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ABSTRACT

Training large language models (LLMs) for different inference constraints is com-
putationally expensive, limiting control over efficiency-accuracy trade-offs. More-
over, once trained, these models typically process tokens uniformly, regardless of
their complexity, leading to static and inflexible behavior. In this paper, we intro-
duce a post-training optimization framework, DynaMoE, that adapts a pre-trained
dense LLM to a token-difficulty-driven Mixture-of-Experts model with minimal
fine-tuning cost. This adaptation makes the model dynamic, with sensitivity con-
trol to customize the balance between efficiency and accuracy. DynaMoE fea-
tures a token-difficulty-aware router that predicts the difficulty of tokens and di-
rects them to the appropriate sub-networks or experts, enabling larger experts to
handle more complex tokens and smaller experts to process simpler ones. Our
experiments demonstrate that DynaMoE can generate a range of adaptive model
variants with a single fine-tuning step, utilizing only 5B tokens, a minimal cost
compared to the base model’s training. Each variant offers distinct trade-offs be-
tween accuracy and performance.

1 INTRODUCTION

Large language models (LLMs) have significantly advanced the field of natural language process-
ing, showcasing strong capabilities in addressing complex tasks Brown et al. (2020); Touvron et al.
(2023a); Wei et al. (2022). However, their large size presents challenges, particularly in terms of high
memory and computational demands, which can limit their deployment in resource-constrained set-
tings. To address this, LLMs must be optimized for specific memory and computational constraints
Touvron et al. (2023b). However, designing multi-billion-parameter models for every use case is not
cost-effective, as it demands substantial training time, data, and resources.

Mixture-of-Experts (MoE) models (Shazeer et al., 2017; Du et al., 2021; Fedus et al., 2022; Zoph
et al., 2022; He, 2024) have emerged as a promising alternative to dense models, offering improved
efficiency by sparsely activating select sub-modules or experts. However, training MoEs from
scratch remains resource-intensive and each expert becomes static, often requiring fixed compute
budget irrespective of the input complexity.

Flextron (Cai et al., 2024) explored a post-training methodology by integrating the MoE concept into
a nested elastic structure within the MLP layers, creating heterogeneous experts of different sizes,
selected by a router conditioned on the input data. However, the lack of supervision in the router
training leads to sub-optimal input complexity adaptation. Salehi et al. (2023) proposed an input-
adaptive approach that predicts the difficulty of input data and dynamically adjusts the network’s
width accordingly. In the absence of ground-truth difficulty labels, they relied on heuristic methods
for label generation, which may limit precision and consistency in difficulty estimation.

To address their shortcomings, we introduce DynaMoE, a post-training optimization framework
designed to transform a dense LLM into a token-difficulty-driven MoE model. DynaMoE leverages
the insight that not all tokens require the full capacity of a model’s weights. For example, in the
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Figure 1: Overview of our proposed post-training optimization framework, DynaMoE. The left part
represents the base pre-trained LLM, while the right part shows the adapted DynaMoE model.

sentence “Geoffrey did his PhD at the university of Edinburgh”, simpler tokens like “at the univer-
sity of” are predictable using prior context, while more complex tokens like ”Edinburgh” demand
broader contextual understanding. To maximize efficiency, DynaMoE selectively activates nested
sub-components of the MLP, referred as experts, based on the predicted difficulty of each token. To
this end, we make the following contributions:

• The framework includes a novel token-difficulty-aware router, trained to predict token hard-
ness and assign it to the appropriate expert dynamically.

• Due to the lack of ground truth notion of hardness, we introduce a method to derive token
difficulty labels which serve as supervision signals for training the router. This approach
allows a token to have varying difficulty labels across different layers.

• A post-training optimization framework, DynaMoE, to easily adapt a pre-trained dense
LLM to a token-difficulty-driven MoE model, featuring a sensitivity parameter to cus-
tomize the efficiency vs accuracy trade-off.

2 METHOD

In this section, we describe our proposed post-training optimization framework, DynaMoE, which
transforms a dense LLM into an MoE model for adaptive inference based on token difficulty. The
process involves three key steps, detailed in the below sub-sections.

2.1 DEFINING HETEROGENEOUS EXPERTS

In this work, we focus on defining experts into the MLP layers of the LLM Devvrit et al. (2023),
as these layers account for the majority of the compute and operate on a token-by-token basis. The
overview of DynaMoE is depicted in Fig. 1. The left part of the figure denotes the base pre-trained
model and the right part shows the adapted DynaMoE model, where the original single MLP layer
is transformed into multiple nested FFN blocks or experts. Such expert formation introduces no
additional parameters to the base model, aside from the router. This design draws inspiration from
adaptive width reduction in transformer Salehi et al. (2023) and recent works like Matformer Devvrit
et al. (2023) and Flextron Cai et al. (2024).

Let D and H denote the embedding and the hidden dimensions of the MLP layer respectively. The
input to the MLP layer is X ∈ RB×D and the output is Y ∈ RB×D, where B is the batch dimension.
The MLP layer with two fully connected layers is represented by weight matrices W (IN) ∈ RH×D

and W (OUT ) ∈ RD×H . In order to get best results, we first rearrange these fully-connected layers,
W (IN) and W (OUT ), to have the most important rows/columns in the beginning of the matrix
so that they can be included in all of the experts Samragh et al. (2023). There are a total of E
experts indexed using e ∈ {0, 1, . . . , E − 1}. Each expert gets a portion He of the weight matrices
W (IN) and W (OUT ), sliced over the hidden dimension H . The value He is obtained as a fraction
of H as, He =

⌊(
e+1
E

)
·H

⌋
, consequently, H0 < H1 < · · · < HE−1 and HE−1 = H . The
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Cost (#Tokens) Params ARC-e LAMBADA PIQA WinoGrande Avg4 SciQ HellaSwag ARC-c Avg7

Base Mistral 7B - 7B 80.2 75.1 80.8 75.5 77.8 96.4 61.4 50.5 74.2

DynaMoE θ = 0.9 5B 6B 76.2 71.0 78.8 72.1 74.5 95.7 56.9 43.7 70.6

DynaMoE θ = 0.8 5B 5B 68.3 66.5 76.6 66.2 69.4 94.4 53.4 34.4 65.7

Base Llama2-7B † - 6.5B 75.1 71.5 77.5 69.1 73.3

Flextron † 93.57B 4.1B 68.6 65.1 76.1 63.7 68.3

Table 1: Evaluation of DynaMoE models with different sensitivity factor θ on downstream tasks,
using zero-shot accuracy metric. Our base model is Mistral 7B (Jiang et al., 2023). (†): results
from Flextron (Cai et al., 2024) used as our baseline. Params denotes the average number of total
activated parameters, aggregated over the downstream tasks. Avg4 averages over ARC-e, LAMBDA,
PIQA, WinoGrande, while Avg7 averages over all tasks.

restriction of the matrices W (IN) and W (OUT ) to the expert width He is obtained using the slicing
operator that selects the first He rows and columns respectively as W (IN)

e = W (IN)[0 : He, :] and
W

(OUT )
e = W (OUT )[:, 0 : He]. With σ as the activation function, the output Ye of the MLP layer

corresponding to the expert e can thus be obtained as, Ye = σ

(
X ·

(
W

(IN)
e

)T
)
·
(
W

(OUT )
e

)T

.

2.2 GENERATING TOKEN DIFFICULTY LABEL

We aim to train a token-difficulty-aware router to dynamically assign tokens to an appropriate expert.
But there is no ground-truth label denoting token difficulty to train such a router. To this end, we
propose a method to estimate the token difficulty and generate a derived-ground-truth difficulty label
during training. First, we pass the input to all experts and generate the output Ye for each e ∈ [E].
Then, for each token b ∈ [B] and each expert e ∈ [E], we compute a similarity score Sb,e that
measures how similar is the output of the expert e compared to the output of the full MLP layer
e = E − 1 for that token. We calculate this similarity as, Sb,e =

⟨Ye[b, :],YE−1[b, :]⟩
⟨YE−1[b, :],YE−1[b, :]⟩ .

Finally, we generate a derived ground-truth hardness label lb, representing the target expert index
for token b. Given a threshold θ, we assign lb as the smallest expert index e satisfying Sb,e > θ, that
is, lb = min{e ∈ [E] | Sb,e > θ}. We say that a token is easier if it has a smaller label lb.

2.3 TRAINING A TOKEN-DIFFICULTY-AWARE ROUTER

The output of a router is in RB×E , denoting logits over the E experts. Each router is parameterized
by two linear layers, projecting the token embedding from dimension D to U and subsequently
to E. In our experiments, we use U = 256. We train the router using the derived labels from
Section 2.2 with the cross-entropy loss. The overall objective function of DynaMoE is: L =
λLLM · LLLM + λRouter · LRouter. Here, LLLM is the main LLM Cross-entropy loss and LRouter

is the router loss. λLLM and λRouter are the weights of the respective losses.

3 EXPERIMENTS AND RESULTS

3.1 TRAINING DETAILS

DynaMoE integrates seamlessly with any transformer model, regardless of the architecture. We
use Mistral 7B model Jiang et al. (2023), a widely-used open-source pre-trained language model.
For DynaMoE fine-tuning, we use a small subset (5B tokens) of the Falcon RefinedWeb dataset
Penedo et al. (2023). This minimal fine-tuning overhead enables a cost-effective conversion of any
pre-trained LLM into an MoE variant for faster inference. We begin by reordering the pre-trained
MLP neurons Samragh et al. (2023) based on their importance, measured by absolute activations
aggregated over a small portion of the training dataset, 0.004%. We then fine-tune the DynaMoE
model with 4 experts of sizes 0.25H , 0.5H , 0.75H , and H respectively. The details of other hyper-
parameters are given in Appendix A.
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(a) (b)

Figure 2: Confusion matrix for the router’s classification task in DynaMoE.

(a) (b) (c)

Figure 3: Layer-wise expert usage in DynaMoE with varying θ.

3.2 EVALUATION

We evaluate the DynaMoE models on 7 downstream tasks (Appendix B) using LM Evaluation
Harness Gao et al. (2024) and report the 0-shot accuracy metric in Table 1. DynaMoE is compared
to two baselines, the base Mistral 7B model and the Flextron model (Cai et al., 2024) using Avg4
metric. Compared to Mistral 7B, DynaMoE improves efficiency by activating only 5B of 7B
parameters on an average, with an 8.4 point accuracy drop after fine-tuning on only 5B tokens at
θ = 0.8. The number of activated parameters adapts dynamically to token difficulty. For reference,
Flextron fine-tunes on 93.57B tokens, activating 4.1B of 6.5B parameters, with a 5 point accuracy
drop from its base model, Llama2-7B Touvron et al. (2023a). We emphasize that with only 1

18 th
of the Flextron’s fine-tuning cost, our results are comparable to Flextron. Accuracy improves with
increase in fine-tuning cost, but to keep the adaption lightweight, we opt for a smaller cost.

Analysis of Token-Difficulty-Aware Router: To evaluate the router’s accuracy, we compare pre-
dictions from all layers against the derived ground truth labels. Fig. 2 shows the confusion matrices,
which display a strong diagonal pattern, indicating high accuracy. Misclassifications mainly oc-
curred within neighboring expert classes, highlighting the router’s understanding of token difficulty.

Expert usage analysis: We visualize the expert usage patterns across all layers in Fig. 3. The
parameter θ affects expert usage in DynaMoE models by controlling how quickly tokens are routed
to larger experts based on difficulty. At lower θ values (e.g., θ = 0.8), smaller experts (e = 2)
dominate across layers. In contrast, at higher θ values (e.g., θ = 0.9), larger experts (e = 3) are
utilized more frequently, prioritizing accuracy over efficiency. In the absence of router loss, Fig.
3c, the model converges to using specific experts per layer instead of dynamically allocating experts
based on token difficulty.

4 CONCLUSION

We present DynaMoE, a post-training optimization framework that converts a standard pre-trained
dense LLM into a token-difficulty-driven MoE model. DynaMoE incorporates a lightweight router
to predict the token difficulty and routes them to an appropriate expert. To train this router, we
propose a novel method to derive the token difficulty labels, which act as supervision signals.
DynaMoE generates adaptive model variants with sensitivity control, allowing customization of
the trade-off between efficiency and accuracy.
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APPENDIX

A TRAINING HYPER-PARAMETERS

We finetune the DynaMoE model using only 5B tokens with AdamW optimizer Loshchilov &
Hutter (2017) and a fixed learning rate of 10−5. We keep the attention layers frozen. We set λLLM

to 0.2 and λRouter to 1 in the objective function for fine-tuning. We experiment with different
values of threshold θ ∈ {0.4, 0.8, 0.9} to build various DynaMoE family of models with varying
sensitivity parameter. A low sensitivity parameter, that is a smaller value of θ, makes the system
less reactive, favoring smaller experts for most tokens and only escalating to bigger experts for
significantly complex tokens. And a high sensitivity parameter makes the system more reactive,
escalating to bigger experts even for moderately complex tokens. We use 4 experts (E = 4) with
sizes 0.25H , 0.5H , 0.75H , and H respectively. We denote the size of expert with index e as He.

B DOWNSTREAM TASKS

The selected evaluation tasks include ARC (Easy and Challenge) Clark et al. (2018), HellaSwag
Zellers et al. (2019), PIQA Bisk et al. (2019), SciQ Welbl et al. (2017), WinoGrande Sakaguchi
et al. (2019), and LAMBADA Paperno et al. (2016). Performance is measured using the zero-shot
accuracy metric.
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