
FiRST: Finetuning Router-Selective Transformers for Input-Adaptive
Latency Reduction

Anonymous ACL submission

Abstract
Auto-regressive Large Language Models001
(LLMs) demonstrate remarkable performance002
across different domains such as vision and lan-003
guage processing. However, due to sequential004
processing through a stack of transformer lay-005
ers, autoregressive decoding faces significant006
computation/latency challenges, particularly in007
resource-constrained environments like mobile008
and edge devices. Existing approaches in liter-009
ature that aim to improve latency via skipping010
layers have two distinct flavors - 1) Early exit,011
and 2) Input-agnostic heuristics where tokens012
exit at pre-determined layers irrespective of in-013
put sequence. Both the above strategies have014
limitations - the former cannot be applied to015
handle KV Caching necessary for speed-ups016
in modern framework and the latter does not017
capture the variation in layer importance across018
tasks or more generally, across input sequences.019
To address both limitations, we propose FIRST,020
an algorithm that reduces inference latency by021
using layer-specific routers to select a subset022
of transformer layers adaptively for each input023
sequence - the prompt (during the prefill stage)024
decides which layers will be skipped during025
decoding. FIRST preserves compatibility with026
KV caching enabling faster inference while be-027
ing quality-aware. FIRST is model-agnostic028
and can be easily enabled on any pre-trained029
LLM. Our approach reveals that input adaptiv-030
ity is critical - indeed, different task-specific031
middle layers play a crucial role in evolving032
hidden representations depending on tasks. Ex-033
tensive experiments show that FIRST signif-034
icantly reduces latency while outperforming035
other layer selection strategies in quality met-036
ics. It retains competitive performance to base037
model (without layer skipping) and in some038
cases, even improves upon it. FIRST is thus039
a promising and efficient solution for LLM de-040
ployment in low-resource environments.041

1 Introduction042

Large Language Models (LLM’s) have revolution-043

ized the fields of Natural Language Processing and044

Computer Vision achieving incredible performance 045

on a diverse set of benchmark tasks. However, 046

the scale of these LLM’s characterized by billions 047

of parameters hinder their adoption in resource- 048

constrained environments with memory, latency 049

and compute being the main challenges. In this 050

work, we focus on the latency aspect which be- 051

comes the most significant bottleneck for tasks such 052

as machine translation, question answering, sum- 053

marization particularly on devices, such as laptops 054

and mobile phones. As noted by (Schuster et al., 055

2022), the auto-regressive nature of decoding in 056

LLM’s further pronounces the latency bottleneck. 057

Transformer based LLMs have several stacks of 058

layers (including attention and FFN layers) leading 059

to high latency and compute requirements, making 060

inference very slow or even infeasible in resource 061

constrained settings. This is because of the sequen- 062

tial processing of tokens through all the layers for 063

every input sequence and task. However, it is im- 064

portant to note that in the real world, there is a 065

lot of heterogeneity in input sequences and tasks. 066

(Schuster et al., 2022; Sun et al., 2022) noted that 067

the generations made by LLMs can have varying 068

levels of difficulty and certain generations can be 069

solved with reduced compute, by exiting the trans- 070

former stack early. At the same time, it has been 071

noted in recent works (Wendler et al., 2024) that 072

inference forward pass proceeds in phases through 073

the layers of transformer based models, with differ- 074

ent types of information being extracted or mapped 075

at different phases (sequences of layers) for certain 076

tasks such as translation. Motivated by these and 077

other related works, we hypothesize that different 078

sequential combinations of layers are important for 079

different input sequences and tasks. Learning the 080

right sequential combination of layers can help re- 081

duce inference latency and compute for on-device 082

scenarios. However, there are several challenges. 083

Any algorithm for determining the “right” combi- 084

nation of layers should minimize any quality loss, 085

1

be compatible with other latency reduction strate-086

gies such as KV cache handling and be learnable087

with minimal compute/training overhead.088

In the last few years, several promising ap-089

proaches have been proposed in literature that adap-090

tively prune layers at each decoding step. Token-091

level early exit proposed in (Schuster et al., 2022;092

Sun et al., 2022) allow tokens to exit the trans-093

former layer stack early based on different strate-094

gies to compute the confidence or saturation level.095

(Elhoushi et al., 2024; Elbayad et al., 2020; Zhang096

et al., 2019) extended this idea to incorporate layer097

skipping at a token level during training. While098

token level early exit is a useful idea in theory, it099

suffers from a major limitation of incompatible KV100

caching in practice (Del Corro et al., 2023). The in-101

compatibility stems from having to recompute KV102

caches for preceding tokens if we have a delayed103

exit point for latter tokens, often resulting in loss104

of early exit advantages. This limits its practical105

adoption since KV cache is crucial in significantly106

speeding up auto-regressive decoding.107

Recently, (Liu et al., 2024; Del Corro et al., 2023;108

Song et al., 2024) have proposed input-agnostic109

layer skipping at token level, that handle KV cache110

appropriately as well as retain the advantage of111

adaptive partial computation. In these solutions,112

tokens exit at pre-determined layers irrespective113

of the input sequence, and for all sequences in a114

batch, tokens at the same position in a sequence115

exit at the same layer. Furthermore, tokens at latter116

parts of the sequence are constrained to exit earlier117

than the previous tokens to ensure that there is no118

redundant KV cache re-computation. These solu-119

tions are heuristic based and impose hard rules and120

constraints irrespective of input sequences, which121

can lead to drop in output quality. Others (Jaiswal122

et al., 2024; Chen et al., 2024) have proposed skip-123

ping layers by identifying redundant ones through124

computing cosine similarity of (input/output) repre-125

sentations of a layer. However, their strategy does126

not take into account that several middle layers are127

crucial (see (Liu et al., 2024)) and furthermore, fi-128

nal prediction capability of full model is not taken129

into account while deciding which layers to skip.130

Importantly, in none of the works described above,131

the strategy of selecting layers for skipping is se-132

quence dependent. Furthermore, they do not con-133

sider finetuning the models in a way such that not134

only the performance improves but also the model135

learns to skip layers appropriately.136

Our goal is to design an input-adaptive learnable 137

layer selection strategy with quality aware latency 138

gains that is also able to handle the KV cache ap- 139

propriately. Ideally, for every input sequence and 140

task, we want to predict the optimal (sequential) 141

combination of layers at inference time, such that 142

quality loss is minimum and the latency gains are 143

as high as possible. We want to do this with ex- 144

pending very little compute/additional training and 145

appropriate handling of KV cache. We propose to 146

do this via training routers. Based on the output 147

of each layer for a sequence, a router will decide 148

whether or not to skip the subsequent layer in the 149

transformer architecture. Since the decision is at a 150

sequence level, KV cache issues do not arise, as all 151

tokens in a sequence would pass through the same 152

set of layers. Finally, we fine-tune the model com- 153

bined with trained routers using LoRA adapters to 154

improve the quality significantly while retaining 155

the latency gains. As an added bonus, LoRA fine- 156

tuning smoothens the layer skipping and further 157

highlights the varied importance of layers based on 158

input sequence. We summarize our contributions: 159

1. We propose a training and inference algorithm 160

FIRST that incorporates layer-specific routers 161

for selecting layers in an input-adaptive manner. 162

The layer selection is uniform for all tokens in 163

a sequence, thus handling KV caches without 164

introducing additional compute/latency. FIRST 165

can be applied on top of any pre-trained model. 166

2. We propose LoRA based finetuning on top of 167

router based layer selection to improve qual- 168

ity while retaining latency gains. This also 169

smoothens layer selection. 170

3. Finally, we demonstrate an extensive set of ex- 171

periments with FIRST on multiple datasets for 172

3 distinct tasks namely Machine Translation, 173

Summarization and Question Answering, and 174

2 different open model architectures namely 175

LLaMA-3-8B and LLaMA-3.2-3B. We show 176

that for the same target speed-up, FIRST sig- 177

nificantly improves performance across tasks as 178

compared to baselines and prior works. 179

Due to space constraints, we delegate a study 180

of other related works and orthogonal approaches 181

(for e.g. model compression) for exploring la- 182

tency/performance tradeoff to Appendix A.1. 183

2 Problem Statement 184

Our goal is to exploit the heterogeneity in inputs 185

and tasks to selectively use LLM layers in a quality- 186

2

aware manner for reducing inference latency and187

compute for on-device constraints. Ideally, we188

want to select an optimal sub-sequence of layers189

within a transformer architecture for a given input190

and task, such that the overall latency, as well as191

expended computation, are both low, while qual-192

ity is comparable to the un-modified case where193

every input sequence passes through every layer.194

For ease of explanation, without loss of generality,195

we assume the task is same and simply consider an196

input sequence for describing the problem.197

Let us consider an an input sequence X =198

{x1, x2, . . . , xn} with n tokens. Let there be m199

transformer layers in the model, where the ith trans-200

former layer is represented as the function ϕi(). As201

stated lucidly in (Wendler et al., 2024), X is first202

converted to an initial latent representation H0 =203

{H1
0 , H

2
0 , . . . ,H

n
0 }, where H0

j ∈ RD,∀j ∈ [n]204

is a look-up from a learned embedding dictionary205

corresponding to the jth token. Thereafter, every206

transformer layer ϕi() operates on the latent vec-207

tors Hi to generate the embedding for the ith layer208

as follows. For the jth token,209

Hj
i = Hj

i−1 + ϕi(H
1
i−1, H

2
i−1, . . . ,H

j
i−1) (1)210

Let the (gold) output or generated sequence for211

an input sequence X that passed through all m212

layers of the model with full computation be Y∗
X .213

Our hypothesis is that for a given input sequence214

(and task), there exists an optimal subsequence215

of functions FOPT (X) out of the full sequence216

{ϕi, i ∈ [m]} such that the output generated by217

passing through this subsequence: YOPT,X ≈ Y∗
X .218

More formally, if Q is a quantitative quality mea-219

sure on Y , and ϵ → 0 is tolerance in deviation in220

quality from the gold output, then we hypothesize221

that there exists an optimal subsequence, using the222

minimum number of layers, FOPT (X), such that:223

Q (YOPT,X) ≥ (1− ϵ)Q (Y∗
X) ,∀X . (2)224

The optimality above is with respect to the mini-225

mum subsequence of layers that can help achieve226

the above, to minimize latency while keeping qual-227

ity unaffected. Note that, the optimal subsequence228

FOPT (X) need to be obey the same autoregressive229

computation on previous tokens as given in Equa-230

tion 1. Hence, any algorithm that determines the231

optimal subsequence, need to be compatible with232

KV cache handling, to avoid the re-computation of233

values for tokens preceding the current token.234

Figure 1: Binary Tree representation of layer selection.

The potential number of subsequences for m lay- 235

ers is 2m, hence a brute force is infeasible and also 236

beats the purpose of such a layer selection in the 237

first place: reducing latency and compute. In the 238

absence of any known substructure in the behaviour 239

of the latent layers on each input sequence, it is dif- 240

ficult to arrive at the optimal solution polynomially 241

or with low additional latency or compute. 242

We propose to learn an approximation of the op- 243

timal subsequence of layers for any input sequence 244

with low additional latency and minimal training. 245

3 Proposed Solution: FIRST 246

Let us first understand what it entails to learn an 247

optimal subsequence of layers for any input. Con- 248

sider the full transformer sequence to be F∗ = 249

{ϕ1, ϕ2, . . . , ϕm}. Any optimal subsequence for 250

an input X : FOPT,X could be thought of as find- 251

ing an optimal path through a binary tree of func- 252

tions. Formally, let every level in the binary tree 253

correspond to a transformer layer and the 0th layer 254

corresponds to the initial embedding look up; i.e., 255

at depth i ∈ [m], there would be 2i nodes, each 256

corresponding to either ϕi or ϕi, where the for- 257

mer denotes that a particular transformer layer is 258

included in the optimal path whereas the latter de- 259

notes that it is not included. Each (of the 2i−1 260

nodes) ϕi or ϕi has two children, corresponding 261

to the next transformer layer: ϕi+1 and ϕi+1 (See 262

Figure 1). In such a tree structure, for example, the 263

path {ϕi, ϕi+1, ϕi+2} indicates the subsequence of 264

transformer layers {ϕi, ϕi+2}. For any transformer 265

layer ϕi in this tree, let Anc(ϕi) = k, 0 ≤ k < i 266

denote the the lowest ancestor node where the cor- 267

responding transformer node ϕk is included in the 268

sequence. In the above example, Anc(ϕi+2) = ϕi. 269

Consider a sequence of functions F , where for 270

level i, Anc(ϕi) = ϕk. The autoregressive com- 271

putations for the jth token in the input sequence 272

3

(originally Eq 1), would now be modified as:273

Hj
i =

{
Hj

k, if ϕi /∈ F ,

Hj
k + ϕi(H

1
k , H

2
k , . . . ,H

j
k), if ϕi ∈ F .

(3)

274

Our problem translates to navigating this binary275

tree to find the optimal path FOPT for an input276

sequence and task. Since there are 2m paths in277

this tree, we propose to approximate the optimal by278

making a decision in a greedy fashion at each node.279

Formally, we add a (lightweight and fast) router Ri280

before every transformer layer ϕi in the model, that281

will predict whether ϕi will be selected or not.282

Our aim is to learn to predict the layer choice at283

a sequence level (not token) to maintain compatibil-284

ity with the autoregressive computations and avoid285

re-computation of of KV cache values. Moreover,286

we should spend minimal compute for learning the287

Ri functions. Finally, Ri functions should not add288

any significant latency to the overall computation.289

FIRST modifies any off-shelf pre-trained trans-290

former based model by incorporating and training291

a router or probability function Ri before every292

transformer layer ϕi. The output of Ri is a score293

ρi denoting the probability of selecting ϕi in the294

layer sequence. During inference, ρi is rounded295

to determine selection of ϕi. Let ⌊ρi⌉ = 1 if ρi ≥296

0.5, else 0. Equation 1 is now modified as:297

Hj
i = Hj

i−1 + ⌊ρi⌉ · ϕi(H
1
i−1, H

2
i−1, . . . ,H

j
i−1)298

This recursively approximates Eq 3 for the opti-299

mal F in a probabilistic, greedy manner. We train300

the functions Ri on datasets and tasks, and further301

fine tune using LoRA adapters to make the layer302

selections smooth and improve the output quality.303

4 FIRST Framework and Algorithm304

In this section, we describe the training and infer-305

ence frameworks for FIRST in details. We discuss306

how to train Routers to be adaptive to input se-307

quences. Given an off-the-shelf pre-trained LLM,308

we propose two training phases. In the first phase,309

we train a router for each layer that decides whether310

the input sequence should skip the layer. In the311

second phase, to tackle the issue of unseen skip-312

ping during pre-training, we fine-tune the router-313

augmented LLM keeping router weights fixed to314

ensure the model improves performance on the tar-315

get dataset without reducing the skipping level.316

4.1 Adaptive Router Module 317

The adaptive router module is a single-layer neu- 318

ral network without bias, positioned before every 319

layer in the model. During training of the router, all 320

model parameters except the router weights remain 321

frozen. For the first layer, it takes the tokenized 322

input, and for each of the subsequent layers, it takes 323

the output of the preceding layer as input. Mathe- 324

matically speaking, for any layer i, given a batch 325

of B tokenized inputs sequences, where each se- 326

quence has n tokens and is embedded in to RD, the 327

adaptive router module takes as input a B×n×D 328

tensor output of layer (i−1) and outputs a B×n×1 329

tensor. Subsequently, corresponding to each value 330

(or, token) in the B × n× 1 tensor, we apply a sig- 331

moid function to ensure that all entries in the tensor 332

are in the interval [0, 1]. Following this, we take a 333

mean operation at the sequence level - we take a 334

mean of all the weights in a sequence to output a 335

B × 1× 1 tensor. For each sequence in the batch, 336

the corresponding entry is the probability ρi with 337

which the sequence passes through the layer i. The 338

input sequence skips the layer i with probability 339

1 − ρi. During training, the output of a layer is 340

modified using a skip connection, incorporating 341

the probability ρi (see Figure: 2). 342

The routers are trained to encourage skipping by 343

reducing the probabilities {ρi}i using a regularizer, 344

to approximate the optimal subsequence for mini- 345

mizing the latency. The training task is modeled as 346

a language modeling task, specifically next token 347

prediction. The loss function comprises of 3 terms: 348

• Cross-entropy loss: Standard difference be- 349

tween actual and predicted probability distribu- 350

tions to ensure the quality of generation: LCE = 351

−
∑

x∈X Y∗
X log(Ŷ). 352

• Regularization loss: Adds a penalty term to re- 353

duce overfitting to noise: LReg =
∑

i∈[m] ||Ri||2, 354

where ||Ri||2 denotes the ℓ2 norm of the router 355

weights for the ith layer router, and there are m 356

layers in the model. 357

• Non-skip penalization loss: This is the summa- 358

tion of probability values across all layers of the 359

model architecture: LPP =
∑

i∈[m] ρi 360

The total loss L is a linear combination of these 361

three terms: L = LCE+λ·LReg+α·LPP, where α 362

manages the tradeoff between quality and latency. 363

4.2 LoRA Compensation Module 364

Skipping layers naturally leads to some perfor- 365

mance loss - especially so since the pre-trained 366

4

Figure 2: Skip connection used for router training. With
probability p, the sequence is processed by the layer and with
probability 1 − p, the layer is skipped. During inference,
routers make the decision of whether a sequence will skip a
particular layer or pass through it.

model was not trained to skip layers. To compen-367

sate for the loss in performance caused by skip-368

ping layers, we finetune the router-augmented pre-369

trained model on the downstream task 1 using Low370

Rank Adapters (LoRA). During finetuning, the371

router parameters are frozen while trainable LoRA372

adapters are added to both the FFN (Feed-Forward373

Network) and the attention modules of each layer374

of the pre-trained model. In order to maintain the375

skipping level, we again add a non-skip penaliza-376

tion loss component during finetuning with scaling377

hyper-parameter β. This is essential even though378

the router weights are frozen because standard fine-379

tuning alters the hidden representations of the in-380

put sequence in a manner such that no layers are381

skipped. Note that the LoRA adapters do not lead382

to any latency overhead during inference.383

4.3 Inference for FIRST384

During inference, for the input sequence, each385

router (corresponding to a layer) outputs a num-386

ber in the interval [0, 1]. If this number is greater387

than or equal to 0.5, the sequence passes through388

the layer. Otherwise, the sequence skips the layer389

(Fig. 2). Below, we discuss some salient points390

about the functioning of the router during inference391

to handle KV Cache appropriately:392

1. Prefill phase handling: Skipping is not allowed393

during prefill phase. This ensures the first token394

is generated correctly, which is crucial for WMT395

tasks, as they are highly sensitive to the correct396

generation of the first token in the target lan-397

guage. It has been observed in prior works (Liu398

1similar to Quantization Aware Training such as QLoRA
(Dettmers et al., 2024) - compensates for model compression

et al., 2024) that skipping during prefill phase is 399

detrimental to performance during inference. 400

2. Fixed router decisions during decoding and 401

handling KV Cache: During the prefill phase, 402

the decisions made by the routers are cached. 403

During the decoding phase, every token adheres 404

to the cached decision made during prefill. In 405

other words, for a particular layer, if a router out- 406

puts a number less than 0.5 during prefill, the 407

number is fixed for the decoding steps and there- 408

fore the same layer will be skipped by all tokens 409

during decoding. Similarly, if the router outputs 410

a number more than 0.5 during prefill, the same 411

layer will be processing all tokens during decod- 412

ing. Such a step ensures that for each decoding 413

step and each layer that is not skipped, the KV 414

cache for all previous tokens is available for that 415

layer. This approach effectively addresses the 416

caching issues encountered in early exit strate- 417

gies, ensuring consistent decisions across the 418

decoding process. 419

5 Experiments 420

We conduct experiments on three benchmark tasks 421

namely Machine Translation, Text Summarization 422

and Question Answering demonstrating both ro- 423

bustness and scalability of FIRST. 424

Datasets: For machine translation, we use WMT 425

development sets (2017–2020) for English-to- 426

Chinese and English-to-German tasks, evaluating 427

performance on the WMT 2022 test set, which 428

covers diverse domains such as news, social me- 429

dia, e-commerce, and conversational contexts. For 430

summarization, we use the CNN/DailyMail dataset, 431

with 4000 randomly selected training samples and 432

evaluation on the standard test set of 11,490 sam- 433

ples. In Question Answering, we utilize SQuAD 434

v1.0, training on 4000 randomly selected samples 435

from the 100k question-answer pairs and evaluating 436

on the validation set, as test set labels are unavail- 437

able. Appendix A.2 contains detailed descriptions. 438

Evaluation Metrics: We use standard metrics to 439

evaluate the quality of generated output in each of 440

the three tasks. For Machine Translation, we bench- 441

mark using BLEU scores and COMET where the 442

latter provides a more nuanced assessment beyond 443

n-gram used in BLEU. For Summarization, we 444

use ROUGE scores and BERT Score - as before, 445

the latter captures meaning-based similarity. For 446

Question Answering, we use Exact Match and F1 447

Score as the metrics to benchmark the output qual- 448

5

Skip (%) Model Type English-to-German English-to-Chinese

BLEU-1 BLEU-2 COMET BLEU-1 BLEU-2 COMET

0 Original Model Base + LoRA 41.78 21.74 93 56.94 35.56 82.66
Base 37.17 18.57 87.13 38.02 22.46 68.95

15

Skip Decode Router + LoRA 23.04 10.52 55.62 28.73 15.84 55.98
Router 3.99 1.18 23.33 4.74 2.33 21.75

Random Skip Router + LoRA 30.43 10.98 66.25 47.88 25.75 67.32
Router 26.54 8.77 60.27 36.60 18.66 59.89

Unified Skip Router + LoRA 28.92 10.64 59.34 46.61 25.01 69.58
Router 23.23 7.85 59.26 27.28 13.35 54.57

FiRST (Ours) Router + LoRA 38.01 17.89 82.14 48.35 26.57 68.63
Router 28.83 11.8 67.74 17.55 8.68 42.76

25

Skip Decode Router + LoRA 13.67 6.00 31.47 20.03 10.85 33.85
Router 3.24 0.92 21.55 3.78 1.84 20.93

Random Skip Router + LoRA 6.01 0.91 29.71 11.69 4.66 27.73
Router 3.65 0.49 29.95 7.37 2.81 35.16

Unified Skip Router + LoRA 15.67 3.36 31.69 34.90 15.75 50.59
Router 12.58 2.65 32.15 17.74 7.35 38.74

FiRST (Ours) Router + LoRA 17.84 4.14 34.95 35.79 15.66 56.92
Router 9.67 1.37 26.01 11.01 3.23 25.45

Table 1: Machine Translation Results for LLaMA-3-8B: BLEU-1, BLEU-2, and COMET scores are reported for English-to-
German and English-to-Chinese tasks across varying skip levels. FiRST consistently achieves the highest BLEU-1 and BLEU-2
at 15% skipping, for both translation directions. Similarly, high BLEU-1 and COMET scores are obtained for 25% skipping rate.

Skip (%) Model Type English-to-German English-to-Chinese

BLEU-1 BLEU-2 COMET BLEU-1 BLEU-2 COMET

0 Original Model Base + LoRA 37.57 17.43 89.72 51.81 30.04 79.13
Base 31.19 13.67 81.66 32.10 17.92 61.84

15

Skip Decode Router + LoRA 23.24 11.07 44.58 38.14 21.68 46.70
Router 9.93 3.89 32.74 9.59 4.84 34.14

Random Skip Router + LoRA 18.99 4.78 47.26 38.75 17.39 57.79
Router 12.11 2.77 36.30 13.56 5.64 35.86

Unified Skip Router + LoRA 21.65 5.93 44.72 36.96 17.35 57.10
Router 16.41 3.99 39.81 22.43 9.37 45.16

FiRST (Ours) Router + LoRA 24.68 7.13 60.29 45.66 23.66 67.45
Router 16.47 4.11 43.04 22.69 10.92 54.55

25

Skip Decode Router + LoRA 16.85 7.62 32.33 27.81 15.74 42.01
Router 9.14 3.51 27.64 7.01 3.41 29.51

Random Skip Router + LoRA 8.95 1.07 30.97 25.12 9.85 45.53
Router 5.32 0.69 27.22 10.07 3.69 31.50

Unified Skip Router + LoRA 15.14 2.65 39.81 30.56 12.27 42.30
Router 10.21 1.62 30.86 15.21 5.51 31.63

FiRST (Ours) Router + LoRA 18.89 4.06 45.38 32.92 13.74 41.66
Router 9.51 1.44 29.08 10.46 3.55 27.83

Table 2: Machine Translation Results for LLaMA-3.2-3B: BLEU-1, BLEU-2, and COMET scores are shown for English-to-
German and English-to-Chinese tasks at different skip levels. FiRST consistently achieves the highest BLEU-1 and COMET
scores for English-to-German at both skipping percentages and highest BLEU-1 for English-to-Chinese.

ity. Finally, for benchmarking latency, we look at449

the TPOT (Time Per Output Token). TPOT evalu-450

ates the average time taken to produce each output451

token and is calculated for GPU to gauge overall452

decoding performance. Appendix A.3 contains a453

detailed description of evaluation metrics. Addi-454

tionally, hyper-parameters used during training and455

inference can be found in Appendix A.4.456

5.1 Baselines for comparison457

We report the latency improvement and quality458

numbers relative to the base models (no skipping).459

• Random Skipping: We skip a set of k layers460

randomly where k depends on the target speedup.461

• Skip Decode: We implement Skip Decode462

(Del Corro et al., 2023) method that features463

a monotonic decrease in processing layers, en-464

abling later tokens to leverage the computational465

resources used for earlier ones.466

• Unified Skipping: This, to the best of our knowl- 467

edge, is the state-of-the-art method relies on us- 468

ing a heuristic-based strategy for retaining layers 469

at fixed intervals. We replicate the algorithm 470

in (Liu et al., 2024) and compare performance 471

both with and without LoRA fine-tuning across 472

various skipping percentages. 473

5.2 Experimental Results on Different Tasks 474

WMT: Our experiments demonstrate that FIRST 475

performs consistently well in different machine 476

translation tasks (EN-to-DE, EN-to-ZH) across dif- 477

ferent models. For LLaMA-3.8B, for 15% skip- 478

ping, FIRST achieves a latency improvement of 479

10-12% on TPOT (see Tables 1 and 5) while being 480

competitive to the base model + LoRA (gold ref- 481

erence) in quality. In most cases, it significantly 482

outperforms other layer skipping strategies (Ran- 483

dom, Skip Decode, Unified Skipping) and in other 484

6

Skip (%) Model Type EM F1

0 Original Model Base + LoRA 73.93 85.99
Base 19.46 36.73

10

Skip Decode R + LoRA 60.14 65.33
Router 16.38 31.48

Random Skip R + LoRA 65.73 80.08
Router 18.25 33.75

Unified Skip R + LoRA 55.54 74.58
Router 17.39 32.91

FiRST (Ours) R + LoRA 70.85 83.61
Router 14.58 31.52

20

Skip Decode R + LoRA 45.00 55.10
Router 10.68 26.69

Random Skip R + LoRA 47.79 66.37
Router 6.71 22.46

Unified Skip R + LoRA 52.87 69.28
Router 18.18 32.51

FiRST (Ours) R + LoRA 60.60 75.49
Router 13.21 27.48

Skip (%) Model Type EM F1

0 Original Model wLoRA 73.07 84.17
Base 18.92 37.74

10

Skip Decode R + LoRA 60.79 75.00
Router 20.00 31.55

Random Skip R + LoRA 64.78 77.27
Router 13.76 28.59

Unified Skip R + LoRA 65.03 77.53
Router 13.16 32.31

FiRST R + LoRA 69.44 81.35
Router 12.79 28.37

20

Skip Decode R + LoRA 40.12 40.00
Router 20.45 37.62

Random Skip R + LoRA 11.32 38.34
Router 6.75 15.51

Unified Skip R + LoRA 37.39 52.49
Router 7.81 18.20

FiRST R + LoRA 39.70 54.59
Router 5.52 15.33

Table 3: Quality Analysis on Question Answering (SQuAD v1.1): LLaMA-3-8B (left) and LLaMA-3.2-3B (right). Exact Match
(EM) and F1 scores are reported for varying skipping levels. Note that R + LoRA corresponds to Router Augmentation followed
by LoRA fine-tuning (in the proposed FiRST framework) and wLoRA stands for Base Model with LoRA fine-tuning.

Skip (%) Model Type BERT R-1 R-L

0 Original Model wLoRA 84.87 28.46 16.99
Base 82.29 23.49 14.66

15

Skip Decode R + LoRA 84.74 22.04 17.54
Router 82.53 13.68 9.30

Random Skip R + LoRA 83.70 24.60 15.01
Router 81.10 19.64 13.07

Unified Skip R + LoRA 84.25 24.35 14.3
Router 80.3 16.61 10.95

FiRST (Ours) R + LoRA 85.14 31.8 20.13
Router 81.25 20.2 13.01

27

Skip Decode R + LoRA 79.92 10.67 10.32
Router 77.27 9.59 7.00

Random Skip R + LoRA 76.40 11.45 7.89
Router 77.45 12.56 9.08

Unified Skip R + LoRA 80.28 15.94 9.89
Router 77.43 10.97 7.68

FiRST (Ours) R + LoRA 77.5 14.65 10.45
Router 75.6 9.39 6.92

Skip (%) Model Type BERT R-1 R-L

0 Original Model wLoRA 84.89 28.37 17.02
Base 71.85 19.34 12.00

15

Skip Decode R + LoRA 83.20 21.71 13.74
Router 80.97 9.74 6.87

Random Skip R + LoRA 79.52 20.18 12.10
Router 68.20 10.10 7.10

Unified Skip R + LoRA 81.53 18.89 11.72
Router 70.01 12.49 8.68

FiRST (Ours) R + LoRA 83.17 26.47 16.79
Router 70.98 16.47 10.51

24

Skip Decode R + LoRA 78.55 15.83 6.74
Router 76.91 13.29 8.86

Random Skip R + LoRA 80.00 16.33 10.07
Router 67.88 8.49 5.96

Unified Skip R + LoRA 79.31 15.88 10.69
Router 68.86 9.17 6.97

FiRST (Ours) R + LoRA 80.25 21.28 13.89
Router 69.17 12.36 8.43

Table 4: Quality Analysis on Summarization (CNN/DM dataset) on LLaMA-3-8B (left) and LLaMA-3.2-3B (right): BERT F1,
Rouge-1 and Rouge-L scores are reported for varying skipping levels. Note that R + LoRA corresponds to Router Augmentation
followed by LoRA fine-tuning (in the proposed FiRST framework) and wLoRA stands for Base Model with LoRA fine-tuning.

cases, it is comparable in quality. In comparison to485

the gold output (Base + LoRA), FIRST is ≥ 80%486

in COMET scores (semantic metric), ≥ 85% in487

BLEU-1 scores, and ≥ 75% in BLEU-2 scores488

(syntax metrics) for both EN-to-DE and EN-to-ZH489

translations. For 25% skipping, FIRST achieves490

significant improvement in quality over other strate-491

gies, in almost all metrics, while achieving ∼ 18%492

reduction in TPOT.493

For LLaMA-3.2-3B, the latency improvement494

is ∼ 10%, with quality scores being significantly495

higher than other layer skipping strategies (Table496

6). It is within 65− 85% of BLEU-1 and COMET497

scores (Table 2) for EN-DE and EN-ZH of the gold498

(LoRA fine-tuned base model).499

CNN/DailyMail Dataset: For LLaMA-3-8B, at500

roughly 15% skipping level, our method outper-501

forms the base model + LoRA (Table: 4) while502

obtaining a 12% improvement in TPOT (Table 5).503

For LLaMA-3.2-3B, at 15%, the quality is com- 504

parable (∼ 98%) to gold and other baselines with 505

12% improvement in TPOT. At 24%, FIRST is sig- 506

nificantly better than other layer skipping strategies, 507

while achieving > 20% improvement in latency. 508

SQuAD Dataset: For the LLaMA-3-8B model, 509

FIRST is > 95% in output quality of gold (base 510

+ LoRA) (Table 3), with overall latency gains of 511

6-16% (Table 7). It is significantly better in qual- 512

ity than all other baselines across all metrics for 513

different levels of skipping. For LLaMA-3.2-3B, 514

again FIRST is > 95% in output quality of gold 515

(base + LoRA) for 10% skipping (Table 3) with 516

gains in latency of 6-16% overall (Table 7) over the 517

LoRA fine-tuned base model. Moreover, it is better 518

than all other layer skipping strategies across all 519

metrics. Detailed results for an additional skipping 520

percentage are provided in Appendix A.8. 521

Layer-wise Skipping Patterns: Layer-wise skip- 522

7

Model Type ∼ Skipping (%) English-to-German English-to-Chinese
TPOT TPOT

Base + LoRA 0 1x 1x

R + LoRA 15 0.90x 0.88x

R + LoRA 25 0.82x 0.83x

R + LoRA 35 0.69x 0.68x

Model Type ∼Skipping (%) CNN/DM
TPOT

Base + LoRA 0 1x

R + LoRA 15 0.88x

R + LoRA 20 0.81x

R + LoRA 27 0.76x

Table 5: TPOT variation of LLaMA-3-8B on WMT (left) and CNN/DM (right) for FiRST. These values are relative to the
LoRA fine-tuned base model. Fine-tuning improves TPOT and quality significantly.

Model Type ∼ Skipping (%) English-to-German English-to-Chinese
TPOT TPOT

Base + LoRA 0 1x 1x

R + LoRA 15 0.90x 0.91x

R + LoRA 25 0.78x 0.75x

R + LoRA 35 0.69x 0.74x

Model Type ∼Skipping (%) CNN/DM
TPOT

Base + LoRA 0 1x

R + LoRA 15 0.88x

R + LoRA 24 0.79x

R + LoRA 28 0.77x

Table 6: TPOT variation of LLaMA-3.2-3B on WMT (left) and CNN/DM (right) for FiRST. These values are relative to the
LoRA fine-tuned base model. Fine-tuning improves TPOT and quality significantly.

Model Type ∼Skipping (%) SQuAD
TPOT

Base + LoRA 0 1x

R + LoRA 15 0.94x

R + LoRA 24 0.83x

R + LoRA 28 0.74x

Model Type ∼Skipping (%) SQuAD
TPOT

Base + LoRA 0 1x

R + LoRA 15 0.94x

R + LoRA 24 0.84x

R + LoRA 28 0.72x

Table 7: TPOT variation of LLaMA-3-8B (left) and LLaMA-3.2-3B (right) on SQuAD dataset for FiRST. These values are
relative to the LoRA fine-tuned base model. Fine-tuning improves TPOT and quality significantly.

ping varies significantly across tasks, reflecting523

the task-specific importance of each layer. For524

LLaMA-3-8B at a 15% skipping rate, layers 7–9525

and 21 are fully skipped in English-to-German,526

with partial skipping in layer 18. In English-to-527

Chinese, layers 7–9, 16, and 21 are fully skipped,528

while layer 20 is partially skipped. For Summariza-529

tion, layers 20, 22, and 23 are fully skipped, with530

partial skipping in layers 19, 21, and 26. Some lay-531

ers are skipped less than 10%, indicating their ne-532

cessity for specific sequences. This task-specificity533

is also evident in Question-Answering, where only534

layer 22 is fully skipped, and skipping patterns535

depend on the input. Detailed statistics are in Ap-536

pendix A.7.537

Computational overhead of Routers: We also538

examine the computational overhead introduced539

by training the routers. This overhead remains540

minimal, as the router parameters are significantly541

smaller than the total number of trainable param-542

eters in each model (0.0027% for LLaMA-3-8B543

and 0.0016% for LLaMA-3.2-3B). The proportion544

of the total computational time spent on the router545

operations compared to the entire forward pass of546

the model is close to 0.3% for both models suggest-547

ing their overhead does not significantly affect the 548

efficiency of the model during inference or training. 549

6 Conclusion 550

We propose a new framework FIRST for layer se- 551

lection corresponding to input sequence and task 552

towards reducing latency in a quality aware man- 553

ner. This is sequence dependent and operates in a 554

KV cache compatible manner. For an optimal skip- 555

ping rate of around 15%, FIRST achieves 10-20% 556

reduction in latency while being quality neutral 557

(approximately 80% or more in quality metrics 558

compared to base model) on multiple tasks/model 559

architectures such as Machine Translation, Summa- 560

rization and Question Answering, on well known 561

open source datasets, and some cases, even im- 562

proving upon base model, while significantly out- 563

perfoming other layer selection strategies on most 564

quality metrics. 565

8

7 Limitations566

FIRST algorithm selects layers in a greedy, myopic567

way one layer at a time, corresponding to sequences568

(and tasks). A more optimal way of doing this569

would be to estimate a subsequence of layers to570

traverse through instead of one layer at a time. We571

intend to address this in future work. We would like572

to select a more optimal subset (subsequence) of573

layers which will increase the output quality while574

reducing latency even further.575

8 Ethical Concerns576

There are no ethical concerns to the best of our577

knowledge.578

References579

Rishabh Agarwal, Nino Vieillard, Piotr Stanczyk,580
Sabela Ramos, Matthieu Geist, and Olivier Bachem.581
Gkd: Generalized knowledge distillation for auto-582
regressive sequence models. arXiv preprint583
arXiv:2306.13649, 2023.584

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-585
nari do Nascimento, Torsten Hoefler, and James586
Hensman. Slicegpt: Compress large language mod-587
els by deleting rows and columns. arXiv preprint588
arXiv:2401.15024, 2024.589

Xiaodong Chen, Yuxuan Hu, and Jing Zhang. Com-590
pressing large language models by streamlining the591
unimportant layer. arXiv preprint arXiv:2403.19135,592
2024.593

Luciano Del Corro, Allie Del Giorno, Sahaj Agar-594
wal, Bin Yu, Ahmed Awadallah, and Subhabrata595
Mukherjee. Skipdecode: Autoregressive skip de-596
coding with batching and caching for efficient llm597
inference. arXiv preprint arXiv:2307.02628, 2023.598

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and599
Luke Zettlemoyer. Qlora: Efficient finetuning of600
quantized llms. Advances in Neural Information601
Processing Systems, 36, 2024.602

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael603
Auli. Depth-adaptive transformer. In Interna-604
tional Conference on Learning Representations,605
2020. URL https://openreview.net/forum?id=606
SJg7KhVKPH.607

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich,608
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas609
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed610
Roman, et al. Layer skip: Enabling early exit infer-611
ence and self-speculative decoding. arXiv preprint612
arXiv:2404.16710, 2024.613

Angela Fan, Edouard Grave, and Armand Joulin. Re-614
ducing transformer depth on demand with structured615
dropout. arXiv preprint arXiv:1909.11556, 2019.616

Elias Frantar and Dan Alistarh. Sparsegpt: Massive lan- 617
guage models can be accurately pruned in one-shot. 618
In International Conference on Machine Learning, 619
pp. 10323–10337. PMLR, 2023. 620

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 621
Dan Alistarh. Gptq: Accurate post-training quanti- 622
zation for generative pre-trained transformers. arXiv 623
preprint arXiv:2210.17323, 2022. 624

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 625
Minillm: Knowledge distillation of large language 626
models. In The Twelfth International Conference on 627
Learning Representations, 2024. 628

Karl Moritz Hermann, Tomas Kocisky, Edward 629
Grefenstette, Lasse Espeholt, Will Kay, Mustafa 630
Suleyman, and Phil Blunsom. Teaching ma- 631
chines to read and comprehend. In C. Cortes, 632
N. Lawrence, D. Lee, M. Sugiyama, and R. Gar- 633
nett (eds.), Advances in Neural Information 634
Processing Systems, volume 28. Curran Asso- 635
ciates, Inc., 2015. URL https://proceedings. 636
neurips.cc/paper_files/paper/2015/file/ 637
afdec7005cc9f14302cd0474fd0f3c96-Paper. 638
pdf. 639

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao 640
Chen, and Qun Liu. Dynabert: Dynamic bert with 641
adaptive width and depth. Advances in Neural Infor- 642
mation Processing Systems, 33:9782–9793, 2020. 643

Ajay Jaiswal, Bodun Hu, Lu Yin, Yeonju Ro, Shi- 644
wei Liu, Tianlong Chen, and Aditya Akella. Ffn- 645
skipllm: A hidden gem for autoregressive decoding 646
with adaptive feed forward skipping. arXiv preprint 647
arXiv:2404.03865, 2024. 648

Wenxiang Jiao, Jen tse Huang, Wenxuan Wang, Zhi- 649
wei He, Tian Liang, Xing Wang, Shuming Shi, and 650
Zhaopeng Tu. Parrot: Translating during chat us- 651
ing large language models tuned with human trans- 652
lation and feedback, 2023. URL https://arxiv. 653
org/abs/2304.02426. 654

Tom Kocmi, R. Bawden, Ondřej Bojar, Anton 655
Dvorkovich, Christian Federmann, Mark A. Fishel, 656
Thamme Gowda, Yvette Graham, Roman Grund- 657
kiewicz, Barry Haddow, Rebecca Knowles, Philipp 658
Koehn, C. Monz, Makoto Morishita, Masaaki Nagata, 659
Toshiaki Nakazawa, Michal Novák, Martin Popel, 660
and Mikulas Popovic. Findings of the 2022 confer- 661
ence on machine translation (wmt22). In Conference 662
on Machine Translation, pp. 1–45, 2022. 663

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, 664
and Eunhyeok Park. Owq: Outlier-aware weight 665
quantization for efficient fine-tuning and inference of 666
large language models. In Proceedings of the AAAI 667
Conference on Artificial Intelligence, volume 38, pp. 668
13355–13364, 2024. 669

Lei Li, Yankai Lin, Deli Chen, Shuhuai Ren, Peng 670
Li, Jie Zhou, and Xu Sun. Cascadebert: Acceler- 671
ating inference of pre-trained language models via 672

9

https://openreview.net/forum?id=SJg7KhVKPH
https://openreview.net/forum?id=SJg7KhVKPH
https://openreview.net/forum?id=SJg7KhVKPH
https://proceedings.neurips.cc/paper_files/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://arxiv.org/abs/2304.02426
https://arxiv.org/abs/2304.02426
https://arxiv.org/abs/2304.02426

calibrated complete models cascade. arXiv preprint673
arXiv:2012.14682, 2020.674

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos675
Karampatziakis, Weizhu Chen, and Tuo Zhao. Loftq:676
Lora-fine-tuning-aware quantization for large lan-677
guage models. arXiv preprint arXiv:2310.08659,678
2023.679

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-680
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,681
Xingyu Dang, Chuang Gan, and Song Han. Awq:682
Activation-aware weight quantization for on-device683
llm compression and acceleration. Proceedings of684
Machine Learning and Systems, 6:87–100, 2024.685

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang,686
Haotang Deng, and Qi Ju. Fastbert: a self-distilling687
bert with adaptive inference time. arXiv preprint688
arXiv:2004.02178, 2020.689

Yijin Liu, Xianfeng Zeng, Fandong Meng, and Jie Zhou.690
Instruction position matters in sequence generation691
with large language models, 2023a. URL https:692
//arxiv.org/abs/2308.12097.693

Yijin Liu, Fandong Meng, and Jie Zhou. Accel-694
erating inference in large language models with695
a unified layer skipping strategy. arXiv preprint696
arXiv:2404.06954, 2024.697

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie698
Chang, Pierre Stock, Yashar Mehdad, Yangyang699
Shi, Raghuraman Krishnamoorthi, and Vikas Chan-700
dra. Llm-qat: Data-free quantization aware train-701
ing for large language models. arXiv preprint702
arXiv:2305.17888, 2023b.703

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang704
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,705
Yuandong Tian, Christopher Re, et al. Deja vu: Con-706
textual sparsity for efficient llms at inference time. In707
International Conference on Machine Learning, pp.708
22137–22176. PMLR, 2023c.709

X Ma, G Fang, and X Wang. On the structural prun-710
ing of large language models. NeurIPS, Llm-pruner,711
2023a.712

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-713
pruner: On the structural pruning of large language714
models. Advances in neural information processing715
systems, 36:21702–21720, 2023b.716

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi,717
and Roy Schwartz. Transformers are multi-state rnns.718
arXiv preprint arXiv:2401.06104, 2024.719

Dheeraj Peri, Jhalak Patel, and Josh Park. Deploying720
quantization-aware trained networks using tensorrt.721
In GPU Technology Conference, 2020.722

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and723
Percy Liang. Squad: 100, 000+ questions for ma-724
chine comprehension of text. CoRR, abs/1606.05250,725
2016. URL http://arxiv.org/abs/1606.05250.726

Rajarshi Saha, Varun Srivastava, and Mert Pilanci. Ma- 727
trix compression via randomized low rank and low 728
precision factorization. Advances in Neural Informa- 729
tion Processing Systems, 36, 2023. 730

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, 731
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler. 732
Confident adaptive language modeling. Advances in 733
Neural Information Processing Systems, 35:17456– 734
17472, 2022. 735

Shaohuai Shi, Qiang Wang, and Xiaowen Chu. Effi- 736
cient sparse-dense matrix-matrix multiplication on 737
gpus using the customized sparse storage format. In 738
2020 IEEE 26th International Conference on Parallel 739
and Distributed Systems (ICPADS), pp. 19–26. IEEE, 740
2020. 741

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun 742
Kim, Yulhwa Kim, and Jae-Joon Kim. Sleb: Stream- 743
lining llms through redundancy verification and 744
elimination of transformer blocks. arXiv preprint 745
arXiv:2402.09025, 2024. 746

Tianxiang Sun, Xiangyang Liu, Wei Zhu, Zhichao Geng, 747
Lingling Wu, Yilong He, Yuan Ni, Guotong Xie, Xu- 748
anjing Huang, and Xipeng Qiu. A simple hash-based 749
early exiting approach for language understanding 750
and generation. arXiv preprint arXiv:2203.01670, 751
2022. 752

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan 753
Xiao, Baris Kasikci, and Song Han. Quest: Query- 754
aware sparsity for efficient long-context llm inference. 755
arXiv preprint arXiv:2406.10774, 2024. 756

Ziheng Wang. Sparsert: Accelerating unstructured spar- 757
sity on gpus for deep learning inference. In Proceed- 758
ings of the ACM international conference on parallel 759
architectures and compilation techniques, pp. 31–42, 760
2020. 761

Chris Wendler, Veniamin Veselovsky, Giovanni Monea, 762
and Robert West. Do llamas work in English? on 763
the latent language of multilingual transformers. In 764
Proceedings of the 62nd Annual Meeting of the As- 765
sociation for Computational Linguistics (Volume 1: 766
Long Papers), pp. 15366–15394, 2024. URL https: 767
//aclanthology.org/2024.acl-long.820. 768

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song 769
Han, and Mike Lewis. Efficient streaming lan- 770
guage models with attention sinks. arXiv preprint 771
arXiv:2309.17453, 2023. 772

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, 773
and Jimmy Lin. Deebert: Dynamic early exit- 774
ing for accelerating bert inference. arXiv preprint 775
arXiv:2004.12993, 2020. 776

Linfeng Zhang, Zhanhong Tan, Jiebo Song, Jingwei 777
Chen, Chenglong Bao, and Kaisheng Ma. Scan: A 778
scalable neural networks framework towards compact 779
and efficient models. Advances in Neural Informa- 780
tion Processing Systems, 32, 2019. 781

10

https://arxiv.org/abs/2308.12097
https://arxiv.org/abs/2308.12097
https://arxiv.org/abs/2308.12097
http://arxiv.org/abs/1606.05250
https://aclanthology.org/2024.acl-long.820
https://aclanthology.org/2024.acl-long.820
https://aclanthology.org/2024.acl-long.820

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Yunyun Sun,782
Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei Liu,783
and Rongrong Ji. Dynamic sparse no training:784
Training-free fine-tuning for sparse llms. arXiv785
preprint arXiv:2310.08915, 2023.786

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian787
McAuley, Ke Xu, and Furu Wei. Bert loses patience:788
Fast and robust inference with early exit. Advances789
in Neural Information Processing Systems, 33:18330–790
18341, 2020.791

Wei Zhu. Leebert: Learned early exit for bert with792
cross-level optimization. In Proceedings of the 59th793
Annual Meeting of the Association for Computational794
Linguistics and the 11th International Joint Confer-795
ence on Natural Language Processing (Volume 1:796
Long Papers), pp. 2968–2980, 2021.797

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping798
Wang. A survey on model compression for large799
language models. arXiv preprint arXiv:2308.07633,800
2023.801

A Appendix 802

A.1 Related Work 803

Early Exit: Several works have been proposed 804

in the early exit theme (Zhu, 2021; Zhou et al., 805

2020; Xin et al., 2020; Liu et al., 2020; Li et al., 806

2020; Hou et al., 2020; Schuster et al., 2022) where 807

adaptive compute is used for different parts of the 808

token sequence. While these approaches have been 809

popular for encoder-only models which processes 810

the entire sequence as a whole, they have faced 811

challenges in generation tasks. The main limita- 812

tion of these set of techniques are their inability to 813

handle KV caching appropriately which is crucial 814

for multi-fold speed-ups in current LLM architec- 815

tures. We emphasize that in our work, we assign 816

varying compute to sequences in different batches 817

but within the same sequence, we assign the same 818

compute to every token. 819

Input Agnostic Heuristics: In Skip Decoding 820

(Del Corro et al., 2023), initial tokens pass through 821

more layers than later ones, contradicting the obser- 822

vation that later tokens are harder to decode (Liu 823

et al., 2024). Additionally, Skip Decoding skips 824

several bottom layers for most tokens, causing un- 825

desirable sub-network imbalance. To address this, 826

Unified Layer Skipping (Liu et al., 2024) proposes 827

a discrete skipping strategy that is uniform for all 828

tokens in a sequence. Based on a latency budget, 829

retained layer ids are passed through by all tokens, 830

ensuring KV Cache handling and retaining key lay- 831

ers. However, the limitation of this approach is that 832

skipping is independent of the input sequence. In 833

contrast, early exit strategies adapt layer skipping 834

to the input sequence, offering more flexibility. In 835

(Fan et al., 2019), a method akin to dropout ran- 836

domly skips layers during training, but this leads to 837

performance decline during the pre-fill stage. FFN- 838

SkipLLM (Jaiswal et al., 2024) constrains skipping 839

to FFN layers to avoid KV Cache issues but fails 840

to fully exploit redundancy as discussed already. 841

(Song et al., 2024) is a very recent work that also 842

explores greedily identifying layers to skip while 843

preserving the model performance on a calibration 844

dataset - however there are two major limitations of 845

this work which are resolved in our paper - (A) first 846

of all, the layer selection strategy is sequence in- 847

dependent although it can be made task-dependent 848

by calibrating on task-specific datapoints - our ap- 849

proach for skipping layers is sequence dependent 850

and is based on the input to a layer (B) SLEB does 851

11

not explore the impact of fine-tuning on the layers852

to be skipped. On the other hand, our skipping853

strategy incorporates the trained router already - in-854

tuitively, the knowledge of skipping is transferred855

during finetuning. (Chen et al., 2024) is another856

recent work that compresses models by identifying857

redundant layers - this is done by computing the858

average similarity between input/output pairs of a859

layer. However, as outlined in (Song et al., 2024),860

such an approach suffers from the limitation that861

it does not take into account the joint association862

between the layers while skipping multiple layers.863

Moreover, like (Jaiswal et al., 2024), this work864

is neither sequence dependent nor takes the final865

model predictions into account while identifying866

the layers to skip.867

Model Compression and Quantization Aware868

Training: Orthogonal approaches to explore the869

latency/memory-performance trade-off in Large870

Language Models aim to build smaller models that871

approximate the performance of larger ones with872

reduced memory and latency costs. Key techniques873

include: 1) compressing model parameters into874

fewer bits (Frantar et al., 2022; Lin et al., 2024;875

Lee et al., 2024; Saha et al., 2023); 2) pruning the876

network by removing components like attention877

heads or neurons based on heuristics (Frantar &878

Alistarh, 2023; Ma et al., 2023b); and 3) distilling879

the large model into a smaller, faster counterpart880

(Agarwal et al., 2023; Gu et al., 2024). For fur-881

ther details, we refer to the survey by (Zhu et al.,882

2023). A significant body of work (Dettmers et al.,883

2024; Liu et al., 2023b; Peri et al., 2020; Li et al.,884

2023) has focused on quantization-aware training885

to reduce memory footprints and mitigate perfor-886

mance loss, starting with QLoRA (Dettmers et al.,887

2024). In a similar vein, our work proposes fine-888

tuning router-augmented models to improve layer889

skipping and reduce performance degradation, as890

pre-trained models do not account for layer skip-891

ping, leading to higher degradation with vanilla892

skipping.893

Network Pruning: Another orthogonal ap-894

proach to improve the inference speed-up is to895

prune redundant network weights by zeroing them896

out. There has been a significant body of work on897

pruning model weights (Frantar et al., 2022; Fran-898

tar & Alistarh, 2023; Sun et al., 2022; Zhang et al.,899

2023) - most of these works can be categorized900

into two clusters namely unstructured pruning and901

structured pruning. In case of unstructured prun- 902

ing, there is no structure to the inserted zeros and 903

achieving speedups with modern GPU hardware 904

tailored towards dense matrix multiplication is chal- 905

lenging. In fact, more than 90% sparsity is typi- 906

cally required to achieve any significant speedup 907

(Wang, 2020; Shi et al., 2020). Therefore, struc- 908

tured pruning which is more amenable to GPU 909

hardware has become prominent (2:4 pruning and 910

sub-channel pruning). However, realizing desired 911

speedups through these techniques have been dif- 912

ficult (Song et al., 2024). Moreover, several ap- 913

proaches for dynamically deleting entire rows or 914

columns of weight matrices have been proposed 915

(Ma et al., 2023a; Ashkboos et al., 2024; Liu et al., 916

2023c) to retain dense matrices but two limitations 917

remain - (A) hardware support is extremely limited 918

for realizing speedup gains (B) extensive finetun- 919

ing is necessary to align the sparsification with 920

linguistic abilities - this is because, such pruning 921

techniques were not observed by the model during 922

pre-training. Finally, note that several prior works 923

(Tang et al., 2024; Oren et al., 2024; Xiao et al., 924

2023) have imposed (query aware/ query agnos- 925

tic) sparsity in the KV cache matrices to speed up 926

self-attention mechanism via clever selection of the 927

critical tokens necessary from the KV cache. 928

A.2 Details of Datasets 929

Machine Translation: For translation tasks, 930

namely English-to-Chinese and English-to- 931

German, we employ the WMT development 932

sets from 2017 to 2020 for training/fine-tuning 933

following the methodology outlined in previous 934

studies (Liu et al., 2023a; Jiao et al., 2023). 935

Translation performance is evaluated using the 936

test set from the WMT 2022 dataset (Kocmi 937

et al., 2022) which was developed using recent 938

content from diverse domains. These domains 939

include news, social media, e-commerce, and 940

conversational contexts. 941

(Details in Appendix: A.5, Table: 8). Sum- 942

marization: We use the popular CNN-DailyMail 943

(CNN/DM) (Hermann et al., 2015) dataset which 944

is a large collection (over 300k) of text summariza- 945

tion pairs, created from CNN and Daily Mail news 946

articles. Each datapoint in this dataset comprises 947

of an article (the body of the news article with 948

683 words on average) and the corresponding high- 949

lights (article summary as written by the article 950

author). While the training set contains more than 951

12

287k samples, we have randomly chosen 4k sam-952

ples for training both routers and LoRA. During953

training in our framework, the number of trainable954

parameters is small in both phases - therefore a955

small subset of data points is sufficient for training.956

Inference is performed on the standard test set957

with 11,490 samples.958

Question Answering: We use the popular Stan-959

ford Question Answering Dataset (SQuAD v1.0)960

(Rajpurkar et al., 2016), a widely-used benchmark961

for machine Question Answering. The dataset con-962

sists of over 100k question-answer pairs posed by963

crowd-workers on a set of over 500 Wikipedia arti-964

cles. Each sample comprises a context (a passage965

from a Wikipedia article), a question (crafted to966

test comprehension of the passage) and the corre-967

sponding answer (a text span from the correspond-968

ing reading passage). Similarly to the CNN/DM969

dataset, 4k samples are chosen as random to train970

both routers and LoRA. The training and validation971

split contains 87,599 and 10,570 samples respec-972

tively. Evaluation is performed on the validation973

set (Schuster et al., 2022) as the test set labels are974

not publicly released.975

A.3 Evaluation Metrics976

Quality-Based Metrics for Translation task:977

• BLEU Score: BLEU (Bilingual Evaluation Un-978

derstudy) scores are used to measure the quality979

of translations. BLEU compares n-grams of the980

candidate translation to n-grams of the reference981

translation, providing a score between 0 and 1,982

with higher scores indicating better translations.983

In this evaluation, NLTK BLEU is employed,984

focusing on BLEU-1 and BLEU-2 scores.985

• COMET: COMET (Cross-lingual Optimized986

Metric for Evaluation of Translation) is used to987

assess translation quality further. COMET eval-988

uates translations using a model trained to cor-989

relate well with human judgments. Specifically,990

Unbabel/XCOMET-XL 2 is used in this evalua-991

tion. COMET provides a more nuanced assess-992

ment of translation quality by considering the993

intricacies of both source and target languages,994

beyond the n-gram matching used in BLEU.995

Quality based Metrics for Summarization Task:996

• BERTScore: This metric quantifies semantic997

similarity between texts by leveraging contextual998

word embeddings.999

BERTScore captures meaning-based similarity1000

2https://github.com/Unbabel/COMET

rather than relying on exact word matches, pro- 1001

viding a nuanced evaluation of text generation 1002

quality. 1003

• ROUGE: (Recall-Oriented Understudy for Gist- 1004

ing Evaluation) is a common metric - ROUGE-1 1005

refers to overlap of unigrams between the sys- 1006

tem summary and reference summary. Similarly, 1007

ROUGE-L measures longest matching sequence 1008

of words. 1009

Quality based Metrics for Question Answering 1010

Task: 1011

• Exact Match: This metric measures the percent- 1012

age of predictions that exactly match the ground 1013

truth answer. 1014

• F1 score: Since EM is a highly stringent metric, 1015

we also report the F1 score which provides a 1016

more flexible evaluation of answer prediction. 1017

This metric also takes into account near-matches. 1018

A.4 Training and Inference Setup 1019

• Training settings: We perform extensive experi- 1020

ments on two models, namely LLaMA-3-8B and 1021

LLaMA-3.2-3B from Meta, which consist of 32 1022

and 28 layers, respectively. Training of routers 1023

and LoRA adapters is conducted on A100 80GB 1024

GPUs, with training/inference is performed in 1025

full precision to avoid performance degradation 1026

due to quantization. The training process em- 1027

ploys our custom loss function and continues for 1028

a fixed number of epochs, terminating when the 1029

validation loss fails to improve over 4 consecu- 1030

tive steps. The learning rate is set between 1e−4 1031

and 3e−4 - a cosine scheduler is used to adjust the 1032

learning rate. Gradients are accumulated after 5 1033

steps and the regularization coefficient λ is fixed 1034

at 0.01. For LoRA fine-tuning, we employ a rank 1035

of 8, a dropout rate of 0.1, and a scaling factor 1036

(lora_alpha) of 32. We set the non-skipping pe- 1037

nalization regularizer hyper-parameter β = α/3 1038

after tuning to maintain skipping level - where α 1039

is the non-skipping penalization hyperparameter 1040

used in the first phase and set according to the tar- 1041

get speedup ratio. For translation, the maximum 1042

sequence length is set to 128 for router training 1043

and 256 for LoRA training. Similarly, for sum- 1044

marization, the maximum sequence length is set 1045

to 500 and 700 respectively. For Question An- 1046

swering, this length is set to 512. Prompts for the 1047

different tasks regarding training/inference are 1048

shown in Appendix A.6. 1049

• Inference settings: For all the tasks, we set the 1050

13

temperature to 0.8 and enable top-k sampling1051

over 10 tokens. The maximum number of tokens1052

to be generated is set to 80 for WMT, 200 for1053

CNN/DM and 32 for SQuAD. Caching is turned1054

on during inference.1055

A.5 Training and testing split1056

WMT Summarization RC

Eng-to-German Eng-to-Chinese CNN/DM SQuAD

Train 3505 8983 3400 3400

Validation 876 998 600 600

Test 2038 2038 11490 10570

Table 8: Train-Validation-Test split for WMT, CNN/DM
and SQuAD datasets

A.6 Prompt Details1057

The prompt structures used for both training and1058

inference are as follows:1059

• For the machine translation task (English-to-1060

German or English-to-Chinese), the following1061

general prompt structure is used to train the1062

routers and during final inference:1063

Instruction:1064
Translate the following sentences from English1065

to German.1066
1067

Input:1068
{Text to be translated}1069

1070
Response:1071

1072

• For the summarization task (used in1073
CNN/DailyMail dataset), the prompt structure1074
used is:1075

Instruction:1076
Summarize the news article in around 100-2001077

words.1078
1079

Input:1080
{Article to be summarized}1081

1082
Response:1083

1084
1085

• For the Question Answering task (used in1086

SQuAD dataset), the following prompt struc-1087

ture is utilized:1088

Instruction:1089
Answer the question based on the given passage.1090

1091
Passage:1092

{context} 1093
1094

Question: 1095
{Question to be answered} 1096

Response: 1097
1098

During the training of the LoRA module, task- 1099

aware training is applied. The expected translation 1100

or summary is appended after the ### Response 1101

section, making the model predict the response 1102

tokens following the "Response:\n". 1103

A.7 Layer-wise Skipping Statistics 1104

Table 15 present the fraction of sequences that skip 1105

a particular block during the task for the LLaMA- 1106

3-8B model. If the corresponding cell in a row 1107

shows a value of 80.00, it implies that 80% of the 1108

sequences skip this block. It is important to note 1109

that the decision regarding which block to skip 1110

varies across different datasets and tasks. Addition- 1111

ally, partial skipping in some blocks, with varying 1112

percentages, suggests that while some sequences 1113

consider the layer important, others do not and 1114

therefore skip it during the decoding phase. 1115

Figures 3, 4, 5, and 6 depict the distribution of 1116

skipped blocks when the model is configured to 1117

skip approximately 15% of the layers. These plots 1118

demonstrate the variation in block skipping based 1119

on the task and dataset, highlighting the differences 1120

in block importance. The bar plots further show 1121

that the determination of important layers depends 1122

not only on the dataset but also on the model archi- 1123

tecture. For instance, Figure 3 illustrates that layers 1124

7 and 9 are entirely skipped in LLaMA-3-8b, while 1125

they are rarely skipped in LLaMA-3.2-3b. 1126

A.8 Detailed Result Table 1127

Tables 9 and 11 present the detailed results for the 1128

LLaMA-3.2-3B model, while Tables 10 and 12 1129

summarize the performance of the LLaMA-3-8B 1130

model for an additional skipping percentage on Ma- 1131

chine Translation Task. The results are reported 1132

using BLEU (BLEU-1, BLEU-2) and COMET met- 1133

rics, highlighting performance across different skip- 1134

ping percentages. Similarly, Table 13 presents cu- 1135

mulative results for both models reporting BERT 1136

F1, ROUGE-1 and ROUGE-L. Lastly, Table 14 1137

presents Exact Match (EM) and F1 scores for both 1138

models for three skipping percentage variations. 1139

14

Skipping (%) Model Type Configuration BLEU-1 BLEU-2 COMET

0 Original Model Base + LoRA 37.57 17.43 89.72
Base 31.19 13.67 81.66

15

Skip Decode Router + LoRA 23.24 11.07 44.58
Router 9.93 3.89 32.74

Random Skip Router + LoRA 18.99 4.78 47.26
Router 12.11 2.77 36.30

Unified Skip Router + LoRA 21.65 5.93 44.72
Router 16.41 3.99 39.81

FiRST (Ours) Router + LoRA 24.68 7.13 60.29
Router 16.47 4.11 43.04

25

Skip Decode Router + LoRA 16.85 7.62 32.33
Router 9.14 3.51 27.64

Random Skip Router + LoRA 8.95 1.07 30.97
Router 5.32 0.69 27.22

Unified Skip Router + LoRA 15.14 2.65 39.81
Router 10.21 1.62 30.86

FiRST (Ours) Router + LoRA 18.89 4.06 45.38
Router 9.51 1.44 29.08

35

Skip Decode Router + LoRA 1.62 0.36 23.30
Router 1.71 0.27 19.34

Random Skip Router + LoRA 4.72 0.15 25.08
Router 1.96 0.06 21.18

Unified Skip Router + LoRA 1.18 0.05 19.65
Router 0.90 0.03 20.36

FiRST (Ours) Router + LoRA 9.47 1.29 27.45
Router 5.74 0.56 25.03

Table 9: Machine Translation Results for English to German on LLaMA-3.2-3B: BLEU-1, BLEU-2 and COMET scores for
various skipping strategies.

Skipping (%) Model Type Configuration BLEU-1 BLEU-2 COMET

0 Original Model Base + LoRA 41.78 21.74 93
Base 37.17 18.57 87.13

15

Skip Decode Router + LoRA 23.04 10.52 55.62
Router 3.99 1.18 23.33

Random Skip Router + LoRA 30.43 10.98 66.25
Router 26.54 8.77 60.27

Unified Skip Router + LoRA 28.92 10.64 59.34
Router 23.23 7.85 59.26

FiRST (Ours) Router + LoRA 38.01 17.89 82.14
Router 28.83 11.8 67.74

25

Skip Decode Router + LoRA 13.67 6.00 31.47
Router 3.24 0.92 21.55

Random Skip Router + LoRA 6.01 0.91 29.71
Router 3.65 0.49 29.95

Unified Skip Router + LoRA 15.67 3.36 31.69
Router 12.58 2.65 32.15

FiRST (Ours) Router + LoRA 17.84 4.14 34.95
Router 9.67 1.37 26.01

35

Skip Decode Router + LoRA 5.55 0.33 23.85
Router 3.03 0.82 20.03

Random Skip Router + LoRA 1.80 0.12 25.56
Router 1.44 0.06 25.34

Unified Skip Router + LoRA 6.44 0.77 22.05
Router 3.92 0.51 22.88

FiRST (Ours) Router + LoRA 6.39 0.42 19.96
Router 3.7 0.14 21.41

Table 10: Machine Translation Results for English to German on LLaMA-3-8B: BLEU-1, BLEU-2 and COMET scores for
various skipping strategies.

15

Skipping (%) Model Type Configuration BLEU-1 BLEU-2 COMET

0 Original Model Base + LoRA 51.81 30.04 79.13
Base 32.10 17.92 61.84

15

Skip Decode Router + LoRA 38.14 21.68 46.70
Router 9.59 4.84 34.14

Random Skip Router + LoRA 38.75 17.39 57.79
Router 13.56 5.64 35.86

Unified Skip Router + LoRA 36.96 17.35 57.10
Router 22.43 9.37 45.16

FiRST (Ours) Router + LoRA 45.66 23.66 67.45
Router 22.69 10.92 54.55

25

Skip Decode Router + LoRA 27.81 15.74 42.01
Router 7.01 3.41 29.51

Random Skip Router + LoRA 25.12 9.85 45.53
Router 10.07 3.69 31.50

Unified Skip Router + LoRA 30.56 12.27 42.30
Router 15.21 5.51 31.63

FiRST (Ours) Router + LoRA 32.92 13.74 41.66
Router 10.46 3.55 27.83

35

Skip Decode Router + LoRA 2.84 1.10 22.30
Router 2.36 1.04 18.32

Random Skip Router + LoRA 4.17 1.52 32.81
Router 2.11 0.76 23.63

Unified Skip Router + LoRA 3.26 0.52 19.12
Router 2.20 0.37 19.82

FiRST (Ours) Router + LoRA 20.01 6.96 28.10
Router 6.54 1.78 23.13

Table 11: Machine Translation Results for English to Chinese on LLaMA-3.2-3B: BLEU-1, BLEU-2 and COMET scores for
various skipping strategies.

Skipping (%) Model Type Configuration BLEU-1 BLEU-2 COMET

0 Original Model Base + LoRA 56.94 35.56 82.66
Base 38.02 22.46 68.95

15

Skip Decode Router + LoRA 28.73 15.84 55.98
Router 4.74 2.33 21.75

Random Skip Router + LoRA 47.88 25.75 67.32
Router 36.60 18.66 59.89

Unified Skip Router + LoRA 46.61 25.01 69.58
Router 27.28 13.35 54.57

FiRST (Ours) Router + LoRA 48.35 26.57 68.63
Router 17.55 8.68 42.76

25

Skip Decode Router + LoRA 20.03 10.85 33.85
Router 3.78 1.84 20.93

Random Skip Router + LoRA 11.69 4.66 27.73
Router 7.37 2.81 35.16

Unified Skip Router + LoRA 34.90 15.75 50.59
Router 17.74 7.35 38.74

FiRST (Ours) Router + LoRA 35.79 15.66 56.92
Router 11.01 3.23 25.45

35

Skip Decode Router + LoRA 12.24 6.27 25.23
Router 3.64 1.74 22.84

Random Skip Router + LoRA 7.38 2.19 27.35
Router 4.47 1.12 29.46

Unified Skip Router + LoRA 7.51 2.10 20.25
Router 3.87 1.06 21.24

FiRST (Ours) Router + LoRA 15.66 3.95 26.80
Router 6.13 1.54 22.89

Table 12: Machine Translation Results for English to Chinese on LLaMA-3-8B: BLEU-1, BLEU-2 and COMET scores for
various skipping strategies.

16

Skip (%) Model Type BERT R-1 R-L

0 Original Model wLoRA 84.87 28.46 16.99
Base 82.29 23.49 14.66

15

Skip Decode R + LoRA 84.74 22.04 17.54
Router 82.53 13.68 9.30

Random Skip R + LoRA 83.70 24.60 15.01
Router 81.10 19.64 13.07

Unified Skip R + LoRA 84.25 24.35 14.3
Router 80.3 16.61 10.95

FiRST (Ours) R + LoRA 85.14 31.8 20.13
Router 81.25 20.2 13.01

20

Skip Decode R + LoRA 82.57 20.41 14.87
Router 81.62 13.48 9.19

Random Skip R + LoRA 81.39 21.57 13.83
Router 79.23 15.51 10.93

Unified Skip R + LoRA 82.93 22.3 13.37
Router 80.32 16.51 11.15

FiRST (Ours) R + LoRA 82.8 27.65 17.84
Router 79.32 16.28 10.85

27

Skip Decode R + LoRA 79.92 10.67 10.32
Router 77.27 9.59 7.00

Random Skip R + LoRA 76.40 11.45 7.89
Router 77.45 12.56 9.08

Unified Skip R + LoRA 80.28 15.94 9.89
Router 77.43 10.97 7.68

FiRST (Ours) R + LoRA 77.5 14.65 10.45
Router 75.6 9.39 6.92

Skip (%) Model Type BERT R-1 R-L

0 Original Model wLoRA 84.89 28.37 17.02
Base 71.85 19.34 12.00

15

Skip Decode R + LoRA 83.20 21.71 13.74
Router 80.97 9.74 6.87

Random Skip R + LoRA 79.52 20.18 12.10
Router 68.20 10.10 7.10

Unified Skip R + LoRA 81.53 18.89 11.72
Router 70.01 12.49 8.68

FiRST (Ours) R + LoRA 83.17 26.47 16.79
Router 70.98 16.47 10.51

24

Skip Decode R + LoRA 78.55 15.83 6.74
Router 76.91 13.29 8.86

Random Skip R + LoRA 80.00 16.33 10.07
Router 67.88 8.49 5.96

Unified Skip R + LoRA 79.31 15.88 10.69
Router 68.86 9.17 6.97

FiRST (Ours) R + LoRA 80.25 21.28 13.89
Router 69.17 12.36 8.43

28

Skip Decode R + LoRA 70.69 8.76 6.74
Router 40.99 2.05 1.23

Random Skip R + LoRA 79.45 14.69 9.23
Router 67.48 8.14 5.64

Unified Skip R + LoRA 78.57 11.74 7.47
Router 68.23 8.12 5.66

FiRST (Ours) R + LoRA 77.48 15.98 11.14
Router 67.14 8.09 6.00

Table 13: Quality Analysis on Summarization (CNN/DM dataset) on LLaMA-3-8B (left) and LLaMA-3.2-3B
(right): BERT F1, Rouge-1 and Rouge-L scores are reported for varying skipping levels. Note that R + LoRA
corresponds to Router Augmentation followed by LoRA fine-tuning (in the proposed FiRST framework) and
wLoRA stands for Base Model with LoRA fine-tuning. FiRST with fine-tuning, improves upon Unified Skipping
for all skipping levels on both Rouge-1 and Rouge-L and is competitive on BERT F1.

Skip (%) Model Type EM F1

0 Original Model wLoRA 73.93 85.99
Base 19.46 36.73

10

Skip Decode R + LoRA 60.14 65.33
Router 16.38 31.48

Random Skip R + LoRA 65.73 80.08
Router 18.25 33.75

Unified Skip R + LoRA 55.54 74.58
Router 17.39 32.91

FiRST (Ours) R + LoRA 70.85 83.61
Router 14.58 31.52

20

Skip Decode R + LoRA 45.00 55.10
Router 10.68 26.69

Random Skip R + LoRA 47.79 66.37
Router 6.71 22.46

Unified Skip R + LoRA 52.87 69.28
Router 18.18 32.51

FiRST (Ours) R + LoRA 60.60 75.49
Router 13.21 27.48

30

Skip Decode R + LoRA 30.77 48.38
Router 10.67 28.52

Random Skip R + LoRA 25.45 42.68
Router 3.55 15.49

Unified Skip R + LoRA 25.61 38.55
Router 15.19 28.11

FiRST (Ours) R + LoRA 38.20 52.68
Router 3.64 13.30

Skip (%) Model Type EM F1

0 Original Model wLoRA 73.07 84.17
Base 18.92 37.74

10

Skip Decode R + LoRA 60.79 75.00
Router 20.00 31.55

Random Skip R + LoRA 64.78 77.27
Router 13.76 28.59

Unified Skip R + LoRA 65.03 77.53
Router 13.16 32.31

FiRST R + LoRA 69.44 81.35
Router 12.79 28.37

20

Skip Decode R + LoRA 40.12 40.00
Router 20.45 37.62

Random Skip R + LoRA 11.32 38.34
Router 6.75 15.51

Unified Skip R + LoRA 37.39 52.49
Router 7.81 18.20

FiRST R + LoRA 39.70 54.59
Router 5.52 15.33

30

Skip Decode R + LoRA 20.68 23.08
Router 0.78 3.83

Random Skip R + LoRA 0.30 8.87
Router 0.62 5.88

Unified Skip R + LoRA 7.39 13.72
Router 0.37 6.15

FiRST R + LoRA 33.99 50.37
Router 2.55 10.26

Table 14: SQuAD performance on LLaMA-3-8B (left) and LLaMA-3.2-3B (right): EM (Exact Match) and F1 scores
are reported for varying skipping levels. Note that R + LoRA corresponds to Router Augmentation followed by
LoRA fine-tuning (in the proposed FiRST framework) and wLoRA stands for Base Model with LoRA fine-tuning.

17

Figure 3: Comparison of LLaMA-3.2-3B (left) and LLaMA-3-8B (right) at 15% skipping rate on English-to-German
Machine Translation Task. The graph shows how different layers contribute to the skipping behavior for the same
dataset. Layers with no skipping, indicated by a 0% skipping rate, are not represented in the plot.

Figure 4: Comparison of LLaMA-3.2-3B (left) and LLaMA-3-8B (right) at 15% skipping rate on English-to-Chinese
Machine Translation Task. The graph shows how different layers contribute to the skipping behavior for the same
dataset. Layers with no skipping, indicated by a 0% skipping rate, are not represented in the plot.

Figure 5: Comparison of LLaMA-3.2-3B (left) and LLaMA-3-8B (right) at 15% skipping rate on CNN Summariza-
tion Task. Layers with no skipping, indicated by a 0% skipping rate, are not represented in the plot.

Figure 6: Comparison of LLaMA-3.2-3B (left) and LLaMA-3-8B (right) at 15% skipping rate on SQuAD Question-
Answering Task. Layers with no skipping, indicated by a 0% skipping rate, are not represented in the plot.

18

Layer ↓ R R+L R R+L R R+L
α → 0.005 0.005 0.01 0.01 0.025 0.025

0 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00
7 100.00 100.00 100.00 100.00 100.00 100.00
8 100.00 100.00 100.00 100.00 100.00 100.00
9 100.00 100.00 0.00 0.00 0.10 1.32
10 0.00 0.00 0.00 0.00 89.25 72.67
11 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 100.00 100.00 100.00 100.00
13 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.59 0.00 0.25
15 0.00 0.00 100.00 99.95 100.00 99.36
16 0.00 0.00 0.10 2.45 100.00 99.95
17 0.00 0.00 0.00 0.00 0.00 0.00
18 97.79 32.24 100.00 100.00 100.00 100.00
19 0.00 0.00 99.85 91.17 100.00 99.61
20 0.00 0.00 100.00 100.00 100.00 99.46
21 99.85 98.72 100.00 100.00 100.00 100.00
22 0.00 0.00 0.00 0.00 0.00 0.00
23 0.00 0.00 24.14 0.79 99.75 91.66
24 0.00 0.00 0.00 0.00 0.00 0.00
25 0.00 0.00 0.00 0.00 0.00 0.00
26 0.00 0.00 57.31 2.45 100.00 86.02
27 0.00 0.00 0.00 0.00 0.00 0.00
28 0.00 0.00 0.00 0.00 0.00 0.05
29 0.00 0.00 0.00 0.00 0.00 0.00
30 0.00 0.00 0.00 0.00 0.00 0.00
31 0.00 0.00 0.00 0.00 0.00 0.00

Avg 15.55 13.47 27.54 24.92 37.16 35.95

Table 15: Variation in skipping percentage (15-35%) with the Non-skip Penalization Loss coefficient α for LLaMA-
3-8B on Machine Translation (English-to-German). As α increases, the skipping percentage also increases for both
the Router-Only and Router-Augmented LoRA fine-tuned models. Similar trends are observed for other datasets as
well.

19

