method. This shows that existing models are still weak in following such
instructions, calling for future work to improve the instruction-following abilities of
code LLMs. In the Appendix, Table 3 also shows that performance-encouraging prompts
commonly lead to correctness degradation in code generation.

Impact of model sizes. It has been

a general conclusion that larger SO RN PSS\ RO S S
models within a model family can ;[ 85 805 &I w90 784 7m0 e0s
often generate more accurate code. momr Tl 1 wme wme | ] ms e
Figure 5 explores how parameter . 868 837 | o | [ - (&1
sizes within the same model family 138 . 900 7z
impact the overall code efficiency. s 138 3B

Within the 12 pairs in Figure 5,
there are seven cases where a larger
model in the family outperforms
the smaller one regarding code ef-
ficiency, e.g.,DeepSeekCoder-6.7B-
Instruct improves the DPS of the 1.3B version by 14% and there is an 8.7% improvement from
StarCoder2 7B to 15B. However, performance degradation with > 1% loss also happens 4
times, e.g., in the worst case, there is a 6% degradation between the 3B and 7B versions of
StarCoder2 base models. This underscores a new finding — the scaling law (Kaplan et al., 2020)
persists for code correctness but does not seem explicit for code efficiency, calling for future
research in modeling and data curation to improve efficiency in code generation models.

CodeLlama (instruct) DeepSeek-Coder (instruct) StarCoder2 (base)

Figure 5: Pairwise DPS comparison with models of
different parameter sizes.
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Lastly, we defer more evaluation details in Appendix A.3.

4.2 Evaluating the Evaluation

SAS vs. EvalPlus. EvalPlus (Liu et al., 2023a) generates an abundance of test cases, some
of which could be already performance-exercising. Therefore, we use EvalPlus as a baseline
to evaluate the performance difficulty of test inputs generated by SAS. Specifically, we use
the filtering criteria in §2.3 as the evaluator and compare the number of retained tasks using
the most challenging inputs of both methods, i.e., more is better.

Table 1 shows the results. We start

with a total of 563 tasks from Hu- Total Filtering

manEval+ and MBPP+. Of these, (C>10)  >10kinstr. +#Cluster >1
for 342 tasks, we are able to obtain  EyalPlus 204 5
at least 10 validated solutions (§3). 58 (Ours) 563 (342) 271 1

Using the criteria of “enough com-
putation” which asks for test execu-
tion of over 10k instructions, the most
performance-challenging EvalPlus in-
puts pass 204 out of 342 tasks (i.e.,
60%), whereas SAS improves it by 1.3 x for enabling 271 tasks (i.e., 79%) with inputs that
exhibit larger computation. Meanwhile, since our cost measurement is based on hardware
counters (§3), the variation-related criterion does not apply here. The clustering criterion
allows tasks with at least 4 clusters of different performance characteristics. By applying this,
EvalPlus-enabled tasks further reduce to 25 out of 204 (i.e., 88% drop), whereas SAS stands
out by passing 121 tasks, resulting in a relative improvement of 4.8 x.

Table 1: Retained tasks after different filtering phases
using inputs from EvalPlus and SAS. C > 10 refers to
tasks with at least 10 correct solutions from sampling.

Cross-platform variation. A usable and reliable benchmark must easily run on various plat-
forms and draw consistent conclusions. As such, we study the result consistency of EVALPERF
over different test beds. Table 2 lists the DPS and DPS;orm 0f three instruction-tuned models
over 4 test-beds, covering a wide range of configurations covering desktop-, workstation-, and
server-scenarios. With the emergence of heterogeneous CPUs, we also include a desktop using
a heterogeneous architecture, i.e., 19-12900K with 8 performance cores and 8 efficiency cores.
All of these testbeds are equipped with hardware counters (which are widely available), allow-
ing for efficient profiling of #instructions. Specifically, Table 2 demonstrates that EVALPERF
overall leads to very consistent conclusions, with a maximum coefficient of variation at 0.4%.
Meanwhile, the evaluation takes approximately no more than 15 minutes for most evaluated
models (i.e., up to 10 profiled solutions for each of 121 tasks). This highlights the reliability and
usability of the EVALPERF dataset as well as the DPE methodology. The low cross-platform
variation comes from two major design choices: (i) Differential evaluation: in DPE the score is
determined by the relative position compared against reference solutions which differentiate
each other significantly; and (i) Hardware performance counters: using hardware counters we
can efficiently obtain reliable #instructions of profiled execution despite system noises.

Desktop Desktop  Workstation Server
i7-10700K i9-12900K TR Pro 5975WX Xeon6442Y CV
8Cores 8P & 8E Cores 32 Cores 48Cores (%)

64GB RAM 64GBRAM 256GBRAM  512GBRAM
CODELLAMA-70B DPS 79.2 79.4 79.4 788 0.3
instruct  pps,gm, 75.4 759 75.2 751 04
DeepSeekCoder-33B ~ DPS 85.4 85.6 85.5 854 0.1
instruct  pps. ., 78.6 78.5 78.6 784 0.1
DPS 90.5 90.0 90.7 899 04

GPT-4 instruct

DPSnorm 79.9 79.8 79.9 799 01

Table 2: Cross-platform variation of the mean Differential Performance Score.
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5 Related Work

The correctness of general code generation is one of the most studied evaluation aspects.
APPS (Hendrycks et al., 2021) and MBPP (Austin et al., 2021) curate Python problems
with tests from coding websites. Meanwhile, HumanEval (Chen et al., 2021) includes 164
Python programming tasks manually designed from scratch. Yet, Liu et al. (2023a) shows
that existing benchmarks have limited tests and proposes to extend the test coverage using
automated test generation, creating HumanEval+ and MBPP+. Meanwhile, these Python
tasks are translated to other languages for multilingual evaluation (Cassano et al., 2022;
Athiwaratkun et al., 2022; Zheng et al., 2023). Furthermore, benchmarks also cover important
domains such as data science (Lai et al., 2022; Yin et al., 2022; Zan et al., 2022), repository-level
generation (Ding et al., 2023; Liu et al., 2023b), software development (Jimenez et al., 2023),
security (Pearce et al., 2022), open-domain generation (Wang et al., 2023; Zhuo et al., 2024),
and code understanding (Gu et al., 2024; Muennighoff et al., 2023; Liu et al., 2024). It is also
important to avoid contamination in evaluation (Jain et al., 2024).

In terms of code efficiency, recent work PIE (Shypula et al., 2023) creates a benchmark to eval-
uate the program optimization capability of LLMs given base C++ programs. Furthermore,
PIE (Shypula et al., 2023) employs CPU simulators to profile code execution to address the
reproducibility concern. As a general evaluation mechanism, DPE (ours) as a meta technique
can be applied to evaluating code generation and optimization, and also use CPU simulators
for measurements. More concretely, our EVALPERF dataset based on DPE focuses on
evaluating the code efficiency of the setting of direct code generation, which is more realistic
in daily software development where oftentimes a base reference program is not available.
Meanwhile, for measurement of computational cost, EVALPERF uses hardware performance
counters that are low-overhead, reliable, and easy to use, explained in Appendix A.2.

At the time when the paper is accepted, there have been emerging sibling benchmarks for eval-
uating efficiency in code generation (Huang et al., 2024; Qiu et al., 2024; Waghjale et al., 2024).
While these benchmarks consider additional source tasks (e.g., those from LeetCode) and effi-
ciency aspects (e.g., memory usage), they still suffer from limitations including test computa-
tion insufficiency and relying on variation-sensitive compound metrics like average speedups.
DPE as a meta-evaluation framework complements these new works and addresses these
limitations by automatically creating performance-exercising test inputs and a stable com-
pound metric mechanism for code efficiency. In addition, we suggest ablating impacts of
the correctness dimension in efficiency evaluation, by comparing different models over a
common set of passing tasks rather than the unaligned whole test suite (Huang et al., 2024).

6 Conclusion

This paper presents Differential Performance Evaluation (DPE), a novel framework to
effectively assess the efficiency of code generated by Large Language Models (LLMs).
By improving the computational complexity and metric mechanism of existing program
synthesis benchmarks, DPE provides a general and robust approach to reasonably evaluate
code efficiency. DPE includes two phases: (i) making a performance-exercising benchmark;
and (ii) evaluating the global performance of new solutions. In the data curation phase, DPE
transforms tasks into challenges that rigorously test code efficiency. In the evaluation phase,
DPE profiles new solutions against reference solutions with representative performance
characteristics. DPE is general, and based on it we create EVALPERF, a benchmark with 121
performance-challenging coding tasks.

Our evaluation based on EVALPERF reveals new insights into the impact of instruction
tuning, promptings, and model sizes on code efficiency. Meanwhile, the evaluation of DPE
itself showcases its effectiveness, reliability, and simplicity in performance benchmarking,
even across various platforms.
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A Appendix

A.1 Runtime Variation at Different Runtime Scales

We profile each validated solution sample from §3 5 times and draw the relation of its runtime
variation and mean runtime in Figure 6, on the i7-10700K desktop (Table 2) without any other
mandatory processes running. Specifically, the X-axis presents the mean runtime and the
Y-axis presents the Coefficient of Variation (CV). Each blue dot in Figure 6 corresponds to
a data point of one profiled solution and the purple bars draw the mean variation for each
runtime magnitude at the scale of 10x. Figure 6 shows that in practice smaller executions
are more sensitive to system noise despite using a clean test bed. This motivates the necessity
of using large computations for robust and meaningful performance benchmarking.
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Figure 6: Distribution of runtime variation over the runtime scale.

A.2 Discussion of Performance Measurement and Metrics

In this section, we discuss the pros and cons of different performance measurement methods
as well as the commonly used metric of relative speedup.

Measurements. There are three primary measurements in the context of machine learning
for code performance.

1. Physical runtime is the most commonly used metric for performance comparison (Mendis
etal., 2019; Zheng etal., 2020; Zhou et al., 2020; Baghdadi et al., 2021; Mirhoseini et al., 2017).
While physical runtime is easy to measure and can reflect physical differences, it can incur
high variation in repetitive executions, especially in noisy environments (e.g., shared cloud
platforms that run various applications). As it is difficult to control the system noise when
running performance benchmarking in the wild, it oftentimes challenges reproducibility.

2. Architecture simulator is used by Shypula et al. (2023) to address the cross-platform
reproducibility issue. Architecture simulators such as Gem5 (Binkert et al., 2011) use
software to simulate the CPU behaviors when executing a program and therefore its
reproducibility is guaranteed by software. However, also because it is a software-based
approach, simulating the program execution is oftentimes much slower than native
execution and does not necessarily reflect the physical performance. Meanwhile, it is also
not user-friendly to set up and run such simulators for interpreter-based programming
languages such as the commonly used Python.

3. Hardware performance counter (Wikipedia, 2024) is used by EVALPERF (ours) to natively
record the number of executed instructions between two program points. There are
several benefits of using hardware counters: (i) Usability: performance counters are easy
to use that one can simply query system calls between two program points to obtain the
profile; (ii) Efficiency: performance counters only incur light-weight overheads (Weaver,
2013b); (iii) Reproducibility: the reported #instructions are highly reproducible that the
observed variance of repeated executions are at most a few hundred instructions (e.g.,
caused by context switch), whereas most computations in our benchmark can use billions
of instructions. Note that #instructions might vary across platforms due to different
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hardware and software settings. However, because EVALPERF follows DPE to determine
performance ranking by referencing representative solutions, such inconsistency becomes
invisible when computing DPS on different test beds, shown in Table 2. Last but not least,
it does not mean that hardware counter can always replace simulators given that one of its
major use cases is to mimic the behaviors of certain CPUs without having them physically.

Relative speedup is also a commonly used compound metric that is agnostic to the
measurements mentioned above. Although straightforward for direct comparisons between
two programs, its applicability becomes less clear across a broad range of tasks. This is
because the degree of speedup varies significantly across different tasks, with the average
speedup often skewed by tasks that allow for substantial improvements, such as optimizing
an iterative solution over a recursive one for the n-th Fibonacci number calculation. This
variability can lead to confusion, making it challenging to discern whether observed
efficiency gains reflect a holistic improvement or are merely the result of optimizations for
anarrow set of highly improvable tasks.

To overcome these limitations, Differential Performance Evaluation (DPE) defines a new
metric, termed Differential Performance Score (DPS). Specifically, DPS for each task has a
consistent range from 0 to 100% which stands for its empirical global performance position.
This metric allows for an immediate understanding of a solution’s effectiveness and the
distance to optimal performance by comparison with benchmark solutions, providing a more
nuanced and scalable approach to evaluating program efficiency improvements.

A.3 Extended Results of Code Correctness and Efficiency

In this section, we complement §4.1 to show more result details in the code efficiency
evaluation of LLMs. Specifically, Table 3 lists the detailed correctness on three sets of tasks
and the performance scores of both DPS and DPSporm on EVALPERF. The sample-wise
performance scores are consolidated by calculating the average, maximum, and minimum
scores within the initial 10 samples of each task and then we aggregate the task-wise score by
computing the average. Notably, different than the main evaluations in §4.1, efficiency scores
in this section are computed over all passing tasks within each model for global comparison,
i.e., the correctness can impact the set of tasks that are used to compute the efficiency scores.

Moreover, Figure 8 offers a side-by-side comparison with Figure 7, illustrating DPSporm
against DPS. Compared to DPS, DPSporm on EVALPEREF tasks tend to be lower, indicating
that the distribution of correct LLM samples is skewed to slower implementation. This is
expected, as crafting efficient code often presents a greater challenge. Interestingly, while
GPT-4 Turbo achieves the best DPS in Figure 7, using DPSporm the best-performing model
becomes DeepSeekCoder-6.7B-instruct. This indicates that GPT-4 Turbo can generate code
that is faster than the majority while DeepSeekCoder-6.7B-instruct tends to generate code
that is on top of various efficiency levels.

Additionally, Figure 9 and Figure 10 show the correctness scores by computing pass@1 for
the 121 EvalPerf tasks. Interestingly, we see a trend of reversed scaling law on CODELLAMA
model family that smaller CODELLAMA models even achieve better pass rate. Despite this,
other findings are overall consistent with that of Figure 7 and Figure 8.
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Correctness (pass@1) DPS DPShorm
HE+ MBPP+ EVALPERF Avg Max Min | Avg Max Min
CODELLAMA-7B base | 35.9 46.4 728 | 793 858 714 | 75.6 80.2 695
instruct | 36.8 445 869 | 80.6 80.7 802 | 773 775 771
perf-instruct | 33.0 441 90.5 | 80.1 802 798 | 773 773 77.0
perf-CoT | 32.5 441 913 | 778 783 774 | 745 749 743
CODELLAMA-13B  base | 38.7 50.4 76.7 | 75.6 80.6 67.7 | 745 77.2 70.0
instruct | 40.2 50.6 889 | 80.3 80.7 787 | 758 763 752
perf-instruct | 37.4 494 820 | 809 822 794 | 765 773 75.7
perf-CoT | 36.4 491 859 | 787 809 755|755 768 735
CODELLAMA-34B  base | 44.0 53.4 716 | 73.0 806 642 | 720 76.0 67.7
instruct | 45.1 53.0 88.1 | 819 826 795|786 79.0 77.7
perf-instruct | 43.3 50.7 87.1 | 79.8 820 783 | 785 792 778
perf-CoT | 41.7 49.7 85.1 | 81.8 83.8 80.2 | 79.6 81.2 78.7
CODELLAMA-70B base | 50.2 529 755 | 759 848 658 | 73.8 793 68.6
instruct | 62.5 60.2 81.7 | 79.2 854 712 | 754 793 70.1
perf-instruct | 59.3 59.0 771 | 79.5 826 722 | 764 781 724
perf-CoT | 60.2 58.6 788 | 769 822 713 | 746 786 70.8
DeepSeekCoder-1.3B base | 25.6 459 743 | 747 794 696 | 746 780 71.1
instruct | 59.0 50.7 84,5 | 80.0 83.6 762 | 755 779 739
perf-instruct | 59.4 49.5 84.2 | 82.0 845 792 | 76.7 779 75.6
perf-CoT | 60.3 47.0 754 | 771 826 695 | 741 777 699
DeepSeekCoder-6.7B base | 36.3 55.2 713 | 733 809 642 | 706 748 659
instruct | 74.9 63.2 929 | 89.9 90.7 885 | 814 81.6 80.9
perf-instruct | 74.4 60.7 872 | 863 879 842 | 793 802 780
perf-CoT | 70.5 59.9 834 | 818 885 745 | 781 820 746
DeepSeekCoder-33B base | 42.3 60.6 80.5 | 792 842 721|742 776 702
instruct | 74.6 67.5 922 | 854 874 823 | 78.6 79.7 767
perf-instruct | 71.6 66.5 853 | 863 879 843 | 791 803 77.9
perf-CoT | 73.2 64.4 842 | 824 860 762 | 786 818 750
StarCoder-3B base | 17.1 35.4 593 | 803 86.1 715|779 823 724
StarCoder-7B base | 24.0 40.5 633 | 832 870 771 | 783 80.7 748
StarCoder-15B base | 28.7 48.1 66.7 | 804 850 763 | 756 783 734
StarCoder2-3B base | 26.1 45.7 694 | 805 841 765 | 776 80.1 749
StarCoder2-7B base | 294 454 683 | 738 81.6 653 | 736 779 695
StarCoder2-15B base | 37.8 54.2 740 | 82.1 882 738 | 772 807 732
GPT-4 Turbo instruct | 81.7 73.0 97.1 | 885 898 863 | 763 782 746
perf-instruct | 82.3 71.2 949 | 905 922 875|799 813 774
perf-CoT | 83.5 71.2 96.7 | 91.5 94.6 903 | 79.7 82.6 77.7

Table 3: Overall correctness and efficiency using 10 samples with temperature=0.2. Scores
within one point of the best score per model are highlighted.
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Figure 7: DPS on EVALPERF v.s. pass@1 on HumanEval+ and MBPP+.
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Figure 8: DPSporm on EVALPERF v.s. pass@1 on HumanEval+ and MBPP+.
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Figure 9: DPS on EVALPERF v.s. pass@1 on 121 EVALPERF tasks.
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Figure 10: DPSporm on EVALPERF v.s. pass@1 on 121 EVALPERF tasks.
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