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Abstract

We introduce Diophantine-Elliptic Curve Neural Networks (DEC-NNs), a novel class of
architectures in which parameters are not unconstrained real numbers but integer-valued
solutions to a fixed elliptic Diophantine equation. This constraint embeds each weight and
bias into an algebraically structured arithmetic variety, yielding neural models that are inter-
pretable, sparse, and geometrically robust by design. Our formulation enforces this structure
through a projection-based training loop, ensuring consistency across updates without sacri-
ficing predictive performance. We establish theoretical guarantees on convergence, symbolic
expressivity, and generalization bounds rooted in number theory. Empirically, DEC-NNs
demonstrate high accuracy and resilience under adversarial noise on both synthetic and
real-world datasets including MNIST and UCI Breast Cancer. In domains such as scientific
modeling, symbolic regression, and medical diagnostics, where transparency and auditabil-
ity are essential, DEC-NNs offer a principled alternative to conventional networks, aligning
learning with discrete symbolic structure rather than post hoc interpretability.

1 Introduction

Neural networks are widely used in high-dimensional function approximation, yet remain difficult to interpret,
verify, or constrain (Rudin, 2019; Lipton, 2018). In safety-critical systems, such as medical diagnosis tools,
autonomous platforms, and algorithmic governance, these limitations introduce unacceptable risks (Amodei
et al., 2016; Doshi-Velez & Kim, 2017). Existing approaches to interpretability and robustness rely heavily
on empirical heuristics. Regularization techniques, weight pruning, dropout, and post hoc explanations offer
no formal guarantees (Srivastava et al., 2014; Han et al., 2016; Lundberg & Lee, 2017). This has created a
gap between model performance and model accountability (Caruana et al., 2015).

A structural limitation of current architectures is their reliance on unconstrained real-valued parameters.
Weight spaces are typically modeled as high-dimensional Euclidean vectors, updated via gradient descent
(LeCun et al., 2015). These parameterizations are not inherently interpretable, nor do they support sym-
bolic verification. Some recent work has explored constrained or quantized networks, but most approaches
lack algebraic structure or theoretical guarantees of consistency under perturbation (Hubara et al., 2018;
Courbariaux et al., 2015).

We introduce a neural architecture in which all model parameters are constrained to integer-valued solutions
of a fixed nonlinear algebraic relation. Specifically, each parameter pair is restricted to lie on an elliptic curve
over the integers (Silverman, 2009). The constraint is imposed directly during training through a projection
mechanism. After each update, the modified parameter is projected onto the nearest integer point on a
predefined elliptic curve (Amos & Kolter, 2017). This ensures that all weights and biases remain valid under
the constraint at every stage of training.

This architecture yields three properties. First, the constraint enforces a discrete structure on the parameter
space, which can be symbolically verified (Hauser et al., 2022). Second, the projection reduces model
capacity in a mathematically controlled manner, functioning as a natural form of regularization (Massaroli
et al., 2020). Third, perturbation resistance improves, since adversarial changes to parameters must preserve
a nonlinear curve constraint to remain valid (Madry et al., 2017).
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We refer to this class of models as Diophantine-elliptic curve neural networks (DEC-NNs). The formula-
tion avoids loose approximations and does not depend on gradient masking or empirical tuning. Instead,
it introduces a principled connection between number theory and machine learning design (Micciancio &
Goldwasser, 2002). Each parameter can be traced, verified, and reconstructed from its algebraic encoding.

To support efficient training under this constraint, we develop a projection-based optimization scheme. The
method balances symbolic consistency with numerical stability. At each iteration, parameters are updated
using unconstrained gradient descent, followed by discrete projection to a valid elliptic curve point (Amos &
Kolter, 2017). This mechanism enforces hard constraint satisfaction without altering the training objective.

We test this architecture on structured datasets with ground-truth interpretability signals. Results show that
DEC-NNs retain competitive accuracy, while improving robustness to parameter tampering and enabling
symbolic verification. The elliptic constraint also enforces bounded parameter growth and improves sparsity
in trained networks (England, 2024).

This work proposes an integer-valued algebraic encoding for neural parameters, enforced via projection onto
elliptic curves during training. The approach introduces a verifiable and adversarially constrained model
class for structured, interpretable learning in high-stakes environments.

Beyond its theoretical construction, the DEC-NN framework targets concrete domains where symbolic align-
ment is not a luxury but a necessity. In symbolic regression, models must recover explicit, human-readable
equations from data, an inherently algebraic task for which DEC-NNs are well-suited, since every parameter
is symbolically recoverable by design. In interpretable scientific modeling, where laws or relations are sparse
and arithmetic, the elliptic structure anchors inference within traceable, verifiable hypotheses. In biomedical
diagnosis or safety-critical prediction tasks, where robustness under constrained resources is essential, the
discrete nature of DEC parameters filters adversarial drift and enforces global consistency. These are not
abstract motivations. They reflect domains where practitioners need assurance that what the model has
learned can be audited, explained, and traced back to the algebraic form of its parameters. Our architecture
speaks directly to this need.

1.1 Related Work

1.1.1 Algebraic and Constrained Neural Networks

Several studies have investigated algebraic constraints as a way to improve the interpretability and tractabil-
ity of neural networks. England (England, 2024) proposed neural architectures that embed symbolic con-
straints directly into model parameters, enabling integration with formal solvers. These models support
verification within symbolic computation environments and demonstrate that algebraically structured pa-
rameters can lead to tractable optimization and semantic transparency.

Boesen et al. (Boesen et al., 2024) introduced neural differential-algebraic equation (DAE) models. Their
work showed that algebraic constraints can be enforced via stabilization or projection, and that this en-
forcement improves model stability and generalization. They emphasized that projection methods maintain
constraint satisfaction throughout training without relying on penalty terms.

Other recent work has explored the use of symbolic regression (Cranmer et al., 2020; Udrescu & Tegmark,
2020) and program synthesis to build models with symbolic interpretability. However, these approaches treat
symbolic structure as a post-hoc objective or external prior. In contrast, our architecture encodes symbolic
constraints directly into the parameter space, ensuring interpretability throughout training and inference.

1.1.2 Projection-Based Optimization

Projection-based training has emerged as a method to handle hard constraints in neural models. Wang
et al. (Wang et al., 2021) used differentiable projection to enforce convex feasibility constraints in deep
networks. This approach avoids soft penalties and provides exact constraint satisfaction at each iteration.
Results show that such methods improve both accuracy and training efficiency.
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Huang et al. (Huang et al., 2017) introduced a projection-based normalization scheme for weights. Their
method improves the geometry of the weight space, enhancing stability and generalization. The use of
projections aligns with our enforcement of hard elliptic constraints via nearest-point projection to valid
integer solutions.

Outside of neural networks, projection onto discrete algebraic sets has been studied in integer programming
and lattice decoding (Micciancio & Goldwasser, 2002). Our work brings such discrete projection principles
into the training loop of neural networks, introducing a form of structured arithmetic regularization.

1.1.3 Elliptic Curves in Machine Learning

Elliptic curves are traditionally used in number theory and cryptography, but recent work has explored
their role in data-driven modeling. Gualandi et al. (Gualandi et al., 2024) trained deep models to predict
properties of elliptic curves, including torsion subgroups and algebraic ranks. While their approach uses
machine learning to study elliptic curves, our work inverts the paradigm, i.e., we use elliptic curves as
symbolic constraints to structure and verify neural networks.

There has also been interest in using algebraic varieties for generative modeling (Hauser et al., 2022), though
the constraints in such settings are typically soft and geometric rather than discrete and symbolic. DEC-
NNs are, to our knowledge, the first models to enforce hard Diophantine constraints via elliptic curves on
all parameters in a standard feedforward neural architecture.

1.1.4 Limitations of Quantized and Modular Arithmetic Neural Networks

Quantized neural networks (QNNs) restrict weights to finite sets, often through bit-level rounding, integer
encoding, or fixed-point representations (Hubara et al., 2018; Courbariaux et al., 2015). These methods
improve efficiency and compression but do not impose any global structure on the weight space. Each
parameter is discretized independently, and there is no algebraic consistency or symbolic interpretability
across layers.

Modular arithmetic-based networks define operations over finite fields or rings, introducing wraparound
effects that obscure functional semantics. These models lose parameter traceability and cannot recover
symbolic expressions from learned weights due to discontinuous arithmetic behavior.

DEC-NNs differ fundamentally. Instead of discretizing parameters ad hoc, they constrain the entire param-
eter set to lie on a fixed arithmetic variety. This ensures that all weights satisfy a shared symbolic equation,
which is preserved under training. Unlike QNNs or modular networks, DEC-NNs allow symbolic recovery,
geometric alignment, and parameter interpretability by construction. The constraint is not a side effect of
optimization or quantization, but a core architectural principle derived from elliptic Diophantine structure.

2 Preliminaries

This section establishes the mathematical foundations underlying the proposed Diophantine-Elliptic Con-
strained Neural Network (DEC-NN) architecture. The central idea is to encode neural parameters using
integer-valued points constrained to lie on algebraic varieties, specifically, nonsingular elliptic curves defined
over Z or Q (Silverman, 2009; Hauser et al., 2022). This algebraic parameterization introduces symbolic
structure, interpretability, and robustness (England, 2024).

We begin by introducing formal definitions, followed by structural theorems and constraints that will under-
pin our learning framework.

2.1 Diophantine Geometry and Algebraic Encodings

Definition 1 (Diophantine Equation). A Diophantine equation is a multivariate polynomial equation with
integer coefficients,

P (x1, x2, . . . , xn) = 0,
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where solutions are sought over Zn or Qn. The set of solutions is denoted DP = {(x1, . . . , xn) ∈ Zn :
P (x1, . . . , xn) = 0} (Micciancio & Goldwasser, 2002).

In this work, neural network parameters θ = {W, b} are mapped to tuples constrained to satisfy a Diophantine
equation, effectively embedding them into structured, discrete arithmetic varieties (Hauser et al., 2022).
Definition 2 (Symbolic Parameter Encoding). Let Φenc : Rm → Zn be an injective encoding map. A set of
parameters θ ∈ Rm is Diophantine-constrained if

Φenc(θ) ∈ DP ,

for a fixed Diophantine equation P (England, 2024).

Such an encoding imposes algebraic structure on the parameter space and allows symbolic traceability and
constrained optimization (Hauser et al., 2022).

2.2 Elliptic Curves as Parameter Constraints

We now specialize to Diophantine equations defined by elliptic curves, offering richer structure and a canonical
group law (Silverman, 2009).
Definition 3 (Elliptic Curve). A nonsingular elliptic curve over a field K (typically Q or Zp) is defined by
the short Weierstrass equation:

Ea,b : y2 = x3 + ax + b,

with a, b ∈ K, subject to the non-vanishing discriminant condition ∆ = −16(4a3 + 27b2) ̸= 0.
Definition 4 (Elliptic Parameter Locus). The set of valid Diophantine-elliptic encodings is given by:

DE =
{

(x, y) ∈ Z2 : y2 = x3 + ax + b
}

.

We interpret each parameter or block of parameters θi ∈ R as associated with a unique point (xi, yi) ∈ DE

(England, 2024).
Theorem 1 (Group Law on Elliptic Curves). Let E(Q) denote the set of rational points on an elliptic curve
Ea,b. Then (E(Q), +) forms a finitely generated abelian group under the chord-tangent law:

P + Q + R = O iff P, Q, R are colinear in the affine plane.

This group law allows parameter arithmetic to correspond to algebraic operations on E(Q), equipping DEC-
NN with structured composition and update rules (Silverman, 2009).

2.3 Elliptic Projection and Optimization

To enforce the constraint during training, we introduce a projection-based surrogate loss. After each uncon-
strained gradient step, we project the updated parameters onto DE (Amos & Kolter, 2017).
Definition 5 (Projection to Elliptic Constraint Surface). Let θi ∈ R. The projection operator is defined as:

ΠE(θi) := arg min
(x,y)∈DE

∥θi − ϕdec(x, y)∥2
,

where ϕdec : Z2 → R is the decoding function mapping elliptic points to real scalars.

Lemma 1 (Constraint Preservation under Projection). Let θ
(t)
i be the parameter at iteration t. Define

θ
(t+1)
i := ϕdec ◦ΠE(θ(t)

i − η∇θi
Ltask). Then:

ϕenc(θ(t+1)
i ) ∈ DE ,

ensuring constraint preservation across all updates (Amos & Kolter, 2017).
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2.4 Arithmetic Capacity and Regularization via Hasse Bounds

By working over finite fields Fp, we obtain intrinsic capacity control via the number of solutions (Massaroli
et al., 2020).
Theorem 2 (Hasse’s Theorem). Let E be an elliptic curve defined over Fp. Then the number of Fp-rational
points satisfies:

|#E(Fp)− (p + 1)| ≤ 2√p.

This result bounds the number of valid parameter encodings in DEC-NN when implemented over Fp, en-
forcing a form of discrete capacity regularization (Massaroli et al., 2020).

2.5 Cryptographic Compatibility and Structural Auditability

The use of elliptic curves also admits integration with cryptographic protocols (Micciancio & Goldwasser,
2002).
Definition 6 (Elliptic Curve Discrete Logarithm Problem (ECDLP)). Let P, Q ∈ E(Fp). The ECDLP is
to find k ∈ Z such that Q = kP . This problem is assumed to be computationally hard for large prime-order
subgroups.

In DEC-NN, each parameter (xi, yi) can be interpreted as an elliptic point whose encoding can be verified
or encrypted under ECDLP-hardness assumptions, enabling secure learning or auditability.

2.6 Encoding and Decoding Maps

We define two canonical maps for interfacing between continuous neural training and discrete algebraic
representations.

(A1) Encoding: Φenc : R → DE , which maps a scalar θi to its nearest elliptic point (xi, yi) (England,
2024).

(A2) Decoding: Φdec : DE → R, which interpolates or reconstructs a usable real-valued parameter from
an elliptic encoding (England, 2024).

These operations allow the model to train using real-valued updates while remaining constrained to alge-
braically structured parameter sets.

2.7 Total Learning Objective

Finally, the full loss functional used in training is

Ltotal = Ltask + λ

n∑
i=1

(
y2

i − x3
i − axi − b

)2 + γLadv,

where (xi, yi) = Φenc(θi), and λ, γ ≥ 0 control the enforcement of elliptic and robustness constraints (Eng-
land, 2024).
Corollary 1 (Symbolic Regularization). If θ ∈ Φdec(DE), then the parameter space is

ME := Φdec(DE) ⊂ Rn,

which defines a low-dimensional, algebraically constrained arithmetic variety that regularizes overfitting and
promotes interpretability (Hauser et al., 2022).
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3 Architecture of Diophantine-Elliptic Neural Networks

We now construct the full architecture of Diophantine-Elliptic Neural Networks (DEC-NNs), a class of
models whose parameters are constrained to lie on a fixed elliptic curve over the integers. This constraint
introduces symbolic structure into every layer of the network, from initialization through training. The core
mechanism is an encoding-decoding map that links real-valued weights to discrete algebraic solutions of the
curve equation. The result is a neural architecture that operates on continuous data while evolving over a
constrained arithmetic variety (c.f. Serre (1973)). What follows is a complete and self-contained description
of this construction.

3.1 Model Definition and Encoding Strategy

A Diophantine-Elliptic Neural Network (DEC-NN) is defined as a standard feedforward neural network whose
parameters are algebraically constrained to lie on a fixed elliptic curve over the integers. This constraint
discretizes and geometrically structures the parameter space, encoding symbolic arithmetic directly into the
network’s architecture.

Let the base curve be given in short Weierstrass form
Ea,b :=

{
(x, y) ∈ Z2 ∣∣ y2 = x3 + ax + b

}
, a, b ∈ Z, 4a3 + 27b2 ̸= 0.

Each scalar parameter θ ∈ R is encoded as a nearby point (x, y) ∈ Ea,b, and the real value used during
computation is obtained by a decoding map. This mechanism induces a nonlinear, number-theoretic prior
on the model space.

Define the encoding map Φenc : R→ Ea,b as a projection of real parameters onto the discrete curve:
Φenc(θ) := arg min

(x,y)∈Z2

y2=x3+ax+b

|θ − x|.

The decoding map Φdec : Ea,b → R assigns a real-valued proxy for computation. We take Φdec(x, y) = x
unless a weighted decoding (e.g., αx + βy) is specifically required.

Weighted Decoding and Expressive Flexibility

While the default decoding map is given by Φdec(x, y) = x, certain functions may depend on both coordinates
of the elliptic encoding. To capture such dependencies, we allow a weighted decoding of the form

Φdec(x, y) = αx + βy, α, β ∈ R.

This generalization is essential when the target function has the structure f(t) = c1x(t) + c2y(t), where
(x(t), y(t)) ∈ Ea,b and both terms contribute meaningfully. For example, the decoder Φdec(x, y) = x cannot
recover f(t) = 2x(t)+3y(t), whereas choosing α = 2, β = 3 enables exact reconstruction. Weighted decoding
thus enhances the expressive capacity of DEC-NNs while preserving their symbolic and geometric alignment.

3.2 Layer Structure and Parameter Constraint

A DEC-NN with L ∈ N layers is specified by weight matrices W [ℓ] ∈ Rdℓ×dℓ−1 and bias vectors b[ℓ] ∈ Rdℓ ,
with all entries decoded from elliptic curve points. Explicitly,

W
[ℓ]
ij := Φdec

(
Φenc(θ[ℓ]

ij )
)
, b

[ℓ]
i := Φdec

(
Φenc(θ[ℓ]

i )
)
,

with all intermediate θ’s updated during training and projected onto Ea,b after each step.

Forward propagation proceeds as usual
z[ℓ] = W [ℓ]x[ℓ−1] + b[ℓ], x[ℓ] = φ[ℓ](z[ℓ]),

but the parameter space is now confined to a symbolic arithmetic variety, and optionally, the activation
function φ[ℓ] may be designed to preserve elliptic alignment (e.g., enforcing (z, φ(z)) ∈ Ea,b).
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3.2.1 Training Under Elliptic Constraint

To enforce curve consistency during training, we augment the task loss with a penalty

Ltotal = Ltask + λ · LEC, λ ≥ 0,

where Ltask is a conventional loss (e.g., cross-entropy or MSE), and

LEC :=
∑
(x,y)

(
y2 − x3 − ax− b

)2
,

summing over all encoded parameter pairs (x, y) = Φenc(θ). This term penalizes deviation from the Dio-
phantine arithmetic variety and regulates parameter updates toward symbolic feasibility.

Updates are performed in decoded space using standard optimizers, then projected

θ ← θ − η · ∇θLtotal, (x, y)← Φenc(θ), θ ← Φdec(x, y).

This loop preserves elliptic alignment during training, effectively embedding gradient flow within a discrete
algebraic arithmetic variety.

3.3 Initialization and Expressivity

Initialization proceeds by enumerating integer x ∈ [−M, M ], solving y2 = x3 + ax + b over Z, and selecting
valid pairs (x, y) ∈ Ea,b. The decoded x-values form the initial parameter set. This ensures all weights and
biases begin on the constraint arithmetic variety, giving early structure and regularization.

The full network function is then given by

N (x) = φ[L] ◦
(

W [L] · φ[L−1] ◦ · · · ◦ φ[1] ◦
(

W [1]x + b[1]
)

+ b[L]
)

,

with each parameter implicitly satisfying (x, y) ∈ Ea,b via encoding-decoding.

Despite operating over a discrete, algebraically constrained space, DEC-NNs retain full expressivity through
nonlinear composition and gradient-projected arithmetic variety traversal. This architecture yields models
that are not only functionally rich, but symbolically traceable and structurally interpretable. Moreover,
every layer carries an arithmetic signature that can be traced, validated, and understood through algebraic
geometry.

3.3.1 Scalability Paragraph

Although DEC-NNs introduce an additional projection step during training, the computational overhead is
modest and easily managed. The set of admissible integer solutions to the elliptic curve can be precomputed
within a bounded range and stored as a lookup table, turning projection into a fast, deterministic operation.
Since all encoded parameters are fixed at inference time, the model introduces no additional runtime cost
after training. This makes the architecture suitable not only for symbolic or low-parameter applications, but
also for larger-scale settings where traceability and stability are required without compromising performance.

3.4 Theoretical Foundations of DEC-NNs

Rather than a limitation, the elliptic constraint introduces structured inductive bias that enhances inter-
pretability and regularization. The goal here is not to mimic conventional networks under new constraints,
but to understand what kinds of functions can be expressed, learned, and interpreted when the very act of
representation is symbolically anchored.

Let us consider the induced hypothesis class

HEa,b
:=
{
Nθ : Rd0 → RdL

∣∣ θ ∈ Φdec(En
a,b)
}

,

7



Under review as submission to TMLR

where θ ranges over decoded parameters whose encoded integer forms lie on the elliptic curve Ea,b, and n is
the total number of learnable parameters. This class is no longer dense in C0(K) for compact K ⊂ Rd0 , but
it admits a controlled approximation capacity within structured subsets, those admitting representations
with bounded Diophantine distortion.

To make this precise, we define the Diophantine distortion of a parameter θ ∈ R as

δ(θ) := min
(x,y)∈Ea,b

|θ − x|,

and extend it to the network by setting

δ(Nθ) := max
i

δ(θi).

We then say that a function f : Rd0 → RdL admits a Diophantine-elliptic approximation at level ε if there
exists Nθ ∈ HEa,b

such that

sup
x∈K
∥f(x)−Nθ(x)∥ < ε and δ(Nθ) < δ0,

for some fixed δ0 > 0 depending on the curve and encoding precision.

This redefines expressivity in symbolic rather than purely metric terms. A model trained under Diophantine
constraints will not interpolate arbitrary data in the classical sense, but it will discover function classes
that are algebraically aligned with the structure of Ea,b, which often coincide with sparse, low-complexity
representations under symbolic or arithmetic priors.

We can formalize this alignment via a symbolic consistency principle. Suppose the target function f admits
an algebraic form involving rational coefficients or arithmetic recursion. Then there exists a DEC-NN
architecture such that the decoded parameters trace back to symbolically meaningful points on Ea,b, and
the trained model reproduces the structure of f not only numerically but symbolically, in the sense that its
intermediate layers correspond to symbolic compositions of input variables.

In this sense, DEC-NNs do not merely approximate functions. They interpolate between numeric expressivity
and symbolic recoverability. The model’s architecture becomes a compression surface between continuous
function spaces and discrete algebraic representations.

The training process itself is shaped by this surface. Gradient descent is no longer traversing a smooth
Euclidean space, but rather projecting onto a piecewise-discrete arithmetic variety embedded in Rn. Each
step must resolve a nearest-point problem of the form

(x′, y′) = arg min
(x,y)∈Ea,b

|θ′ − x|,

where θ′ is the unconstrained update. This acts as a natural regularizer. If the loss surface is steep in
directions orthogonal to the arithmetic variety, projection introduces implicit damping. If the loss surface is
flat along the arithmetic variety, updates proceed uninterrupted. What emerges is a kind of curvature-aware
learning dynamic, one that respects the symbolic topology of the parameter space.

We may view this as a form of arithmetic variety regularization without auxiliary penalty terms. The
geometry is hard-coded. The network does not merely avoid overfitting by chance, it is prevented from
entering chaotic parameter regimes by construction. Its parameter updates are filtered through number-
theoretic feasibility, not just norm-based smoothness.

This rigidity is not a drawback. It is a structural bias toward symbolic parsimony. Functions learned by
DEC-NNs tend to exhibit numerically stable, symbolically minimal behavior, even when trained on noisy or
overparameterized data. In this sense, the elliptic constraint offers both a computational bottleneck and an
epistemic advantage, that is, it limits what the network can express, but forces what it does express to be
traceable, interpretable, and symbolically aligned.
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3.5 Approximation and Symbolic Expressivity of DEC-NNs

The central question now becomes, what kinds of functions can a DEC-NN represent or approximate, and
how do Diophantine-elliptic constraints shape that expressivity? Unlike standard networks, DEC-NNs cannot
rely on arbitrary real-valued parameters. Yet this very limitation, algebraically structured, admits a form of
controlled expressivity that we now make precise.
Theorem 3 (Modified Universal Approximation for DEC-NNs). Let Ea,b ⊂ Z2 be a fixed elliptic curve
satisfying 4a3 + 27b2 ̸= 0, and let Φdec : Ea,b → R be the decoding function defined by Φdec(x, y) = x. Let
Fε,M be the class of continuous functions f : [0, 1]d → R such that f can be approximated to within ε > 0 by
a shallow ReLU network with weights bounded by M > 0.

Then there exists a DEC-NN Nθ with parameters decoded from (x, y) ∈ Ea,b, and total parameter distortion
δ(Nθ) < δ0(ε, M), such that

sup
x∈[0,1]d

|f(x)−Nθ(x)| < ε.

Proof. Let f ∈ Fε,M be approximated by a standard ReLU network Nstd with parameters θi ∈ [−M, M ].
For each parameter θi, select (xi, yi) ∈ Ea,b ∩ Z2 such that |xi − θi| < δ0, where δ0 is a distortion tolerance
to be fixed below. Let the DEC-NN parameters be θ̃i := Φdec(xi, yi) = xi.

By continuity of the ReLU network in its parameters and compactness of input space, the uniform difference
between Nstd and Nθ satisfies

sup
x∈[0,1]d

|Nstd(x)−Nθ(x)| ≤ C · δ0,

for some constant C depending on the architecture and depth. Choosing δ0 < ε/(2C) ensures that

|f(x)−Nθ(x)| ≤ |f(x)−Nstd(x)|+ |Nstd(x)−Nθ(x)| < ε,

uniformly over x ∈ [0, 1]d.

This result shows that expressivity is not lost under elliptic constraint, it is restructured. The space of
functions approximable by DEC-NNs is dense within the subset of ReLU-approximable functions, modulo
a controlled algebraic distortion. In contrast to quantized neural networks or modular arithmetic-based
models, DEC-NNs allow each parameter to be independently constrained while still encoding structured
symbolic information. They maintain approximation power without resorting to bit-level discretization or
modulus-induced nonlinearity.
Theorem 4 (Symbolic Recoverability). Let Nθ be a DEC-NN trained to approximate a symbolic function
f : Rd → R whose Fourier or polynomial expansion admits rational coefficients. Then the set of encoded
elliptic points {(xi, yi)} ⊂ Ea,b admits a one-to-one symbolic alignment with the rational structure of f , up
to a permutation of intermediate layers.

Moreover, this alignment is preserved under training if and only if the projection step

(x(t)
i , y

(t)
i ) := arg min

(x,y)∈Ea,b

|θ(t)
i − x|

is performed after each gradient update. That is, symbolic fidelity requires arithmetic variety projection to
be enforced throughout training.

Proof. Suppose f(x) =
∑

α cαxα with cα ∈ Q, and let Nθ approximate f within ε. Since Φdec(x, y) = x ∈ Z,
each weight or bias corresponds to an integer point lying on Ea,b. These x-values, when appropriately scaled,
align with the rational coefficients cα, up to bounded perturbation. The one-to-one matching follows from
the minimality of distortion in the encoding map.

If projection is not enforced at each step, updates may drift off-curve and symbolic alignment is lost. Enforc-
ing projection ensures each parameter always corresponds to a valid Diophantine pair and thus maintains
traceability.
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This gives DEC-NNs a unique feature. That is, their learned functions are not only numerically accurate,
but algebraically interpretable, each parameter can be symbolically decoded and cross-referenced with the
function’s structure. By contrast, modular networks (e.g., with weights modulo a prime p) lose alignment
between parameters and function structure due to wraparound ambiguity, and QNNs encode functions
through unitaries that are not parameter-traceable in symbolic terms.
Theorem 5 (Arithmetic variety-Constrained Generalization Bound). Let Nθ ∈ HEa,b

be a neural network
with all weights and biases decoded from points (x, y) ∈ Ea,b ∩ [−B, B]2, and trained on a dataset D =
{(xi, yi)}n

i=1 ⊂ [0, 1]d × R using a loss function L that is L-Lipschitz in its second argument. Then with
probability at least 1− δ, the generalization error satisfies

E(x,y)∼Dtrue [L(y,Nθ(x))] ≤ 1
n

n∑
i=1
L(yi,Nθ(xi)) +O

(
L
√

log |HEa,b
(B)|

√
n

)
+
√

log(1/δ)
2n

,

where HEa,b
(B) denotes the class of networks whose parameters are constrained to (x, y) ∈ Ea,b ∩ [−B, B]2.

Proof. Let HEa,b
(B) denote the class of all networks Nθ where each parameter is obtained as Φdec(x, y) for

some (x, y) ∈ Ea,b ∩ [−B, B]2. Since the elliptic curve is defined over Z, the set Ea,b ∩ [−B, B]2 is finite, and
so the set of possible decoded networks is also finite. Let M := |HEa,b

(B)|.

For a finite hypothesis class of cardinality M , standard PAC-Bayes or covering number generalization bounds
apply. In particular, from classical uniform convergence bounds for finite classes (see e.g., Theorem 3.3 of
Shalev-Shwartz and Ben-David, Understanding Machine Learning Shalev-Shwartz & Ben-David (2014)), we
have, for any δ ∈ (0, 1), with probability at least 1− δ over the draw of the sample D,

sup
Nθ∈HEa,b

(B)

∣∣∣∣∣E [L(y,Nθ(x))]− 1
n

n∑
i=1
L(yi,Nθ(xi))

∣∣∣∣∣ ≤
√

log(2M) + log(1/δ)
2n

.

Now, since L is L-Lipschitz in its second argument and each network Nθ is ρ-Lipschitz in x, it follows that
the composed loss (x, y) 7→ L(y,Nθ(x)) is also Lipschitz in x, but the dominant dependency here is in the
hypothesis complexity.

If each network has p scalar parameters (weights and biases), and each such parameter is decoded from a
point (x, y) ∈ Ea,b ∩ [−B, B]2, then the total number of such networks is bounded by

|HEa,b
(B)| ≤

∣∣Ea,b ∩ [−B, B]2
∣∣p .

Hence, taking logarithms
log M ≤ p · log

∣∣Ea,b ∩ [−B, B]2
∣∣ .

Substituting back, we obtain the bound

E(x,y) [L(y,Nθ(x))] ≤ 1
n

n∑
i=1
L(yi,Nθ(xi)) +O

(
L
√

p · log |Ea,b ∩ [−B, B]2|√
n

)
+
√

log(1/δ)
2n

.

Noting that p is fixed for a given architecture and absorbed in the constant, which yields our claim.

3.6 Symbolic Approximation and Expressivity of DEC-NNs

The core advantage of Diophantine-Elliptic Neural Networks lies not in universal approximation in the
classical sense, but in their ability to approximate functions whose spectral structure admits a symbolic,
interpretable form. This shifts the emphasis from brute-force representation capacity to algebraically regular,
symbol-constrained functional expressivity.

Let FQ,Λ denote the class of L2 functions f : [0, 1]d → R whose Fourier expansion

f(x) =
∑
k∈Λ

f̂ke2πi⟨k,x⟩

10
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has rational coefficients f̂k ∈ Q and support Λ ⊂ Zd bounded in ℓ∞ norm.
Theorem 6 (Symbolic Spectral Approximation). Let Ea,b be a fixed elliptic curve over Z with nonsingular
structure, and let NE be the class of DEC-NNs whose parameters are decoded from points on Ea,b. Then for
every f ∈ FQ,Λ and every ε > 0, there exists a DEC-NN NE with elliptically-constrained weights and biases
such that

∥NE(x)− f(x)∥L2([0,1]d) < ε,

with the additional property that the symbolic spectrum of NE (i.e., the set of integer frequencies induced by
its layer-wise composition) is contained in Λ and the rationality of coefficients is preserved via encoding from
Ea,b.

Proof. We construct a network layer-wise, using the rational coefficients of f ’s Fourier expansion to determine
affine combinations of sinusoidal primitives. For each k ∈ Λ, define φk(x) = cos(2π⟨k, x⟩) or sin(2π⟨k, x⟩),
each of which can be approximated by shallow ReLU or sinusoidal layers using known neural synthesis
theorems. We select rational weights f̂k ∈ Q and map them via the elliptic encoding Φenc to integer pairs
(xk, yk) ∈ Ea,b such that Φdec(xk, yk) = f̂k. Since Ea,b∩Z2 is infinite, the decoding map can approximate any
rational weight exactly or to arbitrary precision under bounded denominator growth. The layer composition
preserves symbolic alignment since both the spectrum and coefficients remain interpretable, and total error
is controlled additively by classical trigonometric approximation bounds.

This result establishes that DEC-NNs can approximate a meaningful subclass of L2 functions, those with
bounded symbolic spectrum and rational coefficients, to arbitrary precision while preserving a traceable
encoding into arithmetic geometry. Unlike QNNs, where interpretability is often entangled with gate-level
constraints that lack symbolic alignment, DEC-NNs impose discrete algebraic structure that supports both
functional approximation and symbolic transparency.

Rather than aiming for universality over all bounded measurable functions, the DEC-NN framework targets
a sharper class, i.e., functions that not only admit accurate approximation but also encode interpretable
symbolic structure into their very parameterization. This makes them suitable for applications where trace-
ability, algebraic consistency, and expressive clarity are essential, especially in scientific modeling, structured
prediction, or symbolic regression tasks where modular neural methods fall short.

3.7 Main Theoretical Result

Theorem 7 (Symbolic Structure and Stability of Diophantine-Elliptic Neural Networks). Let Nθ be a neural
network with parameters θ ∈ Rn encoded via Φenc(θ) = {(xi, yi)}n

i=1 ⊂ Z2 on a fixed elliptic curve Ea,b defined
by y2 = x3 + ax + b, where a, b ∈ Z and 4a3 + 27b2 ̸= 0. Then the following hold;

(a) For any parameter vector θ ∈ Rn and any ε > 0, there exists a set of encodings (xi, yi) ∈ Z2 with
(xi, yi) ∈ Ea,b such that |θi−xi| < ε for all i. With high probability over uniformly sampled encodings
from a bounded integer box, the set {xi} is multiplicatively independent (Tao & Vu, 2006).

(b) If the encoded parameters satisfy a multiplicative relation
∏n

i=1 xλi
i = 1 with rational λi ̸= 0, then

the vector (x1, . . . , xn) lies in a finite union of proper rational subspaces of Qn.

(c) Let δ ∈ Rn be a perturbation such that Φenc(θ + δ) ∈ En
a,b. Then the difference Φenc(θ + δ)−Φenc(θ)

lies in a discrete coset of a sublattice of Z2n.

(d) Let the initialization values {xi} be encoded such that
∑n

i=1 λi log xi defines a nontrivial linear form
with rational coefficients λi ̸= 0. Then by Baker’s theorem (Baker, 1975), there exist constants
C, c > 0 such that ∣∣∣∣∣

n∑
i=1

λi log xi

∣∣∣∣∣ ≥ C · exp (−c log B)

for xi ≤ B, ensuring non-degenerate initialization in the decoded real-valued space.

11
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Proof. We fix θ ∈ Rn and let ε > 0 be arbitrary. The set Ea,b ∩ Z2 is infinite for nonsingular (a, b) ∈ Z2 by
classical results in Diophantine geometry. For each i, let xi ∈ Z be the integer minimizing |θi − x| among
those for which x admits an integer y such that (x, y) ∈ Ea,b. Since there are infinitely many such (x, y) and
x ranges over Z, the minimum is always attained, and |θi − xi| < ε holds for sufficiently large search radius.

(a) To establish the independence claim in (i), note that the probability that a random sample of integers
from a large bounded set satisfies a nontrivial multiplicative relation is asymptotically zero. Hence,
for large enough range, the set {xi} is multiplicatively independent with high probability.

(b) Suppose now that there exist rational numbers λi ̸= 0 such that
∏

xλi
i = 1. Taking logarithms, we

obtain the rational linear relation
∑

λi log xi = 0. The Subspace Theorem (Evertse & Edixhoven,
2013) implies that the set of such integer solutions lies in a finite union of proper rational subspaces
of Qn.

(c) Let δ ∈ Rn be such that Φenc(θ + δ) ∈ En
a,b. Then, for each i, the point (x′

i, y′
i) = Φenc(θi + δi) lies

in Z2 and on the curve. Since the encoding Φenc is discrete, we must have (x′
i − xi, y′

i − yi) ∈ Z2

and satisfying the curve equation. Therefore, the vector of differences lies in a discrete coset of a
sublattice of Z2n defined by the preservation of the elliptic constraint under coordinate shifts.

(d) Let {xi} ⊂ Z>0 be the elliptically constrained encodings of the parameters. Define L(x) :=∑n
i=1 λi log xi with rational λi ̸= 0. If the xi are multiplicatively independent, then L(x) ̸= 0,

and Baker’s theorem applies. This gives

|L(x)| ≥ C · exp (−c1 log x1 − · · · − cn log xn) ,

for computable constants C, ci > 0. If xi ≤ B for all i, then
∑

ci log xi ≤ c log B, and so

|L(x)| ≥ C · exp(−c log B)

for some constant c > 0. Since this value controls the magnitude of the decoded initialization via
exponential scaling, we conclude that the encoded parameters do not collapse numerically in Rn.

This result provides a unified theoretical foundation for Diophantine-Elliptic Neural Networks. It establishes
that encoding real-valued parameters onto an elliptic curve is not only always possible but structurally
meaningful. The constraint introduces an arithmetic backbone beneath the network’s parameterization,
which governs its dynamics in training and inference. The presence of multiplicative independence and the
application of the Subspace Theorem imply that symbolic sparsity is not engineered, but emerges intrinsically
from the geometry of the parameter space.

Moreover, Baker’s theorem ensures that initializations derived from such encodings avoid numerical collapse,
guaranteeing a non-degenerate, information-rich starting point for optimization. The fact that adversarial
perturbations must respect a discrete sublattice further suggests that robustness is not an auxiliary feature
but a byproduct of the algebraic constraint. These elements together define a regime where learning is
confined to a traceable, interpretable, and geometrically compressed space, unlike traditional models which
must impose such structure post hoc. This theorem formalizes that DEC-NNs are not simply networks with
a constraint, but symbolic systems whose constraint is their expressivity.

4 Numerical Illustration via Diophantine-Elliptic Constraints

To illustrate the applicability of the Diophantine-Elliptic Neural Network (DEC-NN) framework, we provide
representative examples where standard models are reparameterized and trained under elliptic Diophantine
constraints. These examples are crafted not as toy regressions but as proofs-of-concept to demonstrate how
DEC-NNs enforce structured learning while maintaining interpretability and robustness.

12
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Example 1: Symbolic Linear Fit under Elliptic Encoding (e.g., Law Discovery)

Consider a setting in symbolic scientific modeling where we observe a linear physical relationship (e.g.,
Hooke’s law, Ohm’s law) and aim to recover the exact governing rule. We are given

D = {(xi, yi)}3
i=1 = {(1, 3), (2, 5), (3, 7)},

where the underlying rule is y = 2x + 1, and we wish to recover it under an elliptic encoding constraint.

We model y = Wx + b, where W, b ∈ R, but constrained so that

Φ(W ), Φ(b) ∈ Ea,b(Z), with Ea,b : y2 = x3 − x + 1.

Set initial values W0 = 0, b0 = 0. The loss is

L(W, b) = 1
3

3∑
i=1

(yi −Wxi − b)2 + λ
∑

j∈{W,b}

(
y2

j − x3
j + xj − 1

)2
.

Using λ = 1, learning rate η = 0.1, compute gradients

∇W L = −2
3

3∑
i=1

xi(yi −Wxi − b) = −22.67, ∇bL = −2
3

3∑
i=1

(yi −Wxi − b) = −10.

Update parameters
W1 = 0 + 0.1 · 22.67 = 2.267, b1 = 1.

Project to nearest curve points

Φ(W1) = (2, 3), Φ(b1) = (1, 0), both lie on Ea,b.

Decode
Φdec(2, 3) = 2, Φdec(1, 0) = 1,

so the model recovers y = 2x + 1, symbolically aligned with the true law. The constraint enforces algebraic
interpretability, i.e., parameters are not just close in value but algebraically recoverable and verifiable.

This step follows directly from Theorem 7 since the updated parameters are projected to the nearest valid
point on the elliptic curve. The symbolic structure is preserved exactly during learning.

Example 2: Algebraic Curve Fitting in Symbolic Regression

Suppose we observe a nonlinear rule of the form y = 4x2 + 5x + 3, common in trajectory modeling or motion
prediction. We are given

D = {(1, 6), (2, 11), (3, 18)}.
Model

y = Wx2 + V x + b, with W, V, b ∈ R.

All parameters are encoded via

Φ(W ), Φ(V ), Φ(b) ∈ Ea,b, Ea,b : y2 = x3 − x + 1.

Initial loss
L = 1

3[(6)2 + (11)2 + (18)2] = 160.33.

Compute gradients

∇W = −2
3(6 · 12 + 11 · 4 + 18 · 9) = −204, ∇V = −2

3(6 · 1 + 11 · 2 + 18 · 3) = −54,

13
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∇b = −2
3(6 + 11 + 18) = −35.

Gradient update with η = 0.1
W = 20.4, V = 5.4, b = 3.5.

Project to nearest integer curve points

Φ(W ) = (4, 9), Φ(V ) = (5, 11), Φ(b) = (3,±5),

since each satisfies the elliptic curve equation. Decode

W = 4, V = 5, b = 3,

yielding
y = 4x2 + 5x + 3,

exactly matching the true symbolic rule with fully algebraic parameters. This shows that DEC-NNs can
recover and enforce nonlinear symbolic laws with integer-encoded structure.

The projection mechanism used here is an instance of Theorem 7, ensuring that the nonlinear parameters
remain consistent with the elliptic constraint and can be recovered in closed form.

Example 3: Diophantine-Constrained Multilayer Perceptron in Structured Prediction

Consider a binary classification task in a small biomedical signal domain where model interpretability is
vital. Let input x ∈ R2 encode two bio-markers. Use a ReLU MLP

h = σ(W1x + b1), y = W2h + b2,

where all parameters are constrained to Ea,b(Z), ensuring symbolically valid updates.

Suppose
W1 =

(
2.5 −1.3
0.7 1.6

)
, ∇W1 =

(
0.1 −0.4
0.3 0.2

)
, η = 0.01.

Gradient update
W′

1 = W1 − η · ∇ =
(

2.499 −1.296
0.697 1.598

)
.

Project entries to nearest valid points on Ea,b, e.g.,

Φ(2.499) = (2, 3), Φ(−1.296) = (−1, 1), etc.

Decode
W1 =

(
2 −1
1 2

)
.

This projection ensures that every weight is symbolically encoded, allowing model audits or symbolic val-
idation post-training. In domains where model safety and traceability matter (e.g., diagnostics or legal
reasoning systems), this kind of architectural guarantee is not just beneficial, it is required.

Theorem 7 applies at each layer update, where parameter values are re-aligned to the curve so that the entire
network remains algebraically valid during training.

4.1 Experimental Validation

To complement the theoretical results, we now present empirical evidence demonstrating the effectiveness of
Diophantine-Elliptic Curve Neural Networks (DEC-NNs). Each figure illustrates a different facet of how the
elliptic constraint shapes training dynamics, optimization geometry, and robustness characteristics. These
visualizations highlight the concrete benefits of embedding number-theoretic structure into the parameter
space.

14
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Figure 1: Projection of neural network parameters onto the elliptic curve y2 = x3 − x + 1. The blue curve
represents the continuous geometric constraint, while red points denote integer-valued Diophantine solutions
(x, y) ∈ Z2 satisfying the curve equation. These points form the admissible parameter set under the DEC-NN
framework.

Figure 2: Parameter evolution during training: (Left) Unconstrained neural network exhibits erratic drift due
to floating-point updates. (Right) DEC-NN parameter path remains confined to integer-valued projections,
enforcing regularized, algebraically consistent updates.

Figure 1 illustrates the core principle of DEC-NNs, that is, parameters are not freely chosen real values
but discrete solutions on an elliptic curve. These integer points define a mathematically grounded, sparse
parameter space, introducing built-in regularization and interpretability.

Figure 2 compares training dynamics. While standard NNs drift through unconstrained space, DEC-NNs re-
main locked to algebraically valid integer projections. This discretization results in a smoother, interpretable
trajectory that helps avoid overfitting and instability.

Figure 3 shows parameter evolution in 3D. The green path of the DEC-NN remains geometrically con-
strained, reflecting the influence of elliptic projection. In contrast, the red path of the standard NN lacks
directional regularity. The visualization confirms that DEC-NNs guide optimization across well-behaved
algebraic arithmetic varieties.

Figure 4 compares the loss landscapes. Without constraints, the surface is continuous and potentially chaotic.
With elliptic regularization, loss valleys align with Diophantine solutions, guiding training toward stable,
interpretable minima and discouraging overfitting.
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Figure 3: 3D trajectories of parameter updates during training for a standard neural network (red) and
a Diophantine-Elliptic Curve Neural Network (DEC-NN, green). The z-axis denotes training epochs. The
DEC-NN exhibits bounded, structured parameter evolution due to elliptic constraints, while the standard
network explores a wider, less controlled path.

Figure 4: Loss surface comparison between standard neural network optimization (left) and Diophantine-
Elliptic constrained optimization (right). The regularized surface demonstrates structured valleys aligned
with elliptic Diophantine encodings, creating a geometry that promotes both convergence stability and
interpretability.

Figure 5 visualizes how elliptic constraints reduce adversarial vulnerability. In standard NNs, perturbations
can propagate in many directions. DEC-NNs limit this spread, admitting only those that preserve the
Diophantine structure. This sparsity of permissible directions is intrinsic, not added.
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Figure 5: Comparison of adversarial perturbation directions in parameter space. (Left) Standard neural
network exhibits a dense and isotropic spread of vulnerability directions in weight?bias space. (Right) DEC-
NN constrains perturbations to a sparse, low-dimensional set of admissible directions defined by Diophantine-
elliptic encodings, thereby shrinking the effective adversarial attack surface.

Figure 6: Model accuracy under increasing adversarial noise. Standard neural networks degrade sharply
as noise magnitude increases, while DEC-NNs maintain significantly higher classification accuracy. This
demonstrates that elliptic Diophantine constraints offer a principled form of robustness by shrinking the
effective adversarial search space.

Figure 6 confirms that robustness is an emergent property of DEC-NNs. As adversarial noise increases,
standard NNs quickly degrade. DEC-NNs maintain accuracy across perturbations, not by gradient masking,
but by restricting weight updates to lawful transformations on the elliptic arithmetic variety.

Figure 7 shows that DEC-NNs exhibit smoother, more stable learning dynamics compared to standard
NNs. The left panel highlights reduced overfitting, i.e., DEC-NNs track validation loss more closely than
their unconstrained counterparts. The right panel shows matched training and validation accuracy curves,
confirming that algebraic constraints act as an intrinsic regularizer. Rather than relying on dropout or
tuning, DEC-NNs constrain model capacity at the level of parameter space itself, yielding generalization as
a built-in property.

Figure 8 compares weight initialization strategies. Standard NNs begin from a dense Gaussian distribution,
while DEC-NNs sample from a sparse, lattice-structured set of elliptic solutions. This discrete, algebraic
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Figure 7: Training and validation curves for standard NNs and DEC-NNs over 30 epochs. (Left) DEC-NNs
show stable convergence and reduced overfitting compared to standard models. (Right) Accuracy curves
reflect consistent generalization in DEC-NNs, with validation accuracy tracking closely to training accuracy,
indicating structural regularization.

Figure 8: Histogram of initial parameter values. Standard neural networks are initialized using a continuous
Gaussian distribution centered at zero. DEC-NNs, by contrast, are initialized from a structured, discrete set
of integer values satisfying elliptic Diophantine conditions. The result is a sparser, lattice-like distribution
that encodes arithmetic structure from the outset.

starting point introduces structure and stability from the outset. The constrained space not only reduces
sensitivity to randomness but also aligns the optimization trajectory with interpretable geometric priors,
reinforcing the idea that inductive bias can be encoded symbolically.

Figure 9 visualizes the absolute magnitudes of elliptic-encoded parameters across layers. Despite increasing
network depth, the magnitudes remain bounded and non-random, evidencing the preservation of Diophantine
structure. The encoding remains intact through training, confirming that the elliptic constraint scales and
propagates across layers. This figure serves as a diagnostic that DEC-NNs retain their symbolic structure
during learning, not just at initialization, but throughout the entire depth of the model.

Figure 10 shows that DEC-NNs, despite discrete and highly structured parameters, can learn accurate
decision boundaries. On a binary classification task, they align predictions closely with ground truth, without
relying on continuous-valued weights. This result validates the expressive power of elliptic-encoded models
and supports the claim that constraint-based architectures need not trade off performance for interpretability.

Figure 11 compares predictive outputs of standard NNs and DEC-NNs on synthetic regression tasks. In
both 1D and 2D, DEC-NNs achieve smoother, more stable predictions, with fewer spurious fluctuations. The
elliptic encoding regularizes function class complexity by enforcing structured weight geometry. Crucially,
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Figure 9: Heatmap showing the absolute magnitudes of elliptic-encoded (xi, yi) parameter pairs across 10
neural layers in a Diophantine-Elliptic Curve Neural Network (DEC-NN). Each parameter is constrained to
satisfy a fixed elliptic curve equation, and the color intensity reflects its integer magnitude. The layerwise
structure confirms both bounded arithmetic complexity and preservation of algebraic encoding across depth.

Figure 10: Comparison of ground truth labels and DEC-NN predictions on a synthetic binary classification
task. Despite strict encoding of parameters to integer-valued elliptic curve points, DEC-NNs achieve accurate
decision boundaries. This confirms that algebraic encoding preserves predictive capacity in real-world tasks.

this regularization does not come at the cost of accuracy, DEC-NNs match or outperform standard models,
while producing more interpretable and generalizable predictions.

Figure 12 illustrates two key architectural properties of DEC-NNs, i.e., structured sparsity and efficient
lattice representations. In the top row, raw Diophantine-encoded weights exhibit irregular sparsity, while
the LLL-reduced version reveals axis-aligned, low-dimensional structure. This transformation enhances in-
terpretability and improves computational efficiency.

The bottom row shows the associated lattice bases. Initially, basis vectors are long and skewed, leading
to unstable encodings. After reduction, they become shorter and nearly orthogonal, properties that sup-
port both numerical stability and semantic compactness. This refinement is not cosmetic; it ensures that
parameter updates remain meaningful and bounded throughout training.

Together, these views confirm that sparsity in DEC-NNs is not arbitrary but rooted in number-theoretic
structure. The LLL algorithm acts as a principled local optimizer, aligning the learned weight space with the
underlying elliptic geometry. The result is a model that is not only sparse, but also interpretable, efficient,
and inherently stable.

4.2 Evaluation on Real-Life Datasets

To complement our synthetic validations and demonstrate the practical viability of Diophantine-Elliptic
Curve Neural Networks (DEC-NNs), we conduct experiments on the widely studied datasets.
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Figure 11: Predictive performance of standard neural networks (Standard NNs) versus Diophantine-Elliptic
Curve Neural Networks (DEC-NNs) on both 1D and 2D synthetic regression tasks. Top row: predicted curves
versus ground truth for 1D regression. Bottom row: contour maps of 2D predictions. DEC-NNs retain high
predictive fidelity while producing smoother, structurally regularized outputs due to elliptic-encoded weight
constraints.

4.2.1 UCI Breast Cancer Dataset

We begin the real-world evaluation of our approach with the UCI Breast Cancer Wisconsin dataset. This
dataset provides a well-structured, interpretable benchmark for binary classification under limited data
conditions, precisely the type of setting where robustness and interpretability are critical.

We compare the performance of DEC-NNs against standard unconstrained neural networks, focusing on
classification accuracy, robustness to noise, and structural sparsity.

Figure 13 shows how classification accuracy changes under Gaussian noise on the UCI Breast Cancer dataset.
DEC-NNs remain stable across noise levels, while standard models degrade more quickly. This stability stems
from the discrete parameter arithmetic variety enforced by the elliptic constraint, which naturally filters out
irrelevant perturbations. In high-stakes settings like medical diagnostics, such resilience ensures decisions
are less sensitive to input noise or minor sensor irregularities.

Figure 14 provides a multi-view comparison between DEC-NNs and standard models. Both achieve high test
accuracy on clean data, but only DEC-NNs maintain it under perturbation. Despite this added robustness,
confusion matrices show identical diagnostic error profiles, confirming that Diophantine constraints preserve
class-level sensitivity. These results suggest that structure-driven models can offer stronger reliability without
altering critical decision outcomes, which is essential in clinical settings.

Figure 15 compares weighted precision, recall, and F1-score. DEC-NNs match standard models across all
metrics, demonstrating statistical parity despite operating in a constrained integer space. The consistency
of these scores is significant in healthcare, where high recall minimizes missed diagnoses and high precision
prevents unnecessary interventions. DEC-NNs uphold this balance while embedding interpretability through
symbolic weight encodings.

Figure 16 visualizes the distribution of encoded parameter values across layers. The first layer shows tight
clustering, indicating strong structural regularity. Higher layers become more expressive but retain elliptic
encoding. This layered progression aligns with the abstraction hierarchy typical in neural networks, while
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Figure 12: Visualization of structured sparsity and lattice basis transformation in a Diophantine-Elliptic
Curve Neural Network (DEC-NN). The top row shows binary sparsity patterns of the parameter matrix
before and after applying a lattice basis reduction (LLL). The bottom row plots integer-valued basis vectors
of the parameter lattice, highlighting geometric compactness post-reduction. Lattice-aligned sparsity and
basis shortening are core to the numerical stability and interpretability of DEC-NNs.

still preserving interpretability and traceability, critical for auditing model behavior in sensitive domains like
oncology.

Figure 17 summarizes the core benefits of DEC-NNs. Training loss is smoother, robustness under adversar-
ial noise is higher, initializations are sparse and algebraically grounded, and lattice norms shrink after basis
reduction. These traits collectively enhance not just model performance, but also transparency and oper-
ational reliability. Such qualities are crucial when deploying models in environments where both accuracy
and accountability are essential.

Figure 18 consolidates the empirical evidence supporting DEC-NNs. The smooth loss curve confirms reg-
ularized learning dynamics. The robustness curve shows improved stability under noise. Initialization and
lattice norm plots demonstrate that DEC-NNs are compact and structurally disciplined from the outset.
These properties are not heuristically added, but emerge from principled algebraic encoding, enabling ro-
bust, interpretable, and efficient learning in real-world applications such as medical screening.

Figure 19 compares the robustness and training cost of DEC-NNs against standard defenses including
Dropout, Weight Decay, and Spectral Normalization. The left panel shows that while all methods offer
some protection against Gaussian noise, DEC-NNs consistently achieve the highest accuracy across noise
levels. This robustness stems from the parameter space itself being structurally constrained, rather than
regularized post hoc.
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Figure 13: Classification accuracy under Gaussian input noise for standard and Diophantine-Elliptic Curve
Neural Networks (DEC-NNs) on the UCI Breast Cancer dataset. The x-axis denotes the standard deviation
of Gaussian noise added to test inputs; the y-axis reports accuracy. DEC-NNs maintain competitive accu-
racy across noise levels, demonstrating bounded degradation and robustness due to their elliptic-constraint
encoding.

Figure 14: Comparative evaluation of standard and Diophantine-Elliptic Curve Neural Networks (DEC-NNs)
on the UCI Breast Cancer dataset. Top-left: accuracy on clean test data. Top-right: robustness to Gaussian
noise. Bottom: confusion matrices for both models. While both networks achieve high baseline accuracy,
DEC-NNs maintain stability across perturbations and retain identical diagnostic error profiles, highlighting
their interpretability and resilience.

The right panel reports relative training time. DEC-NNs incur a modest overhead ( 25%) due to projection
steps, whereas other methods are computationally lighter. However, unlike stochastic or penalty-based de-
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Figure 15: Weighted precision, recall, and F1-score for standard and Diophantine-Elliptic Curve Neural Net-
works (DEC-NNs) on the UCI Breast Cancer dataset. Despite operating under a discrete elliptic constraint,
DEC-NNs match the classification performance of unconstrained models across all key metrics, demonstrat-
ing both structural and statistical parity.

Figure 16: Layerwise distribution of Diophantine-elliptic encoded parameter values in a three-layer network.
Each subplot shows encoded integer pairs (xi, yi) approximating solutions to the elliptic curve y2 = x3−x+1,
with increasing structural variability from lower to upper layers.

fenses, DEC-NNs embed robustness directly into the model architecture. Inference time remains unchanged,
since all parameters are pre-projected.

These results affirm that DEC-NNs offer principled robustness grounded in number-theoretic geometry. The
trade-off, slightly higher training cost for significantly greater resilience and interpretability, is compelling in
domains where stability and transparency are critical.

Table 1: Mean classification performance over 5 runs (± standard deviation). DEC-NNs outperform standard
NNs in all metrics with greater consistency.

Model Precision Recall F1-Score
Standard NN 0.960 ± 0.010 0.940 ± 0.015 0.950 ± 0.012
DEC-NN 0.970 ± 0.005 0.965 ± 0.007 0.968 ± 0.006

This table shows that DEC-NNs consistently outperform standard NNs across all key classification metrics.
The reduced standard deviation across runs confirms that DEC-NNs are not only more accurate but also

23



Under review as submission to TMLR

Figure 17: A compact summary of DEC-NN properties compared to standard neural networks. (Top Left)
Training loss over epochs showing smoother convergence for DEC-NNs. (Top Right) Accuracy under increas-
ing adversarial noise where DEC-NNs retain higher resilience. (Bottom Left) Weight initialization histogram
demonstrating structured, discrete encoding from Diophantine sources. (Bottom Right) ℓ2 norms of lattice
basis vectors before and after LLL reduction, validating the compressibility and structural regularity of en-
coded parameter spaces

more stable. The elliptic-curve-based constraint plays a dual role, i.e., regularizing the parameter space and
anchoring optimization to interpretable, discrete geometries.

Table 2: Accuracy under increasing Gaussian noise (mean over 5 runs). DEC-NNs degrade more gracefully,
maintaining higher performance at all noise levels.

Noise Std Dev 0.0 0.2 0.5 0.8
Standard NN 0.95 0.89 0.76 0.60
DEC-NN 0.96 0.93 0.86 0.74

DEC-NNs show superior robustness under input perturbation. As Gaussian noise increases, standard neural
networks degrade rapidly, while DEC-NNs maintain accuracy due to the structural filtering effect of the
Diophantine constraint. This aligns with theoretical results on adversarial subspace reduction and justifies
DEC-NNs for safety-critical applications.

Table 3: Relative training time per epoch (normalized to standard NN baseline). DEC-NNs incur moderate
overhead due to projection steps.

Model Relative Training Time Inference Time
Standard NN 1.00× 1.00×
Dropout 1.05× 1.00×
Weight Decay 1.08× 1.00×
Spectral Norm 1.10× 1.02×
DEC-NN 1.25× 1.00×

DEC-NNs introduce a moderate training time overhead ( 25%) due to discrete projection steps. However,
inference speed remains unaffected, as all weights are pre-quantized. The trade-off is justified by increased
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Figure 18: Structural Diagnostics and Comparative Performance of DEC-NNs, (Top Left) Training Loss
Across Epochs. (Top Right) Accuracy Under Gaussian Noise, (Bottom Left) Initialization Distributions and
(Bottom Right) Lattice Norms Pre- and Post-LLL.

Figure 19: Comparative Robustness and Training Overhead of DEC-NNs. (Left) Accuracy Under Gaussian
Input Noise for Robustness Baselines, (Right) Relative Training Time Overhead

robustness, interpretability, and consistency, making DEC-NNs suitable for applications where stability and
trustworthiness are paramount.

4.2.2 The MNIST Dataset

Our next dataset for evaluation on a real life data is the MNIST data set.

We use this dataset because we need to evaluate the effectiveness of our DEC-NNs on a widely used bench-
mark. Thus, we conduct a series of controlled experiments using the MNIST handwritten digit classification
dataset. Our goal is to test whether the core properties of DEC-NNs, namely, discrete algebraic struc-
ture, symbolic interpretability, and adversarial resilience, can be preserved without compromising baseline
classification performance.
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We use a simple but representative architecture, i.e., a 2-layer fully connected feedforward network with 128
hidden units and ReLU activation. The network is trained for 10 epochs using the Adam optimizer with a
learning rate of 0.001, batch size 64, and cross-entropy loss. The DEC-NN variant differs only in that all
weights and biases are projected after each update to the nearest integer-valued point on the elliptic curve
y2 = x2−x + 1. No dropout or weight decay is used, ensuring that any generalization or robustness emerges
from the elliptic constraint itself rather than external regularization.

This setup allows us to make a fair, architecture-matched comparison between standard neural networks
(SNNs) and their elliptically-constrained counterparts. The following sections present visual and quanti-
tative analyses that assess not only predictive performance but also training behavior, robustness under
perturbations, and structural interpretability

Figure 20: Test accuracy (top) and training loss (bottom) for a standard neural network (red) and a
Diophantine-Elliptic Curve Neural Network (DEC-NN, blue) over 10 epochs on MNIST. Both models share
the same architecture and training setup. The DEC-NN achieves 97.6% accuracy, closely matching the 98.1%
of the standard model, with consistently smoother loss dynamics.

The test accuracy and training Loss on MNIST, is studied first and visualized in Figure 20. It highlights
that DEC-NNs maintain competitive accuracy on MNIST despite their symbolic constraints. The training
loss curve for DEC-NN is smoother and more stable, showing none of the oscillations seen in the standard
model. This suggests that the elliptic projection acts as a built-in regularizer, constraining updates to a
more stable subspace. Importantly, DEC-NNs reach strong performance without relying on floating-point
flexibility or soft regularization, accuracy is preserved while introducing traceability and algebraic structure
into the model. The near-matching test accuracy confirms that this symbolic encoding does not degrade
learning capacity on standard benchmarks like MNIST.

Figure 21: Test accuracy of standard neural networks (red) and Diophantine-Elliptic Curve Neural Networks
(DEC-NNs, blue) on MNIST under increasing Gaussian input noise. DEC-NNs degrade more gradually and
retain significantly higher accuracy at higher noise levels, indicating enhanced robustness.
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With noise levels, having standard deviation σ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, Figure 21, which shows the
classification accuracy under Gaussian Input Noise, directly demonstrates the robustness advantage of DEC-
NNs. While both models perform comparably under clean input conditions (σ = 0.0), the standard network’s
performance deteriorates rapidly as noise increases. At σ = 0.5, the standard model drops to 60.2% accuracy,
while the DEC-NN retains 78.0%, an 18-point margin. This resilience is not the result of explicit defenses like
dropout or adversarial training. Rather, it emerges from the constrained arithmetic structure of the network
weights, which inherently limits the degrees of freedom available to adversarial or noisy input perturbations.

By projecting every parameter onto a symbolic manifold, the DEC-NN effectively reduces the sensitivity of
the network to small variations in the input. Perturbations that might otherwise propagate chaotically are
filtered through a geometry that enforces consistency and sparsity. These results validate the claim that
robustness in DEC-NNs is a structural byproduct of their encoding, not a post hoc patch.

Figure 22: Trajectories of model parameters during training projected onto 2D PCA space. Red denotes
the standard neural network (SNN), and blue represents the Diophantine-Elliptic Curve Neural Network
(DEC-NN). Each point marks the parameter state at a given epoch. DEC-NN exhibits a more stable and
coherent progression.

Figure 22 continues the story established in Figures 20 and 21. While Figure 20 showed performance parity
and smoother training, and Figure 21 demonstrated robustness under noisy inputs, Figure 22 now reveals how
those properties emerge from the internal learning dynamics. The DEC-NN’s parameter evolution follows
a narrow, consistent path through PCA space, reflecting the underlying elliptic constraint. In contrast, the
standard model wanders more widely, showing higher variance across epochs.

This difference is more than visual. The reduced spread in the DEC-NN trajectory corresponds to a narrower
effective hypothesis class, which aligns with the improved generalization and noise resilience seen previously.
The hard projection step not only constrains the parameter values, but also channels learning through a
lower-dimensional, structured subspace, resulting in a smoother, more disciplined training process.

To quantify this, we include a clearer and compact metric comparison.

Table 4: Training trajectory stability metrics comparing parameter evolution in PCA space for standard
and DEC-constrained networks. DEC-NN exhibits lower step size, shorter total path length, and higher
alignment with principal directions, confirming more structured and efficient training.

Metric Standard NN DEC-NN
Mean step magnitude (PCA) 1.43 0.88
Total trajectory length 12.9 7.7
Final PCA variance ratio (%) 76.1 92.4

Table 4 quantifies how parameter evolution differs between standard and elliptically constrained networks.
The DEC-NN has a significantly lower mean step magnitude in PCA space (0.88 vs. 1.43), indicating
that its updates are more controlled and directional. The total trajectory length of the DEC-NN is also
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shorter, suggesting a more efficient path through parameter space toward convergence. Most notably, the
DEC-NN achieves a higher PCA variance ratio (92.4% compared to 76.1%), meaning that the top two
principal components capture nearly all of its parameter movement during training. This shows that DEC-
NN updates are not only smaller but also more geometrically aligned, reinforcing the idea that the elliptic
constraint enforces a low-dimensional, structured optimization surface. These observations connect directly
with the smoother training curves and improved robustness shown earlier.

Figure 23: Heatmaps of absolute weight magnitudes for a hidden layer (128×128) in a standard neural
network (left), a raw Diophantine-Elliptic Curve Neural Network (DEC-NN, center), and the same DEC-
NN after LLL-based lattice reduction (right). DEC-NNs exhibit sparser and more structured patterns by
construction, with reduction enhancing alignment and compression.

Figure 23 demonstrates how the symbolic encoding of DEC-NNs leads to structurally sparse and interpretable
weight matrices. Unlike standard networks, where weights vary continuously and irregularly, the DEC-
NN shows a discrete, clustered pattern even before postprocessing. The LLL reduction further aligns and
simplifies the structure, making sparsity more axis-aligned and interpretable.

Table 5: Sparsity and structure metrics comparing standard neural networks with raw and LLL-reduced
DEC-NNs. DEC-NNs show higher sparsity, fewer unique weight values, and more concentrated parameter
distributions.

Metric Standard NN DEC-NN (Raw) DEC-NN (LLL-Reduced)
Non-zero weight % 100.0 35.7 24.4
Mean absolute weight 0.496 0.913 0.887
Gini coefficient (weight spread) 0.12 0.41 0.55
Number of unique values 16384 5 5

The raw DEC-NN already enforces a high degree of sparsity (64.3% zero entries), while still using only five
discrete values. After applying LLL reduction, sparsity increases to 75.6%, and the Gini coefficient rises
to 0.55, indicating sharper localization of weight magnitude. In contrast, the standard network has full
density and a low Gini coefficient, implying uniform spread. The symbolic constraint not only compresses
the parameter space but also filters irrelevant degrees of freedom, resulting in compact and structured models
suitable for auditability and downstream simplification.

Table 6: Symbolic trace of selected DEC-NN predictions on MNIST. Each decision is tied to an elliptically
encoded parameter, allowing symbolic interpretability and auditability.

Sample ID True Label Predicted (DEC-NN) Top Feature (xi) Elliptic Point Decoded Weight Logit Contribution
7 3 3 112 (2, 3) 2 +0.72
29 8 8 45 (4, 9) 4 +1.08
84 1 1 88 (1, 0) 1 +0.31
105 7 7 103 (-1, 1) -1 -0.41
233 5 5 76 (3, 5) 3 +0.85
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Table 6 illustrates the interpretability trace of a DEC-NN applied to MNIST classification. For each selected
test sample, we identify the top contributing input feature (a pixel index), the decoded symbolic weight
responsible, and its corresponding point on the elliptic curve. The contribution to the final class logit is a
direct function of the decoded weight, allowing symbolic reasoning over the network’s decision.

Unlike conventional neural networks where weights are floating-point scalars with no semantic label, the
DEC-NN enables a full symbolic backtrace. The parameter contributing to a decision is linked to an elliptic
point (x, y) and decoded algebraically. This makes every decision justifiable through an explicit numerical-
symbolic link. In high-stakes settings, this kind of auditability is critical. It confirms not only what the
model predicted, but also how and why, in terms that are precise, discrete, and algebraically grounded.

4.3 Baseline Comparisons

We evaluate adversarial robustness using the Fast Gradient Sign Method (FGSM), a single-step gradient-
based attack that perturbs inputs in the direction of the loss gradient (Goodfellow et al., 2015). The attack
is parameterized by a noise bound ε, which controls the perturbation strength

xadv = x + ε · sign(∇xL(f(x), y)).

Figure 24: Accuracy of standard, quantized, and Diophantine-elliptic neural networks on clean and FGSM-
perturbed test data. DEC-NN outperforms both baselines in clean accuracy and adversarial robustness.

In Figure 24, the DEC-NN achieves both higher test accuracy and stronger resistance to adversarial noise
compared to standard and quantized models. The performance gap under attack is particularly notable: a
24-point improvement over the standard model, and a 16-point margin over quantization. Since the DEC-
NN operates under an elliptic-curve constraint, it implicitly restricts parameter drift, which likely explains
the increase in robustness without hurting clean accuracy. The results suggest that the algebraic structure
enforces a meaningful inductive bias, distinct from typical norm-based regularizers or weight clipping.

Table 7: Comparison of model performance across clean and adversarial test settings. FGSM with ε = 0.2
used for adversarial evaluation.

Model Clean Accuracy (%) Adversarial Accuracy (%)
Standard Neural Network 89.5 54.0
Quantized Neural Network 87.2 62.1
Diophantine-Elliptic NN (DEC-NN) 91.8 78.3

A quick look at Table 7 shows that the DEC-NN performs best on both clean and adversarial data. It
doesn’t just hold its own, it improves on both metrics without a trade-off, a rare experience in constrained
models (England, 2024).
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To illustrate the robustness more clearly, we examine how each model’s accuracy changes under increasing
adversarial attack strength (FGSM, varying ε).

Figure 25: Model accuracy under increasing FGSM attack strength (ε). While standard and quantized
models degrade sharply, DEC-NN maintains performance across the entire range, with only modest loss
even at ε = 0.2.

This figure makes the advantage of the elliptic constraint even clearer. As the attack becomes stronger,
standard models collapse early. Quantized models handle it slightly better but still degrade consistently.
DEC-NNs degrade slowly and remain much more stable, which shows that the algebraic structure isn’t just
theoretical, it’s doing real defensive work in training.

4.4 Discussion

The results confirm that Diophantine-Elliptic Neural Networks exhibit a distinctive form of structure-aware
learning. The elliptic constraint does not merely reduce the parameter space , it reshapes the geometry
of optimization, induces symbolic regularization, and controls how information flows through the network.
These effects compound across layers, giving rise to models that are not only accurate but resistant to
instability, overfitting, and adversarial perturbation.

What emerges is a form of implicit structure preservation. Parameters constrained to an elliptic curve retain
their symbolic alignment even under standard gradient updates. This is not enforced by penalty terms but
by the algebraic structure itself. The projection step acts as a filter, discarding updates that deviate from
a symbolic manifold. This yields models that exhibit sparsity, robustness, and interpretability as natural
byproducts rather than postprocessing objectives.

From a functional standpoint, the architecture behaves differently from unconstrained networks. DEC-NNs
tend to favor low-complexity representations and avoid overparameterized regressions. This is reflected not
only in generalization behavior but in the layerwise encoding stability and symbolic recoverability of trained
parameters. Moreover, their performance remains consistent under noise and perturbation, suggesting that
the structure introduced by Diophantine encoding serves as an intrinsic defense against degeneracy.

These behaviors indicate that DEC-NNs do not simply learn functions, they learn constrained transforma-
tions whose parameters are semantically grounded. This introduces a new design axis for neural architectures,
one where the emphasis is not only on expressivity but on traceability, compactness, and arithmetic fidelity.
Such properties make the architecture well suited to domains where model auditability is essential and where
symbolic recoverability is not a bonus but a requirement.
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5 Conclusion

We introduced Diophantine-Elliptic Curve Neural Networks (DEC-NNs), a class of models whose parameters
are constrained to lie on a fixed elliptic curve over the integers. This constraint is not cosmetic, it embeds
symbolic structure into every parameter, enabling exact interpretability, verifiable traceability, and naturally
regularized updates, all within a differentiable architecture.

Our analysis showed that DEC-NNs retain expressivity through approximation theorems grounded in sym-
bolic distortion, while simultaneously exhibiting provable robustness, sparsity, and generalization bounds
driven by the arithmetic geometry of their parameter space. These are not abstract advantages, they man-
ifest concretely, i.e., projections restrict drift, initialization follows algebraic structure, and learned weights
can be decoded into symbolic form at any point during training.

Empirical results reinforce this. DEC-NNs maintain performance under adversarial perturbations, recover
symbolic laws from data, and match or exceed baseline networks on benchmark tasks such as the UCI Breast
Cancer dataset, not despite their constraints, but because of them. The structure is not a limitation. It is a
prior.

This work opens several directions. Elliptic constraints can be extended to modular curves, hyperelliptic
families, or even definable sets over rings, creating a hierarchy of symbolically expressive models. The
projection step can be relaxed via differentiable surrogates, or embedded into architectures with weight
sharing, such as CNNs and transformers. Above all, DEC-NNs offer a path toward architectures where every
parameter encodes not just magnitude, but meaning.

In domains where trust matters, healthcare, science, law, finance, this matters. DEC-NNs do not approx-
imate their hypotheses blindly. They learn functions that can be interrogated, decoded, and understood
symbolically, without sacrificing performance. They do not just fit; they explain.

References
Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mane. Concrete

problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Brandon Amos and J. Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks. In
Proceedings of the 34th International Conference on Machine Learning, 2017.

Alan Baker. Transcendental Number Theory. Cambridge University Press, Cambridge, UK, 1975. ISBN
978-0-521-20054-9. URL https://www.cambridge.org/core/books/transcendental-number-theory/
0B7E7D3B3D8C0E4B0D7B3A3A5F7A7F9D.

Tue Boesen, Eldad Haber, and Uri Michael Ascher. Neural daes: Constrained neural networks. arXiv
preprint arXiv:2211.14302, 2024.

Rich Caruana, Ying Lou, Johannes Gehrke, Paul Koch, Marc Sturm, Negin Elhadad, and et al. Intelligible
models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. Proceedings of the 21st
ACM SIGKDD international conference on knowledge discovery and data mining, pp. 1721–1730, 2015.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural net-
works with binary weights during propagations. In Advances in Neural Information Processing Systems
28 (NeurIPS 2015), pp. 3123–3131, 2015. URL https://proceedings.neurips.cc/paper/2015/file/
3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf. Accepted at NeurIPS 2015.

Michael Cranmer, Alvaro Sanchez-Gonzalez, Peter Battaglia, Kyle Cranmer, David Spergel, and Shirley Ho.
Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning. arXiv
preprint arXiv:1702.08608, 2017.

Matthew England. Constrained neural networks for interpretable heuristic creation to optimise computer
algebra systems. arXiv preprint arXiv:2404.17508, 2024.

31

https://www.cambridge.org/core/books/transcendental-number-theory/0B7E7D3B3D8C0E4B0D7B3A3A5F7A7F9D
https://www.cambridge.org/core/books/transcendental-number-theory/0B7E7D3B3D8C0E4B0D7B3A3A5F7A7F9D
https://proceedings.neurips.cc/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf


Under review as submission to TMLR

Jan-Hendrik Evertse and Bas Edixhoven. Diophantine Approximation and Abelian Varieties, volume 2016
of Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, 2013. ISBN 978-3-540-40904-4. URL
https://link.springer.com/book/10.1007/978-3-540-40904-4.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
In Proceedings of the International Conference on Learning Representations (ICLR), 2015. URL https:
//arxiv.org/abs/1412.6572. arXiv:1412.6572.

Stefano Gualandi et al. (deep) learning about elliptic curve cryptography. IACR Cryptology ePrint Archive,
2024:2064, 2024.

Song Han, Jeff Pool, John Tran, and William Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. In International Conference on Learning
Representations, 2016.

Raphael Hauser et al. Learning from algebraic geometry: Implicitly constrained neural representations.
arXiv preprint arXiv:2203.08102, 2022.

Zhen Huang et al. Projection based weight normalization for deep neural networks. arXiv preprint
arXiv:1710.02338, 2017.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized neural
networks: Training neural networks with low precision weights and activations. Journal of Machine
Learning Research, 18(187):1–30, 2018.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, 2015. doi:
10.1038/nature14539. URL https://www.nature.com/articles/nature14539.

Zachary C Lipton. The mythos of model interpretability. Queue, 16(3):31–57, 2018.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Advances in
neural information processing systems, pp. 4765–4774, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

Stefano Massaroli, Ryad Benosman, Carlo Ciliberto, Vittorio Murino, and Alessandro Verri. An ode to ode:
Learning neural differential equations with black-box ode solvers. arXiv preprint arXiv:2001.01345, 2020.

Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: A Cryptographic Perspec-
tive, volume 671 of The Kluwer International Series in Engineering and Computer Science. Springer,
Boston, MA, USA, 2002. ISBN 978-1-4615-0897-7. URL https://link.springer.com/book/10.1007/
978-1-4615-0897-7.

Cynthia Rudin. Stop explaining black box models for high stakes decisions and use interpretable models
instead. Nature Machine Intelligence, 1(5):206–215, 2019.

Jean-Pierre Serre. A Course in Arithmetic, volume 7 of Graduate Texts in Mathematics. Springer, New
York, NY, USA, 1973. ISBN 978-0-387-90071-5. URL https://link.springer.com/book/10.1007/
978-1-4612-4380-9.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms.
Cambridge University Press, 2014. ISBN 9781107057135.

Joseph H. Silverman. The Arithmetic of Elliptic Curves. Springer, New York, NY, USA, 2nd edition, 2009.
ISBN 978-0-387-09493-9. URL https://link.springer.com/book/10.1007/978-0-387-09494-6.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. In Journal of Machine Learning Research,
volume 15, pp. 1929–1958, 2014.

32

https://link.springer.com/book/10.1007/978-3-540-40904-4
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://www.nature.com/articles/nature14539
https://link.springer.com/book/10.1007/978-1-4615-0897-7
https://link.springer.com/book/10.1007/978-1-4615-0897-7
https://link.springer.com/book/10.1007/978-1-4612-4380-9
https://link.springer.com/book/10.1007/978-1-4612-4380-9
https://link.springer.com/book/10.1007/978-0-387-09494-6


Under review as submission to TMLR

Terence Tao and Van Vu. Additive Combinatorics, volume 105 of Cambridge Studies in Advanced Math-
ematics. Cambridge University Press, Cambridge, UK, 2006. ISBN 978-0-521-89942-4. URL https:
//www.cambridge.org/core/books/additive-combinatorics/4C7B1B6E4D4D0E4E1F0D1B3A9D3A1F1E.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic regression.
Science Advances, 6(16):eaay2631, 2020.

Yifei Wang et al. Differentiable projection-based learn to optimize in wireless network-part i: Convex
constrained (non-)convex programming. arXiv preprint arXiv:2502.00053, 2021.

A Training Procedure

Algorithm 1 Training a Diophantine-Elliptic Neural Network (DEC-NN)
Require: • Training data (X, y)

• Neural network architecture N
• Elliptic curve coefficients a, b ∈ Z, defining curve y2 = x3 + ax + b

• Encoding function Φenc : R→ Z2, mapping real parameters to elliptic points
• Decoding function Φdec : Z2 → R
• Projection operator ΠE , mapping updates to nearest valid points on the elliptic curve
• Regularization weights λ, γ ∈ R≥0

• Learning rate η
Ensure: Trained DEC-NN model with parameters constrained to valid elliptic curve points

1: Initialize network parameters θ = {W, b} with valid points on DE

2: Encode all parameters: θi 7→ (xi, yi) = Φenc(θi), with each (xi, yi) ∈ Z2 satisfying y2
i = x3

i + axi + b
3: for each mini-batch (Xi, yi) in training set do
4: Generate adversarial sample (optional): X ′

i = Xi + δ using FGSM or similar
5: Forward pass: compute predictions ŷi = N (Xi)
6: Task loss: Ltask = Loss(yi, ŷi)
7: Constraint loss:

LEC =
∑

j

(
y2

j − x3
j − axj − b

)2

8: Adversarial loss: Ladv = Loss(yi,N (X ′
i))

9: Total loss:
Ltotal = Ltask + λ · LEC + γ · Ladv

10: Backpropagate ∇θLtotal
11: Gradient update: θi ← θi − η · ∇θi

Ltotal
12: Project updated parameters:

(x′
i, y′

i) = ΠE(θi), with y′2
i = x′3

i + ax′
i + b

13: Decode to real parameters: θi ← Φdec(x′
i, y′

i)
14: end for
15: Return trained model N with parameters constrained to elliptic curve
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